25
Design and screening of suitable ligand/diluents systems for removal of Sr 2+ ion from nuclear waste: Density functional theoretical modelling Sk. Musharaf Ali *# Chemical Engineering Division Bhabha Atomic Research centre, Mumbai, India, 400085 # Homi Bhabha National Institute E-mail: [email protected] Section-S1 Structural parameters The calculated distance of Sr 2+ metal ion from the plane of the crown ether ring is displayed in supplementary Fig.S2. In 12C4, the metal ion is above the plane of the cavity by 1.55Å and in 15C5 by 1.03 Å, whereas it is almost zero in case of 18C6. The calculated C-C (1.51- 1.52Å) bond length remains almost unchanged after complexation though the C-O bond is lengthened from 1.42-1.42Å to 1.45-1.46 Å for all the crown ethers studied here. Detailed structural parameters are given in supplementary table, Table. S1.The O-O distance is reduced due to electrostatic interaction between the metal ion and the crown ether. The calculated C-C (1.51-1.52Å) bond distance within the crown ether cavity is in excellent agreement with the reported experimental results of 1.50-1.53Å 86 . Detailed results are presented in Table. S2. There are two types of C-O bonds. The C-O bond distance, where the O atom is bonded to the benzene carbon is smaller in length (1.37Å; experimental C-O: 1.36-1.37Å) than the methylene carbon atom of the crown ring, 1.42-1.43Å (experimental results: 1.39-1.46Å). This is due to the smaller C-C bond length of the benzene ring. The calculated <CCO bond angle (108.22 o -116.56 o ) are well matched with the experimental results (104.3 o -126.2 o ). The calculated <COC bond angle (112.39 o -118.28 o ) are also well matched with the experimental results (112.4 o -119 o ).

ars.els-cdn.com  · Web viewFew

  • Upload
    letram

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

Design and screening of suitable ligand/diluents systems for removal of Sr2+ ion from

nuclear waste: Density functional theoretical modelling

Sk. Musharaf Ali*#

Chemical Engineering Division Bhabha Atomic Research centre, Mumbai, India, 400085

#Homi Bhabha National Institute

E-mail: [email protected]

Section-S1

Structural parameters

The calculated distance of Sr2+ metal ion from the plane of the crown ether ring is displayed in supplementary Fig.S2. In 12C4, the metal ion is above the plane of the cavity by 1.55Å and in 15C5 by 1.03 Å, whereas it is almost zero in case of 18C6. The calculated C-C (1.51-1.52Å) bond length remains almost unchanged after complexation though the C-O bond is lengthened from 1.42-1.42Å to 1.45-1.46 Å for all the crown ethers studied here. Detailed structural parameters are given in supplementary table, Table. S1.The O-O distance is reduced due to electrostatic interaction between the metal ion and the crown ether.

The calculated C-C (1.51-1.52Å) bond distance within the crown ether cavity is in excellent agreement with the reported experimental results of 1.50-1.53Å86. Detailed results are presented in Table. S2. There are two types of C-O bonds. The C-O bond distance, where the O atom is bonded to the benzene carbon is smaller in length (1.37Å; experimental C-O: 1.36-1.37Å) than the methylene carbon atom of the crown ring, 1.42-1.43Å (experimental results: 1.39-1.46Å). This is due to the smaller C-C bond length of the benzene ring. The calculated <CCO bond angle (108.22o-116.56o) are well matched with the experimental results (104.3o-126.2o). The calculated <COC bond angle (112.39o-118.28o) are also well matched with the experimental results (112.4o-119o).

The interaction energy of DB18C6 with Sr2+ ion can be further tuned by replacing the hard donor “O”

atom with the soft donor “N” and hence N atom substituted structure (aza-DB18C6) was further

optimized at BP86/TZVP level and are displayed in Fig.S3(II). The C-C bond lengths are similar like

DB18C6. The C-N bond lengths is (1.38-1.41Å and 1.38-1.43Å, adjacent to the benzene ring) smaller

than the C-O bond length of DB18C6. Few <NCC and <CNC bond angles are large compared to <OCC

and <COC bond angles in DB18C6 (see the supplementary Table. S2). The centre to centre transannular

N-N distance (5.10-5.46Å) is smaller than the O-O distance due to which the cavity size is reduced

slightly. The optimized structure of Sr2+ complex with aza-DB18C6 is also displayed in the same Fig.

S3(III). Though the C-C bond remains almost unaffected, the C-O bond has been lengthened by ~0.3 due

to the interaction with the Sr2+ metal ion in DB18C6. The change in the <OCC and <COC bond angle

was also found to be insignificant. The minimum Sr-O bond distance is found to be increased from 12C4

(2.46Å) to 18C6 (2.60Å) and then is decreased in DB18C6 (2.56Å). This is due to the increase in cavity

size from 12C4 to 18C6 and then cavity size is reduced in DB18C6. The O-O distance is reduced due to

electrostatic interaction between the metal ion and the crown ether. The cavity size in DB18C6 is

reduced to 2.23Å from 2.76Å due to strong electrostatic interaction of the ring O atom with the metal ion

and hence the ion is slightly pulled off from the cavity. The Sr-O bond distance adjacent to the benzene

ring is larger than with the methylene O atom of the crown ring. The C-C bond length remains

unchanged in aza-DB18C6-Sr2+ ion complex. The C-N bond is lengthened compared to the free crown

part. The Sr-N bond distance (2.69-2.77Å) is larger than the Sr-O bond distance (2.55-2.60Å). The two

benzene ring in aza complex has come closer than the corresponding oxa complex as clearly seen in the

figure.

Table.S1. Calculated structural parameters of Sr2+ ion complexes with different crown ethers at BP86/TZVP level of theory.

Ligand Bond distance (Ǻ)

(gas) Sr-O(N) Trans annular O-O (N-N)distance

C-C C-O(N) min max min max

12C4 1.519 1.455 2.458 2.514 3.573 4.131

15C5 1.512 1.453 2.503 2.533 3.992 4.577

18C6 1.505 1.448 2.595 2.634 5.103 5.262

DB18C6 1.507 1.403*

1.449

2.557 2.605 4.823 5.166

Aza-DB18C6 1.531 1.438*

1.491

2.691 2.783 5.064 5.373

*adjacent to benzo ring

Table.S2. Calculated structural parameters of DB18C6 and aza-DB18C6 at BP86/TZVP level of theory in gas phase.

Ligand Bond distance (Ǻ)

(gas)

C-C C-O(N) C-O(N)* <OCC <COC O-O

DB18C6 1.513, 1.512, 1.523,1.514

(1.53, 1.532, 1.502, 1.50, )

1.418, 1.420, 1.425, 1.428, 1.425, 1.419,

(1.437, 1.42, 1.39, 1.45,

1.441, 1.419, 1.466, 1.446)

1.364, 1.364, 1.364, 1.368

(1.355, 1.355, 1.368, 1.369)

108.33, 109.60, 116.56, 109.49, 108.22, 109.5, 110.09, 108.30

(107.9, 107.4, 112.4, 107.3, 105.9, 114.6, 124.5, 126.2, 114.5, 107.3, 114.6, 105,

104.3, 123.4, 116.1,

112.39, 117.80, 114.75, 117.32, 118.23, 118.28

(118.2, 113.4, 117.8, 117.5, 112.4, 119.0

5.282

5.500

5.624

Aza-DB18C6 1.527

1.524

1.528

1.536

1.477, 1.463

1.465, 1.464

1.467, 1.444

1.449, 1.442

1.388

1.431

1.381

1.406

113.83, 111.74

109.28, 112.37

111.31, 111.01

110.82, 109.42

117.01, 117.82, 118.32, 118.02

114.01, 124.93

121.26, 113.96

120.26, 113.87

5.131

5.463

5.104

*adjacent to benzo ring

Table.S3. Calculated structural parameters of different free crown ethers in solvent at BP86/TZVP level of theory.

Ligand Bond distance (Ǻ)

(gas) (water) (Chloroform) (Nitrobenzene)

C-C C-O C-C C-O C-C C-O C-C C-O

12C4 1.517 1.420 1.515 1.426 1.516 1.425 1.515 1.428

15C5 1.514 1.417 1.512 1.424 1.513 1.422 1.512 1.424

18C6 1.513 1.416 1.512 1.426 1.513 1.422 1.512 1.425

DB18C6 1.512 1.364*

1.418

1.509 1.366*

1.425

1.510 1.365*

1.423

1.510 1.365*

1.425

*O atom adjacent to benzo ring

Table.S4. Calculated structural parameters of different crown ethers at BP86/TZVP level of theory.

