66
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 MC13111AFB MC13111AFTA UNIVERSAL NARROWBAND FM RECEIVER INTEGRATED CIRCUIT FB SUFFIX PLASTIC PACKAGE CASE 848B (QFP–52) 52 Order this document by MC13110A/D 1 Device Tested Operating Temperature Range Package ORDERING INFORMATION MC13110AFB T A = – 40° to 85°C QFP–52 FTA SUFFIX PLASTIC PACKAGE CASE 932 (LQFP–48) 48 1 MC13110AFTA LQFP–48 QFP–52 LQFP–48 1 MOTOROLA RF/IF DEVICE DATA The MC13110A and MC13111A integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, external adjustments, and lowers overall costs. It is designed for use in both the handset and the base. Fully Programmable in all Power Modes Dual Conversion FM Receiver Complete Dual Conversion Receiver – Antenna Input to Audio Out 80 MHz Maximum Carrier Frequency RSSI Output Carrier Detect Output with Programmable Threshold Comparator for Data Recovery Operates with Either a Quad Coil or Ceramic Discriminator Compander Expander Includes Mute, Digital Volume Control, Speaker Driver, Programmable Low Pass Filter, and Gain Block Compressor Includes Mute, Programmable Low Pass Filter, Limiter, and Gain Block MC13110A only: Frequency Inversion Scrambler Function Controlled via MPU Interface Programmable Carrier Modulation Frequency Dual Universal Programmable PLL Supports New 25 Channel U.S. Standard with No External Switches Universal Design for Domestic and Foreign Cordless Telephone Standards Digitally Controlled Via a Serial Interface Port Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit Programmable Counter and 2nd LO with 12–Bit Counter Transmit Section Contains Phase Detector and 14–Bit Counter MPU Clock Outputs Eliminates Need for MPU Crystal Low Battery Detect Provides Two Levels of Monitoring with Separate Outputs Separate, Adjustable Trip Points 2.7 to 5.5 V Operation (15 μA Current Consumption in Inactive Mode) AN1575: Refer to this Application Note for a List of the “Worldwide Cordless Telephone Frequencies R x Phase Detector T x Phase Detector Low Battery Detect Simplified Block Diagram This device contains 8262 active transistors. Expander 1st Mixer Data Out R x In 2nd Mixer T x PD Out T x Out Limiting IF Amplifier Detector R x Out T x In Low Battery Indicator R x PD In R x PD Out 1st LO 2nd LO Carrier Detect Out SPI RSSI RSSI μP Serial Interface Compressor Scrambler Scrambler = MC13110A Only NOTE: MPU Clock Out 2nd LO Motorola, Inc. 1999 Rev 2 ARCHIVE INFORMATION ARCHIVE INFORMATION

ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13111AFB

MC13111AFTA

UNIVERSALNARROWBAND FM RECEIVER

INTEGRATED CIRCUIT

FB SUFFIXPLASTIC PACKAGE

CASE 848B(QFP–52)

52

Order this document by MC13110A/D

1

DeviceTested Operating

Temperature Range Package

ORDERING INFORMATION

MC13110AFB

TA = – 40° to 85°C

QFP–52

FTA SUFFIXPLASTIC PACKAGE

CASE 932(LQFP–48)

48 1

MC13110AFTA LQFP–48

QFP–52

LQFP–48

1MOTOROLA RF/IF DEVICE DATA

The MC13110A and MC13111A integrates several of the functionsrequired for a cordless telephone into a single integrated circuit. Thissignificantly reduces component count, board space requirements, externaladjustments, and lowers overall costs. It is designed for use in both thehandset and the base.

• Fully Programmable in all Power Modes

• Dual Conversion FM Receiver

– Complete Dual Conversion Receiver – Antenna Input to Audio Out80 MHz Maximum Carrier Frequency

– RSSI Output– Carrier Detect Output with Programmable Threshold– Comparator for Data Recovery– Operates with Either a Quad Coil or Ceramic Discriminator

• Compander

– Expander Includes Mute, Digital Volume Control, Speaker Driver,Programmable Low Pass Filter, and Gain Block

– Compressor Includes Mute, Programmable Low Pass Filter, Limiter,and Gain Block

• MC13110A only: Frequency Inversion Scrambler

– Function Controlled via MPU Interface– Programmable Carrier Modulation Frequency

• Dual Universal Programmable PLL

– Supports New 25 Channel U.S. Standard with No External Switches– Universal Design for Domestic and Foreign Cordless Telephone

Standards– Digitally Controlled Via a Serial Interface Port– Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit

Programmable Counter and 2nd LO with 12–Bit Counter– Transmit Section Contains Phase Detector and 14–Bit Counter– MPU Clock Outputs Eliminates Need for MPU Crystal

• Low Battery Detect

– Provides Two Levels of Monitoring with Separate Outputs– Separate, Adjustable Trip Points

• 2.7 to 5.5 V Operation (15 µA Current Consumption in Inactive Mode)

• AN1575: Refer to this Application Note for a List of the “WorldwideCordless Telephone Frequencies

Rx PhaseDetector

Tx PhaseDetector

Low BatteryDetect

Simplified Block Diagram

This device contains 8262 active transistors.

Expander

1stMixer

Data Out

Rx In2ndMixer

Tx PD Out

Tx Out

Limiting IFAmplifier

Detector

Rx Out

Tx In

Low BatteryIndicator

Rx PD In

Rx PD Out

1st LO 2nd LOCarrier Detect Out

SPI

RSSIRSSI

µP SerialInterface

Compressor

Scrambler

Scrambler

= MC13110A Only

NOTE:

MPU Clock Out2nd LO

Motorola, Inc. 1999 Rev 2

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 2: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

2 MOTOROLA RF/IF DEVICE DATA

14

15

16

17

18

19

20

21

22

23

24

25

26

52

51

50

49

48

47

46

45

44

43

42

41

40

13121110987654321

27282930313233343536373839

BD1 Out

DA Out

BD2 Out

T

C Cap

C In

Amp Out

T

DA In

V

R

Det Out

RSSI

x Out

x In

CCAudio

x Audio In

LO

LO

V

Gnd Audio

SA Out

SA In

E Out

E

E In

Scr Out

Ref

Ref

VB

1

2

cap

capCtrl

1Out

1In

Q C

oil

Lim

Out

VLim

C2

Lim

C1

Lim

In

SGnd

RF

Mix

Gnd

RF

CC

RF

2In

Mix 2

Out

Mix 1

Out

Mix 1

In

Mix 1

In1 2

Out

Vag

PD ref

Gnd

PLL

T Dat

a

EN Clk

Clk

Out

CD

Out

xPD

T xVC

O

PLL

V

Rx

LO2

InLO

2

1st Mix 2nd Mix

2nd LO

1st LO

1st LOVCO

IF Amp/Limiter Detector

RSSI

LPF AALPF

÷2

2nd LO

SC FilterClock Mic Amp

Tx GainAdjust

LPF

ALC

C CapCompressor

LimiterTx

Mute

Ref2

Ref1

Low BatteryDetect

DataAmp

CarrierDetect

Rx GainAdjustRxMute

SpeakerAmp

SpeakerMute

Expander

VolControl

1st LO VB

÷25÷4÷1

12 b ProgRef Ctr

2nd LO

14 b ProgRx Ctr Vref

Reg 2.5 V

14 b ProgTx Ctr µP Serial

Interface

ProgClk Ctr

Tx PhaseDetect

Rx PhaseDetect

2nd LO10.240

PIN CONNECTIONS

QFP–52

121110987654321

Vag

PD ref

Gnd

PLL

T Dat

a

EN Clk

Clk

Out

xPD

T xVC

O

PLL

V

RxO

utLO

2

13

14

15

16

17

18

19

20

21

22

23

24

DA Out

BD Out

T

C Cap

C In

Amp Out

T

DA In

V

R

Det Out

Q Coil

x Out

x In

CCAudio

x Audio In

252627282930313233343536

Lim

Out

VLim

C2

Lim

C1

Lim

In

RSS

I

Mix

Gnd

RF

CC

RF

2In

Mix 2

Out

Mix 1

Out

Mix 1

In

Mix 1

In1 2

48

47

46

45

44

43

42

41

40

39

38

37LO

LO

V

Gnd Audio

SA Out

SA In

E Out

E

E In

Scr Out

LO2

VB

cap

capCtrl

1Out

1In

1st Mix 2nd Mix

2nd LO

LPF AALPF

CarrierDetect

DataAmp

VCC Audio

µP SerialInterface

ProgClk Ctr

Tx PhaseDetect

Rx PhaseDetect

Reg 2.5 V

14 b ProgTx Ctr

Mic Amp

SpeakerAmp

SpeakerMute

Expander

VolControl

÷25÷4÷1

12 b ProgRef Ctr

VB1st LO

ProgrammableLow Battery

DetectIn

CD

Out

LQFP–48

6 b ProgSC Clk Ctr

1st LO

Detector

RSSI

IF Amp/Limiter

2nd LO

1st LOVCO

14 b ProgRx Ctr Vref

2nd LO10.240

LPF

LPF

4.129 kHz

Bypass

Bypass

4.129 kHz

÷40ScramblerModulating Clock

= MC13110A Only

Scrambler

NOTE:

Rx GainAdjustRxMute

÷2SC FilterClock

Tx GainAdjust

LPF

ALC

C CapCompressor

LimiterTx

Mute

6 b ProgSC Clk Ctr

LPF

LPF

4.129 kHz

Bypass

Bypass

4.129 kHz

÷40ScramblerModulating Clock

Scrambler

2nd LOAR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 3: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

3MOTOROLA RF/IF DEVICE DATA

MAXIMUM RATINGS

Characteristic Symbol Value UnitÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Power Supply Voltage ÁÁÁÁÁÁÁÁ

VCCÁÁÁÁÁÁÁÁÁÁ

–0.5 to 6.0 ÁÁÁÁÁÁ

Vdc

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Junction Temperature ÁÁÁÁÁÁÁÁ

TJÁÁÁÁÁÁÁÁÁÁ

–65 to 150 ÁÁÁÁÁÁ

°C

Maximum Power Dissipation, TA = 25°C PD 70 mW

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur.2. Functional operation should be restricted to the limits in the Recommended Operating

Conditions and Electrical Characteristics tables or Pin Descriptions section.3. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Characteristic Symbol Min Typ Max Unit

Supply Voltage VCC 2.7 3.6 5.5 Vdc

Operating Ambient Temperature TA –40 – 85 °C

Input Voltage Low (Data, Clk, EN) VIL – – 0.3 V

Input Voltage High (Data, Clk, EN) VIH PLL Vref –0.3

– – V

Bandgap Reference Voltage VB – 1.5 – V

NOTE: 4. All limits are not necessarily functional concurrently.

DC ELECTRICAL CHARACTERISTICS (VCC = 3.6 V, TA = 25°C, unless otherwise specified, IP3 = 0;Test Circuit Figure 1.)

Characteristic Symbol Figure Min Typ Max Unit

Static Current 1Active Mode ACT ICC 5.5 8.5 10.5 mAReceive Mode Rx ICC 3.1 4.1 5.3 mAStandby Mode STD ICC – 465 560 µAInactive Mode INACT ICC – 15 30 µA

Current Increase When IP3 = 1(Active and Receive Modes)

IIP3 1 – 1.4 1.8 mA

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 4: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

4 MOTOROLA RF/IF DEVICE DATA

ELECTRICAL CHARACTERISTICS (VCC = 3.6 V, VB = 1.5 V, TA = 25°C, Active or Rx Mode, unless otherwise specified;Test Circuit Figure 1.)

Characteristic FigureInput

PinMeasure

Pin Symbol Min Typ Max Unit

FM RECEIVER (fRF = 46.77 MHz [USA Ch 21], fdev = ±3.0 kHz, fmod = 1.0 kHz, Vcap ctrl = 1.2 V)

Input Sensitivity (for 12 dB SINAD at Det OutUsing C–Message Weighting Filter)50 Ω Termination, Generator Referred

68, 69 Mix1In1/In2

Det Out VSIN––

2.2–100

––

µVrmsdBm

Single–Ended, Matched Input, GeneratorReferred

––

0.4–115

––

Differential, Matched Input, Generator Referred ––

0.4–115

––

First and Second Mixer Voltage Gain Total(Vin = 1.0 mVrms, with CF1 and CF2 Load)

1 Mix1In1 or In2

Mix2 Out MXgainT 24 29 – dB

Isolation of First Mixer Output and Second MixerInput (Vin = 1.0 mVrms, with CFI Removed)

– Mix1In1 or In2

Mix2 In Mix–Iso – 60 – dB

Total Harmonic Distortion (Vin = 3.16 mVrms) 1 Mix1In1 or In2

Det Out THD – 1.4 2.0 %

Recovered Audio (Vin = 3.16 mVrms) 1 Mix1In1 or In2

Det Out AFO 80 112 150 mVrms

AM Rejection Ratio (Vin = 3.16 mVrms, 30% AM,@ 1.0 kHz)

1 Mix1In1 or In2

Det Out AMR 30 48 – dB

Signal to Noise Ratio (Vin = 3.16 mVrms,No Modulation)

– Mix1In1 or In2

Det Out SNR – 48 – dB

FIRST MIXER (No Modulation, fin = USA Ch21, 46.77 MHz, 50 Ω Termination at Inputs)

Input ImpedanceSingle–Ended 16

– Mix1In1 or In2 RPS1

CPS1

––

1.63.7

––

kΩpF

Differential 16 Mix1In1/In2 RPD1

CPD1

––

1.61.8

––

Output Impedance 14 – Mix1 Out RP1 OutCP1 Out

––

3003.7

––

ΩpF

Voltage Conversion Gain(Vin = 1.0 mVrms, with CF1 Filter as Load)

17, 18 Mix1In1 or In2

Mix1 Out MXgain1 – 12 – dB

1.0 dB Voltage Compression Level (Input Referred)IP3 Bit Set to 0 19, 21

Mix1In1 or In2

Mix1 Out VO Mix11 dB –

–20–21

––

mVrmsdBm

IP3 Bit Set to 1 20, 21 ––

56–12

––

Third Order Intercept (Input Referred) [Note 5]IP3 Bit Set to 0 19, 21

Mix1In1 or In2

Mix1 Out TOImix1––

64–11

––

mVrmsdBm

IP3 Bit Set to 1 20, 21 ––

178–2.0

––

–3.0 dB IF Bandwidth 22 Mix1 In1or In2

Mix1 Out Mix1 BW – 13 – MHz

NOTE: 5. Third order intercept calculated for input levels 10 dB below 1.0 dB compression point.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 5: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

5MOTOROLA RF/IF DEVICE DATA

ELECTRICAL CHARACTERISTICS (continued) (VCC = 3.6 V, VB = 1.5 V, TA = 25°C, Active or Rx Mode, unless otherwise specified;Test Circuit Figure 1.)

Characteristic UnitMaxTypMinSymbolMeasure

PinInput

PinFigure

SECOND MIXER (No Modulation, fin = 10.7 MHz, 50 Ω Termination at Inputs)

Input Impedance 24 Mix2 In Mix2 In RP2 InCP2 In

––

2.83.6

––

kΩpF

Output Impedance 24 – Mix2 Out RP2 OutCP2 Out

––

1.56.1

––

kΩpF

Voltage Conversion Gain(Vin = 1.0 mVrms, with CF2 Filter as Load)

26, 27 Mix2 In Mix2 Out MXgain2 – 20 – dB

1.0 dB Voltage Compression Level (Input Referred)IP3 Bit Set 0 28, 30

Mix2 In Mix2 Out VOMix21 dB

––

32–17

––

mVrmsdBm

IP3 Bit Set 1 29, 30 ––

45–14

––

Third Order Intercept (Input Referred) [Note 6]IP3 Bit Set 0 28, 30

Mix2 In Mix2 Out TOImix2––

136–4.3

––

mVrmsdBm

IP3 Bit Set 1 29, 30 ––

158–3.0

––

–3.0 dB IF Bandwidth 31 Mix2 In Mix2 Out Mix2 BW – 2.5 – MHz

LIMITER/DEMODULATOR (fin = 455 kHz, fdev = ±3.0 kHz, fmod = 1.0 kHz)

Input Impedance 49 Lim In Lim In RPLimCPLim

––

1.516

––

kΩpF

Detector Output Impedance – – Det Out RO – 1.1 – kΩ

IF –3.0 dB Limiting Sensitivity 1 Lim In Det Out IF Sens – 71 100 µVrms

Demodulator Bandwidth – Lim In Det Out BW – 20 – kHz

RSSI/CARRIER DETECT (No Modulation)

RSSI Output Dynamic Range 56 Mix1 In RSSI RSSI – 80 – dB

DC Voltage Range 56 Mix1 In RSSI DC RSSI – 0.2 to1.5

– Vdc

Carrier Detect ThresholdCD Threshold Adjust = (10100)(Threshold Relative to Mix1 In Level)

57 Mix1 In CD Out VT – 15 – µVrms

Hysteresis, CD = (10100)(Threshold Relative to Mix1 In Level)

57 Mix1 In CD Out Hys – 2.0 – dB

Output High VoltageCD = (00000), RSSI = 0.2 V

1 RSSI CD Out VOH VCC –0.1

3.6 – V

Output Low VoltageCD = (11111), RSSI = 0.9 V

1 RSSI CD Out VOL – 0.02 0.4 V

Carrier Detect Threshold Adjustment Range(Programmable through MPU Interface)

125 – – VTRange

– –20 to11

– dB

Carrier Detect Threshold – Number ofProgrammable Levels

125 – – VTn – 32 – –

NOTE: 6. Third order intercept calculated for input levels 10 dB below 1.0 dB compression point.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 6: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

6 MOTOROLA RF/IF DEVICE DATA

ELECTRICAL CHARACTERISTICS (continued) (VCC = 3.6 V, VB = 1.5 V, TA = 25°C, Active or Rx Mode, unless otherwise specified;Test Circuit Figure 1.)

Characteristic UnitMaxTypMinSymbolMeasure

PinInput

PinFigure

Rx AUDIO PATH (fin = 1.0 kHz, Active Mode, scrambler bypassed)

Absolute Gain (Vin = –20 dBV) 1, 72 Rx Audio In SA Out G –4.0 0 4.0 dB

Gain Tracking(Referenced to E Out for Vin = –20 dBV)

1, 76 E In E Out Gt dB

Vin = –30 dBV –21 –20 –19Vin = –40 dBV –42 –40 –38

Total Harmonic Distortion (Vin = –20 dBV) 1, 76 Rx Audio In SA Out THD – 0.7 1.0 %

Maximum Input Voltage (VCC = 2.7 V) 76 Rx Audio In – – – –11.5 – dBV

Maximum Output Voltage (Increase input voltageuntil output voltage THD = 5.0%, then measureoutput voltage)

1 E In E Out VOmax –2.0 0 – dBV

Input Impedance – Rx Audio In – Zin – 600 – kΩE In – 7.5 –

Attack TimeEcap = 0.5 µF, Rfilt = 40 k (See Appendix B)

– E In E Out ta – 3.0 – ms

Release TimeEcap = 0.5 µF, Rfilt = 40 k (See Appendix B)

– E In E Out tr – 13.5 – ms

Compressor to Expander CrosstalkVin = –10 dBV, V(E In) = AC Gnd

1 C In E Out CT – –90 –70 dB

Rx Muting (∆ Gain)Vin = –20 dBV, Rx Gain Adj = (01111)

1 Rx Audio In E Out Me – –84 –60 dB

Rx High Frequency CornerRx Path, V Rx Audio In = –20 dBV

1 Rx Audio In Scr Out Rx fch 3.779 3.879 3.979 kHz

Low Pass Filter Passband Ripple (Vin = –20 dBV) 1, 73 Rx Audio In Scr Out Ripple – 0.4 0.6 dB

Rx Gain Adjust Range (Programmable throughMPU Interface)

124 Rx Audio In Scr Out RxRange

– –9.0 to10

– dB

Rx Gain Adjust Steps – Number ofProgrammable Levels

124 Rx Audio In Scr Out Rx n – 20 – dB

Audio Path Noise, C–Message Weighting(Input AC–Grounded)

70 Rx Audio In Scr OutE Out

SA Out

EN ––

–85<–95<–95

––

dBV

Volume Control Adjust Range 122 E In E Out Vcn Range – –14 to16

– dB

Volume Control – Number of ProgrammableLevels

122 E In E Out Vcn – 16 – –

SPEAKER AMP/SP MUTE (Active Mode)

Maximum Output SwingRL = No Load, Vin = 3.4 VppRL = 130 Ω, Vin = 2.8 VppRL = 620 Ω, Vin = 4.0 Vpp

1, 79 SA In SA Out VOmax2.82.0–

3.22.63.4

–––

Vpp

Speaker Amp MutingVin = –20 dBV, RL = 130 Ω

1 SA In SA Out Msp – –92 –60 dB

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 7: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

7MOTOROLA RF/IF DEVICE DATA

ELECTRICAL CHARACTERISTICS (continued) (VCC = 3.6 V, VB = 1.5 V, TA = 25°C, Active or Rx Mode, unless otherwise specified;Test Circuit Figure 1.)

Characteristic UnitMaxTypMinSymbolMeasure

PinInput

PinFigure

DATA AMP COMPARATOR

Hysteresis 1 DA In DA Out Hys 30 42 50 mV

Threshold Voltage – DA In DA Out VT – VCC –0.7

– V

Input Impedance 1 – DA In ZI 200 250 280 kΩ

Output Impedance – – DA Out ZO – 100 – kΩ

Output High VoltageVin = VCC – 1.0 V, IOH = 0 mA

1 DA In DA Out VOH VCC –0.1

3.6 – V

Output Low VoltageVin = VCC – 0.4 V, IOL = 0 mA

1 DA In DA Out VOL – 0.1 0.4 V

Maximum Frequency – DA In DA Out Fmax – 10 – kHz

MIC AMP (fin = 1.0 kHz, External resistors set to gain of 1, Active Mode)

Open Loop Gain – Tx In Amp Out AVOL – 100,000 – V/V

Gain Bandwidth – Tx In Amp Out GBW – 100 – kHz

Maximum Output Swing (RL = 10 kΩ) – Tx In Amp Out VOmax – 3.2 – Vpp

Tx AUDIO PATH (f in = 1.0 kHz, Tx Gain Adj = (01111); ALC, Limiter, and Mutes Disabled; Active Mode, scrambler bypassed)

Absolute Gain (Vin = –10 dBV) 1, 83 Tx In Tx Out G –4.0 0 4.0 dB

Gain Tracking(Referenced to Tx Out for Vin = –10 dBV)Vin = –30 dBVVin = –40 dBV

1, 87 Tx In Tx Out Gt

–11–17

–10–15

–9.0–13

dB

Total Harmonic Distortion (Vin = –10 dBV) 1, 87 Tx In Tx Out THD – 0.8 1.8 %

Maximum Output Voltage (Increase input voltageuntil output voltage THD = 5.0%, then measureoutput voltage. Tx Gain Adjust = 8 dB)

1 Tx In Tx Out VOmax –2.0 0 – dBV

Input Impedance – – C In Zin – 10 – kΩ

Attack Time (Ccap = 0.5 µF, Rfilt = 40 k (SeeAppendix B))

– C In Tx Out ta – 3.0 – ms

Release Time (Ccap = 0.5 µF, Rfilt = 40 k (SeeAppendix B))

– C In Tx Out tr – 13.5 – ms

Expander to Compressor Crosstalk (Vin = –20 dBV,Speaker Amp No Load, V(C In) = AC Gnd)

1 E In Tx Out CT – –60 –40 dB

Tx Muting (Vin – 10 dBV) 1 Tx In Tx Out Mc – –88 –60 dB

ALC Output Level (ALC enabled)Vin = –10 dBVVin = –2.5 dBV

1, 87,90

Tx In Tx Out ALCout–15–13

–13–11

–8.0–6.0

dBV

ALC Slope (ALC enabled) 1 Tx In Tx Out Slope 0.1 0.25 0.4 dB/dBVin = –10 dBvVin = –2.5 dBv

ALC Input Dynamic Range – C In Tx Out DR – –16 to–2.5

– dBV

Limiter Output Level (Vin = –2.5 dBV,Limiter enabled)

1 Tx In Tx Out Vlim –10 –8.0 – dBV

Tx High Frequency Corner [Note 7](VTx In = –10 dBV, Mic Amp = Unity Gain)

1 Tx In Tx Out Tx fc 3.6 3.7 3.8 kHz

NOTE: 7. The filter specification is based on a 10.24 MHz 2nd LO, and a switched–capacitor (SC) filter counter divider ratio of 31. If other 2nd LO frequencies and/or SC filter counter divider ratios are used, the filter corner frequency will be proportional to the resulting SC filter clock frequency.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 8: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

8 MOTOROLA RF/IF DEVICE DATA

ELECTRICAL CHARACTERISTICS (continued) (VCC = 3.6 V, VB = 1.5 V, TA = 25°C, Active or Rx Mode, unless otherwise specified;Test Circuit Figure 1.)

Characteristic UnitMaxTypMinSymbolMeasure

PinInput

PinFigure

Tx AUDIO PATH (f in = 1.0 kHz, Tx Gain Adj = (01111); ALC, Limiter, and Mutes Disabled; Active Mode, scrambler bypassed)

Low Pass Filter Passband Ripple (Vin = –10 dBV) 1, 84 Tx In Tx Out Ripple – 0.7 1.2 dB

Maximum Compressor Gain (Vin = –70 dBV) – C In Tx Out AVmax – 23 – dB

Tx Gain Adjust Range (Programmable throughMPU Interface)

124 C In Tx Out Tx Range – –9.0 to10

– dB

Tx Gain Adjust Steps – Number of ProgrammableLevels

124 C In Tx Out Tx n – 20 – –

Rx AND Tx SCRAMBLER (2nd LO = 10.24 MHz, Tx Gain Adj = (01111), Rx Gain Adj = (01111), Volume Control = (0 dB Default Levels),SCF Clock Divider = 31. Total is divide by 62 for SCF clock frequency of 165.16 kHz)

Rx High Frequency Corner (Note 8)Rx Path, f = 479 Hz, V Rx Audio In = –20 dBV

– Rx Audio In Scr Out Rx fch 3.55 3.65 3.75 kHz

Tx High Frequency Corner (Note 8)Tx Path, f = 300 Hz, V Tx In = –10 dBV, Mic Amp = Unity Gain

– Tx In Tx Out Tx fch 3.829 3.879 3.929 kHz

Absolute GainRx: Vin = –20 dBVTx: Vin = –10 dBV, Limiter disabled

––

Rx Audio InTx In

E OutTx Out

AV–4.0–4.0

0.4–1.0

4.04.0

dB

Pass Band RippleRx + Tx Path – 1.0 µF from Tx Out to Rx Audio In, fin = low corner frequency tohigh corner frequency

– C In E Out Ripple – 1.9 2.5 dB

Scrambler Modulation FrequencyRx: 100 mV (–20 dBV)Tx: 316 mV (–10 dBV)

––

Rx Audio InC In

E OutTx Out

fmod 4.119 4.129 4.139 kHz

Group DelayRx + Tx Path – 1.0 µF from Tx Out to Rx Audio In, fin = 1.0 kHz

– C In E Out GD – 1.0 –ms

x infin = low corner frequency to high cornerfrequency

– C In E Out GD – 4.0 –

Carrier BreakthroughRx + Tx Path – 1.0 µF from Tx Out to Rx Audio In

– C In E Out CBT – –60 – dB

Baseband BreakthroughRx + Tx Path – 1.0 µF from Tx Out to Rx Audio In, fin = 1.0 kHz, fmeas = 3.192 kHz

– C In E Out BBT – –50 – dB

LOW BATTERY DETECT

Average ThresholdVoltage Before Electronic Adjustment(Vref_Adj = (0111))

1, 130 Ref1Ref2

BD1 OutBD2 Out

VTi 1.38 1.48 1.58 V

Average ThresholdVoltage After Electronic Adjustment(Vref_Adj = (adjusted value))

1 Ref1Ref2

BD1 OutBD2 Out

VTf 1.475 1.5 1.525 V

Hysteresis – Ref1Ref2

BD1 OutBD2 Out

Hys – 4.0 – mV

Input Current (Vin = 1.0 and 2.0 V) 1 – Ref1Ref2

Iin –50 – 50 nA

Output High Voltage (Vin = 2.0 V) 1 Ref1Ref2

BD1 OutBD2 Out

VOH VCC –0.1

3.6 – V

NOTE: 8. The filter specification is based on a 10.24 MHz 2nd LO, and a switch–capacitor (SC) filter counter divider ratio of 31. If other 2nd LO frequencies and/or SC filter counter divider ratios are used, the filter corner frequency will be proportional to the resulting SC filter clock frequency.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 9: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

9MOTOROLA RF/IF DEVICE DATA

ELECTRICAL CHARACTERISTICS (continued) (VCC = 3.6 V, VB = 1.5 V, TA = 25°C, Active or Rx Mode, unless otherwise specified;Test Circuit Figure 1.)

Characteristic UnitMaxTypMinSymbolMeasure

PinInput

PinFigure

LOW BATTERY DETECT

Output Low Voltage (Vin = 1.0 V) 1 Ref1Ref2

BD1 OutBD2 Out

VOL – 0.2 0.4 V

BATTERY DETECT INTERNAL THRESHOLD

After Electronic Adjustment of VB Voltage 1, 127 VCC Audio BD2 Out VBD Select = (111) IBS7 3.381 3.455 3.529BD Select = (110) IBS6 3.298 3.370 3.442BD Select = (101) IBS5 3.217 3.287 3.357BD Select = (100) IBS4 3.134 3.202 3.270BD Select = (011) IBS3 2.970 3.034 3.098BD Select = (010) IBS2 2.886 2.948 3.010BD Select = (001) IBS1 2.802 2.862 2.922

PLL PHASE DETECTOR

Output Source Current(VPD = Gnd + 0.5 V to PLL Vref – 0.5 V)

– – Rx PDTx PD

IOH – 1.0 – mA

Output Sink Current(VPD = Gnd + 0.5 V to PLL Vref – 0.5 V)

– – Rx PDTx PD

IOL – 1.0 – mA

PLL LOOP CHARACTERISTICS

Maximum 2nd LO Frequency(No Crystal)

– LO2 In – f2ext – 12 – MHz

Maximum 2nd LO Frequency(With Crystal)

– – LO2 InLO2 Out

f2ext – 12 – MHz

Maximum Tx VCO (Input Frequency),Vin = 200 mVpp

– – Tx VCO ftxmax – 80 – MHz

PLL VOLTAGE REGULATOR

Regulated Output Level (IL = 0 mA, after VrefAdjustment)

1 – PLL Vref VO 2.4 2.5 2.6 V

Line Regulation (IL = 0 mA, VCC = 3.0 to 5.5 V) 1 VCC Audio PLL Vref VReg Line – 11.8 40 mV

Load Regulation (IL = 1.0 mA) 1 VCC Audio PLL Vref VRegLoad

–20 –1.4 – mV

MICROPROCESSOR SERIAL INTERFACE

Input Current Low (Vin = 0.3 V, Standby Mode) 1 – Data,Clk, EN

IIL –5.0 0.4 – µA

Input Current High (Vin = 3.3 V, Standby Mode) 1 – Data,Clk, EN

IIH – 1.6 5.0 µA

Hysteresis Voltage – – Data,Clk, EN

Vhys – 1.0 – V

Maximum Clock Frequency – Data,EN, Clk

– – – 2.0 – MHz

Input Capacitance – Data,Clk, EN

– Cin – 8.0 – pF

EN to Clk Setup Time 106 – EN, Clk tsuEC – 200 – ns

Data to Clk Setup Time 105 – Data, Clk tsuDC – 100 – ns

Hold Time 105 – Data, Clk th – 90 – ns

Recovery Time 106 – EN, Clk trec – 90 – ns

Input Pulse Width – – EN, Clk tw – 100 – ns

MPU Interface Power–Up Delay (90% of PLL Vrefto Data,Clk, EN)

108 – – tpuMPU – 100 – µs

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 10: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

10 MOTOROLA RF/IF DEVICE DATA

Fig

ure

1. P

rodu

ctio

n Te

st C

ircui

t (52

Pin

QF

P)

4700

32.4

k

0.1

3.01

k

0.04

7

1.5

k22

.1 k

10.2

40 M

Hz

5.0

– 50

8.2

0.1

1.0

0.1

10

Fµ0.

1

T xVC

O

52515049484746454443424140

14151617181920212223242526

2728

2930

3132

3334

3536

3738

39

1312

1110

98

75

43

21

6

V CC

A

0.1

0.1

7.5

k

49.9

k

33

RF

In0.

01

49.9

0.01

CF 1

10.7

MH

zC

F 245

5 kH

z

332

V CC

0.1

0.1

0.1

10L 2

22.1

k

MPU

Clo

ck O

utpu

t

0.01

R xLo

op F

ilter

10

0.1

0.1

L3

1.0

k

1.0

k

V ref

2

V ref

1

110

10

1.0

49.9

k

NOTE

:Th

is s

chem

atic

is o

nly

a pa

rtial

repr

esen

tatio

n of

the

actu

al p

rodu

ctio

n te

st c

ircui

t.

100

k

100

kV C

C

T xO

ut

Dat

a O

utBD

1Out

BD2

Out

V CC

Car

rier

Det

ect O

ut

V CC

A

DA

In

0.1

0.1

49.9

k0.

1

10

Fµ0.

1

V CC

Audi

o

0.01

1000

0.1

49.9

k

15 k

100

k

0.1

7.5

k

1.0µ

F

To

V CC

R

Mix

Det

Out

T xIn

Scr O

ut

E In

E O

ut

SA In

SA O

ut

RSS

I

Det

Out

R V

DA

In

T

Amp

Out

C In

C C

ap

T

BD DA

Out

BD

LO LO V C

ap C

trl

Gnd

Aud

io

SA O

ut

SA In

E O

ut

E C

ap

E In

Scr O

ut

Ref

Ref

V

1In

1O

ut

2 1

B

xAud

io In

CC

Audi

o

xIn

xOut

2Out

1Out

T

SGnd RF

Lim In

Lim Out

LO

LO

V

T

Gnd PLL

Data

EN

Clk

Clk Out

CD

2In

2Out

Gnd RF

Q

ag

Out

PLL V

Mix

Mix

Mix

Mix

Lim C

Coil

xPD

ref

xPD

xVCO

1

1In2

1Out

2Out

2In

Lim C

V

1

2

CCRF

In1

Rx

Audi

o In

Mic

Am

p O

ut

Lege

nd:

If 1

, the

n ca

paci

tor v

alue

= p

FIf

<1, t

hen

capa

cito

r val

ue =

MC

1311

1AIC

0.1

C In

MC

1311

0A

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 11: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

11MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPIN FUNCTION DESCRIPTION ÁÁÁÁÁÁÁÁÁÁÁÁÁÁPin

ÁÁÁÁÁÁÁÁÁÁSymbol/

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁLQFP–48ÁÁÁÁÁÁÁÁQFP–52

ÁÁÁÁÁÁÁÁÁÁ

Symbol/Type

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEquivalent Internal Circuit (52 Pin QFP)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

481

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

12

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LO2 InLO2 Out

LO2 Out

2

LO2In

1

PLLVref

PLLVref

100

100

PLL Vref

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

These pins form the PLL reference oscillator whenconnected to an external parallel–resonant crystal(10.24 MHz typical). The reference oscillator isalso the second Local Oscillator (LO2) for the RFreceiver. “LO2 In” may also serve as an input foran externally generated reference signal which istypically ac–coupled.

When the IC is set to the inactive mode, LO2 In isinternally pulled low to disable the oscillator. Theinput capacitance to ground at each pin (LO2 In/LO2 Out) is 3.0 pF.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vag

Vag

3

PLLVref

VCCAudio

30 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vag is the internal reference voltage for theswitched capacitor filter section. This pin must bedecoupled with a 0.1 µF capacitor.

ÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx PD(Output)

4 6

PLLVref

PLLVref

15

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

This pin is a tri–state voltage output of the Rx andTx Phase Detector. It is either “high”, “low”, or “highimpedance,” depending on the phase difference ofthe phase detector input signals. During lock, verynarrow pulses with a frequency equal to the

ÁÁÁÁÁÁ

5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx PD(Output) Rx PD,

Tx PD

4, 615 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

narrow ulses with a frequency equal to thereference frequency are present. This pin drivesthe external Rx and Tx PLL loop filters. Rx and TxPD outputs can sink or source 1.0 mA.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL Vref

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL Vref

5

132 k

VCCAudio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL Vref is a PLL voltage regulator output pin. Aninternal voltage regulator provides a stable powersupply voltage for the Rx and Tx PLL’s and canalso be used as a regulated supply voltage forother IC’s. It can source up to 1.0 mA externally.Proper supply filtering is a must on this pin. PLLVref is pulled up to VCC audio for the standby andinactive modes (Note 1).

6ÁÁÁÁÁÁÁÁ7

ÁÁÁÁÁÁÁÁÁÁGnd PLL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGround pin for digital PLL section of IC.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

7ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx VCO(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TX VCO

8

PLLVref

1.0 k

PLLVref

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx VCO is the transmit divide counter input whichis driven by an ac–coupled external transmit loopVCO. The minimum signal level is 200 mVpp @60.0 MHz. This pin also functions as the test modeinput for the counter tests.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 12: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

12 MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PIN FUNCTION DESCRIPTION (continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEquivalent Internal Circuit (52 Pin QFP)

ÁÁÁÁÁÁÁÁÁÁ

Symbol/Type

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pin

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Equivalent Internal Circuit (52 Pin QFP)ÁÁÁÁÁÁÁÁÁÁ

Symbol/TypeÁÁÁÁ

ÁÁÁÁQFP–52ÁÁÁÁ

ÁÁÁÁLQFP–48

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8910

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

91011

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DataENClk

(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data, EN, Clk

9, 10, 11

VCCAudio

240

PLLVref

1.0 µA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microprocessor serial interface input pins are forprogramming various counters and controlfunctions. The switching thresholds are referencedto PLL Vref and Gnd PLL. The inputs operate up toVCC. These pins have 1.0 µA internal pull–downcurrents.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

11 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

12 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clk Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clk Out

12

VCCAudio

VCCAudio

1.0 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The microprocessor clock output is derived fromthe 2nd LO crystal oscillator and a programmabledivider with divide ratios of 2 to 312.5. It can beused to drive a microprocessor and therebyreduce the number of crystals required in thesystem design. The driver has an internal resistorin series with the output which can be combinedwith an external capacitor to form a low pass filterto reduce radiated noise on the PCB. This outputalso functions as the output for the counter testmodes. The Clk Out can be disabled via the MPUinterface.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

12 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CD Out(I/O)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDComparator

CD Out

13

VCCAudio

240

PLLVref

HardwareInterrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Dual function pin;

1) Carrier detect output (open collector withexternal 100 kΩ pull–up resistor.

2) Hardware interrupt input which can be used to“wake–up” from the Inactive Mode.

ÁÁÁÁÁÁ

–ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

14ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BD1 OutÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ14 16

VCCAudio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low battery detect output #1 is an open collectorwith external pull–up resistor.

ÁÁÁÁÁÁ

14ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BD2 Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BD1 OutBD2 Out

14, 16 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low battery detect output #2 is an open collectorwith external pull–up resistor.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DA Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DA Out

15

VCCAudio

VCC Audio

100 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data amplifier output (open collector with internal100 kΩ pull–up resistor).

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

17ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Out

17

VCCAudio

VB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Out is the Tx path audio output. Internally thispin has a low–pass filter circuitry with –3 dBbandwidth of 4.0 kHz. Tx gain and mute areprogrammable through the MPU interface. This pinis sensitive to load capacitance.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 13: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

13MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PIN FUNCTION DESCRIPTION (continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEquivalent Internal Circuit (52 Pin QFP)

ÁÁÁÁÁÁÁÁÁÁ

Symbol/Type

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pin

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Equivalent Internal Circuit (52 Pin QFP)ÁÁÁÁÁÁÁÁÁÁ

Symbol/TypeÁÁÁÁ

ÁÁÁÁQFP–52ÁÁÁÁ

ÁÁÁÁLQFP–48

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

18 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C Cap ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C Cap

18

VCCAudio

VCCAudio

40 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C Cap is the compressor rectifier filter capacitorpin. It is recommended that an external filtercapacitor to VCC audio be used. A practicalcapacitor range is 0.1 to 1.0 µF. 0.47 µF is therecommended value.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

17 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

19 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C In

19

VCCAudio

12.5 k

VB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C In is the compressor input. This pin is internallybiased and has an input impedance of 12.5 k. C Inmust be ac–coupled.

ÁÁÁÁÁÁ

18 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

20 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Amp Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCAudio

21

VCCAudio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microphone amplifier output. The gain is set withexternal resistors. The feedback resistor should beless than 200 kΩ.

ÁÁÁÁÁÁÁÁÁ

19ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Amp Out

20

VB

Tx In

21 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx In is the Tx path input to the microphoneamplifier (Mic Amp). An external resistor isconnected to this pin to set the Mic Amp gain andinput impedance. Tx In must be ac–coupled, too.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

20 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

22 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DA In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DA In

22

VCCAudio

250 k 250 k

VCCAudio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The data amplifier input (DA In) resistance is250 kΩ and must be ac–coupled. Hysteresis isinternally provided.

ÁÁÁ21ÁÁÁÁÁÁÁÁÁÁÁÁ

23ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCC AudioÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCC audio is the supply for the audio section. It isnecessary to adequately filter this pin.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

22 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

24 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx Audio In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx Audio In

24

VCCAudio

600 k

VB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The Rx audio input resistance is 600 kΩ and mustbe ac–coupled.

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

23ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

25ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Det Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Det Out

25

VCCAudio

VCCRF

240

30 µA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Det Out is the audio output from the FM detector.This pin is dc–coupled from the FM detector andhas an output impedance of 1100 Ω.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 14: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

14 MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PIN FUNCTION DESCRIPTION (continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEquivalent Internal Circuit (52 Pin QFP)

ÁÁÁÁÁÁÁÁÁÁ

Symbol/Type

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pin

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Equivalent Internal Circuit (52 Pin QFP)ÁÁÁÁÁÁÁÁÁÁ

Symbol/TypeÁÁÁÁ

ÁÁÁÁQFP–52ÁÁÁÁ

ÁÁÁÁLQFP–48

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

30 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

26 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSSI ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCAudio

186 k

26

VCCRF

VCCRF

RSSI

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSSI is the receive signal strength indicator. Thispin must be filtered through a capacitor to ground.The capacitance value range should be 0.01 to0.1 µF. This is also the input to the Carrier Detectcomparator. An external R to ground shifts theRSSI voltage.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

24 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

27 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Q Coil ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Q Coil

27

VCCRF VCC

RF

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A quad coil or ceramic discriminator connects thispin as part of the FM demodulator circuit.DC–couple this pin to VCC RF through the quadcoil or the external resistor.

ÁÁÁÁÁÁÁÁÁÁÁÁ

26 ÁÁÁÁÁÁÁÁÁÁÁÁ

29 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCC RF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCC supply for RF receiver section (1st LO, mixer,limiter, demodulator). Proper supply filtering isneeded on this pin too.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

25 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

28 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Lim Out ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Lim C1

31

VCCRF

28

VCCRF

VCCRF

VCCRF

53.5 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A quad coil or ceramic discriminator are connectedto these pins as part of the FM demodulator circuit.A coupling capacitor connects this pin to the quadcoil or ceramic discriminator as part of the FMdemodulator circuit. This pin can drive couplingcapacitors up to 47 pF with no deterioration inperformance.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2728

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3031

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Lim C2Lim C1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

i 1

Lim Out

Lim In

32

Lim C2

30

52 k

1.5 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IF amplifier/limiter capacitor pins. Thesedecoupling capacitors should be 0.1 µF. Theydetermine the IF limiter gain and low frequencybandwidth.

ÁÁÁÁÁÁÁÁÁÁÁÁ

29 ÁÁÁÁÁÁÁÁÁÁÁÁ

32 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Lim In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Lim C2 52

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Signal input for IF amplifier/limiter. Signals shouldbe ac–coupled to this pin. The input impedance is1.5 kΩ at 455 kHz.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

33ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SGnd RFÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

This pin is not connected internally but should begrounded to reduce potential coupling betweenpins.ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

31ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

34ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix2 In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix2 In

34

VCCRF

VCCRF

3.0 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix2 In is the second mixer input. Signals are to beac–coupled to this pin, which is biased internally toVCC RF. The input impedance is2.8 kΩ at 455 kHz. The input impedance can bereduced by connecting an external resistor toVCC RF.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 15: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

15MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PIN FUNCTION DESCRIPTION (continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEquivalent Internal Circuit (52 Pin QFP)

ÁÁÁÁÁÁÁÁÁÁ

Symbol/Type

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pin

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Equivalent Internal Circuit (52 Pin QFP)ÁÁÁÁÁÁÁÁÁÁ

Symbol/TypeÁÁÁÁ

ÁÁÁÁQFP–52ÁÁÁÁ

ÁÁÁÁLQFP–48

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

32 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

35 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix2 Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix2 Out

35

VCCRF

VCC RF

1.2 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix2 Out is the second mixer output. The secondmixer has a 3 dB bandwidth of 2.5 MHz and anoutput impedance of 1.5 kΩ. The output currentdrive is 50 µA.

ÁÁÁÁÁÁÁÁ

33 ÁÁÁÁÁÁÁÁ

36 ÁÁÁÁÁÁÁÁÁÁ

Gnd RF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ground pin for RF section of the IC.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

34 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

37 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix1 Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix1 Out

37

VCCRF

VCC RF

200

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The first mixer has a 3 dB IF bandwidth of 13 MHzand an output impedance of 300 Ω. The outputcurrent drive is 300 µA and can be programmedfor 1.0 mA.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

35 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

38 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix1 In2(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VCCRF

VCCRF

950 950

Vref

20 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Signals should be ac–coupled to this pin, which isbiased internally to VCC – 1.6 V. The single–endedand differential input impedance are about 1.6 and1.8 kΩ at 46 MHz, respectively.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

36 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

39 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix1 In1(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mix1 In2,Mix1 In1

38, 39

95 95ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3738

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4041

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LO1 InLO1 Out

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LO1Out

41

LO1 In

40

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tank Elements, an internal varactor and capacitormatrix for 1st LO multivibrator oscillator areconnected to these pins. The oscillator is useableup to 80 MHz.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

39 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

42 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vcap Ctrl ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vcap Ctrl

42

VCCRF

55 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vcap Ctrl is the 1st LO varactor control pin. Thevoltage at this pin is referenced to Gnd Audio andvaries the capacitance between LO1 In andLO2 Out. An increase in voltage will decreasecapacitance.

ÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁ

43 ÁÁÁÁÁÁÁÁÁÁ

Gnd Audio ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ground for audio section of the IC.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

41 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

44 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SA Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

44

VCCAudio

SA n

45

VCCAudio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The speaker amplifier gain is set with an externalfeedback resistor. It should be less than 200 kΩ.The speaker amplifier can be muted through theMPU interface.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

42 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

45 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SA In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SA Out

44

VB

SA In ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

An external resistor is connected to the speakeramplifier input (SA In). This will set the gain andinput impedance and must be ac–coupled.

27D

EC

02

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 16: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

16 MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PIN FUNCTION DESCRIPTION (continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁEquivalent Internal Circuit (52 Pin QFP)

ÁÁÁÁÁÁÁÁÁÁ

Symbol/Type

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Pin

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Equivalent Internal Circuit (52 Pin QFP)ÁÁÁÁÁÁÁÁÁÁ

Symbol/TypeÁÁÁÁ

ÁÁÁÁQFP–52ÁÁÁÁ

ÁÁÁÁLQFP–48

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

43 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

46 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E Out

46

VCCAudio

VB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The output level of the expander output isdetermined by the volume control. Volume controlis programmable through the MPU interface.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

44 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

47 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E Cap ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E Cap

47

VCCAudio

VCCAudio

40 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E Cap is the expander rectifier filter capacitor pin.Connect an external filter capacitor between VCCaudio and E Cap. The recommended capacitancerange is 0.1 to 1.0 µF. 0.47 µF is the suggestedvalue.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

45 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

48 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E In(Input)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

E In

48

VCCAudio

VB

30 k

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The expander input pin is internally biased and hasinput impedance of 30 kΩ.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

46 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

49 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scr Out(Output)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scr Out

49

VCCAudio

VB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scr Out is the Rx audio output. An internal lowpass filter has a –3 dB bandwidth of 4.0 kHz.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

50ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ref2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ50, 51

VCCAudio

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reference voltage input for Low Battery Detect #2.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

51ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ref1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ref2, Ref1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reference voltage input for Low Battery Detect #1.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

47 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

52 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VB

52

VCCAudio

VCC Audio

240

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VB is the internal half supply analog groundreference. This pin must be filtered with acapacitor to ground. A typical capacitor range of0.5 to 10 µF is desired to reduce crosstalk andnoise. It is important to keep this capacitor valueequal to the PLL Vref capacitor due to logic timing(Note 9).

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTE: 9. A capacitor range of 0.5 to 10 µF is recommended. The capacitor value should be the same used on the VB pin (Pin 52). An additional highquality parallel capacitor of 0.01 µF is essential to filter out spikes originating from the PLL logic circuitry.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 17: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

17MOTOROLA RF/IF DEVICE DATA

DEVICE DESCRIPTION AND APPLICATION INFORMATION

The following text, graphics, tables and schematics areprovided to the user as a source of valuable technicalinformation about the Universal Cordless Telephone IC. Thisinformation originates from thorough evaluation of the deviceperformance for the US and French applications. This datawas obtained by using units from typical wafer lots. It isimportant to note that the forgoing data and information wasfrom a limited number of units. By no means is the user toassume that the data following is a guaranteed parametric.Only the minimum and maximum limits identified in theelectrical characteristics tables found earlier in this spec areguaranteed.

General Circuit DescriptionThe MC13110A and MC13111A are a low power dual

conversion narrowband FM receiver designed forapplications up to 80 MHz carrier frequency. This device isprimarily designated to be used for the 49 MHz cordlessphone (CT–0), but has other applications such as low datarate narrowband data links and as a backend device for 900MHz systems where baseband analog processing isrequired. This device contains a first and second mixer,limiter, demodulator, extended range receive signal strength(RSSI), receive and transmit baseband processing, dualprogrammable PLL, low battery detect, and serial interfacefor microprocessor control. The FM receiver can also beused with either a quadrature coil or ceramic resonator.Refer to the Pin Function Description table for the simplifiedinternal circuit schematic and description of this device.

DC Current and Battery DetectFigures 3 through 6 are the current consumption for

Inactive, Standby, Receive, and Active modes versus supplyvoltages. Figures 7 and 8 show the typical behavior of currentconsumption in relation to temperature. The relationship ofadditional current draw due to IP3 bit set to <1> and supplyvoltage are shown in Figures 9 and 10.

For the Low Battery Detect, the user has the option tooperate the IC in the programmable or non–programmablemodes. Note that the 48 pin package can only be used in theprogrammable mode. Figure 127 describes this operation(refer to the Serial Interface section under Clock DividerRegister).

In the programmable mode several different internalthreshold levels are available (Figure 2). The bits are setthrough the SCF Clock Divider Register as shown in Figures108 and 125. The reference for the internal divider network isVCC Audio. The voltages on the internal divider network arecompared to the Internal Reference Voltage, VB, generatedby an internal source. Since the internal comparator used isnon–inverting, a high at VCC Audio will yield a high at the

battery detect output, and vice versa for VCC Audio set to alow level. For the 52 pin package option, the Ref 1 and Ref 2pins need to be tied to VCC when used in the programmablemode. It is essential to keep the external reference pinsabove Gnd to prevent any possible power–on reset to beactivated.

When considering the non–programmable mode (bits setto <000>) for the 52 pin package, the Ref 1 and Ref 2 pinsbecome the comparators reference. An internal switch isactivated when the non–programmable mode is chosenconnecting Ref 1 and Ref 2. Here, two external precisionresistor dividers are used to set independent thresholds fortwo battery detect hysteresis comparators. The voltages onRef 1 and Ref 2 are again compared to the internallygenerated 1.5 V reference voltage (VB).

The Low Battery Detect threshold tolerance can beimproved by adjusting a trim–pot in the external resistordivider (user designed). The initial tolerance of the internalreference voltage (VB) is ±6.0%. Alternately, the tolerance ofthe internal reference voltage can be improved to ±1.5%through MPU serial interface programming (refer to the SerialInterface section, Figure 130). The internal reference can bemeasured directly at the “VB” pin. During final test of thetelephone, the VB internal reference voltage is measured.Then, the internal reference voltage value is adjustedelectronically through the MPU serial interface to achieve thedesired accuracy level. The voltage reference register valueshould be stored in ROM during final test so that it can bereloaded each time the combo IC is powered up. The LowBattery Detect outputs are open collector. The battery detectlevels will depend on the accuracy of the VB voltage. Figure12 indicates that the VB voltage is fairly flat over temperature.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 2. Internal Low Battery Detect Levels(with VB = 1.5 V)

BatteryDetectSelect

RampingUp(V)

RampingDown

(V)

Average(V)

Hysteresis(mV)

0 – – – –

1 2.867 2.861 2.864 4.0

2 2.953 2.947 2.950 6.0

3 3.039 3.031 3.035 8.0

4 3.207 3.199 3.204 8.0

5 3.291 3.285 3.288 6.0

6 3.375 3.367 3.371 8.0

7 3.461 3.453 3.457 8.0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTE: 10. Battery Detect Select 0 is the non–programmable operating mode.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 18: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

18 MOTOROLA RF/IF DEVICE DATA

Figure 3. Current versus SupplyVoltage Inactive Mode

0

5.0

10

15

20

25

30

35

40

2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

VCC, SUPPLY VOLTAGE (V)

Figure 4. Current versus SupplyVoltage Standby Mode, MCU

Clock Output – On at 2.048 MHz

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MCU Clock Out Off

MCU Clock Out On

I INAC

TIC

, SU

PPLY

CU

RR

ENT

(µA)

STD

I CC

, SU

PPLY

CU

RR

ENT

(mA)

02.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

VCC, SUPPLY VOLTAGE (V)

DC CURRENT

Figure 5. Current versus SupplyVoltage Receive Mode

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

MCU Clock Out Off

MCU Clock Out On

VCC, SUPPLY VOLTAGE (V)

RC

C, S

UPP

LY C

UR

REN

T (m

A)x

I

7.7

Figure 6. Current versus Supply VoltageActive Mode

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.8

7.9

8.0

2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5

MCU Clock Out Off

MCU Clock Out On

ACT

I

, SU

PPLY

CU

RR

ENT

(mA)

CC

VCC, SUPPLY VOLTAGE (V)

Figure 7. Current versusTemperature Normalized to 25° C

–10

–5.0

0

5.0

10

15

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90

TA, TEMPERATURE (°C)

Inactive

Standby

DEL

TA C

UR

REN

T D

RAI

N (%

FR

OM

25

C)

°

–12

–10

–8.0

–6.0

–4.0

–2.0

0

2.0

4.06.0

0

Figure 8. Current versusTemperature Normalized to 25° C

–40 –30 –20 –10 10 20 30 40 50 60 70 80 90

TA, TEMPERATURE (°C)

Active

Receive

DEL

TA C

UR

REN

T D

RAI

N (%

FR

OM

25

C)

°

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 19: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

19MOTOROLA RF/IF DEVICE DATA

DC CURRENT

1.40

1.42

1.50

1.30

1.32

1.34

1.36

1.38

1.44

1.46

1.48

Figure 9. Additional Supply Current Consumptionversus Supply Voltage, IP3 = <1>

2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

VCC, SUPPLY VOLTAGES (V)

DEL

TA C

UR

REN

T D

RAI

N (m

A)Figure 10. Additional IP3

Supply Current Consumption versus Temperature Normalized to 25° C

–20

–15

–10

–5

0

5

10

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90

TA, TEMPERATURE (°C)

DEL

TA C

UR

REN

T D

RAI

N (%

FR

OM

25

C)

°

ÁÁÁÁÁÁÁÁÁÁ

Receive/Active ÁÁÁÁÁÁÁÁ

Receive/Active

650

500

Figure 11. Current StandbyMode versus MCU Clock Output

300

350

400

450

550

600

700

750

800

1.0 10 100 1000

MCU CLK OUT DIVIDE VALUE

No load

MCU clock off

10 pF load

STD

I

, S

UPP

LY C

UR

REN

T (m

A)C

C

Figure 12. VB Voltage versus TemperatureNormalized to 1.5 V at 25 °C

1.4925

1.4950

1.4975

1.5000

1.5025

1.5050

1.5075

–20 –10 0 10 20 30 40 50 60 70 80 90

TA, TEMPERATURE (°C)

V ,

NO

RM

ALIZ

ED V

B VO

LTAG

E (V

)s

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 20: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

20 MOTOROLA RF/IF DEVICE DATA

FIRST AND SECOND MIXER

Mixer Description

The 1st and 2nd mixers are similar in design. Both aredouble balanced to suppress the LO and the inputfrequencies to give only the sum and difference frequenciesat the mixer output. Typically the LO is suppressed betterthan –50 dB for the first mixer and better than –40 dB for thesecond mixer. The gain of the 1st mixer has a –3.0 dB cornerat approximately 13 MHz and is used at a 10.7 MHz IF. It hasan output impedance of 300 Ω and matches to a typical10.7 MHz ceramic filter with a source and load impedance of330 Ω. A series resistor may be used to raise the impedancefor use with crystal filters. They typically have an inputimpedance much greater than 330 Ω.

First Mixer

Figures 17 through 20 show the first mixer transfer curvesfor the voltage conversion gain, output level, andintermodulation. Notice that there is approximately 10 dBlinearity improvement when the “IP3 Increase” bit is set to<1>. The “IP3 Increase” bit is a programmable bit as shown inthe Serial Programmable Interface section under the RxCounter Latch Register. The IP3 = <1> option will increasethe supply current demand by 1.3 mA.

Figure 13. First Mixer Input and Output ImpedanceSchematic

1st Mixer

Mix1 In Mix1 OutRPI CPI RPOCPO

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFigure 14. First Mixer Output ImpedanceÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁUnit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁOutput ImpedanceÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁB IP3 = <0> (Set Low)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ304 Ω // 3.7 pFÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁB IP3 = <1> (Set High)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ300 Ω // 4.0 pF

Figures 13, 14, and 16 represent the input and outputimpedance for the first mixer. Notice that the inputsingle–ended and differential impedances are basically thesame. The output impedance as described in Figure 14 willbe used to match to a ceramic or crystal filter’s inputimpedance. A typical ceramic filter input impedance is 330 Ωwhile crystal filter input impedance is usually 1500 Ω. Exactimpedance matching to ceramic filters are not critical,however, more attention needs to be given to the filtercharacteristics of a crystal filter. Crystal filters are muchnarrower. It is important to accurately match to these filters toguaranty a reasonable response.

To find the IF bandwidth response of the first mixer refer toFigure 22. The –3.0 dB bandwidth point is approximately 13MHz. Figure 15 is a summary of the first mixer feedthroughparameters.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 15. First Mixer Feedthrough ParametersÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁÁÁÁ

(dBm)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1st LO Feedthrough @ Mix1 In1

ÁÁÁÁÁÁÁÁÁÁ

–70.0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1st LO Feedthrough @ Mix1 Out ÁÁÁÁÁ

ÁÁÁÁÁ–55.5

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRF Feedthrough @ Mix1 Out with –30 dBm ÁÁÁÁÁ

ÁÁÁÁÁ–61.0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 16. First Mixer Input Impedance over Input Frequency

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

US Center Channels ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

France Center Channels

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Unit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

49 MHz ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

46 MHz ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

41 MHz ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

26 MHz

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Single–Ended ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1550 Ω // 3.7 pF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1560 Ω // 3.7 pF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1570 Ω // 3.8 pF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1650 Ω // 3.7 pF

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Differential ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1600 Ω // 1.8 pF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1610 Ω // 1.8 pF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1670 Ω // 1.8 pF ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1710 Ω // 1.8 pF

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTE: 11. Single–Ended data is from measured results. Differential data is from simulated results.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 21: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

21MOTOROLA RF/IF DEVICE DATA

Mix

1O

ut, M

IXER

OU

TPU

T (d

Bm)

1.0

15

–40

0

–40

14

2.7

–10

–40

0

–40

14

f, IF FREQUENCY (MHz)

Mix1 In, MIXER INPUT LEVEL (dBm)

Mix1 In, MIXER INPUT LEVEL (dBm)

V O1.

0 dB

Mix

VCC Audio, AUDIO SUPPLY VOLTAGE (V)

Mix

1O

ut, M

IXER

OU

TPU

T (d

Bm)

Mix1 In, MIXER INPUT LEVEL (dBm)

MX g

ain1

, VO

LTAG

E

Figure 17. First Mixer Voltage ConversionGain, IP3_bit = 0

Mix1 In, MIXER INPUT LEVEL (dBm)

Figure 18. First Mixer Voltage ConversionGain, IP3_bit = 1

Figure 19. First Mixer Output Level andIntermodulation, IP3_bit = 0

Figure 20. First Mixer Output Level andIntermodulation, IP3_bit = 1

Figure 21. First Mixer Compression versus Supply Voltage

Figure 22. First IF Bandwidth

Fundamental Level

3rd OrderIntermodulation

Fundamental Level

3rd OrderIntermodulation

CO

NVE

RSI

ON

GAI

N (d

B) 12

–20

10

–20

12

–40

8.0

–40

10

–60–60

8.0

4.0

–80–80

2.0

–100–100

10–12

5.0–14

0–16

–5.0–18

–10–20

–15–22

–35–35 –30–30 –25–25 –20–20 –15–15 –10–10

10

–35

3.3

–35 –30–30 –25–25 –20

4.2

–20 –15

4.8

–15 –10

5.4

–10

1003.6 3.9 4.53.0 5.1

IP3_bit = 1

1, 1.0

dB

VOLT

AGE

CO

MPR

ESSI

ON

(dBm

)

6.0

6.0

IP3_bit = 0

MX g

ain1

, VO

LTAG

E

CO

NVE

RSI

ON

GAI

N (d

B)

MX g

ain1

, VO

LTAG

E

CO

NVE

RSI

ON

GAI

N (d

B)

VCC = 3.6 VIF = 10.695 MHz, 330 Ω

VCC = 3.6 VIF = 10.695 MHz, 330 Ω

VCC = 3.6 VIF = 10.695 MHz, 330 Ω

VCC = 3.6 VIF = 10.695 MHz, 330 Ω

FIRST MIXER

IF = 10.695 MHz, 330 Ω

VCC = 3.6 VRL = 330 ΩLO = 36.075 MHz

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 22: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

22 MOTOROLA RF/IF DEVICE DATA

Second Mixer

Figures 26 through 29 represents the second mixertransfer characteristics for the voltage conversion gain,output level, and intermodulation. There is a slightimprovement in gain when the “IP3 bit” is set to <1> for thesecond mixer. (Note: This is the same programmable bitdiscussed earlier in the section.)

Figure 23. Second Mixer Input and OutputImpedance Schematic

2nd Mixer

Mix2 In Mix2 OutRPI CPI RPOCPO

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 24. Second Mixer Input and OutputImpedances

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Unit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input ImpedanceRPI // CPI

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

OutputImpedanceRPO // CPO

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IP3 = <0> (Set Low)ÁÁÁÁÁÁÁÁÁÁÁÁ

2817 Ω // 3.6 pF ÁÁÁÁÁÁÁÁÁÁÁÁ

1493 Ω // 6.1 pF

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IP3 = <1> (Set High)ÁÁÁÁÁÁÁÁÁÁÁÁ

2817 Ω // 3.6 pF ÁÁÁÁÁÁÁÁÁÁÁÁ

1435 Ω // 6.2 pF

The 2nd mixer input impedance is typically 2.8 kΩ. Itrequires an external 360 Ω parallel resistor for use with astandard 330 Ω, 10.7 MHz ceramic filter. The second mixeroutput impedance is 1.5 kΩ making it suitable to matchstandard 455 kHz ceramic filters.

The IF bandwidth response of the second mixer is shownin Figure 31. The –3.0 dB corner is 2.5 MHz. The feedthroughparameters are summarized in Figure 25.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 25. Second Mixer Feedthrough Parameters

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁÁÁÁ

(dBm)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2nd LO Feedthrough @ Mix2 Out ÁÁÁÁÁÁÁÁÁÁ

–42.9

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

IF Feedthrough @ Mix2 Out with –30 dBm ÁÁÁÁÁÁÁÁÁÁ

–61.7

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 23: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

23MOTOROLA RF/IF DEVICE DATA

0.12.7

Mix

2O

ut, M

IXER

OU

TPU

T (d

Bm)

V O1.

0 dB

Mix 2, 1

.0 d

BM

Xga

in2,

VO

LTAG

E

CO

NVE

RSI

ON

GAI

N (d

B)

25

10

–10

–40

10

22

f, IF FREQUENCY (MHz)

Mix2 In, MIXER INPUT LEVEL (dBm)

Mix2 In, MIXER INPUT LEVEL (dBm)

VCC Audio, AUDIO SUPPLY VOLTAGE (V)

Mix2 In, MIXER INPUT LEVEL (dBm)

Figure 26. Second Mixer Conversion Gain,IP3_bit = 0

Mix2 In, MIXER INPUT LEVEL (dBm)

Figure 27. Second Mixer Conversion Gain, IP3_bit = 1

Figure 28. Second Mixer Output Level andIntermodulation, IP3_bit = 0

Figure 29. Second Mixer Output Level andIntermodulation, IP3_bit = 1

Figure 30. Second Mixer Compressionversus Supply Voltage

Figure 31. Second IF Bandwidth

Mix

2O

ut, M

IXER

OU

TPU

T (d

Bm)

VOLT

AGE

CO

MPR

ESSI

ON

(dBm

)

Fundamental Level

3rd OrderIntermodulation

IP3_bit = 1

IP3_bit = 0

Fundamental Level

3rd OrderIntermodulation

–10

20

–30

18

–50

16

–70

–90

–12

–14

–16

–18

–20

–22

12

14

22

20

–10

18

–30

16

–50

14

–70

–90

20

15

10

5.0

0

–40

–40–40 –35–35 –30–30 –25–25 –20–20 –15–15 –10–10

1.0

–35

3.3

–35 –30–30 –25–25 –20

4.2

–20 –15

4.8

–15 –10

5.4

–10

103.6 3.9 4.53.0 5.1

MX

gain

2, V

OLT

AGE

CO

NVE

RSI

ON

GAI

N (d

B)

MX g

ain2

, VO

LTAG

E

CO

NVE

RSI

ON

GAI

N (d

B)

VCC = 3.6 VIF = 455 kHzRL = 1500 Ω

SECOND MIXER

VCC = 3.6 VIF = 455 kHzRL = 1500 Ω

VCC = 3.6 VIF = 455 kHzRL = 1500 Ω

VCC = 3.6 VIF = 455 kHzRL = 1500 Ω

IF = 455 kHzRL = 1500 Ω

VCC = 3.6 VRL = 1500 Ω

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 24: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

24 MOTOROLA RF/IF DEVICE DATA

First Local Oscillator

The 1st LO is a multi–vibrator oscillator. The tank circuit iscomposed of a parallel external capacitance and inductance,internal programmable capacitor matrix, and internalvaractor. The local oscillator requires a voltage controlledinput to the internal varactor and an external loop filter drivenby on–board phase–lock control loop (PLL). The 1st LOinternal component values have a tolerance of ±15%. Atypical dc bias level on the LO Input and LO Output is 0.45Vdc. The temperature coefficient of the varactor is+0.08%/°C. The curve in Figure 33 is the varactor controlvoltage range as it relates to varactor capacitance. Itrepresents the expected internal capacitance for a givencontrol voltage (VcapCtrl) of the MC13110A and MC13111A.Figure 32 shows a representative schematic of the first LOfunction.

LO1 In

LO1 Out

Vcap Ctrl

ProgrammableInternalCapacitor

1st LO

Varactor

VaractorCext

Lext

Figure 32. First Local Oscillator Schematic

To select the proper Lext and Cext we can do the followinganalysis. From Figure 34 it is observed that an inductor willhave a significant affect on first LO performance, especiallyover frequency. The overall minimum Q required for first LOto function as it relates to the LO frequency is also given inFigure 34.

Choose an inductor value, say 470 nH. From Figure 34,the minimum operating Q is approximately 25. From thefollowing equation:

Q Coil = Rp/X Coil

where: Rp = parallel equivalent impedance (Figure 35).

Cext can be determined as follows:

fLO 12 LextCext

where: Lext = external inductance, Cext = externalcapacitance.

Figure 34 clearly indicates that for lower coil values, higherquality factors (Q) are required for the first LO to functionproperly. Also, lower LO frequencies need higher Q’s. InFigure 35 the internal programmable capacitor selectionrelative to the first LO frequency and the parallel impedanceis shown. This information will help the user to decide whatinductor (Lext) to choose for best performance in terms of Q.

Refer to the Auxiliary Register in the Serial InterfaceSection for further discussion on LO programmability.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 25: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

25MOTOROLA RF/IF DEVICE DATA

100

120

0

100O

VER

ALL

MIN

IMU

M Q

VAL

UE

LO INDUCTOR VALUE (nH)

RP, R

EPR

ESEN

TATI

VE P

ARAL

LEL

Ω

C1–C15, CAPACITANCE SELECT

Figure 33. First LO Varicap Capacitanceversus Control Voltage

Figure 34. First LO Minimum Required OverallQ Value versus Inductor Value

Figure 35. Representative Parallel Impedanceversus Capacitor Select

Figure 36. Varicap Value at V CV = 1.0 V Over Temperature

Figure 37. Control Voltage versusChannel Number, U.S. Handset Application

Figure 38. Control Voltage versusChannel Number, U.S. Baseset Application

30 MHz

40 MHz

50 MHz

30 MHz

40 MHz

50 MHz

IMPE

DAN

CE

(k

)

100

80

60

40

20

0

10

1000

1 6 4 3 8 9 10 11 12 13 14 152 5 7

FIRST LOCAL OSCILLATOR

0

15

, CAP

ACIT

ANC

E (p

F)

VcapCtrl, CONTROL VOLTAGE (V)

14

12

13

11

10

9.0

8.0

7.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

V cap

10.2

V cap, C

APAC

ITAN

CE

(pF)

TA, AMBIENT TEMPERATURE (°C)

9.8

9.4

9.8–20 0 25 70 8555

10.6

11

1

1.7

CH1–CH25, U.S. HANDSET CHANNEL APPLICATION

Cap 11

Cap 10

Cap 9

Cap 61.6

1.5

1.4

1.3

1.2

1.1

1.0

0.93 5 7 9 11 13 15 17 19 21 23 25

1.8

Ctrl

, CO

NTR

OL

VOLT

AGE

(V) 1.7

CH1–CH25, U.S. BASESET CHANNEL APPLICATION

Cap 8Cap 3

Cap 4

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.81 3 5 7 9 11 13 15 17 19 21 23 25

V cap

1.8

Ctrl

, CO

NTR

OL

VOLT

AGE

(V)

V cap

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 26: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

26 MOTOROLA RF/IF DEVICE DATA

Second Local Oscillator

The 2nd LO is a CMOS oscillator. It is used as the PLLreference oscillator and local oscillator for the secondfrequency conversion in the RF receiver. It is designed toutilize an external parallel resonant crystal. See schematic inFigure 39.

Figure 39. Second Local Oscillator Schematic

2nd LO

RPI CPI RPOCPOGm

LO2 In LO2 OutXtal

C2C1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 40. Second Local OscillatorInput and Output Impedance

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Impedance (RPI // CPI) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

11.6 kΩ // 2.9 pF

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Output Impedance (RPO // CPO)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

9.6 kΩ // 2.7 pF

Figure 41 shows a typical gain/phase response of thesecond local oscillator. Load capacitance (CL), equivalentseries resistance (ESR), and even supply voltage will haveand affect on the 2nd LO response as shown in Figures 45and 46. Except for the standby mode open loop gain is fairlyconstant as supply voltage increases from 2.5 V. This is dueto the regulated voltage of 2.5 V on PLL Vref. From the graphsit can seen that optimum performance is achieved when C1equals C2 (C1/C2 = 1).

Figure 46 represents the ESR versus crystal loadcapacitance for the 2nd LO. This relationship was defined byusing a 6.0 dB minimum loop gain margin at 3.6 V. This isconsidered the minimum gain margin to guarantee oscillatorstart–up.

Oscillator start–up is also significantly affected by thecrystal load capacitance selection. In Figures 42 and 43 therelationship between crystal load capacitance, supplyvoltage, and external load capacitance ratio (C2/C1), can beseen. The lower the load capacitance the better theperformance.

Given the desired crystal load capacitance, C1 and C2can be determined from Figure 47. It is also interesting topoint out that current consumption increases when C1 ≠ C2,as shown in Figure 44.

Be careful not to overdrive the crystal. This could cause anoise problem. An external series resistor on the crystaloutput can be added to reduce the drive level, if necessary.

V gain

2, LO

VO

LTAG

E G

AIN

(dB)

0

6.0

10.235

15

STAR

T–U

P TI

ME

(ms)

CAPACITOR RATIO (C2:C1)

Figure 41. Second LO Gain/Phase @ –10 dBm

f, FREQUENCY (MHz)

Figure 42. Start–Up Time versus CapacitorRatio, Inactive to R x Mode

Gain

10.24 MHz CrystalCL = 10 pFRS = 20 Ω

VCC = 5.0 V

VCC = 3.6 V

VCC = 2.3 V

VCC = 2.7 V

10

5.0

0

–5.0

–10

–15

–20

–25

5.0

4.0

3.0

2.0

1.0

010.24 10.245

Phase

90

67.5

45

22.5

0

–22.5

–45

–67.5

–900.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10.24 MHz CrystalCL = 10 pFRS = 20 ΩC1 = C2 = 15 pF

SECOND LOCAL OSCILLATOR

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 27: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

27MOTOROLA RF/IF DEVICE DATA

0

30

0

800

0

20

CAPACITOR RATIO (C2:C1)

I STD

, STA

ND

BY C

UR

REN

T (

A)µ

CAPACITOR RATIO (C2:C1)

CAPACITOR RATIO (C2:C1)

AVO

L, O

PEN

LO

OP

GAI

N (d

B)

VCC = 2.3 V

VCC = 2.7, 3.6, 5.0 V

10.24 MHz CrystalCL = 10 pFRS = 20 ΩRx Mode

10.24 MHz CrystalCL = 10 pFRS = 20 Ω

10.24 MHz CrystalCL = 24 pFRS = 16 Ω

Standby Current with Clk_OutRunning at 2.048 MHz

Standby Currentwith Clk_Out Off

Oscillator LevelVCC = 5.0 V

VCC = 3.6 V

VCC = 2.7 V

VCC = 2.3 V

LO2, S

ECO

ND

OSC

ILLA

TOR

LEV

EL (d

Bm)

STAR

T–U

P TI

ME

(ms)

16

12

8.0

4.0

0

25

20

15

10

5.0

0

700

600

500

400

300

200

100

00.5 0.5

0.5

1.0 1.0

1.0

1.5 1.5

1.5

2.0 2.0

2.0

2.5 2.5

2.5

3.0 3.0

3.0

3.5 3.5

3.5

4.0 4.0

4.0

13

12

11

10

9.0

SECOND LOCAL OSCILLATOR

Figure 43. Start–Up Time versus CapacitorRatio, Inactive to R x Mode

Figure 44. Second LO Current Consumptionversus Capacitor Ratio

Figure 45. Maximum Open Loop Gain versus Capacitor Ratio

10

1000Ω

ESR

, EQ

UIV

ALEN

T R

ESIS

TAN

CE

( )

CRYSTAL LOAD CAPACITANCE (pF)

Figure 46. Maximum AllowableEquivalent Series Resistance (ESR)

versus Crystal Load Capacitance

10

100

12 14 16 18 20 22 24 26 28 30 32

Curve Valid for fosc in the Range of 10 MHz to 12 MHz

0

70

OPT

IMU

M C

1 AN

D C

2 VA

LUE

(pF)

REQUIRED PARALLEL CRYSTAL LOAD CAPACITANCE (pF)

Figure 47. Optimum Value for C1 and C2versus Equivalent Required Parallel

Capacitance of the Crystal

50

60

40

30

20

10

05.0 10 15 20 30 3525

C1 = C2

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 28: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

28 MOTOROLA RF/IF DEVICE DATA

IF Limiter and Demodulator

The limiting IF amplifier typically has about 110 dB of gain;the frequency response starts rolling off at 1.0 MHz.Decoupling capacitors should be placed close to Pins 31 and32 to ensure low noise and stable operation. The IF inputimpedance is 1.5 kΩ. This is a suitable match to 455 kHzceramic filters.

Figure 48. IF Limiter Schematic

Lim OutLim In

Limiter Stage

RPI CPI

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFigure 49. Limiter Input ImpedanceÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Unit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Impedance(RPI)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Impedance(CPI)

ÁÁÁÁÁÁÁÁÁÁÁÁ

Lim InÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1538 Ω ÁÁÁÁÁÁÁÁÁÁÁÁ

15.7 pF

Figure 50. Quadrature DetectorDemodulator Schematic

Q CoilLim Out1

C2810 p

Rext22.1 k

Toko Q Coil7MCS–8128Z

The quadrature detector is coupled to the IF with anexternal capacitor between Pins 27 and 28. Thus, therecovered signal level output is increased for a givenbandwidth by increasing the capacitor. The externalquadrature component may be either a LCR resonant circuit,which may be adjustable, or a ceramic resonator which isusually fixed tuned. (More on ceramic resonators later.)

The bandwidth performance of the detector is controlledby the loaded Q of the LC tank circuit (Figure 50). Thefollowing equation defines the components which set thedetector circuit’s bandwidth:

(1) RT = Q XL,

where RT is the equivalent shunt resistance across the LCtank. XL is the reactance of the quadrature inductor at the IFfrequency (XL= 2π f L).

The 455 kHz IF center frequency is calculated by:

(2) fc = [2π (L Cp)1/2] – 1

where L is the parallel tank inductor. Cp is the equivalentparallel capacitance of the parallel resonant tank circuit.

The following is a design example for a detector at 455kHz and a specific loaded Q:

The loaded Q of the quadrature detector is chosensomewhat less than the Q of the IF bandpass for margin. Foran IF frequency of 455 kHz and an IF bandpass of 20 kHz,

the IF bandpass Q is approximately 23; the loaded Q of thequadrature tank is chosen slightly lower at 15.

Example:

Let the total external C = 180 pF. (Note: the capacitance isthe typical capacitance for the quad coil.) Since the externalcapacitance is much greater than the internal device andPCB parasitic capacitance, the parasitic capacitance may beneglected.

Rewrite equation (2) and solve for L:

L = (0.159)2/(C fc2 )L = 678 µH ; Thus, a standard value is chosen:L = 680 µH (surface mount inductor)

The value of the total damping resistor to obtain therequired loaded Q of 15 can be calculated from equation (1):

RT = Q(2π f L)RT = 15(2π)(0.455)(680) = 29.5 kΩ

The internal resistance, Rint at the quadrature tank Pin 27is approximately 100 kΩ and is considered in determining theexternal resistance, Rext which is calculated from:

Rext = ((RT)(Rint))/(Rint – RT)Rext = 41.8 kΩ;Thus, choose a standard value:Rext = 39 kΩ

In Figure 50, the Rext is chosen to be 22.1 kΩ. Anadjustable quadrature coil is selected. This tank circuitrepresents one popular network used to match to the455 kHz carrier frequency. The output of the detector isrepresented as a “S–curve” as shown in Figure 52. The goalis to tune the inductor in the area that is most linear on the“S–curve” (minimum distortion) to optimize the performancein terms of dc output level. The slope of the curve can also beadjusted by choosing higher or lower values of Rext . This willhave an affect on the audio output level and bandwidth. AsRext is increased the detector output slope will decrease.The maximum audio output swing and distortion will bereduced and the bandwidth increased. Of course, just theopposite is true for smaller Rext.

A ceramic discriminator is recommended for thequadrature circuit in applications where fixed tuning isdesired. The ceramic discriminator and a 5.6 kΩ resistor areplaced from Pin 27 to VCC . A 22 pF capacitor is placed fromPin 28 to 27 to properly drive the discriminator. MuRata Eriehas designed a resonator for this part (CDBM455C48 forUSA & A/P regions and CDBM450C48 for Europe). Thisresonator has been designed specifically for theMC13110/111 family. Figure 51 shows the schematic used togenerate the “S–curve” and waveform shown in Figure 54and 55.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 29: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

29MOTOROLA RF/IF DEVICE DATA

Figure 51. Ceramic Resonator DemodulatorSchematic with Murata CDBM450C48

C28390 p

Rext2.7 k

Ceramic ResonatorMurataCDBM450C34

Lim Out1 Q Coil

(CDBM455C48 US; CDBM450C48 France)

The “S–curve” for the ceramic discriminator shown inFigure 54 is centered around 450 kHz. It is for the Frenchapplication. The same resonator is also used for the USapplication and is centered around 455 kHz. Clearly, the“S–curves” for the resonator and quad coil have very similarlimiter outputs. As discussed previously, the slope of the“S–curve” centered around the center frequency can becontrolled by the parallel resistor, Rext. Distortion, bandwidth,and audio output level will be affected.

Figure 52. S–Curve of LimiterDiscriminator with Quadrature Coil

0.2

0.6

1.0

1.4

2.2

425 435 445 485

Lim In, INPUT FREQUENCY (kHz)

1.8

455 465 475

Det

Out

, DC

VO

LTAG

E (V

) Toko 7MCS–8128Z

Figure 53. Typical Limiter OutputWaveform with Quadrature Coil

IF LIMITER AND DEMODULATION

Figure 54. S–Curve of LimiterDiscriminator with Ceramic Resonator

0.60.7

0.80.9

1.01.1

1.21.3

1.7

440 442 444 446 448 460

Lim In, INPUT FREQUENCY (kHz)

1.4

1.5

450 452 454 456 458

Det

Out

, DC

VO

LTAG

E (V

) Murata CDBM450C48

1.6

Figure 55. Typical Limiter OutputWaveform with Ceramic Resonator

AC V

OLT

AGE

LEVE

L (V

)

f = 455 kHzVpptyp = 344 mV

0

1.0

t, TIME (ms)

600

400

200

800

AC V

OLT

AGE

LEVE

L (V

)

f = 450 kHzVpptyp = 370 mV

0

1.0

t, TIME (ms)

600

400

200

800

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 30: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

30 MOTOROLA RF/IF DEVICE DATA

RSSI and Carrier Detect

The Received Signal Strength Indicator (RSSI) indicatesthe strength of the IF level. The output is proportional to thelogarithm of the IF input signal magnitude. RSSI dynamicrange is typically 80 dB. A 187 kΩ resistor to ground isprovided internally to the IC. This internal resistor convertsthe RSSI current to a voltage level at the “RSSI” pin. Toimprove the RSSI accuracy over temperature an internalcompensated reference is used. Figure 56 shows the RSSIversus RF input. The slope of the curve is 16.5 mV/dB.

The Carrier Detect Output (CD Out) is an open–collectortransistor output. An external pull–up resistor of 100 kΩ willbe required to bias this device. To form a carrier detect filter acapacitor needs to be connected from the RSSI pin toground. The carrier detect threshold is programmablethrough the MPU interface (see “Carrier Detect ThresholdProgramming” in the serial interface section). The range canbe scaled by connecting additional external resistance from

the RSSI pin to ground in parallel with the capacitor. FromFigure 57, the affect of an external resistor at RSSI on thecarrier detect level can be noticed. Since there is hysteresisin the carrier detect comparator, one trip level can be foundwhen the input signal is increased while the another one canbe found when the signal is decreased.

Figure 58 represents the RSSI ripple in relation to the RFinput for different filtering capacitors at RSSI. Clearly, thehigher the capacitor, the less the ripple. However, at lowcarrier detect thresholds, the ripple might supersede thehysteresis of the carrier detect. The carrier detect output mayappear to be unstable. Using a large capacitor will help tostabilize the RSSI level, but RSSI charge time will beaffected. Figure 59 shows this relationship.

The user must decide on a compromise between the RSSIripple and RSSI start–up time. Choose a 0.01 µf capacitor asa starting point. For low carrier detect threshold settings, a0.047 µf capacitor is recommended.

–60

RSSI AND CARRIER DETECT

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

–120 –100 –80 –60 –40 –20 0

Mix1 In, RF INPUT (dBm)

Figure 56. Typical RSSI VoltageLevel versus RF Input

RSS

I OU

TPU

T (V

dc)

–90

–80

–70

–50

–40

–30

–20

0

100 1000

RRSSI, LOAD RESISTANCE (kΩ)

Figure 57. Carrier Detect Threshold versusExternal RSSI Resistor

–10

Decreasing Signal

Limiter Input

Mixer 1Input

Increasing Signal

Decreasing Signal

Increasing Signal

MIX

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

11

–120 –110 –100 –90 –80 –70 –60

Mix1 In, RF INPUT (dBm)

Figure 58. RSSI Ripple versus RF Input Level forDifferent RSSI Capacitors

0

5.0

10

15

20

25

35

0.01 0.10

CRSSI, LOAD CAPACITANCE (µF)

Figure 59. RSSI Charge Timeversus Capacitor Value

30

RSS

I CH

ARG

E TI

ME

(ms)

8.0

9.0

1010 nF

22 nF

33 nF

47 nF

100 nF

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

RSS

I RIP

PLE

(mVr

ms)

1IN

, RF

INPU

T (d

Bm)

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 31: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

31MOTOROLA RF/IF DEVICE DATA

RF System Performance

The sensitivity of the IC is typically 0.4 µVrms matched(single ended or differential) with no preamp. To achievesuitable system performance, a preamp and passiveduplexer may be used. In production final test, each sectionof the IC is separately tested to guarantee its systemperformance in the specific application. The preamp andduplexer (differential, matched input) yields typically–115 dBm @ 12 dB SINAD sensitivity performance under fullduplex operation. See Figure 45 and 48.

The duplexer is important to achieve full duplex operationwithout significant “de–sensing” of the receiver by thetransmitter. The combination of the duplexer and preampcircuit should attenuate the transmitter power to the receiverby over 60 dB. This will improve the receiver system noisefigure without giving up too much IMD performance.

The duplexer may be a two piece unit offered by Shimida,Sansui, or Toko products (designed for 25 channel CT–0cordless phone). The duplexer frequency response at thereceiver port has a notch at the transmitter frequency band ofabout 35 to 40 dB with a 2.0 to 3.0 dB insertion loss at thereceiver frequency band.

The preamp circuit utilizes a tuned transformer at theoutput side of the amplifier. This transformer is designed tobandpass filter at the receiver input frequency while rejectingthe transmitter frequency. The tuned preamp also improvesthe noise performance by reducing the bandwidth of the passband and by reducing the second stage contribution of the1st mixer. The preamp is biased such that it yields suitablenoise figure and gain.

The following matching networks have been used toobtain 12 dB SINAD sensitivity numbers:

1:5 15

1:5 15

Figure 60. Matching Input Networks

Differential Match

Single–ended Match

Single–ended 50 Ω

Mix1 In1

Mix1 In2

Mix1 In1

Mix1 In2

Mix1 In1

Mix1 In2

RF In1

RF In1

RF In1

360

680

39

39

49.9 Ω

0.01

0.01

The exact impedance looking into the RF In1 pin isdisplayed in the following table along with the sensitivitylevels.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 61. 12 dB SINAD Sensitivity Levels, USHandset Application Channel 21ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sensitivity(dBm)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Input Impedance

(dBm)

Differential matched –115.3 50.2 ± 0.1j

Single–ended match –114.8 50.2 ± 0.1j

Single–ended 50 Ω –100.1 50.2 ± 0.1j

The graphs in Figures 64 to 69 are performance resultsbased on Evaluation Board Schematic (Figure 137). Thisevaluation board did not use a duplexer or preamp stage.Figure 62 is a summary of the RF performance and Figure 63contains the French RF Performance Summary.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 62. RF Performance Summaryfor US Applications

MC13110A/MC13111A (fdev = 3.0 kHz, fmod = 1.0 kHz, 50 Ω)

Parameter Handset Baseset Unit

Sensitivity at12 dB SINAD

–100.1 –100.1 dBm

Recovered Audio 132 132 mVrms

SINAD @ –30 dBm 41.8 41.4 dB

THD @ –30 dBm 0.8 0.8 %

S/N @ –30 dBm 78.2 78.5 dB

AMRR @ –30 dBm 73.4 72.2 dB

RSSI range >80 >80 dB

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 63. RF Performance Summaryfor US French Applications

MC13110A/MC13111A (fdev = 1.5 kHz, fmod = 1.0 kHz, 50 Ω)

Parameter Handset Baseset Unit

Sensitivity at12 dB SINAD

–91 –90.8 dBm

Recovered Audio 89.8 90 mVrms

SINAD @ –30 dBm 42.1 44.3 dB

THD @ –30 dBm 0.8 0.8 %

S/N @ –30 dBm 75.7 75.1 dB

AMRR @ –30 dBm 56 84.7 dB

RSSI range >80 >80 dB

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 32: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

32 MOTOROLA RF/IF DEVICE DATA

–110

–90

–70

–50

–30

–10

–120 –100 –80 –60 –40 –20 0

S+N+D

N+D

AMR

N

SA O

ut, S

PEAK

ER A

MPL

IFIE

R O

UTP

UT

(dBV

)

Mix1 In1, FIRST MIXER INPUT (dBm)

–102

–101

–100

–99

–98

–97

–96

1 5 9 13 17 21 25

12 d

B SI

NAD

(dBm

)

US CHANNEL NUMBERS

0

10

20

30

40

50

60

70

80

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

–120 –100 –80 –60 –40 –20 0

SINAD

S/N

RSSI

Mix1 In, RF INPUT (dBm)

Figure 64. Typical Receiver PerformanceParameters U.S. Handset Application Channel 21

RSS

I OU

TPU

T (V

)

SIN

AD, S

/N (d

B)

35

40

45

50

55

60

65

70

85

128

129

130

131

132

133

134

135

138

1 3 5 7 9 11 25

SINAD

S/N

AMRR

U.S. HANDSET CHANNEL NUMBER

Figure 65. Typical Performance ParametersOver U.S. Handset Channel Frequencies

SA O

ut, S

PEAK

ER A

MPL

IFIE

R O

UTP

UT

(mVr

ms)

SIN

AD, S

/N, A

MR

R (d

B)

80

75

13 15 17 19 21 23

136

137

SA Out Level

35

40

45

50

55

60

65

70

85

128

129

130

131

132

133

134

135

138

1 3 5 7 9 11 25

SINAD

S/N

AMRR

U.S. BASESET CHANNEL NUMBER

Figure 66. Typical Performance ParametersOver U.S. Baseset Channel Frequencies

SA O

ut, S

PEAK

ER A

MPL

IFIE

R O

UTP

UT

(mVr

ms)

SIN

AD, S

/N, A

MR

R (d

B)

80

75

13 15 17 19 21 23

136

137

SA Out Level

RF SYSTEM PERFORMANCE

Figure 67. Typical Receiver Performance forUS Handset Application Channel 21

Figure 68. 12 dB SINAD Sensitivity OverUS Handset Application Channels

Figure 69. 12 dB SINAD Sensitivity OverUS Baseset Application Channels

–102

–101

–100

–99

–98

–97

–96

1 5 9 13 17 21 2

12 d

B SI

NAD

(dBm

)

US CHANNEL NUMBERS

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 33: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

33MOTOROLA RF/IF DEVICE DATA

Receive Audio Path

The Rx Audio signal path begins at “Rx Audio In” and goesthrough the IC to “E Out”. The “Rx Audio In”, “Scr Out”, and“E In” pins are all ac–coupled. This signal path consists offilters; programmable Rx gain adjust, Rx mute, and volumecontrol, and finally the expander. The typical maximumoutput voltage at “E Out” should be approximately 0 dBV @THD = 5.0% .

Figures 71 to 73 represent the receive audio path filterresponse. The filter response attenuation is very sharp above3900 Hz, which is the cutoff frequency. Inband (audio),out–of–band, and ripple characteristics are also shown inthese graphs.

The group delay (Figure 75) has a peak around 6.5 kHz.This spike is formed by rapid change in the phase at thefrequency. In practice this does not cause a problem sincethe signal is attenuated by at least 50 dB.

The output capability at “Scr Out” and “E Out” are shown inFigures 76, 77, and 78. The results were obtained byincreasing the input level for 2.0% distortion at the outputs.

In Figure 70, noise data for the Rx audio path is shown.At Scr Out, the noise level clearly rises when the scrambler is

enabled. However, assuming a nominal output level of –20dBV (100 mVrms) at the 0 dB gain setting, the noise floor ismore than 56 dB below the audio signal. However, the noisedata at E Out and SA Out is much more improved.

Speaker AmpThe Speaker Amp is an inverting rail–to–rail operational

amplifier. The noninverting input is connected to the internalVB reference. External resistors and capacitors are used toset the gain and frequency response. The “SA In” input pinmust be ac–coupled. The typical output voltage at “SA Out” is2.6 Vpp with a 130 Ω load. The speaker amp response isshown in Figures 79 and 80.

Data Amp ComparatorThe data amp comparator is an inverting hysteresis

comparator. Its open collector output has an internal 100 kΩpull–up resistor. A band pass filter is connected between the“Det Out” pin and the “DA In” pin with component values asshown in the Application Circuit schematic. The “DA In” inputsignal needs to be ac–coupled, too.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 70. R x Path Noise DataReceive

ScramblerReceive Gain

(dB)Volume

(dB)SCR_Out

(dBV)E_Out(dBV)

SA_Out(dBV)

off/on muted muted < –95 < –95 < –95

off –9.0 –14 –92 < –95 < –95

off 0 0 –85 < –95 < –95

off 1.0 16 –76 < –95 < –95

on (MC13110A) –9.0 –14 –85 < –95 < –95

on (MC13110A) 0 0 –77 < –95 < –95

on (MC13110A) 10 16 –66 < –95 < –95

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 34: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

34 MOTOROLA RF/IF DEVICE DATA

Eou

t, OU

TPU

T VO

LTAG

E LE

VEL

(dBV

PHAS

E (

)

–40

5.0

100

180

100

5.0

100

10

100

0.5

100

10

Ein, INPUT VOLTAGE LEVEL (dBV)

f, FREQUENCY (Hz)

f, FREQUENCY (Hz)

f, FREQUENCY (Hz)

VOLT

AGE

GAI

N (d

B)

Figure 71. R x Audio Wideband Frequency Response

f, FREQUENCY (Hz)

Figure 72. R x Audio Inband Frequency Response

Figure 73. R x Audio Ripple Response Figure 74. R x Audio Inband Phase Response

Figure 75. R x Audio Inband Group Delay Figure 76. R x Audio Expander Response

135

–5.0

90

–15

0.3

45

0

–25

0.1

–45

–90

–0.1

–0.3–135

–180

–55

–0.5

–110

–5.0

1.0–15

–25

–450.1

–55

–650

10001000 10000 100000 100001000000

–20

10001000

1000

10000

10000

10000

0

GR

OU

P D

ELAY

(ms)

–35

Expander Transfer

Distortion

–10

–30

–50

–90

–70

–45

f, FREQUENCY (Hz)

–35

–35 –30 –25 –15 –10 –5.0

DIS

TORT

ION

(%)

28

24

20

16

8.0

4.0

0

12

Rx Audio Into Scr OutVin = –20 dBV

Rx Audio Into Scr OutVin = –20 dBV

Rx Audio Into Scr OutVin = –20 dBV

Rx Audio Into Scr OutVin = –20 dBV

V

,

gain

VOLT

AGE

GAI

N (d

B)V

,ga

in

Rx Audio Into Scr OutVin = –20 dBV

VOLT

AGE

GAI

N (d

B)V

,ga

inRx AUDIO

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 35: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

35MOTOROLA RF/IF DEVICE DATA

Scr O

ut, O

UTP

UT

VOLT

AGE

LEVE

L (d

BV)

–9.0

Rx PROGRAMMABLE VOLUME LEVEL SETTINGRx PROGRAMMABLE GAIN CONTROL SETTING

Figure 77. R x Audio Maximum Output Voltage versus Gain Control Setting

Figure 78. R x Audio Maximum Output Voltage versus Volume Setting

–4.0

–8.0

–10

–12

–16

–20–7.0 –5.0 –3.0 –1.0 1.0 3.0 5.0 7.0 9.0

1.4

1.2

1.0

0.8

0.6

0.4

0–14 –10 –6.0 –2.0 2.0 6.0 10 14

VCC = 3.6 VTHD = 2%

Eou

t, OU

TPU

T VO

LTAG

E LE

VEL

(dBV

)

–6.0

–14

–18 0.2

VCC = 3.6 VTHD = 2%

SA O

ut, O

UTP

UT

VOLT

AGE

LEVE

L(dB

V)

SA O

ut, O

UTP

UT

VOLT

AGE

LEVE

L (d

BV) 1.8

SA In, INPUT VOLTAGE LEVEL (dBV)

Figure 79. R x Audio Speaker Amplifier Drive

SA In, INPUT VOLTAGE LEVEL (dBV)

Figure 80. R x Audio Speaker Amplifier Distortion

No Load

130 Ω

1.4

0

25

15

5.0

000 0.80.8 1.6 2.4 2.81.6 2.4 3.23.2

620 Ω

No Load

620 Ω

1.6

1.2

1.0

0.8

0.6

0.4

0.2

20

10

0.4 1.2 2.0 2.8 0.4 1.2 2.0

130 Ω

Rx AUDIOA

RC

HIV

E IN

FO

RM

AT

ION

AR

CH

IVE

INF

OR

MA

TIO

N

Page 36: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

36 MOTOROLA RF/IF DEVICE DATA

Transmit Audio Path

This portion of the audio path goes from “C In” to “Tx Out”.The “C In” pin will be ac–coupled. The audio transmit signalpath includes automatic level control (ALC) (also referred toas the Compressor), Tx mute, limiter, filters, and Tx gainadjust. The ALC provides “soft” limiting to the output signalswing as the input voltage slowly increases. With thistechnique the gain is slightly lowered to help reduce distortionof the audio signal. The limiter section provides hard limitingdue to rapidly changing signal levels, or transients. This isaccomplished by clipping the signal peaks. The ALC, Txmute, and limiter functions can be enabled or disabled via theMPU serial interface. The Tx gain adjust can also be remotelycontrolled to set different desired signal levels. The typicalmaximum output voltage at “Tx Out” should be approximately0 dBV @ THD = 5.0%.

Figures 82 to 86 represent the transmit audio path filterresponse. The filter response attenuation, again, is verydefinite above 3800 Hz. This is the filter cutoff frequency.Inband (audio), wideband, and ripple characteristics are alsoshown in these graphs.

The compressor transfer characteristics, shown inFigure 87, has three different slopes. A typical compressorslope can be found between –55 and –15 dBV. Here theslope is 2.0. At an input level above –15 dBV the automaticlevel control (ALC) function is activated and prevents hardclipping of the output. The slope below –55 dBV input level isone. This is where the compressor curve ends. Above 5.0dBV the output actually begins to decrease and distort. Thisis due to supply voltage limitations.

In Figure 88 the ALC function is off. Here the compressorcurve continues to increase above –15 dBV up to –4.0 dBV.

The limiter begins to clip the output signal at this level anddistortion is rapidly rising. Similarly, Figure 68 (ALC andLimiter Off) shows to compressor transfer curve extending allthe way up to the maximum output. Finally, Figure 90 through93 show the Tx Out signal versus several combinations ofALC and Limiter selected.

Figure 81 is the noise data measured for theMC13110A/13111A. This data is for 0 dB gain setting and –20dBV (100 mVrms) audio levels.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 81. T x Path Noise DataTransmit

ScramblerTransmit

Gain(dB)

Amp_Out(dBV)

Tx_Out(dBV)

off/on muted muted < –95

off –9.0 < –95 –83

off 0 < –95 –74

off 10 < –95 –64

on (MC13110A) –9.0 < –95 –82

on (MC13110A) 0 < –95 –73

on (MC13110A) 10 –< –95 –63

Mic AmpLike the Speaker Amp the Mic Amp is also an inverting

rail–to–rail operational amplifier. The noninverting inputterminal is connected to the internal VB reference. Externalresistors and capacitors are used to set the gain andfrequency response. The “Tx In” input is ac–coupled.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 37: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

37MOTOROLA RF/IF DEVICE DATA

100100

180

5.0

0.3

100

10

f, FREQUENCY (Hz)

f, FREQUENCY (Hz)

f, FREQUENCY (Hz)

f, FREQUENCY (Hz)

Figure 82. T x Audio Wideband Frequency Response Figure 83. T x Audio Inband Frequency Response

Figure 84. T x Audio Ripple Response Figure 85. T x Audio Inband Phase Response

–10

–30

–50

–70

–100

0.1

–0.1

–0.3

–0.6

–0.7

–5.0

–15

–25

–35

–55

135

45

–45

–135

–180

100

1000

1000 10000 1000

1000

100000 10000

10000

1000000

10000

C In to Tx OutVin = –10 dBV

C In to Tx OutVin = –10 dBV

C In to Tx OutVin = –10 dBV

–90–45

0.2

0

–0.2

–0.4

–0.5 C In to Tx OutVin = –10 dBV

°PH

ASE

( )

90

0

–90

VOLT

AGE

GAI

N (d

B)V

,ga

in

VOLT

AGE

GAI

N (d

B)V

,ga

in

VOLT

AGE

GAI

N (d

B)V

,ga

in

0

–20

–40

–60

–80

Tx AUDIO

Out

, OU

TPU

T VO

LTAG

E LE

VEL

(dBV

)

–60

0

100

10

C In, INPUT VOLTAGE LEVEL (dBV)

GR

OU

P D

ELAY

(ms)

Figure 86. T x Audio Inband Group Delay

f, FREQUENCY (Hz)

Figure 87. T x Audio Compressor Response

Compressor

–101.0

–20

0

–25

–35

–40101000 10000

C In to Tx OutVin = –10 dBV

T x

0.1 Distortion

ALC On,Limiter On or Off

–5.0

–15

–30

–50 –40 –30 –20 –10 0

DIS

TORT

ION

(%)

4.0

2.0

0

3.0

1.0

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 38: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

38 MOTOROLA RF/IF DEVICE DATA

–9.0

OU

TPU

T LE

VEL

(mV)

t, TIME (µs)

t, TIME (µs)

t, TIME (µs)

Tx PROGRAMMABLE GAIN CONTROL SETTING

A–4.0

–12

–16

–20

Out

, OU

TPU

T VO

LTAG

E LE

VEL

(dBV

)T x

B

C

–8.0

–7.0 –5.0 –3.0 –1.0 1.0 3.0 5.0 7.0 9.0

A: ALC Off, Limiter OffB: ALC Off, Limiter OnC: ALC On, Limiter On or Off

VCC = 3.6 V

OU

TPU

T LE

VEL

(mV)

OU

TPU

T LE

VEL

(mV)

Limiter and ALC Off

Limiter On and ALC Off Limiter On and ALC On

0

200 mV/Div500 µs/Div

200 mV/Div500 µs/Div

200 mV/Div500 µs/Div

Out

, OU

TPU

T VO

LTAG

E LE

VEL

(dBV

)T x O

ut, O

UTP

UT

VOLT

AGE

LEVE

L (d

BV)

T x

DIS

TORT

ION

(%)

4.0

2.0

0

3.0

1.0

DIS

TORT

ION

(%)

4.0

2.0

0

3.0

1.0

0

–60

0

C In, INPUT VOLTAGE LEVEL (dBV)C In, INPUT VOLTAGE LEVEL (dBV)

–5.0

–40

–10

–15

–20

–30

–40–50–50 –40 –30 –20 –10 0 10 –40 –30 –10 0–20

ALC Off,Limiter On

Distortion

ALC Off,Limiter Off

10–60

–25

–35

–5.0

–10

–15

–20

–25

–30

–35

Compressor TransferCompressor Transfer

Distortion

Figure 88. T x Audio Compressor Response Figure 89. T x Audio Compressor Response

Figure 90. T x Audio Maximum Output Voltageversus Gain Control Setting Figure 91. T x Output Audio Response

Figure 92. T x Output Audio Response Figure 93. T x Audio Output Response

Tx AUDIOA

RC

HIV

E IN

FO

RM

AT

ION

AR

CH

IVE

INF

OR

MA

TIO

N

Page 39: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

39MOTOROLA RF/IF DEVICE DATA

PLL SYNTHESIZER SECTION

PLL Frequency Synthesizer General DescriptionFigure 95 shows a simplified block diagram of the

programmable universal dual phase locked loop (PLL)designed into the MC13110A and MC13111A IC. This dualPLL is fully programmable through the MCU serial interfaceand supports most country channel frequencies including USA(25 ch), Spain, Australia, Korea, New Zealand, U.K.,Netherlands, France, and China (see channel frequencytables in AN1575, “Worldwide Cordless TelephoneFrequencies”).

The 2nd local oscillator and reference divider provide thereference frequency signal for the Rx and Tx PLL loops. Theprogrammed divider value for the reference divider isselected based on the crystal frequency and the desired Rxand Tx reference frequency values. For the U.K., additionaldivide by 25 and divide by 4 blocks are provided to allow forgeneration of the 1.0 kHz and 6.2 kHz reference frequencies.

The 14–bit Rx counter is programmed for the desired firstlocal oscillator frequency. The 14–bit Tx counter isprogrammed for the desired transmit channel frequency. Allcounters power–up to a set default state for USA channel #21using a 10.24 MHz reference frequency crystal (see power–updefault latch register state in the Serial ProgrammableInterface section).

To extend the sensitivity of the 1st LO for U.S. 25 channeloperation, internal fixed capacitors can be connected to thetank circuit through microprocessor programmable control.When designing the external PLL loop filters, it isrecommended that the Tx and Rx phase detectors beconsidered as current drive type outputs. The loop filtercontrol voltage must be 0.5 V away from either the positive ornegative supply rail.

PLL I/O Pin ConfigurationsThe 2nd LO, Rx and Tx PLL’s, and MPU serial interface are

powered by the internal voltage regulator at the “PLL Vref” pin.The “PLL Vref” pin is the output of a voltage regulator which ispowered from the “VCC Audio” power supply pin. It is regulatedby an internal bandgap voltage reference. Therefore, themaximum input and output levels for most of the PLL I/O pins(LO2 In, LO2 Out, Rx PD, Tx PD, Tx VCO) is the regulatedvoltage at the “PLL Vref” pin. The ESD protection diodes onthese pins are also connected to “PLL Vref”.

Internal level shift buffers are provided for the pins (Data,Clk, EN, Clk Out) which connect directly to the

microprocessor. The maximum input and output levels forthese pins is VCC. Figure 94 shows a simplified schematic ofthe I/O pins.

Figure 94. PLL I/O Pin Simplified Schematics

PLL Vref(2.5 V)

InI/O

VCC Audio(2.7 to 5.5 V)

PLL Vref(2.5 V)

VCC Audio(2.7 to 5.5 V)

Clk Out PinData, Clk and EN PinsLO2 In, LO2 Out, Rx PD, Tx PD and

Tx VCO Pins

Out

2.0 µA

PLL Loop Control Voltage RangeThe control voltage for the Tx and Rx loop filters is set by

the phase detector outputs which drive the external loopfilters. The phase detectors are best considered to have acurrent mode type output. The output can have three states;ground, high impedance, and positive supply, which in thiscase is the voltage at “PLL Vref”. When the loop is locked thephase detector outputs are at high impedance. An exceptionof this state is for narrow current pulses, referenced to eitherthe positive or negative supply rails. If the loop voltages getwithin 0.5 V of either rail the linear current output starts todegrade. The phase detector current source was notdesigned to operate at the supply rails. VCO tuning range willalso be limited by this voltage range

The maximum loop control voltage is the “PLL Vref” voltagewhich is 2.5 V. If a higher loop control voltage range isdesired, the “PLL Vref” pin can be pulled to a higher voltage.It can be tied directly to the VCC voltage (with suitable filtercapacitors connected close to each pin). When this is done,the internal voltage regulator is automatically disabled. Thisis commonly used in the telephone base set where anexternal 5.0 V regulated voltage is available. It is important toremember, that if “PLL Vref” is tied to VCC and VCC is not aregulated voltage, the PLL loop parameters and lock–up timewill vary with supply voltage variation. The phase detectorgain constant, Kpd, will not be affected if the “PLL Vref” is tiedto VCC.

Figure 95. Dual PLL Simplified Block Diagram

14–b ProgrammableRx Counter

14–b ProgrammableTx Counter

12–b Programmable

ReferenceCounter

÷ 25

÷1

÷ 4

LO2 In

LO2 Out1

2

Tx PD

8

6

Tx VCO

Rx PD

4

LO1 In

40LO1 Out

41

Tx PhaseDetector(CurrentOutput)

Rx PhaseDetector(CurrentOutput)

LP Loop Filter

Tx Ref

Rx Ref

U.K. Base

U.K. Handset

U.K. Handset

U.K. Base

Vcap Ctrl

42

1st LO

LP Loop Filter

TxVCO

ProgrammableInternal Capacitor

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 40: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

40 MOTOROLA RF/IF DEVICE DATA

Loop Filter Characteristics

Lets consider the following discussion on loop filters. Thefundamental loop characteristics, such as capture range,loop bandwidth, lock–up time, and transient response arecontrolled externally by loop filtering.

Figure 96 is the general model for a Phase Lock Loop(PLL).

PhaseDetector (Kpd)

Filter(Kf)

VCO(Ko) fo

Divider(Kn)

fi

Figure 96. PLL Model

Where:Kpd = Phase Detector Gain ConstantKf = Loop Filter Transfer FunctionKo = VCO Gain ConstantKn = