21
Table S1. Summary of most relevant features of early Permian F-bearing intrusive rock-suites from southern Sardinia Intrusions ____________________________________________ Minerals ______________________________________________ MS (SI unit) Na 2 O/K 2 O Ores ____ GS3 ____ Fundamental phases Accessory phases Remarks Monte Sette Fratelli Medium-fine grained rocks. Granophyric satellite bodies (Monte Genis) LG Qtz + Pl An12÷18 + Kfs + Hs + Ann Aln + Ilm + Mag + Zrn ± Ap Fl, Fa, Ann 1.7÷2.8 . 10 -3 0.85 F __________________ GS2 ________________ Sàrrabus Coarse-grained rocks. Swarms of fine-grained hololeucocratic rock- types LG Qtz + Kfs + Pl An40÷26 + Bt Aln + Ilm +Zrn ±Ann ± Phg 49÷62 . 10 - 5 0.61 Pb, Ag, F Central Sulcis Medium-fine grained rocks. Dark enclaves of biotite tonalite MG Qtz + Kfs + Pl An35÷17 + Bt Aln +Ilm +Zrn 52 . 10 -5 0.63 Central Sulcis Inequigranular rocks. Large dark enclaves of biotite tonalite are often observed GD Qtz + Kfs + Pl An38÷22 + Fe- Hbl + Bt Aln + Ilm+Zrn 16 . 10 -5 0.73 Linas, Sulcis, Quirra San Vito Medium-fine, fine grained and porphyritic rocks. Greisens and pegmatite layers are LG Qtz + Kfs + Pl An24÷10 + Sdp Ilm + Xen + Zrn +Ap Phg; Toz 24÷89 . 10 - 6 0.63 Mo, Sn, W, F 1

ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S1.Summary of most relevant features of early Permian F-bearing intrusive rock-suites from southern Sardinia

Intrusions ____________________________________________ Minerals ______________________________________________ MS (SI unit) Na2O/K2O Ores

____

GS3

____

Fundamental phases Accessory phases RemarksMonte Sette FratelliMedium-fine grained rocks. Granophyric satellite bodies (Monte Genis)

LG Qtz + PlAn12÷18 + Kfs + Hs + Ann Aln + Ilm + Mag + Zrn ± Ap

Fl, Fa, Ann 1.7÷2.8.10-3 0.85 F

____

____

____

____

__ G

S2 __

____

____

____

__

SàrrabusCoarse-grained rocks. Swarms of fine-grained hololeucocratic rock-types

LG Qtz + Kfs + PlAn40÷26+ Bt Aln + Ilm +Zrn ±Ann ± Phg 49÷62.10-5 0.61 Pb, Ag, F

Central SulcisMedium-fine grained rocks. Dark enclaves of biotite tonalite

MG Qtz + Kfs + PlAn35÷17 + Bt Aln +Ilm +Zrn 52.10-5 0.63

Central SulcisInequigranular rocks. Large dark enclaves of biotite tonalite are often observed

GD Qtz + Kfs + PlAn38÷22 + Fe-Hbl + Bt Aln + Ilm+Zrn 16.10-5 0.73

____

____

___ G

S1 __

____

___

Linas, Sulcis, Quirra San VitoMedium-fine, fine grained and porphyritic rocks. Greisens and pegmatite layers are common

LG Qtz + Kfs + PlAn24÷10 + Sdp Ilm + Xen + Zrn +Ap Phg; Toz 24÷89.10-6 0.63 Mo, Sn, W, F

Monte LinasCoarse-medium rocks. Rare tonalitic dark enclaves

MG Qtz + Kfs + PlAn24÷10 + Sdp Ilm + Xen + Zir +Ap Phg; Cal 20÷60.10-6 0.68 Mo, Sn, W, F

Most distinctive petrographical features are labelled in boldface. MS indicate magnetic susceptibility and is expressed in SI unit. GD, MG and LG refer to inequigranular granodiorites, monzogranites and leucogranites, respectively. Mineral abbreviations according to Kretz (1983). Other abbreviations: Fa = fayalite; Hs = hastingsite; Ann, Phg, Bt, Sdp refer to mica classification according to Rieder et al. (1997): annite, phengite, biotite, siderophyllite, respectively. Late-stage interstitial minerals: Fl = fluorite; Cal = calcite; Toz = topaz. Note: (a) the different accessory phase assemblage among the different rock-suites; (b) the different chemical composition of dark-colored micas; (c) the increase in magnetic susceptibility values from GS1 to GS3 in good agreement with the occurrence of primary magnetite. Note also the occurrence of Mo, Sn and W ores to felsic varieties of GS1 rock-suite. Averaged Na2O/K2O include chemical data reported in Barca et al. (2009), Pani et al. (1997) and Naitza et al. (2017). Opaque minerals (e.g. ilmenite, magnetite) have been checked in reflected light under the polarizing microscope.

1

Page 2: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S2.Averages modal analyses of early Permian F-bearing intrusive rock-suites from southern Sardinia.

________________________ GS2 _____________________ _____________________________________________________________ GS1 ___________________________________________________________ _______________ GS3 ____________

_ Sàrrabus _

______________________ Sulcis ______________________ ______________________ Linas _____________________ _____________ Quirra ___________ __ S. Vito __ ____ Monte Sette Fratelli ____

LG (n=6) GD (n=3) MG (n=3) LG (n=2) MG (n = 1) MG (n=5) LG (n=3) LG (n=1) LG (n=1) LG (n=19) LG (n=2) LG (n=3)Qtz 31.7 (31.7) 29.7 (30.1) 32.8 (32.6) 36.0 (36.0) 35.9 (36.2) 35.8 (35.9) 34.9 (34.7) 34.7 (34.5) 34.2 (34.1) 33.6 (33.6) 29.9 (29.8) 30.3 (30.3)Pl 35.8 (35.7) 37.6 (37.7) 33.7 (33.4) 28.9 (28.7) 32.6 (32.8) 32.2 (32.2) 22.2 (22.3) 34.9 (34.6) 34.7 (34.5) 34.6 (34.3) 37.8 (37.6) 38.7 (38.5)Kfs 28.1 (29.0) 19.8 (20.7) 27.3 (28.0) 30.2 (31.1) 20.1 (20.9) 23.8 (24.6) 38.5 (38.7) 27.1 (27.8) 25.6 (26.3) 24.9 (25.7) 27.2 (28.1) 26.8 (27.7)Bt 4.1 (3.6) 12.8 (11.5) 6.7 (5.9) 5.0 (4.4) 7.9 (7.0) 6.7 (5.9) 4.4 (4.3) 3.9 (3.4) 0.9 (0.8) 3.9 (3.4) 3.6 (3.2) 2.1 (1.8)Amph 1.7 (1.3) 2.2 (1.7)Phg 3.5 (3.0) 1.5 (1.4) 2.5 (2.2) 0.3 (0.3) 4.7 (4.3) 3.3 (3.0)CI 4 11 7 4 8 6 3 4 4 4Res2 0.12 0.04 0.14 0.16 0.03 0.02 0.12 0.49 0.03 0.02 0.00 0.01

