22

Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):
Page 2: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

Arithmetic Noncommutative

Geometry

http://dx.doi.org/10.1090/ulect/036

Page 3: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

This page intentionally left blank

Page 4: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

University

LECTURE Series

Volume 3 6

Arithmetic Noncommutative

Geometry Matilde Marcoll i

with a foreword b y Yuri Manln

American Mathematica l Societ y Providence, Rhode Island

Page 5: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

EDITORIAL COMMITTE E

Je r ry L . B o n a (Chair ) Eri c M , Priedlande r Adr iano Gars i a Nige l J . Higso n

Pe te r Landwebe r

2000 Mathematics Subject Classification. P r i m a r y 58B34 .

F i g u r e s 1 , 3 , a n d 9 ( p p . 82 , 84 5 a n d 102 ) ar e u s e d w i t h p e r m i s s i o n .

For addi t iona l informatio n an d u p d a t e s o n th i s book , visi t w w w . a m s . o r g / f o o o k p a g e s / u l e e t ~ 3 6

Library o f Congres s Cataloging- in-Publieat io n D a t a

MarcolM, Matilde . Arithmetic noncommutativ e geometr y / Matild e Mareolli .

p. cm . — (Universit y lectur e series , ISS N 1047-399 8 ; v, 36 ) Includes bibliographica l references . ISBN 0-8218-3833- 4 (acid-fre e paper ) 1. Noncommutativ e differentia l geometry . I . Title . II . Universit y lectur e serie s (Providence ,

R.I.) ; 36.

QA641.M34 200 5 516.3/6~~dc22 200504783 3

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f th e sourc e i s given .

Republication, systemati c copying , o r multipl e reproduction o f any materia l i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addresse d t o th e Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] .

© 200 5 b y th e America n Mathematica l Society . Al l right s reserved . The America n Mathematica l Societ y retain s al l right s

except thos e grante d t o th e Unite d State s Government . Printed i n th e Unite d State s o f America .

@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability .

Visit th e AM S hom e pag e a t ht tp: / /www.ams.org /

10 9 8 7 6 5 4 3 2 1 1 0 09 0 8 0 7 0 6 0 5

Page 6: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

And indee d ther e wil l be tim e To wonder "D o I dare?" and , "D o I dare? " Time t o tur n bac k an d descen d th e stair .

Do I dar e Disturb th e Universe ?

For I have know n the m al l already , know n the m all ; Have know n th e evenings , mornings , afternoons , I hav e measure d ou t m y lif e wit h coffe e spoons .

I shoul d hav e been a pai r o f ragged claw s Scuttling acros s the floor s o f silen t seas .

No! I a m no t Princ e Hamlet , no r wa s mean t t o be ; Am a n attendan t lord , on e tha t wil l d o To swel l a progress , star t a scene o r tw o

At times , indeed , almos t ridiculous -Almost, a t times , th e Fool .

We have lingere d i n the chamber s o f the se a By sea-girl s wreathe d wit h seawee d re d an d brow n Till huma n voice s wake us , an d w e drown .

(T.S. Eliot , "The Love Song of J. Alfred Prufrock")

Page 7: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

This page intentionally left blank

Page 8: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

Contents

Foreword i x

Chapter 1 . Ouvertur e 1 1. Th e NC G dictionar y 3 2. Noncommutativ e space s 4 3. Spectra l triple s 6 4. Wh y noncommutativ e geometry ? 1 2

Chapter 2 . Noncommutativ e modula r curve s 1 5 1. Modula r curve s 1 5 2. Th e noncommutativ e boundar y o f modula r curve s 2 2 3. Limitin g modula r symbol s 2 7 4. Heck e eigenforms 3 8 5. Selber g zet a functio n 4 1 6. Th e modula r comple x an d if-theor y o f C*-algebra s 4 2 7. Intermezzo : chaoti c cosmolog y 4 4

Chapter 3 . Quantu m statistica l mechanic s an d Galoi s theor y 5 1 1. Quantu m statistica l mechanic s 5 3 2. Th e Bost-Conne s syste m 5 6 3. Noncommutativ e geometr y an d Hilbert' s 12t h proble m 6 1 4. Th e GL 2 syste m 6 4 5. Quadrati c fields 7 0

Chapter 4 . Noncommutativ e geometr y a t arithmeti c infinit y 8 1 1. Schottk y uniformizatio n 8 1 2. Dynamic s an d noncommutativ e geometr y 8 8 3. Arithmeti c infinity : archimedea n prime s 9 3 4. Arakelo v geometr y an d hyperboli c geometr y 9 7 5. Intermezzo : quantu m gravit y an d blac k hole s 10 0 6. Dua l grap h an d noncommutativ e geometr y 10 5 7. Arithmeti c varietie s an d L- factors 10 9 8. Archimedea n cohomolog y 11 5

Chapter 5 . Vista s 12 5

Bibliography 13 1

Page 9: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

This page intentionally left blank

Page 10: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

Foreword

Noncommutative geometr y nowaday s look s a s a vas t buildin g site .

