4
Arrestin experiments The termination step in GPCR signaling involves a two-step mechanism -a rapid phosphorylation of the receptor followed by the arrestin binding that sterically blocks further interaction of G-protein with the receptor, resulting in termination of the primary signaling event. We have previously reported crystal structures and SAXS studies on constitutively active variants of visual arrestin (p44-a naturally occurring truncated variant; and R175E-a charge reversal arr-1 mutant in the polar core). Currently, we are investigating the effect of synthetic peptides that mimic the phosphorylated C-terminus of rhodopsin on arr-1 variants. Our preliminary results using size-exclusion chromatography (SEC) show complex formation and a shift in elution profile, suggesting a change in oligomeric state. In the SAXS experiment on BM29 we have investigated structural changes upon binding of a synthetic peptide that activates arrestines. Below is a summary of the key results: As controls we have measured the proteins p44 and R175E without the peptide being present (fig 1). The control experiments demonstrated that both proteins are present in solution. P44 shows absence of aggregation, R175E had a small correctable amount of aggregation. Figure 1: SAXS data of p44 and R175E in the absence of synthetic peptide. The red solid line are calculated theoretical scattering curves based on the available crystal structures of p44 and R175E, respectively. 0 0.1 0.2 0.3 0.4 0.5 0.1 1 10 100 I(q) 3UGU P44 0 0.1 0.2 0.3 0.4 0.5 q / Å -1 0 0.01 0.02 0.03 0.04 0.05 0.06 I(q)*q 2 0 0.1 0.2 0.3 0.4 0.5 0.1 1 10 100 I(q) R175E 0 0.1 0.2 0.3 0.4 0.5 q / Å -1 0 0.02 0.04 0.06 0.08 0.1 I(q)*q 2

Arrestin experiments p44 R175E - ftp.esrf.euftp.esrf.eu/pub/smis2.esrf.fr/60028_A.pdfIn a second step we added the synthetic peptide to the p44 and R175E solutions and recorded SAXS

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

ArrestinexperimentsTheterminationstepinGPCRsignalinginvolvesatwo-stepmechanism-arapidphosphorylationofthereceptorfollowedbythearrestinbindingthatstericallyblocksfurtherinteractionofG-proteinwiththereceptor,resultinginterminationoftheprimarysignalingevent.WehavepreviouslyreportedcrystalstructuresandSAXSstudiesonconstitutivelyactivevariantsofvisualarrestin(p44-anaturallyoccurringtruncatedvariant;andR175E-achargereversalarr-1mutantinthepolarcore).Currently, we are investigating the effect of synthetic peptides that mimic thephosphorylated C-terminus of rhodopsin on arr-1 variants. Our preliminary resultsusing size-exclusion chromatography (SEC) show complex formation and a shift inelutionprofile,suggestingachangeinoligomericstate.IntheSAXSexperimentonBM29wehaveinvestigatedstructuralchangesuponbindingofasyntheticpeptidethatactivatesarrestines.Belowisasummaryofthekeyresults:Ascontrolswehavemeasuredtheproteinsp44andR175Ewithoutthepeptidebeingpresent(fig1).Thecontrolexperimentsdemonstratedthatbothproteinsarepresentinsolution.P44showsabsenceofaggregation,R175Ehadasmallcorrectableamountofaggregation.

Figure1:SAXSdataofp44andR175Eintheabsenceofsyntheticpeptide.Theredsolidlinearecalculatedtheoreticalscatteringcurvesbasedontheavailablecrystalstructuresofp44andR175E,respectively.

0 0.1 0.2 0.3 0.4 0.5

0.1

1

10

100

I(q)

3UGU

P44

0 0.1 0.2 0.3 0.4 0.5

q / Å-10

0.01

0.02

0.03

0.04

0.05

0.06

I(q)*

q2

0 0.1 0.2 0.3 0.4 0.5

0.1

1

10

100

I(q)

R175E

0 0.1 0.2 0.3 0.4 0.5

q / Å-10

0.02

0.04

0.06

0.08

0.1

I(q)*

q2

Inasecondstepweaddedthesyntheticpeptidetothep44andR175EsolutionsandrecordedSAXSdata.Theexperimentaldataisshowninfig.2.

Figure2:MeasuredSAXSdataofp44andR175inthepresenceofpeptide.Thesolidlinesaremodelsofdimericproteins.

Themeasuredforwardscatteringdemonstratesdirectlythatpeptidebindinginducestheassemblyofp44andR175Edimers.Possibleassembliesofdimershavebeenscreenedandwecoulddeterminetopossibledimerisationassemblies,whichareactuallyverysimilarintheiroverallshape,butdifferintherotationofthemonomersaroundthelongaxis.

KineticexperimentsofLOVproteinsafterlight-excitationOur group members have determined crystal structures of, PpSB1-LOV, DsLOV ofDinoroseobacter shibae DFL12T, and more recently, dark state crystal structure ofPpSB1-LOV. Comparison of the two states reveal remarkably large conformationalchanges including~11Åmovementof theC-terminalhelix Jα,disruptionofhydrogenbondsinthedimerinterface,anda~29°rotationofchainBrelativetochainA.Here,wewouldliketoperformtime-resolvedkineticmeasurementsofdarkrecoveryofPpSB1-LOVproteinvariantsusingSAXS.WehaveperformedkineticSAXSexperimentsofPbSB1-R66I.TheproteinsolutionwasilluminatedbybluelightandtherecoveringprocessinthedarkwasfollowedbykineticSAXSexperiments.ThedifferenceSAXSspectrum(lightilluminatedatt=0minusdarkatt)atdifferenttimesisshowninfigure3.Acharacteristicdropisfoundat0.05Å-1,whichwasalsoobservedinstaticSAXSexperimentperformedbeforeonBM29.

Figure3:DifferenceSAXSspectrumoflight-illuminatedR66Iminusproteininthedarkatdifferenttime-points.

Thedifferencedatawereintegratedovertheq-rangeandtheintegralisplottedasafunctionoftimeinfigure4.Thesolidlineinisaexponentialwiththerelaxationtimeof24minthathasbeendeterminedwithUV/visabsorption.Thekineticexperimentsclearlyshowthatstructuralchangesinresponsetodarkrecoveryareobserved.Thetimedependenceseemstofollowthepreviouslydeterminedrecoverytime.Thedata,however,arenoisyanddonotallowanunbiasedfittodeterminetherelaxationtimewithunbiasedaccuracy.

Figure4:ChangesinthedifferenceSAXSsignal(light–dark)asafunctionoftime.Thesolidlineisanexponentialwithrelaxationtimeof24min.