Ligand Centre-centre transannular O-O distance(Å)

(gas) (water) (Chloroform) (Nitrobenzene)

12C4 3.484

4.767

3.508

4.709

3.509

4.723

3.520

4.701

15C5* 4.148

4.479

4.708

4.904

4.070

4.379

4.738

4.987

4.113

4.437

4.726

4.954

4.073

4.384

4.736

4.984

18C6 5.161

5.893

6.151

4.384

5.903

5.939

4.353

5.941

5.948

4.360

5.931

5.940

DB18C6 5.282

5.500

5.624

5.290

5.509

5.580

5.294

5.507

5.606

5.290

5.511

5.606

* In 15C5 1-3 centre-centre O-O distance has been considered

Section-2

Interaction energy parameters

Table.S5. Calculated binding energy and thermodynamic parameters of different crown ether-Sr2+ ion system at BP86/TZVP level of theory in gas phase.

Ligand Binding energy(kcal/mol)

Binding enthalpy(kcal/mol)

∆Scal/mol/k

Binding free energy(kcal/mol)

Without ZPE With ZPE

12C4 -148.86 -146.60 -147.19 -42.65 -134.47

15C5 -180.08 -177.14 -177.73 -35.35 -167.19

18C6 -200.25 -196.46 -197.05, -199.00*,-208.00**

-36.28 -186.23

DB18C6 -192.72 -190.30 -190.89 -33.25 -180.97

Aza-DB18C6 -193.90 -190.54 -191.13 -39.12 -179.46

* Reference [44] calculated at RHF/6-31G* level of theory** Reference [44] calculated at MP2/6-31G* level of theory

Table.S6. Complexation energy of Sr(NO3)2 with different crown ethers at BP86/TZVP level of theory in gas and solvent phase.

Ligand Ecomp (kcal/mol)

(gas) (water) (chloroform) (Nitrobenzene)

Sr(NO3)2 -433.05 -35.26 -145.42 -50.72

12C4- Sr(NO3)2 -464.12 -49.03 -166.84 -65.05

15C5- Sr(NO3)2 -474.73 -59.80 -178.05 -75.79

18C6 -Sr(NO3)2 -483.28 -67.82 -185.55 -84.04

DB18C6 -Sr(NO3)2 -475.09 -56.68 -174.64 -75.15

Table.S7. Calculated structural parameters of complexes of DB18C6 with different metal ions at BP86/TZVP level of theory.

System Bond distance (Å)(gas)

M-L-NO3 complex

C-C C-O C-O* M-O O-O (transannular

distance)