On the one hand, practitioners of noncommutative geometr y (o r ge-ometries) alread y buil t u p a large and swiftl y growin g body o f exciting mathematics, challengin g traditiona l boundarie s an d subdivisions .

On the othe r hand , noncommutativ e geometr y lack s common foun -dations: fo r many interesting constructions of "noncommutativ e spaces" we cannot eve n sa y fo r sur e whic h o f them lea d t o isomorphi c spaces , because the y ar e no t object s o f an all-embracin g categor y (lik e that o f locally ringed topologica l space s in commutativ e geometry) .

Matilde Marcolli' s lecture s reflec t thi s spiri t o f creative growt h an d interdisciplinary research .

She start s Chapte r 1 with a sketc h o f philosoph y o f noncommuta -tive geometr y a la Alai n Connes . Briefly , Conne s suggest s imaginin g C*-algebras a s coordinat e rings . H e the n supplie s severa l bridge s t o commutative geometr y b y hi s construction o f "ba d quotients " o f com-mutative space s via crossed product s an d hi s treatment o f noncommu -tative Riemannian geometry . Finally , algebrai c tools like X-theory an d cyclic cohomology serv e to furthe r enhanc e geometri c intuition .

Marcolli the n proceed s t o explainin g som e recen t development s drawing upo n he r recen t wor k wit h severa l collaborators . A commo n thread i n all o f them i s the stud y o f various aspect s o f uniformization : classical modula r group , Schottk y groups . Th e modula r grou p act s upon th e comple x hal f plane , partiall y compactifie d b y cusps : rationa l points o f the boundar y projectiv e line . Th e actio n become s "bad " a t irrational points , an d her e i s wher e noncommutativ e geometr y enter s the game . A wealt h o f classica l numbe r theor y i s encode d i n th e co -efficients o f modula r forms , thei r Melli n transforms , Heck e operator s and modula r symbols . Thei r counterpart s livin g a t th e noncommuta -tive boundar y hav e onl y recentl y starte d t o unrave l themselves , an d Marcolli give s a beautifu l overvie w o f wha t i s alread y understoo d i n Chapters 2 and 3 .

IX

Page 11: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

x FOREWOR D

Schottky uniformizatio n provide s a visualizatio n o f Arakelov' s ge -ometry a t arithmeti c infinity , whic h serve s a s th e mai n motivatio n o f Chapter 4 .

Among th e mos t tantalizin g development s i s th e recurren t emer -gence of patches o f common ground fo r numbe r theor y an d theoretica l physics.

In fact , on e can presen t i n thi s ligh t th e famou s theore m o f youn g Gauss characterisin g regula r polygon s tha t ca n b e constructe d usin g only rule r an d compass . I n hi s Tagebuch entry o f Marc h 3 0 h e an -nounced tha t a regular 17-go n has thi s property .

Somewhat modernizin g hi s discovery , on e can presen t i t i n th e fol -lowing way.

In th e comple x plane , root s o f unit y o f degre e n for m vertice s o f a regula r n-gone . Henc e i t make s sens e t o imagin e tha t w e stud y th e ruler and compass constructions as well not in the Euclidean, but i n the complex plane. Thi s has an unexpected consequence: w e can character -ize the se t o f all points constructibl e i n this way as the maximal Galoi s 2-extension of Q. I t remains to calculate the Galoi s group of Q(e 2m^17): since i t i s cyclic o f orde r 16 , this roo t o f unity i s constructible . More -over, th e sam e i s tru e fo r al l p-gon s wher e p i s a prim e o f th e for m 2n + 1 but no t fo r othe r primes .