(n=2) (n=4) (n=5) (n=2) GRT381 (n=5) (n=3) Q11 90 (Biste) (n=2) (n=3) (n=3)SiO2 75.73 69.67 74.02 75.36 74.51 75.49 76.28 75.89 74.90 74.83 74.29 74.65TiO2 0.08 0.41 0.16 0.13 0.20 0.08 0.04 0.11 0.03 0.08 0.10 0.10Al2O3 12.89 15.00 13.31 12.95 13.01 12.81 12.55 13.11 13.70 12.80 13.31 13.50Fe2O3 1.56 3.44 1.86 1.52 2.19 2.11 1.65 1.46 0.72 1.76 1.97 1.47MnO 0.04 0.06 0.04 0.03 0.07 0.05 0.06 0.07 0.04 0.04 0.06 0.05MgO 0.13 0.87 0.32 0.23 0.30 0.13 0.05 0.16 0.10 0.11 0.05 0.14CaO 1.00 2.61 1.27 1.00 0.91 0.70 0.41 0.77 0.80 0.75 0.85 0.95Na2O 3.14 3.09 3.07 2.87 3.19 3.24 3.39 3.56 3.50 3.27 3.85 3.95K2O 5.18 4.23 4.89 5.20 4.56 4.85 4.85 4.58 4.76 5.00 4.71 4.51P2O5 0.02 0.13 0.06 0.07 0.05 0.03 0.01 0.01 0.02 0.02 0.01 0.02LOI 0.48 0.64 0.71 0.67 0.78 0.50 0.64 0.56 n.d. 0.28 0.73 0.60Total 100.23 100.14 99.72 100.00 100.00 100.00 99.30 100.1 98.57 98.92 99.93 99.92

TAp 918 894 921 882TZr 723 801 777 767 827 756 735 744 773 736 834 780

Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical composition of measured mineral phases (Tabb. 3-6) to the reported whole-rock averaged analyses (n indicate number of used samples); Res2 values refer to sum of squares of residuals. Modal values are expressed in weight % and in brackets in volume %. CI is expressed in volume % and refers to color index obtained by image processing. Whole rock-analyses for Monte Linas and Sulcis are from Naitza et al. (2016) and Barca et al. (2009), respectively. Samples from Quirra pluton have been choosen for medium and fine-grained rock types: Q11 (Pani et al., 1997) and 90 (Biste, 1979), respectively. Monte Sette Fratelli samples refer to different grain-sizes. MG labelled in italic refer to less sialic rock-types (sample GRT381 of Monte Linas pluton); LG labelled in italic refer to porphyritic rock-types of San Vito intrusion. TAp and TZr refer to apatite and zircon saturation temperatures according to Watson and Harrison (1983) and Harrison and Watson (1984) calibrations.

2

Page 3: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S3Representative analyses of primary dark micas from early Permian F-bearing intrusive rock-suites from southern Sardinia.

_______________________________________________________________________________________________________ GS2 _______________________________________________________________________________________________________

MG MG MG MG MG MG GD GD GD GD GD GD GD GD T T T TSUP1 SUP1 SUP1 SUP1 SUP1 SUP1 SUP3 SUP3 SUP3 SUP3 SUP3 SUP3 SUP3 SUP3 SUP5 SUP5 SUP5 SUP6

SiO2 34.72 34.59 35.40 35.45 34.94 35.07 34.54 34.21 35.39 35.96 35.96 36.02 35.58 35.37 34.87 36.04 35.33 35.38TiO2 2.57 2.98 2.70 2.58 2.67 2.63 2.53 2.80 3.60 3.47 3.40 3.34 2.74 2.41 3.56 3.64 3.36 4.12Al2O3 12.83 12.81 13.39 13.30 13.95 13.13 14.38 14.11 14.10 14.17 14.25 14.15 14.05 14.34 12.89 12.73 12.91 13.08FeO 27.43 28.06 27.37 27.14 27.57 27.87 24.35 23.63 24.53 24.41 24.00 24.33 25.25 25.53 25.96 25.39 25.80 25.27MnO 0.49 0.55 0.55 0.60 0.39 0.42 0.31 0.29 0.40 0.45 0.36 0.43 0.45 0.46 0.68 0.61 0.66 0.60MgO 6.09 5.95 5.97 6.28 5.29 5.52 8.13 7.97 7.65 7.92 7.80 8.23 7.51 7.73 6.53 6.93 6.72 6.59CaO 0.01 0.00 0.01 0.00 0.03 0.02 0.10 0.04 0.03 0.02 0.05 0.01 0.00 0.02 0.02 0.05 0.28 0.01Na2O 0.12 0.12 0.07 0.05 0.13 0.13 0.09 0.11 0.19 0.19 0.16 0.18 0.11 0.08 0.10 0.14 0.19 0.12K2O 8.86 8.79 8.71 8.77 8.26 8.86 8.58 9.23 8.92 8.84 8.88 8.84 8.98 8.64 8.67 8.73 8.57 9.15F 0.55 0.92 0.69 0.65 0.83 0.64 0.25 0.37 0.44 0.70 0.59 0.68 0.45 0.46 0.48 0.71 0.81 0.90Cl 0.46 0.43 0.41 0.43 0.46 0.45 0.40 0.36 0.31 0.30 0.27 0.30 0.35 0.37 0.33 0.35 0.38 0.42Li2O 0.07 0.15 0.10 0.09 0.13 0.09 0.02 0.03 0.05 0.10 0.07 0.09 0.05 0.05 0.05 0.10 0.12 0.15H2O 3.29 3.14 3.29 3.31 3.19 3.27 3.73 3.67 3.75 3.66 3.71 3.68 3.72 3.70 3.39 3.34 3.25 3.22Total 97.14 98.00 98.26 98.28 97.36 97.71 97.20 95.58 99.10 99.82 99.18 99.93 98.96 98.88 97.23 98.38 97.94 98.54

Si 5.681 5.626 5.699 5.704 5.668 5.704 5.557 5.549 5.579 5.610 5.637 5.610 5.636 5.607 5.656 5.742 5.678 5.648AlIV 2.319 2.374 2.301 2.296 2.332 2.296 2.443 2.451 2.421 2.390 2.363 2.390 2.364 2.393 2.344 2.258 2.322 2.352AlVI 0.155 0.082 0.239 0.227 0.335 0.220 0.283 0.247 0.199 0.216 0.269 0.207 0.260 0.288 0.119 0.132 0.124 0.110Ti 0.316 0.364 0.327 0.312 0.326 0.322 0.306 0.341 0.427 0.407 0.400 0.391 0.326 0.288 0.434 0.436 0.406 0.495Fe2+ 3.753 3.816 3.684 3.652 3.741 3.791 3.276 3.205 3.235 3.184 3.145 3.170 3.346 3.385 3.521 3.382 3.468 3.373Mn 0.068 0.075 0.074 0.082 0.054 0.057 0.042 0.039 0.053 0.060 0.048 0.057 0.060 0.062 0.093 0.082 0.089 0.081Mg 1.485 1.442 1.432 1.506 1.278 1.337 1.950 1.928 1.797 1.842 1.821 1.911 1.774 1.826 1.578 1.645 1.609 1.568Li 0.044 0.101 0.062 0.057 0.085 0.056 0.012 0.022 0.029 0.062 0.047 0.059 0.030 0.032 0.035 0.065 0.080 0.095Ca 0.022 0.021 0.012 0.008 0.022 0.022 0.015 0.018 0.032 0.031 0.027 0.030 0.019 0.013 0.003 0.009 0.048 0.002Na 0.039 0.038 0.021 0.014 0.040 0.040 0.028 0.033 0.059 0.056 0.050 0.055 0.035 0.024 0.030 0.043 0.060 0.037K 1.849 1.823 1.789 1.800 1.709 1.838 1.761 1.909 1.794 1.760 1.774 1.756 1.814 1.747 1.793 1.773 1.758 1.862OH– 3.588 3.407 3.537 3.551 3.447 3.546 3.765 3.712 3.699 3.573 3.637 3.586 3.682 3.670 3.663 3.547 3.487 3.433F– 0.285 0.473 0.351 0.332 0.425 0.330 0.126 0.188 0.218 0.347 0.291 0.334 0.225 0.232 0.248 0.358 0.410 0.452Cl– 0.127 0.120 0.111 0.118 0.128 0.124 0.109 0.099 0.082 0.080 0.071 0.080 0.093 0.098 0.090 0.095 0.102 0.115Total

19.731 19.763 19.641 19.65819.58

9 19.68319.67

4 19.74319.62

5 19.61919.58

2 19.63519.66

5 19.666 19.607 19.567 19.642 19.623

Feval 0.82 0.83 0.82 0.81 0.84 0.83 0.75 0.75 0.76 0.75 0.75 0.75 0.77 0.77 0.80 0.79 0.79 0.79IVF 1.73 1.48 1.62 1.66 1.48 1.63 2.18 2.00 1.92 1.71 1.79 1.74 1.89 1.88 1.83 1.68 1.59 1.54

3

Page 4: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

IVCl -4.05 -4.03 -3.98 -4.03 -4.00 -4.00 -4.11 -4.08 -3.96 -3.97 -3.91 -3.99 -4.00 -4.04 -3.93 -3.99 -4.01 -4.06

Table S3 continued__________________________ GS2 ________________________ ____________________________________________ GS1 _________________________________________ _______________________ GS3 _________________________

T LG LG LG LG LG LG LG LG LG LG LG LG LG LG LG LG LGSUP6 SPP7 SPP7 SPP7 SPP7 SUP17 SUP17 SVP1 SVP1 SVP1 SVP1 SVP1 SVP1 GP49 GP49 GP49 GP49 GP49

SiO2 35.19 33.38 34.00 33.78 33.94 34.11 34.69 33.59 35.03 33.59 33.80 35.26 34.80 33.55 33.48 33.71 33.34 33.15TiO2 4.12 2.58 2.72 2.95 2.82 2.76 2.82 2.88 2.29 3.13 3.00 1.66 1.72 3.12 2.57 2.78 2.83 3.05Al2O3 13.36 14.00 14.19 13.81 13.73 15.52 14.57 14.38 15.50 14.78 14.93 16.37 16.25 12.41 12.06 12.20 12.53 12.23FeO 25.45 28.94 28.05 28.38 29.11 28.55 29.55 29.76 29.58 29.84 29.86 29.25 29.56 35.12 35.42 34.75 33.86 34.96MnO 0.59 0.97 1.00 0.90 0.94 1.24 1.45 0.91 0.81 0.77 0.79 1.12 0.91 0.87 0.89 0.84 0.90 0.92MgO 6.55 4.00 3.69 3.83 4.07 2.17 2.43 2.32 2.34 2.35 2.35 2.25 2.19 2.01 2.09 2.07 2.11 2.03CaO 0.03 0.07 0.02 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.04 0.01 0.03 0.08 0.06 0.09 0.08 0.09Na2O 0.08 0.10 0.09 0.13 0.09 0.04 0.10 0.18 0.14 0.14 0.12 0.13 0.15 0.39 0.36 0.42 0.35 0.37K2O 9.01 8.32 8.81 8.69 8.66 8.31 8.68 8.32 8.72 8.31 8.30 8.48 8.53 8.16 8.14 8.23 8.12 8.11F 0.82 1.113 1.08 1.38 0.90 0.09 0.40 1.29 1.65 1.83 1.96 1.45 1.35 0.24 0.15 0.19 0.17 0.27Cl 0.38 0.22 0.23 0.22 0.21 0.19 0.19 0.30 0.26 0.26 0.28 0.23 0.27 0.19 0.15 0.18 0.17 0.16Li2O 0.13 0.21 0.20 0.30 0.15 0.00 0.04 0.27 0.40 0.48 0.53 0.33 0.29 0.02 0.01 0.01 0.01 0.02H2O 3.27 3.02 3.06 2.91 3.16 3.54 3.43 2.92 2.87 2.71 2.66 2.99 3.00 3.45 3.47 3.45 3.45 3.41Total 98.54 96.40 96.61 96.64 97.34 96.48 98.13 96.50 98.83 97.36 97.71 98.87 98.41 99.47 98.75 98.80 97.80 98.62

Si 5.617 5.552 5.619 5.593 5.592 5.627 5.664 5.588 5.647 5.528 5.539 5.660 5.630 5.568 5.611 5.627 5.601 5.558AlIV 2.383 2.448 2.381 2.407 2.408 2.373 2.336 2.412 2.353 2.472 2.461 2.340 2.370 2.428 2.383 2.373 2.399 2.417AlVI 0.129 0.296 0.383 0.288 0.260 0.645 0.467 0.407 0.592 0.395 0.422 0.757 0.728 0.000 0.000 0.027 0.083 0.000Ti 0.494 0.323 0.338 0.367 0.349 0.343 0.346 0.360 0.278 0.388 0.369 0.200 0.209 0.389 0.323 0.349 0.357 0.385Fe2+ 3.396 4.026 3.877 3.930 4.012 3.938 4.035 4.140 3.988 4.107 4.092 3.926 3.999 4.875 4.966 4.852 4.758 4.901Mn 0.080 0.136 0.140 0.126 0.131 0.173 0.200 0.129 0.110 0.107 0.110 0.153 0.125 0.123 0.127 0.119 0.128 0.131Mg 1.557 0.991 0.910 0.946 1.000 0.533 0.591 0.575 0.562 0.576 0.574 0.538 0.527 0.498 0.522 0.514 0.529 0.507Li 0.081 0.141 0.134 0.199 0.098 0.002 0.026 0.180 0.262 0.315 0.352 0.210 0.189 0.012 0.006 0.008 0.007 0.014Ca 0.006 0.012 0.003 0.000 0.000 0.007 0.017 0.031 0.024 0.025 0.022 0.023 0.026 0.014 0.010 0.015 0.014 0.017Na 0.024 0.032 0.029 0.040 0.028 0.013 0.031 0.057 0.044 0.046 0.039 0.042 0.047 0.126 0.117 0.136 0.113 0.119K 1.835 1.765 1.858 1.834 1.819 1.749 1.808 1.765 1.793 1.744 1.735 1.736 1.761 1.728 1.740 1.751 1.741 1.733OH– 3.485 3.353 3.372 3.217 3.474 3.898 3.738 3.238 3.087 2.977 2.909 3.204 3.232 3.818 3.876 3.847 3.861 3.810F– 0.412 0.585 0.565 0.720 0.469 0.048 0.208 0.679 0.843 0.951 1.015 0.735 0.693 0.128 0.082 0.101 0.091 0.145Cl– 0.103 0.062 0.063 0.063 0.058 0.054 0.054 0.083 0.070 0.073 0.076 0.061 0.075 0.054 0.043 0.052 0.047 0.045

TOTAL 19.603 19.722 19.671 19.730 19.698 19.404 19.521 19.643 19.65219.70

4 19.714 19.585 19.611 19.761 19.805 19.77219.73

1 19.782

4

Page 5: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Feval 0.80 0.88 0.88 0.88 0.88 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.95 0.94 0.94 0.94 0.95IVF 1.58 1.26 1.27 1.15 1.38 2.30 1.68 1.09 0.97 0.90 0.86 1.03 1.05 1.91 2.12 2.02 2.06 1.85IVCl -4.01 -3.60 -3.59 -3.61 -3.56 -3.34 -3.37 -3.61 -3.55 -3.58 -3.62 -3.47 -3.55 -3.32 -3.22 -3.31 -3.27 -3.24Structural formulas are calculated on the basis of 22 oxygens. The letters C and R indicate core and rim compositions, respectively. Feval values were calculated using Fe2+/(Fe2+ + Mg), and Li concentrations were calculated using the calibration of Tischendorf (1997) for granitoids, aplites, and pegmatites. H2O concentrations were calculated following Tindle and Webb (1990). IVF and IVCl refer to F and Cl values corrected for Mg and Fe avoidance, according to Munoz’s suggestions (1984).

Table S4Selected analyses of primary and secondary amphiboles from early Permian F-bearing intrusive rock-suites from southern Sardinia.

_________________________________________________________ Primary _______________________________________________________ ___ Secondary ___

_____________________________________ GS2 ____________________________________ ________________ GS3 ________________ _______ GS2 ______

SUP23 SUP23 SUP23 SUP24 SUP24 SUP24 SUP24GP1

5GP15 GP15 GP1

5SUP13 SUP13

C C C C C R C R C R C C CSiO2 43.65 42.70 43.79 43.00 44.67 43.58 42.57 38.94 40.00 39.21 39.97 50.45 50.22TiO2 1.31 1.48 1.41 1.67 1.45 1.14 1.87 1.77 1.51 1.74 1.11 0.43 0.40Al2O3 7.53 8.21 7.28 8.79 7.19 7.92 8.78 8.31 8.21 8.32 8.16 2.61 2.64Fe2O3 5.30 4.75 5.06 5.18 4.28 3.25 3.47 6.28 6.26 6.44 8.80 3.90 4.88FeO 19.49 19.86 19.76 18.63 18.84 20.01 19.62 27.27 25.55 27.35 23.49 18.59 17.60MnO 1.49 1.38 1.39 0.90 0.75 0.84 0.87 0.71 0.87 0.65 0.72 1.05 1.14MgO 5.97 5.69 6.17 6.74 7.52 6.85 6.97 0.91 1.91 0.85 2.36 9.13 9.22CaO 10.70 10.71 10.72 10.88 11.10 11.49 11.47 10.21 10.17 10.15 9.87 11.44 11.23Na2O 1.52 1.56 1.67 1.85 1.48 1.29 1.65 2.02 2.11 1.97 2.10 0.60 0.59K2O 0.92 1.06 0.89 0.75 0.77 0.99 0.99 1.20 0.99 1.26 0.98 0.29 0.32F 0.31 0.53 0.31 0.62 0.73 0.77 0.54 0.67 0.77 0.27 1.02 0.47 0.41Cl 0.22 0.23 0.14 0.08 0.12 0.28 0.19 0.29 0.25 0.28 0.20 0.17 0.18H2O 1.61 1.50 1.63 1.53 1.48 1.40 1.53 1.33 1.32 1.52 1.21 1.62 1.64Total 100.01 99.65 100.22 100.62 100.37 99.80 100.53 99.91 99.93 100.02 99.99 100.73 100.45

Si 6.758 6.662 6.766 6.584 6.828 6.755 6.551 6.364 6.462 6.382 6.430 7.554 7.528AlIV 1.242 1.338 1.234 1.416 1.172 1.245 1.449 1.600 1.538 1.597 1.548 0.446 0.467TiIV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.021 0.023 0.000 0.006AlVI 0.132 0.171 0.092 0.170 0.124 0.202 0.144 0.000 0.024 0.000 0.000 0.014 0.000TiVI 0.153 0.174 0.164 0.192 0.167 0.133 0.216 0.181 0.184 0.191 0.112 0.048 0.039Fe3+ 0.618 0.558 0.589 0.597 0.492 0.379 0.402 0.772 0.761 0.789 1.066 0.439 0.551Mg 1.379 1.324 1.422 1.539 1.713 1.582 1.599 0.221 0.461 0.206 0.565 2.039 2.060Fe2+ 2.523 2.591 2.553 2.385 2.408 2.594 2.525 3.727 3.451 3.724 3.159 2.328 2.206Mn 0.195 0.182 0.181 0.117 0.097 0.110 0.114 0.099 0.119 0.090 0.098 0.133 0.145Ca 1.775 1.789 1.775 1.784 1.817 1.907 1.892 1.788 1.759 1.770 1.701 1.835 1.803Na 0.455 0.472 0.511 0.551 0.438 0.387 0.493 0.640 0.662 0.624 0.616 0.173 0.171K 0.181 0.211 0.176 0.146 0.151 0.196 0.194 0.250 0.205 0.261 0.201 0.055 0.060F- 0.150 0.262 0.153 0.300 0.351 0.375 0.264 0.347 0.395 0.139 0.520 0.223 0.197Cl- 0.057 0.060 0.036 0.020 0.032 0.072 0.049 0.081 0.070 0.077 0.055 0.042 0.047OH- 1.793 1.678 1.811 1.679 1.617 1.553 1.686 1.571 1.536 1.785 1.426 1.734 1.756

5

Page 6: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Mgval 0.353 0.338 0.358 0.392 0.416 0.379 0.388 0.056 0.118 0.052 0.152 0.467 0.483(Na+K)A 0.411 0.472 0.452 0.481 0.406 0.490 0.579 0.678 0.626 0.655 0.557 0.063 0.060NaB 0.225 0.211 0.225 0.216 0.183 0.093 0.108 0.212 0.241 0.230 0.299 0.165 0.171

Structural formulas were calculated on the basis of 23 oxygen and 13 cations according to Leake et al. (1997). Fe2+ and Fe3+ repartition according to Stout (1972). Mgval =Mg/(Mg+Fe2+). (Na+K)A and (Na+K)B refer to number of atoms p. f. u. in the A and B sites, respectively, according to the international nomenclature of amphiboles. Analyses from sample SUP13, belonging to GS2 granodiorites, refer to Fe-actonilite subsolidus amphibole used for barometric extimates (see text).

Table S5.Representative analyses of plagioclases from early Permian F-bearing intrusive rock-suites from southern Sardinia

___________________________________________________________ GS1 _______________________________________________________________ _________________________________________ GS2 ___________________________________________

_______________ Monzogranite ____________ _____________________________ Leucogranite _________________________________ ______________________ Tonalitic enclaves ______________________ GranodioritesMLP19 MLP19 MLP19 ML19 MLP2 MLP2 SUP17 SUP17 SUP17 SVP1 SVP1 SUP5 SUP6 SUP6 SUP6 SUP6 SUP10 SUP24 SUP24

R C rel C rel R R C R C C C C C R C C REL C R RSiO2 64.98 62.86 62.86 66.87 66.10 65.32 66.47 62.42 64.05 62.48 65.15 58.91 64.53 62.28 62.94 59.41 59.43 61.58 63.32Al2O3 21.64 23.38 22.83 21.04 21.37 21.70 21.04 23.28 22.51 23.47 21.94 26.01 22.78 23.52 23.15 25.37 25.41 23.80 23.07Fe2O3 0.10 0.02 0.11 0.05 0.03 0.00 0.10 0.11 0.01 0.03 0.00 0.11 0.22 0.17 0.08 0.06 0.18 0.08 0.05CaO 2.97 4.93 4.50 1.83 2.20 2.78 2.17 5.15 4.00 5.05 3.06 8.09 3.06 5.39 4.85 7.75 7.50 6.24 4.64Na2O 9.56 8.56 8.78 10.42 10.48 10.10 10.80 8.74 9.57 8.92 9.99 6.97 8.98 8.31 8.79 7.46 7.76 8.31 9.09K2O 0.51 0.26 0.29 0.23 0.40 0.38 0.19 0.36 0.12 0.20 0.15 0.21 0.82 0.28 0.17 0.24 0.16 0.28 0.25Total

99.75 100.00 99.37 100.44 100.58100.2

8 100.78100.0

7 100.26 100.14100.2

8 100.31100.3

9 99.95 99.98100.3

0 100.44 100.30 100.41

Si11.482 11.125 11.193 11.680 11.572 11.484 11.613 11.076 11.290 11.068 11.447 10.503 11.341 11.051 11.145

10.596 10.587 10.933 11.169

Al 4.506 4.876 4.791 4.331 4.409 4.496 4.332 4.868 4.676 4.899 4.542 5.465 4.718 4.918 4.831 5.332 5.334 4.980 4.796Fe3+ 0.013 0.003 0.015 0.007 0.004 0.000 0.013 0.015 0.001 0.003 0.000 0.015 0.029 0.023 0.011 0.008 0.024 0.011 0.007Ca 0.562 0.935 0.858 0.342 0.413 0.524 0.406 0.979 0.755 0.957 0.576 1.545 0.576 1.025 0.920 1.481 1.431 1.187 0.877Na 3.275 2.937 3.031 3.529 3.557 3.443 3.658 3.007 3.270 3.064 3.403 2.409 3.060 2.859 3.017 2.579 2.679 2.860 3.108K 0.115 0.059 0.066 0.051 0.089 0.085 0.042 0.081 0.027 0.045 0.033 0.048 0.184 0.063 0.038 0.055 0.037 0.063 0.056Total

19.953 19.934 19.953 19.941 20.04420.03

2 20.06520.02

6 20.020 20.03620.00

0 19.98519.90

7 19.939 19.96220.05

1 20.092 20.034 20.012

Z 15.988 16.001 15.983 16.012 15.98115.98

0 15.94515.94

5 15.966 15.96615.98

9 15.96816.05

9 15.970 15.97615.92

8 15.921 15.913 15.964X 3.850 3.874 3.904 3.878 3.974 3.966 4.077 4.000 4.027 4.024 3.978 3.969 3.665 3.906 3.948 4.068 4.134 4.058 3.992

%Ab 82.9 74.7 76.6 90.0 87.6 85.0 89.1 73.9 80.7 75.3 84.8 60.2 80.1 72.4 75.9 62.7 64.6 69.6 76.9%An 14.2 23.8 21.7 8.7 10.2 12.9 9.9 24.1 18.6 23.5 14.4 38.6 15.1 26.0 23.1 36.0 34.5 28.9 21.7%Or 2.9 1.5 1.7 1.3 2.2 2.1 1.0 2.0 0.7 1.1 0.8 1.2 4.8 1.6 1.0 1.3 0.9 1.5 1.4

6

Page 7: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S5 continued_____________________________________________________________________________ GS2 ________________________________________________________________________________ __________________________ GS3 ________________________

__________ Granodiorite ________ _____________________________________ Monzogranite ___________________________________ ____________________________________ Leucogranite ______________________________________

SUP24 SUP3 SUP3 SUP1 SUP1 SUP1 SUP1 SUP1 SUP1 SUP1 SUP1 SPP7 SPP7 SPP7 GP15 GP15 GP15 GP2 GP2C R C C C C C C R clr M clr R clr R R cribr

SiO2 55.71 57.95 58.13 62.60 59.70 62.90 54.87 50.64 56.89 65.45 65.74 58.31 58.08 61.08 65.11 65.92 65.34 65.52 64.11Al2O3 27.96 25.09 25.30 22.23 24.87 22.96 28.43 30.94 26.77 21.69 21.61 25.67 24.51 23.67 20.85 21.56 21.00 21.08 22.31Fe2O3 0.14 0.07 0.10 0.02 0.07 0.15 0.08 0.10 0.09 0.15 0.24 0.23 0.18 0.19 0.12 0.09 0.26 0.18 0.20CaO 10.81 7.60 8.18 4.44 7.29 4.90 11.31 14.61 9.75 3.23 2.74 8.33 7.63 5.58 2.57 3.01 2.81 2.89 3.80Na2O 5.70 7.47 7.10 9.56 7.10 8.79 5.17 3.28 6.11 9.61 10.15 6.69 7.26 8.16 9.53 9.44 9.40 10.05 9.01K2O 0.14 0.29 0.28 0.42 0.76 0.32 0.13 0.18 0.20 0.47 0.29 0.49 0.51 0.58 0.84 0.58 1.00 0.40 0.52Total

100.46 98.47 99.08 99.27 99.80100.0

2 99.98 99.75 99.80 100.60100.7

6 99.70 98.17 99.26 99.07100.6

7 99.84 100.18 99.99

Si10.004 10.542 10.514 11.203 10.695 11.149 9.903 9.258 10.245 11.477 11.501 10.484

10.607 10.951 11.592 11.540 11.561 11.545 11.333

Al 5.917 5.379 5.393 4.688 5.251 4.796 6.047 6.666 5.681 4.482 4.455 5.439 5.275 5.002 4.375 4.448 4.379 4.378 4.648Fe3+ 0.019 0.010 0.014 0.003 0.009 0.020 0.011 0.014 0.012 0.020 0.032 0.031 0.025 0.026 0.016 0.012 0.035 0.024 0.027Ca 2.080 1.481 1.585 0.851 1.399 0.930 2.187 2.862 1.881 0.607 0.514 1.605 1.493 1.072 0.490 0.564 0.533 0.546 0.720Na 1.984 2.635 2.490 3.317 2.466 3.021 1.809 1.163 2.133 3.267 3.443 2.332 2.570 2.836 3.289 3.204 3.224 3.433 3.088K 0.032 0.067 0.065 0.096 0.174 0.072 0.030 0.042 0.046 0.105 0.065 0.112 0.119 0.133 0.191 0.130 0.226 0.090 0.117Total

20.036 20.114 20.060 20.158 19.99419.98

9 19.98720.00

4 19.998 19.95820.00

9 20.00320.08

8 20.020 19.95319.89

7 19.957 20.016 19.932

Z 15.921 15.922 15.907 15.891 15.94615.94

6 15.95015.92

4 15.926 15.95915.95

7 15.92315.88

2 15.953 15.96615.98

8 15.940 15.923 15.981X 4.083 4.125 4.088 4.171 3.875 3.971 4.007 4.038 4.026 3.894 3.988 3.968 4.088 3.934 3.796 3.780 3.792 4.003 3.834

%Ab 48.4 63.0 60.1 77.8 61.1 75.1 44.9 28.6 52.5 82.1 85.6 57.6 61.5 70.2 82.8 82.2 81.0 84.4 78.7%An 50.8 35.4 38.3 20.0 34.6 23.1 54.3 70.4 46.3 15.3 12.8 39.6 35.7 26.5 12.3 14.5 13.4 13.4 18.3%Or 0.8 1.6 1.6 2.2 4.3 1.8 0.7 1.0 1.1 2.6 1.6 2.8 2.8 3.3 4.8 3.3 5.7 2.2 3.0

Structural formulas are calculated on the basis of 32 oxygens. Z and X refer to the number of atoms p.f.u. in tetrahedral and non-tetrahedral sites, respectively.

7

Page 8: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S6.Representative analyses of K-feldspars from early Permian F-bearing intrusive rock-suites from southern Sardinia.

_____________________________________ GS1 ____________________________________ ______________________________ GS1 ______________________________ _______________________________ GS3 ______________________________

MG MG LG LG LG LG LG GD MG MG LG LG LG LG LG LG LG LG LGMLP8 MLP8 SVP1 SVP1 SUP17 SUP17 MLP2 SUP3 SUP1 SUP1 SPP7 SPP7 SPP7 GP15 GP15 GP15 GP2 GP2 GP11

C C R C C R C R RSiO2 65.03 65.03 65.10 64.41 63.93 64.69 65.16 65.26 65.52 65.43 65.54 65.19 64.61 65.70 66.32 66.31 66.82 65.60 66.09Al2O3 18.19 18.19 18.15 18.10 18.32 18.27 18.37 18.13 18.08 17.78 18.40 18.29 18.30 18.46 18.74 18.74 18.64 18.50 18.71Fe2O3 0.13 0.13 0.04 0.00 0.04 0.00 0.09 0.03 0.04 0.02 0.02 0.08 0.13 0.02 0.03 0.01 0.10 0.03 0.20CaO 0.00 0.00 0.00 0.01 0.04 0.02 0.00 0.03 0.02 0.01 0.05 0.01 0.20 0.17 0.12 0.04 0.10 0.01 0.06Na2O 0.69 0.69 1.44 0.07 1.44 0.87 0.75 1.22 1.32 0.69 1.90 1.21 1.43 2.71 3.73 3.38 4.09 1.96 2.18K2O 15.64 15.64 14.87 16.75 14.72 15.50 15.86 14.84 14.55 15.78 13.98 15.04 14.67 13.10 11.07 11.68 10.59 13.80 13.06Total 99.69 99.69 99.59 99.33 98.48 99.34 100.23 99.51 99.52 99.70 99.88 99.82 99.34 100.16 100.02 100.17 100.35 99.97 100.32

Si12.028 12.028

12.027 12.014 11.955 12.006 12.002

12.052 12.076 12.099 12.023

12.018 11.974 11.999 12.017 12.020 12.044 12.020 12.017

Al 3.965 3.965 3.952 3.978 4.037 3.996 3.987 3.946 3.927 3.875 3.978 3.973 3.997 3.973 4.002 4.003 3.960 3.995 4.009Fe3+ 0.018 0.018 0.005 0.000 0.006 0.000 0.012 0.004 0.006 0.003 0.003 0.011 0.018 0.003 0.004 0.001 0.014 0.004 0.027Ca 0.000 0.000 0.000 0.002 0.008 0.004 0.000 0.006 0.004 0.002 0.009 0.003 0.039 0.033 0.023 0.008 0.019 0.002 0.012Na 0.247 0.247 0.515 0.024 0.522 0.313 0.268 0.437 0.472 0.247 0.677 0.434 0.513 0.960 1.310 1.188 1.429 0.696 0.768K 3.690 3.690 3.505 3.984 3.511 3.669 3.726 3.496 3.421 3.722 3.271 3.536 3.467 3.052 2.559 2.701 2.435 3.225 3.029Total

19.949 19.94920.00

5 20.002 20.040 19.988 19.99619.94

0 19.904 19.947 19.96119.97

4 20.009 20.019 19.915 19.922 19.901 19.942 19.863

Z 15.993 15.99315.97

9 15.991 15.993 16.001 15.98915.99

7 16.003 15.973 16.00115.99

1 15.971 15.972 16.018 16.024 16.004 16.014 16.027X 0.266 0.266 0.521 0.026 0.536 0.317 0.280 0.447 0.481 0.252 0.689 0.447 0.571 0.996 1.338 1.197 1.462 0.702 0.808

%Ab 6.3 6.3 12.8 0.6 12.9 7.9 6.7 11.1 12.1 6.2 17.1 10.9 12.8 23.7 33.7 30.5 36.8 17.7 20.2%An 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 1.0 0.8 0.6 0.2 0.5 0.1 0.3%Or 93.7 93.7 87.2 99.4 86.9 92.0 93.3 88.8 87.8 93.7 82.7 89.0 86.3 75.5 65.7 69.3 62.7 82.2 79.5

Structural formulas are calculated on the basis of 32 oxygens. The letters C and R indicate core and rim compositions, respectively. Z and X refer to the number of atoms p.f.u. in tetra-hedral and non-tetrahedral sites, respectively.

8

Page 9: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S7.Major (wt%) and trace (p.p.m.) element composition for early Permian F-bearing intrusives from southern Sardinia.

________________ GS1 ________________ ________________________ GS2 ______________________ ________________________ GS3 ______________________

SUP8 SVP1 SVP2 SPP7 SPP2A SUP1 SUP3 GP10 GP15 GP11 GEN63LG LG LG LG LG MG GD LG LG LG LG

SiO2 78.13 75.44 74.22 75.69 75.77 74.24 69.57 74.94 74.02 74.92 75.09TiO2 0.03 0.07 0.09 0.09 0.08 0.15 0.46 0.11 0.09 0.09 0.10

Al2O3 12.14 12.34 13.26 12.62 13.16 12.66 15.06 13.00 13.37 13.57 12.45Fe2O3 0.47 0.01 0.01 0.01 0.14 0.15 0.33 0.43 0.22 0.02 0.92

FeO 0.30 1.6 1.8 1.7 1.2 1.5 3.1 1.5 1.5 1.7 0.7MnO 0.04 0.04 0.04 0.04 0.05 0.04 0.06 0.05 0.05 0.07 0.02MgO 0.06 0.09 0.13 0.13 0.12 0.31 0.98 0.08 0.03 0.04 0.10CaO 0.57 0.73 0.77 1.13 0.86 1.05 2.71 0.84 0.91 0.81 0.15

Na2O 3.41 3.34 3.20 3.02 3.25 3.09 3.12 3.79 3.87 3.90 2.84K2O 4.58 4.86 5.13 5.18 5.18 5.24 4.12 4.74 4.67 4.72 5.70P2O5 0.01 0.01 0.02 0.02 0.01 0.03 0.12 0.01 0.01 0.01 0.01

F 0.02 0.07 0.09 0.05 0.01 0.04 0.04 0.09 n.d. n.d. n.d.L.O.I. 0.54 0.26 0.29 0.46 0.50 0.71 0.53 0.66 0.50 0.66 1.11Total 100.30 98.86 99.05 100.14 100.33 99.21 100.20 100.24 99.14 100.51 99.19

Feval 0.92 0.94 0.93 0.92 0.92 0.84 0.78 0.96 0.98 0.98 0.94A.S.I. 1.05 1.02 1.09 1.00 1.05 1.00 1.04 1.00 1.02 1.04 1.12

Na2O/K2O 0.74 0.69 0.62 0.58 0.63 0.59 0.76 0.80 0.83 0.83 0.50

Pb 35 33 36 28 33 30 24 29 28 22 19Sc 3 7 6 2 3 4 10 5 4 4 5Sn 3 1 1 2 3 2 4 3 2 1 4Rb 253 224 251 211 248 261 194 179 183 164 169Cs 8.7 3.6 4.3 4.1 5.4 6.7 7.9 1.8 2.4 2.3 3.1Ba 97 203 309 288 189 226 750 792 825 841 611Sr 16 29 41 53 41 52 152 56 60 62 31

Ga 16 18 18 14 15 15 19 20 21 20 18Nb 8 10 10 5 8 7 11 15 14 15 14Hf 4.4 3.3 3 2.5 2.6 3.7 5 5.7 8.4 7.6 6.2Ta 2 1.9 1.7 1.1 1.8 2.2 1.4 1.7 1.4 1.3 1.4Zr 110 82 84 74 71 112 184 206 279 260 207Y 61 57 51 22 32 45 35 72 65 59 42

Th 17.1 22.9 27.8 20.2 24.6 36.9 19.5 22.1 19.5 18.5 18.9U 9.6 6.4 7.3 5.8 5.9 12.7 4.3 4.9 5.2 4.9 4.1

La 13.4 20.5 27.7 26.5 24.3 24.8 48.5 48.6 56.8 69.4 42.5Ce 31.8 46.7 60 53.4 51.4 53.2 95.6 92 96.5 141 78.7Pr 4.27 5.92 7.44 5.97 5.98 6.21 10.8 12.1 14 17.5 9.47

Nd 17.1 23.2 28.9 19.7 20.9 22.8 38.8 46.8 55.5 67.6 35.8Sm 6.2 7.8 7.7 4 4.9 5.7 8.1 10.9 12.3 14.2 6.9Eu 0.2 0.3 0.4 0.44 0.36 0.4 1.11 1.2 1.19 1.36 0.43Gd 7.5 8.7 8.4 3.5 4.6 5.8 7 11.6 11.2 10.6 5.9Tb 1.5 1.6 1.5 0.6 0.9 1.1 1.1 2 1.8 1.8 1.1Dy 10 10 8.7 3.6 5.2 6.8 6.7 12.3 11 10.9 6.6Ho 2.1 1.9 1.7 0.7 1.1 1.4 1.3 2.4 2.1 2.1 1.3Er 6.5 5.6 4.9 2.3 3.3 4.5 3.5 7.1 6.1 6.3 3.8

Tm 1.03 0.84 0.71 0.35 0.52 0.73 0.54 1.02 0.89 0.92 0.56Yb 7.0 5.8 4.8 2.6 3.8 5.3 3.7 6.7 5.7 6.1 3.8

Eu/Eu* 0.09 0.11 0.15 0.37 0.23 0.21 0.44 0.32 0.31 0.33 0.20(La/Lu)N 1.30 2.40 3.92 2.75 6.35 3.18 8.90 4.93 6.45 7.81 7.60

Major and trace elements have been determined by ICP-MS analyses. LOI refer of loss of ignition. Fe val = FeOtot/(FeOtot + MgO). Eu/Eu* and (La/Lu)N are calculated using values normalised to the chondrite composition of Sun and McDonough (1995). n. d. refer to not determined.

9

Page 10: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S7 continued.Major (wt%) and trace (p.p.m.) element composition of GS3 granitic rocks from Monte Sette Fratelli.

GP49 GP3 GP9 GP1 GP10b GP2 GP15bMG MG LG LG LG LG LG

SiO2 74.29 74.60 75.07 74.10 74.19 74.30 74.66TiO2 0.11 0.10 0.09 0.11 0.10 0.10 0.09Al2O3 13.51 13.53 13.45 13.75 13.78 13.84 13.60Fe2O3 0.74 0.69 0.39 0.42 0.59 0.60 0.83FeO 0.99 0.82 0.97 1.27 1.08 0.93 0.75MnO 0.06 0.05 0.05 0.05 0.05 0.05 0.05MgO 0.12 0.18 0.13 0.07 0.04 0.10 0.03CaO 1.02 0.95 0.89 0.84 0.85 0.91 0.93Na2O 3.99 3.82 4.03 4.26 4.19 4.07 4.08K2O 4.43 4.73 4.37 4.49 4.58 4.50 4.45P2O5 0.02 0.02 0.02 0.01 0.01 0.02 0.01L.O.I. 0.72 0.51 0.57 0.62 0.53 0.57 0.52Total 100.00 100.00 100.02 99.99 100.00 99.99 100.00

Feval 0.93 0.89 0.91 0.96 0.98 0.94 0.98A.S.I. 1.02 1.03 1.04 1.03 1.03 1.05 1.03Na2O/K2O 0.90 0.81 0.92 0.95 0.91 0.90 0.92

Ba 695 699 701 775 737 722 679Rb 179 166 160 189 175 182 172Sr 61 47 54 66 56 59 59V 5 6 4 4 3 4 6Y 41 30 30 52 50 46 44Nb 12 8 9 16 14 13 14Zr 163 107 119 250 237 164 196Pb 19 20 21 23 25 18 32Zn 66 45 41 81 71 59 59La 35 26 25 60 54 30 37Ce 61 46 46 91 77 54 68

Major and trace elements have been determined by XRF analyses.

10

Page 11: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table S8.Rb-Sr and Sm-Nd isotopic data for selected whole rock samples of early Permian F-bearing intrusives from southern Sardinia.

Rb Sr Rb/Sr 87Rb/86Sr 87Sr/86Sr±2 (87Sr/86Sr)t Sr(t) Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd±2 (144Nd/144Nd)t Nd(t) TDM

(Ga)MLP19 290 35 8.286 23.9757 0.805073±8 0.70682 37.78 8.7 31.5 0.276 0.16629 0.512266±11 0.511952 -6.143 2.31SVP2 251 41 6.122 17.7146 0.781029±9 0.70844 60.70 7.7 28.9 0.266 0.16042 0.512224±19 0.511922 -6.746 2.19

SUP3 194 152 1.276 3.69320 0.718748±8 0.70361 -7.78 8.1 38.8 0.209 0.12569 0.512137±7 0.511900 -7.167 1.54SUP1 261 52 5.019 14.5237 0.764028±8 0.70451 4.96 5.7 22.8 0.250 0.15052 0.512325±20 0.512041 -4.411 1.68SPP7 211 53 3.981 11.5199 0.753420±8 0.70621 29.12 4.0 19.7 0.203 0.12225 0.512179±12 0.511949 -6.220 1.43

GP10 171 56 3.054 8.83590 0.738872±8 0.70266 -21.28 10.9 46.8 0.233 0.14023 0.512253±8 0.511989 -5.437 1.60Rb, Sr, Sm and Nd are given in ppm. Errors in the measured 87Sr/86Sr and 143Nd/144Nd are quoted at the 2 confidence level and refer to last digits. Initial 87Sr/86Sr and 143Nd/144Nd as well as Nd(t) and Sr(t), were calculated for an age of 288 Ma according to published geochronological data (see text). Measured 87Sr/86Sr and 143Nd/144Nd were adjusted to NIST987 (0.71025) and NBS87 (0.512105 ± 0.000017), respectively. 87Rb/86Sr = Rb/Sr*2.8936, 147Sm/144Nd = Sm/Nd*0.60466 (according to CIAAW - http://www.ciaaw.org). TDM, refer to one-stage model age (De Paolo, 1981; 1988).

Table S9.U-Th-Pb isotopic data for selected whole rock samples of early Permian F-bearing intrusives from southern Sardinia.

Pb Th U U/Pb Th/Pb 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 232Th/208Pb 235U/207Pb 238U/206Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t

MLP19 49 34.0 9.2 0.189 0.697 18.508 15.645 38.548 1.317 0.593 0.750 17.960 15.616 37.890SVP2 36 27.8 7.3 0.203 0.772 18.469 15.680 38.676 1.316 0.575 0.727 17.878 15.649 37.945

SUP3 24 19.5 4.3 0.179 0.813 18.630 15.673 38.690 1.385 0.508 0.642 18.107 15.646 37.920SUP1 30 36.9 12.7 0.423 1.230 18.717 15.700 38.669 2.096 1.201 1.518 17.478 15.636 37.501SPP7 28 20.2 5.8 0.207 0.721 18.565 15.692 38.705 0.833 0.778 0.984 17.960 15.661 38.021

GP10 29 22.1 4.9 0.169 0.762 18.652 15.702 38.700 1.299 0.479 0.606 18.158 15.676 37.976Pb, Th and U are given in ppm. Initial 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb were calculated for an age of 288 Ma according to published geochronological data (see text).

11

Page 12: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

Table. S10. Fractionation model for GS2 and GS1 rock-suitesFractionating phases (wt%) Res2 F Rb Sr Ba

GS2

Granodiorite Leucogranite

Pl=20.5; Bt=10.1; Kf=2.2; Qz =7.3 0.06 0.60 257 (230) 43 (47) 177 (239)G

S1

Monzogranite Leucogranite

Pl=6.8; Bt=1.9 0.42 0.90 313 (284) 26 (26) 116 (136)

Mass balance calculations for major elements was performed according to Stormer and Nicholls (1978). Major and trace elements estimates were carried out using less evolved rock-types. In particular, samples RZ44 (after Barca et al., 2009) and MLP19 (after Naitza et al., 2017) were chosen as parental magmas, and average data reported in Table S.2 were chosen as evolute liquids (column 4 and 1 for GS1 and GS2, respectively). Res2 and F refer to sum of residual squares and wt% of fraction residual liquid, respectively. Rb, Sr and Ba are expressed in p.p.m. and refer to calculate contents by using the Rayleigh’s equation. Values in brackets refer to measured values.

Table S11. Crustal source models for GS1 and GS3 rock-suites_________ GS1 _________ ___________ GS3 _________ NB11 U156 SH1 SH2F =0.1 F=0.2 F=0.1 F=0.2

SiO2 62.08 63.57 53.38 55.70 51.06 60.59 62.8 61.6TiO2 0.80 0.00 0.47 0.43 0.51 0.88 1.0 1.0Al2O3 17.98 17.40 15.55 15.32 15.77 18.55 18.9 18.3Fe2O3 6.73 6.21 8.89 8.11 9.68 7.24 6.5 7.4MnO 0.11 0.11 0.20 0.18 0.21 0.12 0.11 0.13MgO 3.08 2.75 7.56 6.74 8.39 3.41 2.2 2.7CaO 2.21 2.04 10.74 9.66 11.82 2.37 1.3 4.2Na2O 3.19 3.20 1.92 2.15 1.69 3.19 1.2 1.1K2O 2.95 3.16 0.66 1.08 0.24 2.74 3.7 3.4P2O5 0.11 0.10 0.04 0.04 0.04 0.12 0.16 0.22LOI 0.76 0.73 0.61 0.62 0.60 0.78SUM 100.00 99.30 100.01 100.02 100.00 100.00 97.9 100.1

A.S.I. 1.44 1.40 0.66 0.69 0.64 1.48Na2O/K2O 1.09 0.63 2.91 1.99 7.04 1.16 0.32 0.32

Rb 37 67 22 39 74 74 140 119Sr 141 129 261 239 409 409 450 318Ba 37 51 152 213 747 747 580 1050Zr 33 48 200 117

Source for GS1 and GS3 has been calculated assuming samples U156 (data after Villaseca et al., 2009) and NB11 (data after Montanini and Harlov 2006), respectively, as granulitic restites. Note the contrasting peralu-minous/metaluminous character and Na2O/K2O of calculated crustal sources, in good agreement with the chemical characters of studied magmas. SH1 and SH2 refer to the average composition of post-Archaean shales according to Taylor and Mc Lennan (1985), respectively, reported for comparison. Major oxides and trace elements compositions for GS1 and GS3 crustal sources were estimated according to the equations: C0 = F- CL + [1-F] • CR and C0 = C•[F + D - FD] (Shaw, 1970), respectively. CL and CR refer to the trace element concentration in the melt and in the restite, respectively; F and D refer to the degree of partial melting and the distribution coefficient (CR/CL ratio), respectively.

12

Page 13: ars.els-cdn.com · Web view723 801 777 767 827 756 735 744 773 736 834 780 Modes have been obtained by mass balance calculation (Stormer & Nicholls, 1978), by subtracting the chemical

ReferencesKretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–279.Munoz, J.L., 1984. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. In: Bailey, S.W. (Ed.), Reviews in Mineralogy, Micas. vol. 13.Mineralogical Society of America, pp. 469–494.Stout, J.H., 1972. Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. Journal of Petrology 13, 99–145.Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolu-tion. Blackwell Scientific Publications, Carlton.Tindle, A.G.,Webb, P.C., 1990. Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European Journal of Mineralogy 2, 595–610.

13