M-O

Be2+ 1.522, 1.518, 1.525, 1.524

1.447, 1.463, 1.466, 1.467

1.406, 1.417, 1.457, 1.468, 1.419, 1.399, 1.447, 1.476

1.888, 1.924, 1.910, 1.869, 1.785, 1.861

2.785,2.731,3.646

1.556, 1.747, 1.758, 1.691

Mg2+ 1.521, 1.523, 1.523, 1.506

1.461, 1.457, 1.457, 1.459

1.403, 1.419, 1.449, 1.475, 1.417, 1.469, 1.402, 1.451

2.135, 2.126, 2.137, 2.134, 2.134, 2.125

3.437,3.475,4.248

2.159, 2.242, 2.185, 2.187,2.371, 2.623, 2.475, 2.491

Ca2+ 1.504, 1.518, 1.513, 1.516

1.450, 1.450, 1.453, 1.454

1.401, 1.415, 1.468, 1.452, 1.402, 1.403,

1.453, 1.454

2.427, 2.383, 2.489, 2.406, 2.423, 2.427

4.381,4.647,4.908

2.463, 2.469, 2.470, 2.457,2.698, 2.582, 2.583, 2.726, 2.689, 2.730

Sr2+ 1.511, 1.5121.507, 1.517

1.463, 1.4511.452, 1.453

1.403, 1.412, 1.402, 1.403, 1.450, 1.4501.449, 1.452

2.576, 2.559, 2.605, 2.5572.595, 2.566

4.823,5.113,5.166,

2.621, 2.632, 2.623, 2.632,2.690, 2.665, 2.726, 2.741, 2.733, 2.752

Ba2+ 1.509, 1.509, 1.510, 1.514

1.450, 1.452, 1.452, 1.458

1.401, 1.401, 1.401, 1.410, 1.449, 1.449, 1.450, 1.459

2.708, 2.7682.767, 2.754, 2.742, 2.745

4.937,5.368,5.422

2.776, 2.780, 2.792, 2.808, 2.771, 2.805, 2.831, 2.802, 2.809, 2.819

H3O+ 1.510, 1.5091.510, 1.519

1.446, 1.444, 1.428, 1.429

1.393, 1.374, 1.373, 1.404, 1.444, 1.424, 1.459. 1.435

2.636, 2.866, 2.640, 3.03, 2.822, 2.589

4.966,5.360,5.312

2.583, 2.981, 2.937, 3.212, 3.822, 3.460, 3.183

Na+ 1.506, 1.521, 1.512, 1.511

1.435, 1.435, 1.437, 1.437

1.396, 1.450, 1.381, 1.438, 1.434, 1.380, 1.381, 1.434

2.543, 2.5432.567, 2.493, 2.600, 2.547

4.869,5.142,4.925

2.378, 2.381, 2.526, 2.763, 2.838, 2.785, 2.856, 2.719

*adjacent to benzo ring

Bold: O between two methylene carbons; italics: O of nitrate anion

Table.S8. Calculated NBO charge on free crown ethers and its metal ion complexes at BP86/TZVP level of theory.

Free

Ligand NBO charge

O (gas) water CHCl3 NB

12C4 -0.483, -0.467, -0.476, -0.491

-0.513, -0.500, -0.508, -0.503

-0.503, -0.489, -0.489, -0.500

-0.512, -0.499, -0.507, -0.503

15C5 -0.463, -0.467, -0.473, -0.467,

-0.466

-0.498, -0.501, -0.488, -0.500,

-0.496

-0.486, -0.489, -0.484, -0.489,

-0.486

-0.496, -0.500, -0.488, -0.499,

-0.495

18C6 -0.467, -0.472, -0.460, -0.467, -0.464, -0.464

-0.485, -0.496, -0.496, -0.484, -0.496, -0.496

-0.476, -0.487, -0.488, -0.476, -0.487, -0.488

-0.483, -0.495, -0.495, -0.483, -0.495, -0.495

DB18C6 -0.408, -0.465, -0.410, -0.415, -0.458, -0.409

-0.427, -0.491, -0.428, -0.432, -0.428, -0.487

-0.421, -0.483, -0.422, -0.426, -0.478, -0.421

-0.427, -0.491, -0.429, -0.432, -0.488, -0.428

Aza-DB18C6 -0.589, -0.619, -0.569, -0.607, -0.614, -0.568

-0.592, -0.629, -0.572, -0.616, -0.623, -0.568

-0.592, -0.625, -0.571, -0.613, -0.620, -0.568

-0.592, -0.628, -0.572, -0.616, -0.622, -0.568

Sr2+-complex

Ligand NBO

O water CHCl3 NB Sr(gas)

12C4 -0.596, -0.591, -0.591, -0.595

-0.578, -0.574, -0.574, -0.574

-0.588, -0.585, -0.586, -0.588

-0.585, -0.582, -0.583, -0.585

1.877

1.916(w)

1.909(NB)

1.901(ch)

15C5 -0.590, -0.589, -0.590, -0.585,

-0.590

-0.579, -0.572, -0.576, -0.570,

-0.578

-0.583, -0.577, -0.581, -0.574,

-0.583

-0.586, -0.581, -0.583, -0.577,

-0.582

1.865

1.890(w)

1.882(ch)

1.888(nb)

18C6 -0.582, -0.585, -0.575, -0.579,

-0.572, -0.575, -0.566, -0.571,

-0.575, -0.578, -0.569, -0.574,

-0.572, -0.575, -0.566, -0.572,

1.864,

-0.578, -0.576 -0.571, -0.566 -0.573, -0.570 -0.571, -0.567 1.881(w)

1.876(ch)

1.881(nb)