A remarkabl e featur e o f thi s resul t i s th e appearanc e o f a hidde n symmetry group , I n fact , th e definition s o f a regula r n-go n an d rule r and compas s construction s ar e initiall y formulate d i n term s o f Eu -clidean plan e geometr y an d sugges t tha t th e relevan t symmetr y grou p must b e tha t o f rigi d rotation s SO (2) , eventuall y extende d b y reflec -tions and shifts . Thi s conclusion turns out t o be totally misleading: in -stead, on e should rel y upon Ga l (Q/Q). Th e actio n of the latte r grou p upon root s o f unit y o f degre e n factor s throug h th e maxima l abelia n quotient an d i s give n b y £ H- > ( k

} wit h k runnin g ove r al l k mo d n with (kjU) = 1 , wherea s th e actio n o f th e rotatio n grou p i s give n b y C ^ Co C wi th C o running ove r al l n-t h roots . Thus , th e Gal(Q/Q) -symmetry doe s not conserv e angle s between vertice s which seem to b e basic fo r th e initia l problem . Instead , i t i s compatibl e wit h additio n and multiplication o f complex numbers, an d this property prove s to b e crucial.

With som e stretc h o f imagination , on e ca n recogniz e i n th e Eu -clidean avata r o f thi s pictur e a physic s flavor (puttin g i t somewha t pompously, i t appeal s t o th e kinematic s o f 2-dimensiona l rigi d bodie s

Page 12: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

FOREWORD x i

in gravitationa l vacuum) , wherea s the Galoi s avata r definitel y belong s to numbe r theory .

In th e Marcolli lectures , stressin g numbe r theory , physic s theme s pop u p a t th e en d o f Chapte r 2 (Chaoti c Cosmolog y i n genera l rela -tivity), th e beginnin g o f Chapte r 3 (formalis m o f quantu m statistica l mechanics), and finally, sec. 5 of Chapter 4 where some models of black holes in genera l relativity tur n ou t t o hav e the sam e mathematica l de -scription a s oo-adic fibers of curves in Arakelov geometry. Th e reemer -gence o f Gauss ' Galoi s grou p Gal a6 (Q/Q) i n Bost-Conne s symmetr y breaking, an d o f Gauss ' statistic s o f continued fraction s i n the Chaoti c Cosmology models , shows that connection s wit h classica l mathematic s are a s strong a s ever .

Hopefully, thi s livel y expositio n wil l attrac t youn g researcher s an d incite the m t o engag e themselve s i n exploratio n o f th e ric h ne w terri -tory.

Yuri I. Manin. Bonn, March 17, 2005.

Page 13: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

This page intentionally left blank

Page 14: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

Bibliography

[1] N . Ailing, N. Greenleaf, Foundations of the theory of Klein surfaces, Lectur e Notes i n Mathematic s Vol . 219 , Springer Verla g 1971.

[2] L . Alvarez-Gaume, G . Moore , C. Vafa, Theta functions, modular invariance, and strings. Comm . Math . Phys . 10 6 (1986) , no . 1 , 1-40 .

[3] S . Aminneborg , I . Bengtsson , D . Brill , S . Hoist , P . Peldan , Black holes and wormholes in 2 + 1 dimensions, Class . Quantu m Grav . 1 5 (1998 ) 627-644 .

[4] J . Arledge , M . Laca , I . Raeburn , Semigroup crossed products and Hecke algebras arising from number fields, Doc . Math . 2 (1997 ) 115-138 .

[5] M . Artin , J . Tate , M . Va n de n Bergh , Modules over regular algebras of dimension 3 . Invent. Math . 10 6 (1991) , no . 2 , 335-388 .

[6] K . I . Babenko , On a problem of Gauss. Dokl . Akad . Nau k SSSR , To m 23 8 (1978) No . 5 , 1021-1024 .

[7] J . D . Barrow . Chaotic behaviour and the Einstein equations. In : Classica l General Relativity , eds . W . Bonno r e t al. , Cambridg e Univ . Press , Cam -bridge, 1984 , 25-41 .

[8] P . Baum , A . Connes , Geometric K-theory for Lie groups and foliations. Preprint IHE S 1982 ; l'Enseignement Mathematique , t . 46 , 2000, 1-35 .

[9] F.P . Boca , Projections in rotation algebras and theta functions, Commun . Math. Phys . 20 2 (1999 ) 325-357 .

[10] J.B . Bost, A . Connes, Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory, Select a Math . (Ne w Series) Vol. 1 (1995 ) N.3 , 411-457.

