11
Supplementary Material: Supplementary Figure 1: BRI-1 sampling location of Ghosh et al. (2006), Thiagarajan et al. (2011) and this study. To the best of our knowledge, the sub-annual samples of Ghosh et al. (2006) were collected off the maximum growth axis, while sampling in this study sampled a similar time interval between 65-80mm along the axis of maximum growth. Our bulk sample was milled adjacent to that of Thiagarajan et al. (2011) (blue). Stable isotope and trace metal data along the maximum growth axis (red) is shown in Figure 6 of Ghosh et al. (2006).

ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

Supplementary Material:

Supplementary Figure 1: BRI-1 sampling location of Ghosh et al. (2006), Thiagarajan et al. (2011) and this study. To the best of our knowledge, the sub-annual samples of Ghosh et al. (2006) were collected off the maximum growth axis, while sampling in this study sampled a similar time interval between 65-80mm along the axis of maximum growth. Our bulk sample was milled adjacent to that of Thiagarajan et al. (2011) (blue). Stable isotope and trace metal data along the maximum growth axis (red) is shown in Figure 6 of Ghosh et al. (2006).

Page 2: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

Supplementary Figure 2: RIB-B54 sampling of bulk skeleton and tissue along the maximum growth axis. A block cut from an adjacent axis of maximum growth was used to compare sampling by micro-milling and mortar and pestle.

Page 3: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

Supplementary Table 1: Sub-annual Red Sea Porites ∆47 reported in the absolute reference frame

Sample Year ∆ 47-abs (‰) s.e. SST (ºC)

EILAT-15B

48 1990.25 0.761 0.008 20.9

49 1990.13 0.755 0.014 20.9

50 1990.00 0.747 0.008 22.0

51 1989.88 0.752 0.013 23.6

52 1989.75 0.741 0.005 24.8

53 1989.63 0.729 0.022 25.4

54 1989.50 0.732 0.004 23.8

55 1989.38 0.736 0.008 23.2

56 1989.25 0.730 0.012 21.3

57 1989.13 0.750 0.014 20.6

58 1989.02 0.762 0.009 21.5

59 1988.92 0.747 0.007 22.7

60 1988.82 0.725 0.009 23.9

61 1988.72 0.737 0.010 25.5

62 1988.62 0.719 0.010 26.6

BRI-1

1 1990.63 0.718 0.010 27.97

2 1990.55 0.730 0.014 27.23

3 1990.46 -- 25.07

4 1990.38 -- 23.85

5 1990.30 -- 22.33

6 1990.21 0.746 0.016 21.29

7 1990.13 0.737 0.012 21.01

8 1990.05 0.753 0.012 22.20

9 1989.96 -- 23.42

10 1989.88 -- 24.50

11 1989.80 0.718 0.013 27.01

Page 4: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

Supplementary Table 2: Bulk-sampled coral ∆47 reported in the absolute reference frame

Sample methoda labb ∆ 47-abs (‰) s.e. T (ºC)

BRI-1 mill Y 0.738 0.008 25.2

RIB-B54 mill Y 0.732 0.011 26.3

RIB-B54 M+P Y 0.730 0.002 26.3

RIB-B54 (tissue) mill Y 0.726 0.007 26.3

RIB-B54 (H2O2) mill Y 0.750 0.015 26.3

BAH-SID mill Y 0.728 0.011 26.8

AST H59 M+P Y 0.749 0.010 14.6

AST E1 M+P Y 0.738 0.004 14.6

AST AZ2 M+P Y 0.749 0.009 14.6

45923 M+P Y 0.780 0.006 4.6

RIB-B54 M+P C 0.723 0.003 26.3

AST H59 M+P C 0.753 0.007 14.6

Supplementary Table 3: Variable growth rate 21-141-B11 absolute reference frame ∆ 47

Track Extension rate (mm yr-1)∆ 47-abs

(‰)s.e.

1 8.1 0.736 0.008

2 6 0.748 0.012

3 3.1 0.739 0.001

4 2.3 0.721 0.007

Page 5: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

Supplementary Table 4. Data used to calculate offset values in Figure 7 and 8

Page 6: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

Sample

18Ow

(‰)18Ow

source113CDIC

(‰)13CDIC

source1∆47offset

(‰)218Ooffset

(‰)3

13Coffset

(‰)4

Calcification rate (mg/cm2/d)

EILAT-15B48 1.86 1 1.46 1 0.046 -4.30 -6.31 4.2049 1.86 1 1.46 1 0.041 -3.99 -6.65 4.2050 1.86 1 1.46 1 0.038 -4.22 -7.11 4.2051 1.86 1 1.46 1 0.051 -4.07 -7.02 4.2052 1.86 1 1.46 1 0.045 -3.86 -7.4 4.2053 1.86 1 1.46 1 0.037 -3.65 -7.01 4.2054 1.86 1 1.46 1 0.033 -3.89 -7.17 4.2055 1.86 1 1.46 1 0.034 -3.98 -6.85 4.2056 1.86 1 1.46 1 0.019 -4.34 -6.77 4.2057 1.86 1 1.46 1 0.035 -4.15 -6.78 4.2058 1.86 1 1.46 1 0.051 -3.98 -7.22 4.2059 1.86 1 1.46 1 0.042 -3.94 -7.52 4.2060 1.86 1 1.46 1 0.026 -4.01 -7.05 4.2061 1.86 1 1.46 1 0.045 -3.88 -6.69 4.2062 1.86 1 1.46 1 0.032 -3.74 -6.91 4.20

BRI-11 1.86 1 1.46 1 0.037 -3.84 -4.94 5.322 1.86 1 1.46 1 0.046 -3.98 -5.13 5.326 1.86 1 1.46 1 0.035 -4.61 -5.59 5.327 1.86 1 1.46 1 0.025 -4.57 -5.64 5.328 1.86 1 1.46 1 0.045 -4.56 -5.78 5.3211 1.86 1 1.46 1 0.033 -4.03 -5.01 5.32

Bulk (Yale)BRI-1 1.91 2 1.46 1 0.045 -4.27 -5.06 5.32

RIB-B54 0.47 3 1.10 4 0.046 -3.92 -6.64 3.90RIB-B54 (mtr+pstl) 0.47 3 1.10 4 0.041 -3.96 -6.57 3.90

RIB-B54 (tissue) 0.47 3 1.10 4 0.038 -4.35 -7.15 3.90RIB-B54

(tissue+H2O2)0.47 3 1.10 4 0.061 -3.90 -7.11 3.90

BAH-SID 1.00 3 1.50 5 0.042 -2.53 -4.80 1.12AST H59 -0.34 3 1.50 6 0.005 -4.65 -10.66 0.40AST E1 -0.34 3 1.50 6 -0.005 -5.12 -12.01 0.40

AST AZ2 -0.34 3 1.50 6 0.006 -4.01 -10.33 0.3645923 0.68 2 0.82 7 -0.016 -0.57 -2.72 1.00

Bulk (Caltech)RIB-B54 0.47 3 1.10 4 0.031 -3.95 -6.66 3.90AST H59 -0.34 3 1.50 6 0.019 -4.66 -10.77 0.40

21-141-B111 0.47 3 1.82 4 0.042 -4.18 -5.25 3.522 0.47 3 1.82 4 0.054 -4.14 -5.16 2.613 0.47 3 1.82 4 0.046 -3.44 -4.47 1.304 0.47 3 1.82 4 0.027 -3.13 -3.95 1.00

Thiagarajan et al. (3+ replicates)

47413 -0.44 2 1.22 7 0.001 -1.93 -9.2080404 0.25 2 1.66 7 0.004 -0.34 -5.7748738 0.62 2 1.08 7 0.002 -0.86 -7.01BRI-1 1.91 2 1.46 1 -0.007 -4.53 -5.32

Thiagarajan et al. (<3 replicates)

47407 -0.05 2 0.60 8 -0.001 -2.96 -8.9447409 -0.09 2 0.26 7 0.012 -2.96 -6.6062308 0.50 2 1.02 7 -0.008 -3.25 -8.4547531 -0.14 2 0.92 7 0.006 -1.90 -5.2349020 0.91 2 1.40 7 0.007 -0.10 -3.4045923 0.68 2 0.82 7 -0.003 -1.23 -3.23

1010252 0.22 2 0.49 7 0.005 -0.75 -3.30

Page 7: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

1Sources 1) Al-Rousan et al. 2003 2) Thiagarajan et al., 2011 3) LeGrande and Schmidt, 2006 4)Weber and Woodhead, 1971 5) Swart et al., 2009 6) Wainwright and Fry, 1994 7)World Ocean Atlas, 2009 PO4 (Garcia et al., 2010) and regression in Adkins et al., 2003 8) Adkins et al., 2003. 2Based on the inorganic calibration of Ghosh et al., 20063Based on the Grossman and Ku (1986) ‘all-data’ relationship4Based on Romanek et al. (1992)

Supplementary Text:

The absolute reference frame (Dennis et al., 2011), denoted ∆47-abs, is intended to

account for instrument-specific mass spectrometer artifacts and improve interlaboratory

standardization. Using the empirical transfer function for the Yale mass spectrometer

(Dennis et al., 2011), we calculated the ∆47-abs value of three standards that were routinely

measured over the course of this study including a Carrara marble (n = 76), corn CO2 (n =

149) and CO2 equilibrated with water at 25ºC (n = 44). These data were then used to

construct a secondary transfer function relating ∆47 to ∆47-abs:

Page 8: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

∆47-abs (‰) = ∆47 (‰) x 1.028 + 0.0294 (1)

It should be noted that equation 1 is unique to the Yale mass spectrometer for the time

period during which our analyses were conducted and it cannot be transferred to data

from other laboratories. The same approach can be used to re-calculate the data of Ghosh

et al. (2006) in the absolute reference frame as outlined by Dennis et al. (2011):

∆47-abs (‰) = ∆47 (‰)Ghosh06 x 1.0378 + 0.0266 (2)

A similar method was used to convert Caltech values to the absolute reference frame.

Because the appropriate 90ºC acid correction has not been evaluated in the absolute

reference frame, we applied the standard 0.081‰ correction in both reference frames.

Although small, this assumption will bias Caltech ∆47-abs toward lower values by ~0.01‰

(Dennis et al., 2011). Because sufficient standardization data are unavailable to convert

all previously published data into the absolute reference frame, our results were

compared with these data using the traditional reference frame (see main text).

References

Adkins J. F., Boyle E. A., Curry W. B. and Lutringer A. (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects.” Geochimica et Cosmochimica Acta 67, 1129-1143.

Al-Rousan S.A., Al-Moghrabi S. M., Patzold J and Wefer G. (2003) Stable oxygen isotopes in Porites corals monitor weekly temperature variations in the northern Gulf of Aqaba, Red Sea. Coral Reefs 22, 346-356Dennis

Garcia H. E., Locarnini R. A., Boyer T. P. Antonov, J. I., Zweng M. M., Baranova O. K. and Johnson D. R. (2010) World Ocean Atlas 2009, Volume 4: Nutrients (phosphate,

Page 9: ars.els-cdn.com · Web viewAST H59-0.34 3 1.50 6 0.005-4.65-10.66 0.40 AST E1-0.34 3 1.50 6-0.005-5.12-12.01 0.40 AST AZ2-0.34 3 1.50 6 0.006-4.01-10.33 0.36 45923 0.68 2 0.82 7-0.016-0.57-2.72

nitrate, silicate). S. Levitus, Ed. NOAA Atlas NESDIS 71, U.S. Government Printing Office, Washington, D.C., 398 pp.

Ghosh P., Adkins J. F., Affek H., Balta B., Guo W., Schauble E. A., Schrag D. P. and Eiler J. M. (2006) 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta 70, 1439-1456.

Grossman E. L. and Ku, T. L. (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology 59, 59–74.

LeGrande A. N. and Schmidt G. A. (2006) Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters 33, L12604.

Romanek C., Grossman E. L. and Morse, J. W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419-430.

Swart P. K., Reijmer J. J. G. and Otto R. (2009) A re-evaluation of facies on Great Bahama Bank II: variations in the 13C, 18O and mineralogy of surface sediments. International Association of Sedimentology Special Publication, 41, 47-59.

Thiagarajan N., Adkins J. and Eiler, J. (2011) Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochimica et Cosmochimica Acta, 75, 4416-4425.

Wainright S. C. and Fry B. (1994) Compositions of coastal marine plankton from Woods Hole, Massachusetts and Georges Bank. Estuaries, 17, 552-560.

Weber J. N. and Woodhead P. M. J. (1971) Diurnal variations in the isotopic composition of dissolved inorganic carbon in seawater from coral reef environments. Geochimica et Cosmochimica Acta, 35, 891-902.