DB18C6 -0.541, -0.582, -0.546, -0.557, -0.576, -0.573

-0.520, -0.575, -0.524, -0.536, -0.570, -0.555

-0.527, -0.578, -0.531, -0.543, -0.572, -0.562

-0.520, -0.576, -0.525, -0.536, -0.570, -0.556

1.877,

1.890(ch)

1.896(water)

1.895(NB)

Aza-DB18C6 -0.667, -0.691, -0.692, -0.699, -0.688, -0.671

-0.657, -0.687, -0.686, -0.691, -0.686, -0.663

-0.661, -0.688, -0.689, -0.694, -0.687, -0.666

-0.657, -0.687, -0.687, -0.691, -0.687, -0.664

1.802

1.818(ch)

1.824 (water)

1.824(nb)

Table.S9. Calculated values of HOMO-LUMO energy gap of different free crown ethers at BP86/TZVP level of theory.

Ligand HOMO-LUMO gap (eV)

(gas) (water) (Chloroform) (Nitrobenzene)

12C4 6.24 6.48 6.42 6.49

15C5 6.03 6.29 6.21 6.28

18C6 6.09 6.09 6.04 6.08

DB18C6 4.01 4.09 4.05 4.08

aza-DB18C6 3.12 3.27 3.22 3.26

Table.S10. Calculated Structural parameters of CSCDCH and CSCDTBDCH at BP86/TZVP level of theory.

Ligand Bond distance(Å)

C-C C-O O-O

CSCDCH 1.513, 1.513, 1.517, 1.516

1.428, 1.423, 1.427, 1.430, 1.420, 1.419, 1.419, 1.420, 1.423, 1.421, 1.421, 1.422

5.503**, 5.787, 6.035

CSCDTBDCH 1.514, 1.514, 1.516, 1.526

1.424, 1.432, 1.431, 1.423, 1.429, 1.422, 1.416, 1.421, 1.423, 1.421, 1.415, 1.419

4.658**, 6.399, 5.992

** between two methylene O atom

Structural parameters of Sr2+ and Sr(NO3)2-crown ether complexes at BP86/TZVP level of theory.

Ligand

M-O distance (Å) O-O annular distance (Å)

calc

Middle O

O adjacent to benzene/ cyclohexane ring

O of nitrate Middle O O adjacent to benzene / cyclohexane ring

CSCDCH 2.710, 2.660

2.719, 2.725, 2.840, 2.775

2.723, 2.713, 2.708, 2.690

5.182 5.485, 5.552

CSCDTBDCH 2.677, 2.733

2.783, 2.763, 2.765, 2.859

2.620, 2.614, 2.659, 2.651

5.195 5.608, 5.534

Table.S11. Calculated values of second order stabilization energies Eij(2) using NBO analysis as

implemented in ADF Package at BP86/TZ2P level of theory.

18C6-Sr

S.No Donor NBO Acceptor NBO E(2) kcal/mol

1 BD(1) C1-H(35) LP* (1) Sr (43) 1.07

2 BD(1) C2-H(38) LP* (1) Sr (43) 1.50

3 BD(1) C3-H(25) LP* (1) Sr (43) 1.26

4 BD(1) C4-H(24) LP* (1) Sr (43) 1.27

5 BD(1) C5-H(22) LP* (1) Sr (43) 1.47

6 BD(1) C6-H(20) LP* (1) Sr (43) 1.10

7 BD(1) C7-H(42) LP* (1) Sr (43) 1.37

8 BD(1) C8-O(16) LP* (1) Sr (43) 1.03

9 BD(1) C8-H(39) LP* (1) Sr (43) 1.22

10 BD(1) C9-C(10) LP* (1) Sr (43) 1.17

11 BD(1) C9-O(16) LP* (1) Sr (43) 1.10

12 BD(1) C9-H(33) LP* (1) Sr (43) 1.15

13 BD(1) C10-O(17) LP* (1) Sr (43) 1.00

14 BD(1) C10-H(31) LP* (1) Sr (43) 1.19

15 BD(1) C11-O(17) LP* (1) Sr (43) 1.05

16 BD(1) C11-H(30) LP* (1) Sr (43) 1.25

17 BD(1) C12-H(27) LP* (1) Sr (43) 1.31

18 LP (1) O13 LP* (1) Sr (43) 1.34

19 LP (1) O14 LP* (1) Sr (43) 1.33

20 LP (1) O15 LP* (1) Sr (43) 1.57

21 LP (1) O16 LP* (1) Sr (43) 1.44

22 LP (1) O17 LP* (1) Sr (43) 1.42

23 LP (1) O18 LP* (1) Sr (43) 1.58

SUM 28.10

DTBDCH18C6-Sr

S.No Donor NBO Acceptor NBO E(2) kcal/mol

1 BD(1) C20-H(51) LP* (1) Sr (35) 1.56

2 BD(1) C17-H(55) LP* (1) Sr (35) 2.04

3 BD(1) C10-H(36) LP* (1) Sr (35) 2.01

4 BD(1) C4-H(49) LP* (1) Sr (35) 1.53

5 BD(1) C2-C(3) LP* (1) Sr (35) 1.46

6 BD(1) C2-O(29) LP* (1) Sr (35) 1.25

7 BD(1) C2-H(68) LP* (1) Sr (35) 1.13

8 BD(1) C3-C(4) LP* (1) Sr (35) 1.41

9 BD(1) C3-O(34) LP* (1) Sr (35) 1.31

10 BD(1) C7-C(8) LP* (1) Sr (35) 1.06

11 BD(1) C7-O(29) LP* (1) Sr (35) 1.08

12 BD(1) C7-H(42) LP* (1) Sr (35) 1.65

13 BD(1) C8-O(30) LP* (1) Sr (35) 1.03

14 BD(1) C8-H(41) LP* (1) Sr (35) 1.83

15 BD(1) C9-C(10) LP* (1) Sr (35) 1.14

16 BD(1) C9-O(30) LP* (1) Sr (35) 1.07

17 BD(1) C9-H(39) LP* (1) Sr (35) 1.41

18 BD(1) C11-C(16) LP* (1) Sr (35) 1.45

19 BD(1) C11-O(31) LP* (1) Sr (35) 1.06

20 BD(1) C11-H(67) LP* (1) Sr (35) 1.00

21 BD(1) C15-H(60) LP* (1) Sr (35) 1.10

22 BD(1) C17-C(18) LP* (1) Sr (35) 1.11

23 BD(1) C17-O(32) LP* (1) Sr (35) 1.11

24 BD(1) C18-O(33) LP* (1) Sr (35) 1.03

25 BD(1) C18-H(56) LP* (1) Sr (35) 1.51

26 BD(1) C19-C(20) LP* (1) Sr (35) 1.28

27 BD(1) C19-O(33) LP* (1) Sr (35) 1.11

28 BD(1) C19-H(53) LP* (1) Sr (35) 1.41

29 LP (1) O29 LP* (1) Sr (35) 1.22

30 LP (1) O30 LP* (1) Sr (35) 1.32

31 LP (1) O31 LP* (1) Sr (35) 1.10

32 LP (1) O32 LP* (1) Sr (35) 1.33

33 LP (1) O33 LP* (1) Sr (35) 1.40

34 LP (1) O34 LP* (1) Sr (35) 1.16

SUM 44.65

DCH18C6-Sr

S.No Donor NBO Acceptor NBO E(2) kcal/mol

1 BD(1) C2-C(3) LP* (1) Sr (27) 1.45

2 BD(1) C3-O(26) LP* (1) Sr (27) 1.48

3 BD(1) C4-H(53) LP* (1) Sr (27) 1.52

4 BD(1) C7-H(28) LP* (1) Sr (27) 2.03

5 BD(1) C9-H(33) LP* (1) Sr (27) 1.85

6 BD(1) C10-H(34) LP* (1) Sr (27) 1.52

7 BD(1) C13-H(42) LP* (1) Sr (27) 2.14

8 BD(1) C20-H(51) LP* (1) Sr (27) 1.91

9 BD(1) C2-O(21) LP* (1) Sr (27) 1.22

10 BD(1) C7-C(8) LP* (1) Sr (27) 1.15

11 BD(1) C7-O(21) LP* (1) Sr (27) 1.09

12 BD(1) C8-O(22) LP* (1) Sr (27) 1.21

13 BD(1) C8-H(31) LP* (1) Sr (27) 1.29

14 BD(1) C9-C(10) LP* (1) Sr (27) 1.09

15 BD(1) C9-O(22) LP* (1) Sr (27) 1.20

16 BD(1) C10-O(23) LP* (1) Sr (27) 1.24

17 BD(1) C11-C(12) LP* (1) Sr (27) 1.48

18 BD(1) C11-O(23) LP* (1) Sr (27) 1.42

19 BD(1) C11-H(62) LP* (1) Sr (27) 1.09

20 BD(1) C11-C(13) LP* (1) Sr (27) 1.35

21 BD(1) C12-O(24) LP* (1) Sr (27) 1.59

22 BD(1) C17-C(18) LP* (1) Sr (27) 1.26

23 BD(1) C17-O(24) LP* (1) Sr (27) 1.15

24 BD(1) C17-H(44) LP* (1) Sr (27) 1.52

25 BD(1) C18-O(25) LP* (1) Sr (27) 1.22

26 BD(1) C18-H(46) LP* (1) Sr (27) 1.31

27 BD(1) C19-C(20) LP* (1) Sr (27) 1.12

28 BD(1) C19-O(25) LP* (1) Sr (27) 1.18

29 BD(1) C19-H(49) LP* (1) Sr (27) 1.41

30 BD(1) C20-O(26) LP* (1) Sr (27) 1.31

31 LP (1) O21 LP* (1) Sr (27) 1.41

32 LP (1) O22 LP* (1) Sr (27) 1.65

33 LP (1) O23 LP* (1) Sr (27) 1.54

34 LP (1) O24 LP* (1) Sr (27) 1.44

35 LP (1) O25 LP* (1) Sr (27) 1.78

36 LP (1) O26 LP* (1) Sr (27) 1.61

SUM 52.44

DB18C6-Sr

S.No Donor NBO Acceptor NBO E(2) kcal/mol

1 BD(1) C1-O(26) LP* (1) Sr (27) 1.06

2 BD(1) C8-H(41) LP* (1) Sr (27) 1.11

3 BD(1) C19-O(25) LP* (1) Sr (27) 1.12

4 BD(1) C20-O(26) LP* (1) Sr (27) 1.03

5 LP (1) O21 LP* (1) Sr (27) 2.27

6 LP (1) O22 LP* (1) Sr (27) 2.25

7 LP (1) O23 LP* (1) Sr (27) 2.31

8 LP (1) O24 LP* (1) Sr (27) 2.45

9 LP (1) O25 LP* (1) Sr (27) 2.35

10 LP (1) O26 LP* (1) Sr (27) 2.39

SUM 18.34

(side view) (top view)

I

II

III

3.48Å

4.76Å

2.45Å

2.51Å

4.14Å

4.90Å

2.50Å

2.53Å

5.16Å

5.89Å

6.15Å

2.59Å

2.63Å

4.13Å

3.57Å

Fig.S1. Fully optimized minimum energy structure at BP86 level of theory using TZVP basis function of (I) 12-crown-4 and its Sr2+ complex, (II) 15-crown-5 and its Sr2+ complex and (III) 18-crown-6 and its Sr2+ complex.

I II

III IV

V VI

Fig. S2. Calculated distance of Sr2+ ion from the molecular plane. (I) 12C4-Sr2+ (II) 15C5-Sr2+ (III) 12C4-Sr(NO3)2 (IV) 15C5-Sr(NO3)2H2O (V) 18C6-Sr2+ and (VI) 18C6-Sr(NO3)2.

I

II

III

Fig. S3. Fully optimized minimum energy structures of (I) DB18C6 and (II) Aza-DB18C6 and Sr2+-aza-DB18C6 at same level of theory as in Fig.1. The key is same as in Fig.1. The light yellow sphere represents the nitrogen atom.

I II III

IV V VI

VII

Fig. S4. Calculated angle between the planes of two benzene ring of DB18C6 with (I) Sr2+, (II) Be2+, (III) Mg2+, (IV) Ca2+, (V) Ba2+, (VI) Na+ and (VII) H3O+

ion.

Ligand Free Complex of Sr2+ ionHOMO LUMO HOMO LUMO

18C6

DB18C6

aza-DB18C6

Fig.S5. Calculated HOMO-LUMO of few crown ethers and its Sr2+ ion complexes.

I

II

Fig.S6. Fully optimized minimum energy structure of (I) DCH18C6 and (II) DTBDCH18C6.