[11] R . Bowen, Hausdorff dimension of quasi-circles, Publ.Math . IHE S 50 (1979) 11-25.

[12] M . Boyle , D . Handelman , Orbit equivalence, flow equivalence, and ordered cohomology, Israel J . Math . 9 5 (1996 ) 169-210 .

[13] O . Bratteli , D.W . Robinson , Operator algebras and quantum statistical me-chanics I, II, Springe r Verlag , 1981.

[14] P . Chakraborty , A . Pal , Equivariant spectral triples on the quantum SU(2 ) group, if-Theory 2 8 (2003) , no . 2 , 107-126 .

[15] C.H.Chan g an d D.Mayer , Thermodynamic formalism and Selberg ys zeta function for modular groups, Regula r an d chaoti c dynamic s 1 5 (2000 ) N. 3 281-312.

[16] P.B . Cohen , A C* -dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking, Journa l d e Theori e de s Nombre s d e Bordeaux 1 1 (1999 ) 15-30 .

[17] A . Connes , C* algebres et geometrie differentielle. C.R . Acad . Sci . Paris , Ser. A- B , 290 (1980 ) 599-604 .

131

Page 15: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

132 BIBLIOGRAPH Y

[18] A . Connes , An analogue of the Thorn isomorphism for crossed products of a C*-algebra by an action ofR, Adv . i n Math . 3 9 (1981) , no . 1 , 31-55.

[19] A . Connes , Non-commutative differential geometry, Publ.Math . IHE S N.6 2 (1985) 257-360 .

[20] A . Connes , Cyclic cohomology and the transverse fundamental class of a foliation. In : Geometri c methods in operator algebra s (Kyoto , 1983) . Pitman Res. Note s i n Math. , 123 , Longman, Harlo w 1986 , 52-144 .

[21] A . Connes , Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergod. Th . Dynam . Sys . (1989 ) 9 , 207-220 .

[22] A . Connes , Noncommutative geometry, Academi c Press , 1994 . [23] A . Connes , Geometry from the spectral point of view. Lett . Math . Phys . 3 4

(1995), no . 3 , 203-238. [24] A . Connes , Trace formula in Noncommutative Geometry and the zeros of

the Riemann zeta function. Select a Mathematica. Ne w Ser . 5 (1999) 29-106 . [25] A . Connes , A short survey of noncommutative geometry, J . Math . Phys . 4 1

(2000), no . 6 , 3832-3866 . [26] A . Connes , Cyclic cohomology, Quantum group Symmetries and the Local

Index Formula for SU q(2), J . Inst . Math . Jussie u 3 (2004) , no. 1 , 17-68 . [27] A . Connes , C . Consani , M . Marcolli , work i n preparation . [28] A . Connes , M . Douglas , A . Schwarz , Noncommutative geometry and Matrix

theory: compactification on tori. J . Hig h Energ y Phys . (1998 ) no . 2 , Pape r 3, 3 5 pp. (electronic )

[29] A . Connes , M . Dubois-Violette , Noncommutative finite-dimensional man-ifolds. I. spherical manifolds and related examples, Comm . Math . Phys . Vol.230 (2002 ) N.3 , 539-579.

[30] A . Connes , M . Dubois-Violette , Moduli space and structure of noncommu-tative 3-spheres, Lett . Math . Phys. , Vol.6 6 (2003 ) N.l-2 , 91-121 .

[31] A . Connes , D . Kreimer , Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm . Math . Phys . 21 0 (2000) , no. 1 , 249-273.

[32] A . Connes , D . Kreimer , Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The ^-function, diffeomorphisms and the renormalization group. Comm . Math . Phys . 21 6 (2001) , no . 1 , 215-241 .

[33] A . Connes, M. Marcolli, Quantum Statistical Mechanics of Q-lattices, (From Physics to Number Theory via Noncommutative Geometry, Part I), preprin t arXiv:math.NT/0404128.

[34] A . Connes , M . Marcolli , Q-lattices: quantum statistical mechanics and Ga-lois theory, t o appea r i n Journa l o f Geometr y an d Physics .

[35] A . Connes , M . Marcolli , Renormalization and motivic Galois theory, Int . Math. Res . Not . 2004 , no. 76 , 4073-4091.

[36] A . Connes , M . Marcolli , Renormalization, the Riemann-Hilbert correspon-dence, and motivic Galois theory (From Physics to Number Theory via Non-commutative Geometry. Part II), preprin t arXi v hep-th/0411114 .

