ARO Final Review Session

Embed Size (px)

Citation preview

  • 8/12/2019 ARO Final Review Session

    1/48

    ARO 404-2 High Speed Aerodynamics

    Review

    June 11, 2013

  • 8/12/2019 ARO Final Review Session

    2/48

    Shock-Expansion Theory--- A review of Gas dynamics/oblique shock/isentropic flows

  • 8/12/2019 ARO Final Review Session

    3/48

    Problem: A Pitot tube is inserted in the aft of a double wedge and its reading is 2.596 atm.

    The local pressure on the backface point a is measured as 0.1 atm. Find free stream M1

    a

    Assume M1= 3.5, then =29.2, Mn1=3.5sin=1.71. Then from Table A.2 Mn2=0.638Then from E.1, we have 2.6*sin(29.2-15)= 0.638 (thus it checks)! M1=3.5

  • 8/12/2019 ARO Final Review Session

    4/48

    4

    2

    0,

    2

    0,

    2

    0,

    0,

    1

    1

    1

    21

    121222

    M

    cc

    M

    cc

    M

    CC

    CC

    V

    uC

    VxVxVV

    uC

    m

    m

    l

    l

    P

    P

    PP

    P

    P

    Linearized velocity potential equation analyses results

    Insert transformation results into linearized CP

    Prandtl-Glauert rule: If we know theincompressible pressure distribution over anairfoil, the compressible pressure distributionover the same airfoil may be obtained

    (subsonic flowonly)

    Lift and moment coefficients are integrals ofpressure distribution (inviscid flows only)

    Perturbation velocity potential for incompressible

    flow in transformed space

  • 8/12/2019 ARO Final Review Session

    5/48

    ]2

    )()()[(

    1)(

    4

    1)(

    4

    222

    2

    2

    leue

    ee

    e

    e

    ee

    MCd

    MC

    Ackeret Supersonic Linearized Theory

  • 8/12/2019 ARO Final Review Session

    6/48

    cX

    C

    xM

    C

    CP

    cm

    mx

    5.0

    0

    )02

    1(

    1

    4

    5.0

    20

    PROBLEM: Find the aero coefficient on the double wedge airfoil with Ackeret Theory

  • 8/12/2019 ARO Final Review Session

    7/48

    3D wing aerodynamics

    In subsonic flow

    First find the 3D wing in incompressible flow (e.g., Prandtl lifting line

    theory)

    Then applying Prandtl-Glauert rule

    In supersonic flow

    If it is a rectangular wing, use Bertin/Cumming book Chapter 11

    Table 1

    --- Applicable for 3 types of airfoil shapes (double wedge,

    modified double wedge and bi-convex shapes)--- Aspect ratio effects

  • 8/12/2019 ARO Final Review Session

    8/48

    This Table gives a rectangular wing aerodynamics in supersonic flow including effects

    of Mach number, aspect ratio, gas properties (), thickness/chord ratio, airfoil configuration,

    and angle of attack, .

    1)( 2 M

    BertinsBook Chapter 11 Table 11.1

  • 8/12/2019 ARO Final Review Session

    9/48

    Example: Use conical method to find the lift andDrag on a rectangular flat plate wing (1storder)

    ]~

    [sin2

    ,

    ~'tan;

    1

    1

    1tan

    tan'tansin2

    ,

    wingtipthebyinfluencedregiontheIn

    ,2

    1

    2,

    ,2

    1

    2,

    1

    2

    2

    1

    2

    22

    22

    x

    y

    Cp

    CpThus

    x

    y

    M

    CpCp

    sideleewardM

    Cp

    sidewindwardM

    Cp

    d

    d

    d

    d

  • 8/12/2019 ARO Final Review Session

    10/48

    Example: A rectangular wing of aspect ratio 2.5 is subject to a uniform stream of Mach 1.4.

    the wing is constructed from a double-wedge airfoil of thickness ratio=0.04. Use Table 11.1

    of Bertin to give the following aerodynamic characteristics of the wing first symbolically

    and then numerically for arbitrary angle of attack,.

    (a) Lift coefficient

    (b) wave drag coefficient(c) Moment coefficient about the leading edge

    (d) Location of the center of pressure

    CPXandCMCDCLFind 0,,:

    airfoilwedgedoubleaisgeometryAirfoiAR

    MGiven

    5.2

    04.0

    4.1:

    297.3

    )]04.0*2

    1

    )14.1(2

    )24.1(4.1*4.11(

    14.1*5.2*2

    11[

    14.1

    4

    )1(2

    )2(

    1)(;21'

    )]'*1()(2

    11[

    4)(:

    2/32

    224

    22

    2/32

    224

    3

    2

    3

    L

    L

    L

    C

    C

    M

    MMc

    MA

    ACAR

    CaSolution

  • 8/12/2019 ARO Final Review Session

    11/48

    22

    2

    2

    1

    2

    2

    1

    97.3006532.097.314.1

    )04.0(44

    *1

    *)(

    CD

    airfoilwedgedoubleafork

    CM

    kCb LD

    cccAcARARAcARX

    pressureofcenteroflocationd

    CM

    ARAcARAR

    CMc

    CP 5.0~43.0]'*1*

    )1*'*(*3/2*[

    )(

    417.1

    )]114.15.2)(04.0(2

    1*

    )14.1(2

    )24.1(4.1*4.1

    3

    214.1*5.2[

    )14.1(*5.2

    2

    )]1*'*(*3

    2*[

    *

    2)(

    3

    3

    0

    2

    2/32

    2242

    2

    320

  • 8/12/2019 ARO Final Review Session

    12/48

    Swept-back wing of infinite span

  • 8/12/2019 ARO Final Review Session

    13/48

    Geometrical Description of Wing Sweep

  • 8/12/2019 ARO Final Review Session

    14/48

  • 8/12/2019 ARO Final Review Session

    15/48

    Equivalent 2-D Flow on Swept Wing

    Freestream Mach number resolved into 3 components

    i) vertical to wing

    ii) in plane of wing, but tangent to leading edge

    iii) in plane of wing, but normal to leading edge

    sinM

  • 8/12/2019 ARO Final Review Session

    16/48

    i)Mvert Msin

    ii)M|| Mcossin ii)M Mcoscos

  • 8/12/2019 ARO Final Review Session

    17/48

    Equivalent Mach Number normal to leading edge

    Meq M 2 Mvert2 Msin 2

    Mcoscos 2

    M 1 cos2 cos2 1 sin2 M 1 sin2 cos2

  • 8/12/2019 ARO Final Review Session

    18/48

    Equivalent angle of attack normal to leading edge

    tan eq MvertM

    Msin

    Mcoscos

    tan cos

  • 8/12/2019 ARO Final Review Session

    19/48

    Equivalent chord and span Chord is shortened

    Span is lengthenedceqc cos beq

    b

    cos

    cos

    1)()(

    )(cos

    dx

    dz

    dx

    dz

    xx

    eq

    eq

  • 8/12/2019 ARO Final Review Session

    20/48

    Equivalent 2-D Lift Coefficient

    CL eq L2pMeq

    2c cos bcos

    L2pMeq

    2cb

    L

    2pM

    2cb 1 sin2 cos2

    CL

    1 sin2 cos2

    )(cos,cossin1

    1cos,1

    222

    eqLLLL

    Leq CCorCCC

    when

  • 8/12/2019 ARO Final Review Session

    21/48

    Equivalent 2-D

    Drag Coefficient

    CD eq D/ cos

    2

    pMeq2c cos b

    cos

    D/ cos

    2

    pMeq2cb

    D/ cos

    2pM

    2cb 1 sin2 cos2

    CD / cos

    1 sin2 cos2

    3cos,1 DeqD CCAs

  • 8/12/2019 ARO Final Review Session

    22/48

  • 8/12/2019 ARO Final Review Session

    23/48

    Summary on Swept-back Wing (

  • 8/12/2019 ARO Final Review Session

    24/48

    Effects of swept on lift-to-drag ratio

    Double wedge airfoil at Mach 2

  • 8/12/2019 ARO Final Review Session

    25/48

    Example: Show that the section lift coefficient for a swept airfoil

    with a supersonic leading edge is given by:

    smallare

    AOAandratiothicknessthatsassumptionthewith

    MC

    ,,

    1cos)(

    cos4

    22

  • 8/12/2019 ARO Final Review Session

    26/48

    Critical Mach Number

    MCRcan be estimated from(1) Prandtl-Glauert rule

    (2) Karman-Tsien

    (3) Laitone

  • 8/12/2019 ARO Final Review Session

    27/48

    Every where is subsonic flow on the airfoiol

    Critical Mach number

  • 8/12/2019 ARO Final Review Session

    28/48

    28

    IMPROVED COMPRESSIBILITY CORRECTIONS

    0,2

    22

    2

    0,

    0,

    2

    22

    0,

    2

    0,

    12

    2

    11

    1

    2111

    1

    P

    P

    P

    P

    PP

    P

    P

    CM

    MM

    M

    CC

    C

    M

    MM

    CC

    M

    CC

    Prandtl-Glauret

    Shortest expression

    Tends to under-predictexperimental results

    Account for some of nonlinear

    aspects of flow field

    Two other formulas which showexcellent agreement

    1. Karman-Tsien

    Most widely used

    2. Laitone

    Most recent

  • 8/12/2019 ARO Final Review Session

    29/48

    Isentropic relation between theFree stream and the point on the

    airfoil

  • 8/12/2019 ARO Final Review Session

    30/48

    Cp

    Prandtl-Glauert rule

  • 8/12/2019 ARO Final Review Session

    31/48

    Determination of Critical Mach Number

    Isentropic relation

    2)

    11(1

    min

    2

    22 MIN

    MINp

    Cp

    M

    MM

    CpC

    ruleTsienKar

  • 8/12/2019 ARO Final Review Session

    32/48

    M Cp

    0.7 -0.4469

    0.725 -0.4672

    0.75 -0.4913

    0.775 -0.5202

    0.8 -0.5556

    0.825 -0.6

    0.85 -0.6582

    M Cp

    0.7 -0.7791

    0.725 -0.681

    0.75 -0.5910.775 -0.5095

    0.8 -0.4346

    0.825 -0.3057

    0.85 -0.302

    Problem: Use the Karman-Tsien rule to calculate the critical Mach number for an airfoil

    Whose Cp-min =-0.3 at low speed for a given altitude. Give the key equations, generate a

    Table and make a full page graph on engineering paper to determine critical Mach number

    To three significant figures. Hint: the values is between 0.70 and 0.85.

    2)

    11(1

    min

    2

    22 MIN

    MINp

    Cp

    M

    MM

    CpC

    ruleTsienKar

    Karmin-Tsien Cp-crit

    -0.9

    -0.8

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0 0.2 0.4 0.6 0.8 1

    Cp-CRKarman_tsien

    Mach

    Cp

    Two curves intersects at M-cr=0.75, Cp =-0.49

    3.0, n

    micrit cpsettingCpCptwotheseSetting

  • 8/12/2019 ARO Final Review Session

    33/48

    PS 8 Problem 1: Starting with a rectangular flat plate wing at an arbitrary supersonic

    cruise Mach number. Modify the wing in such a way that it would experience only

    Two-dimensional flow. Then proceed to calculate the wing total lift, drag andmoment the leading edge.

    PS 8 Prob. 1

  • 8/12/2019 ARO Final Review Session

    34/48

  • 8/12/2019 ARO Final Review Session

    35/48

    M

    Isentropic compression in the lower part of airfoil

    Isentropic expansion in the upper part of airfoil

    There exists trailing shock at the rear end of airfoil

    But on the airfoil, it is shockless

    Problem 2: 2D air foi l with zero thickness in supersonic f li ght. F ind an air foil , i t would

    Produce no shock waves (except possibly at its trai l ing edge)

    In-coming flow is tangent to the airfoil at the leading edge.

    Trailing shock

    Expansion waves

    Shock-less airfoil

  • 8/12/2019 ARO Final Review Session

    36/48

    Example: Find Lift and drag coefficient on this airfoil

  • 8/12/2019 ARO Final Review Session

    37/48

    Example: Find Lift and drag coefficient on this airfoil

  • 8/12/2019 ARO Final Review Session

    38/48

  • 8/12/2019 ARO Final Review Session

    39/48

    Prob. 3 :Shock wave and boundary layer interactions usually has a detrimental effects on the

  • 8/12/2019 ARO Final Review Session

    40/48

    Adverse pressure gradient

    Aerodynamics of an airfoil. Conceive a modification to the airfoil in the vicinity of the

    Interaction that would significantly reduced the adverse pressure gradient effects and prevent

    the Boundary layer separation.

    Applying suction here

    Applying wall suction here

  • 8/12/2019 ARO Final Review Session

    41/48

    Reduction of viscous skin friction or delay the boundary layer separation

    using suctions at the wall at the place that has adverse pressure gradient.

  • 8/12/2019 ARO Final Review Session

    42/48

    Subsonic flow over a thin airfoil --- Kutta conditions at trailing edge

    Streamline patterns are dictated by the Kutta trailing edge conditions

    PS 8 Problem 4: Consider the flow past a flat plate airfoil (zero thickness) at an AOA.

    For both supersonic and subsonic free stream, sketch the streamlines and the wall pressure

    distributions

    b i l fl l hi i f il

  • 8/12/2019 ARO Final Review Session

    43/48

    Subsonic flow

    Suction force

    (V>>1) at

    leading edge

    PL

    PU

    CD = 0 DAmbertparadox

    CL >0

    Subsonic Flows over a flat plate or thin airfoil

    The real flow patterns may have leading edge

    Flow separation

  • 8/12/2019 ARO Final Review Session

    44/48

    PS 8

  • 8/12/2019 ARO Final Review Session

    45/48

  • 8/12/2019 ARO Final Review Session

    46/48

    Compare to Flat Plate in subsonic flows

    CL

    pl

    p

    pu

    p

    2M

    2

    cos CD= 0 (2D flow)

    FpLift

    Drag

    Supersonic flows over a flat plate

    streamlines

    In 3D flow, CD is no longer zero

    Prandtlslifting line theory indicates

    Downwash would produce induced drag

    CD > 0

    FpLift

  • 8/12/2019 ARO Final Review Session

    47/48

    pLift

    Drag

    Subsonic flow

    Streamlines around a NACA 0012 airfoil at moderate angle of attack

    Supersonic flowStreamline pattern

    http://localhost/var/www/apps/conversion/tmp/scratch_9//upload.wikimedia.org/wikipedia/commons/b/b3/Streamlines_around_a_NACA_0012.svghttp://localhost/var/www/apps/conversion/tmp/scratch_9//upload.wikimedia.org/wikipedia/commons/b/b3/Streamlines_around_a_NACA_0012.svghttp://localhost/var/www/apps/conversion/tmp/scratch_9//upload.wikimedia.org/wikipedia/commons/b/b3/Streamlines_around_a_NACA_0012.svg
  • 8/12/2019 ARO Final Review Session

    48/48

    Supersonic flows over a thin flat plate