[37] A . Connes , M . Marcolli , Quantum fields and motives, t o appea r i n Journa l of Geometr y an d Physics .

[38] A . Connes , M . Marcolli , Anomalies, dimensional regularization, and non-commutative geometry, i n preparation .

Page 16: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

BIBLIOGRAPHY 13 3

[39] A . Connes , M. Marcolli , Noncommutative Geometry from Quantum Physics to Motives, boo k i n preparation .

[40] A . Connes , M . Marcolli , N . Ramachandra n KMS states and complex multi-plication, arXi v math.OA/050142 4

[41] A . Connes , H. Moscovici , The local index formula in noncommutative geom-etry. Geom . Funct . Anal . 5 (1995) , no . 2 , 174-243 .

[42] A . Connes , H. Moscovici , Cyclic cohomology and Hopf algebras, Lett. Math . Phys. 4 8 (1999) , no . 1 , 97-108.

[43] A . Connes , H . Moscovici , Modular Hecke algebras and their Hopf symmetry, Moscow Math . Journal , Vol. 4 (2004 ) N.l , 67-109 .

[44] A . Connes , H . Moscovici , Rankin-Cohen Brackets and the Hopf Algebra of Transverse Geometry, Mosco w Math . Journal , VoL 4 (2004 ) N.l , 111-130 .

[45] C . Consani , Double complexes and Euler L-factors, Compositi o Math . I l l (1998) 323-358 .

[46] C . Consani , M . Marcolli , Noncommutative geometry, dynamics and oo-adic Arakelov geometry, t o appea r i n Select a Mathematic a

[47] C . Consani , M . Marcolli , Triplets spectreaux in geometrie d'Arakelov, C.R.Acad.Sci. Paris , Ser . I 33 5 (2002 ) 779-784 .

[48] C . Consani , M . Marcolli , New perspectives in Arakelov geometry, t o appea r in proceeding s o f CNTA 7 meetin g Montrea l 2002 .

[49] C . Consani, M. Marcolli, Spectral triples from Mumford curves, Internationa l Mathematics Researc h Notice s 3 6 (2003 ) 1945-1972 .

[50] C . Consani , M . Marcolli , Archimedean cohomology revisited, arXi v math.AG/0407480.

[51] C . Consani , M . Marcoll i (editors) , Proceeding s o f the conferenc e "Noncom -mutative geometr y an d numbe r theory " hel d i n Bon n 2003 . T o appear .

[52] G . Cornel l an d J.H . Silverma n (eds. ) Arithmetic geometry, Springer-Verlag , New York, 198 6

[53] J . Cuntz , W . Krieger , A class of C*-algebras and topological Markov chains, Invent. Math . 5 6 (1980 ) 251-268 .

[54] H . Darmon , Rational points on modular elliptic curves, CBM S Regiona l Conference Serie s i n Mathematics , 101 . America n Mathematica l Society , 2004.

[55] C . Deninger, On the T-factors attached to motives, Invent . Math . 10 4 (1991) 245-261.

[56] C . Deninger, Local L-factors of motives and regularized determinants. Invent . Math. 10 7 (1992) , no . 1 , 135-150 .

[57] C . Deninger , Motivic L-functions and regularized determinants, i n "Mo -tives", Proceeding s o f Symposi a i n Pur e Mathematics , Vol . 5 5 (1994 ) Par t I, 707-743 .

[58] C . Deninger , Some analogies between number theory and dynamical systems on foliated spaces. Proceedings o f the Internationa l Congres s o f Mathemati -cians, Vol . I (Berlin , 1998) . Doc . Math . 1998 , Extra Vol . I , 163-186 .

[59] V . Drinfeld , Two theorems on modular curves, Funct . Anal , an d it s Appli -cations, Vol. 7 (1973 ) N.2 , 155-156 .

[60] V . Drinfeld, Yu.I . Manin, Periods ofp-adic Schottky groups. J . Reine Angew. Math. 262/26 3 (1973) , 239-247 .

Page 17: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

134 BIBLIOGRAPHY

[61] E . Ha , F . Paugam , a Bost-Connes-Mareolli system for Shimura varieties, preprint 2005 .

[62] R . Haag , Local Quantum Physics, Springer , Berli n 1992 . [63] R . Haag , N . M. Hugenholtz, M . Winnink On the equilibrium states in quan-

tum statistical mechanics, Comm . Math . Phys . 5 (1967) , 215, 236. [64] D . Harari , E . Leichtnam , Extension du phenomene de brisure spontanee

de symetrie de Bost-Connes au cas des corps globaux quelconques, Select a Math. (Ne w Series ) Vol. 3 (1997 ) 205-243 .

[65] G . Harder , General aspects in the theory of modular symbols. Semina r o n number theory , Pari s 1981-8 2 (Paris , 1981/1982) , 73-88 , Progr . Math. , 38 , Birkhauser Boston , Boston , MA , 1983 .

[66] D . Hensley, Continued fraction Cantor sets, Hausdorff dimension, and func-tional analysis, J . Numbe r Theor y 4 0 (1992 ) 336-358 .

[67] I . M . Khalatnikov , E . M . Lifshitz , K . M . Khanin , L . N. Schur , Ya . G . Sinai . On the stochasticity in relativistic cosmology. J . Stat . Phys. , 38:1/ 2 (1985) , 97-114.

[68] M. Khalkhali , B . Rangipour , Introduction to Hopf-Cyclic Cohomology, preprint, arXi v math.QA/0503244 .

[69] K . Krasnov , Holography and Riemann Surfaces, Adv . Theor . Math . Phys . 4 (2000) 929-97 9

[70] K . Krasnov , Analytic Continuation for Asymptotically AdS 3D Gravity, gr -qc/0111049

[71] M . Laca , Semigroups of'* -endomorphisms, Dirichlet series, and phase tran-sitions. J . Funct . Ana l 15 2 (1998) , no . 2 , 330-378.

[72] M . Laea , From endomorphisms to automorphisms and back: dilations and full corners, J . Londo n Math . Soe . (2 ) 6 1 (2000 ) 893-904 .

[73] S . Lang, Elliptic Functions, (Secon d Edition) , Graduate Text s in Mathemat -ics, Vol.112 , Springer-Verlag 1987 .

[74] S . Lang, Introduction to Arakelov Theory, Springer-Verlag , Ne w York, 1988 . [75] G . Landi , An introduction to noncommutative spaces and their geometries,

Lecture Note s i n Physics , Vol . m-51 , Springer Verla g 1997 . [76] R . Loudon , The Quantum Theory of Light, thir d edition , Oxfor d Universit y

Press, 2000 . [77] S . Mahanta , ̂ 4 Brief Survey of Non-Commutative Algebraic Geometry,

preprint arXi v math.QA/0501166 . [78] L . Mandel , E . Wolf , Optical Coherence and Quantum Optics, Cambridg e

University Press , 1995 . [79] Yu. L Manin , Von Zahlen und Figuren, arXi v math.AG/0201005 . [80] Yu. L Manin , Real Multiplication and noncommutative geometry, arXi v

math.AG/0202109. [81] Yu. L Manin , Theta functions, quantum tori, and Heisenberg groups, Lett .

in Math . Phys . 5 6 (2001 ) 295-320 . [82] Yu. L Manin , Lectures on zeta functions and motives (according to Deninger

and Kurokawa). Columbi a Universit y Numbe r Theor y Semina r (Ne w York , 1992). Asterisqu e No . 228 (1995) , 4 , 121-163 .

[83] Yu. L Manin , Three-dimensional hyperbolic geometry as oo-adic Arakelov ge-ometry, Invent . Math . 10 4 (1991 ) 223-244 .

Page 18: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

BIBLIOGRAPHY 135

Yu.I. Manin , p-adic automorphic functions. Journ . o f Soviet Math. , 5 (1976) 279-333. Yu.I. Manin , Parabolic points and zeta functions of modular curves, Math . USSR Izvestija , vol . 6 N. 1 (1972) 19-64 . Selecte d Papers , Worl d Scientific , 1996, 202-247 . Yu.I. Manin , Topics in noncommutative geometry. M . B . Porte r Lectures . Princeton Universit y Press , 1991. Yu.I. Manin , M . Marcolli , Holography principle and arithmetic of algebraic curves, Adv . Theor . Math . Phys . Vol.3 (2001 ) N.5 , 617-650. Yu.I. Manin , M . Marcolli , Continued fractions, modular symbols, and non-commutative geometry, Select a Mathematic a (Ne w Series ) Vol. 8 N.3 (2002 ) 475-520. M. Marcolli , Limiting modular symbols and the Lyapunov spectrum, Journa l of Number Theory , Vol.9 8 N.2 (2003 ) 348-376 . M. Marcolli , Modular curves, C* -algebras and chaotic cosmology, arXi v math-ph/0312035. K. Matsuzaki , M . Taniguchi, Hyperbolic manifolds and Kleinian groups, Ox -ford Univ . Press , 1998 . D.H. Mayer , Relaxation properties of the mixmaster universe, Phys . Lett . A 121 (1987) , no . 8-9 , 390-394 . D.H. Mayer , Continued fractions and related transformations, i n " Ergodi c theory, symboli c dynamics , an d hyperboli c spaces" , Oxfor d Univ . Press , 1991. B. Mazur , Courbes elliptiques et symboles modulaires, Seminair e Bourbak i vol.1971/72, Exposes 400-417, LNM 317, Springer Verlag 1973 , pp. 277-294. L. Merel , Intersections sur les courbes modulaires, Manuscript a Math. , 8 0 (1993) 283-289 . J.S. Milne , Canonical models of Shimura curves, manuscript , 200 3 (availabl e from www.jmilne.org ) D. Mumfor d (wit h M.Nor i an d P.Norman) , Tata lectures on theta, III, Progress i n Mathematic s Vol . 97 , Birkhauser 1991 . D. Mumford , An analytic construction of degenerating curves over complete local rings, Compositi o Math . 2 4 (1972 ) 129-174 . D. Mumford, C . Series , D. Wright, Indra's Pearls. The Vision of Felix Klein. Cambridge Universit y Press , Ne w York, 2002 . W. Parry, S . Tuncel, Classification problems in ergodic theory, Londo n Math . Soc. Lectur e Note s Serie s 67 , 1982. F. Paugam , Three examples of noncommutative boundaries of Shimura va-rieties, preprin t arXi v math.AG/0410254 . F. Paugam , Quelques bords irrationnels de varietes de Shimura, preprin t arXiv math.AG/0410269 . A. Polishchuk, Noncommutative two-tori with real multiplication as noncom-mutative projective varieties, J . Geom . Phys . 5 0 (2004) , no . 1-4 , 162-187 . M. Pollicott , H . Weiss , Multifractal analysis of Lyapunov exponent for con-tinued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Comm . Math . Phys . 207 (1999), no. 1 , 145-171 . D.B. Ray, I.M. Singer , Analytic torsion for complex manifolds. Ann . of Math. (2) 9 8 (1973) , 154-177 .

Page 19: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

136 BIBLIOGRAPHY

[106] M.A . Rieffel , C* -algebras associated to irrational rotations. Pacifi c J . Math . 93 (1981 ) 415-429 .

[107] A.L . Rosenberg , Noncommutative schemes. Compositi o Math . 11 2 (1998 ) N.l, 93-125 .

[108] J.P . Serre , Facteurs locaux des fonctions zeta des varietes algebriques (definitions et conjectures). Sem . Delange-Pisot-Poitou , exp . 19 , 1969/70 . Ouvres Vol.II , Springer-Verlag , 1986 , pp. 581-592 .

[109] G . Shimura , Arithmetic Theory of Automorphic Functions, Iwanam i Shote n and Princeto n 1971 .

[110] H.M . Stark , L-functions at s = 1 . IV. First derivatives at s = 0 , Adv. Math . 35 (1980 ) 197-235 .

[Ill] P . Stevenhagen, Bilbert's 12th problem, complex multiplication and Shimura reciprocity, Advance d Studie s i n Pur e Math . 3 0 (2001 ) "Clas s Field Theor y - it s centenar y an d prospect " pp . 161-176 .

[112] A . Weil , Basic Number Theory, Springe r 1974 . [113] R.O . Wells , Differential analysis on complex manifolds. Springer-Verlag ,

1980. [114] A . Werner, Local heights on Mumford curves. Math . Ann . 30 6 (1996) , no. 4,

819-831. [115] D . Zagier , Modular forms and differential operators, i n K . G . Ramanatha n

memorial issue . Proc . Indian Acad . Sci . Math. Sci . 10 4 (1994) , no. 1 , 57-75.

Page 20: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

Titles i n Thi s Serie s

36 Mati ld e Marcolli , Arithmeti c noncommutativ e geometry , 200 5

35 Luc a Capogna , Carlo s E . Kenig , an d Loredan a Lanzani , Harmoni c measure : Geometric an d analyti c point s o f view , 200 5

34 E . B . Dynkin , Superdiffusion s an d positiv e solution s o f nonlinea r partia l differentia l equations, 200 4

33 Kristia n Seip , Interpolatio n an d samplin g i n space s o f analyti c functions , 200 4

32 Pau l B . Larson , Th e stationar y tower : Note s o n a cours e b y W . Hug h Woodin , 200 4

31 Joh n Roe , Lecture s o n coars e geometry , 200 3

30 Anato l e Katok , Combinatoria l construction s i n ergodi c theor y an d dynamics , 200 3

29 Thoma s H . Wolf f (Izabell a Lab a an d Caro l Shubin , editors) , Lecture s o n harmoni c

analysis, 200 3

28 Ski p Garibaldi , Alexande r Merkurjev , an d Jean-Pierr e Serre , Cohomologica l invariants i n Galoi s cohomology , 200 3

27 Sun-Yun g A . Chang , Pau l C . Yang , Karste n Grove , an d Jo n G . Wolfson , Conformal, Riemannia n an d Lagrangia n geometry , Th e 200 0 Barret t Lectures , 200 2

26 Susum u Ariki , Representation s o f quantu m algebra s an d combinatoric s o f Youn g tableaux, 200 2

25 Wil l ia m T . Ros s an d Harol d S . Shapiro , Generalize d analyti c continuation , 200 2

24 Victo r M . Buchstabe r an d Tara s E . Panov , Toru s action s an d thei r application s i n topology an d combinatorics , 200 2

23 Lui s Barreir a an d Yako v B . Pesin , Lyapuno v exponent s an d smoot h ergodi c theory , 2002

22 Yve s Meyer , Oscillatin g pattern s i n imag e processin g an d nonlinea r evolutio n equations , 2001

21 Bojk o Bakalo v an d Alexande r Kirillov , Jr. , Lecture s o n tenso r categorie s an d modular functors , 200 1

20 Al iso n M . Etheridge , A n introductio n t o superprocesses , 200 0

19 R . A . Minlos , Introductio n t o mathematica l statistica l physics , 200 0

18 Hirak u Nakajima , Lecture s o n Hilber t scheme s o f point s o n surfaces , 199 9

17 M a r c e l B e r g e r , Riemannia n geometr y durin g th e secon d hal f o f th e twentiet h century ,

2000

16 Harish-Chandra , Admissibl e invarian t distribution s o n reductiv e p-adi c group s (wit h notes b y Stephe n DeBacke r an d Pau l J . Sally , Jr.) , 199 9

15 Andre w Mathas , Iwahori-Heck e algebra s an d Schu r algebra s o f the symmetri c group , 199 9

14 Lar s Kadison , Ne w example s o f Probeniu s extensions , 199 9

13 Yako v M . Eliashber g an d Wil l ia m P . Thurston , Confoliations , 199 8

12 I . G . Macdonald , Symmetri c function s an d orthogona l polynomials , 199 8

11 Lar s Garding , Som e point s o f analysi s an d thei r history , 199 7

10 Victo r K a c , Verte x algebra s fo r beginners , Secon d Edition , 199 8

9 S tephe n Gelbart , Lecture s o n th e Arthur-Selber g trac e formula , 199 6

8 Bern d S tu rmfe l s , Grobne r base s an d conve x polytopes , 199 6

7 A n d y R . Magid , Lecture s o n differentia l Galoi s theory , 199 4

6 Dus a McDuf F an d Die tma r Salamon , J-holomorphi c curve s an d quantu m cohomology , 1994

5 V . I . Arnold , Topologica l invariant s o f plan e curve s an d caustics , 199 4

4 Davi d M . Goldschmidt , Grou p characters , symmetri c functions , an d th e Heck e algebra , 1993

Page 21: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):

TITLES I N THI S SERIE S

3 A . N . Varchenk o an d P . I . Etingof , Wh y th e boundar y o f a roun d dro p become s a

curve o f orde r four , 199 2

2 Frit z John , Nonlinea r wav e equations , formatio n o f singularities , 199 0

1 Michae l H . Freedma n an d Fen g Luo , Selecte d application s o f geometr y t o low-dimensional topology , 198 9

Page 22: Arithmetic Noncommutative Geometry · ize the set of all points constructible in this way as the maximal Galois 2-extension of Q. It remains to calculate the Galois group of Q(e2m^17):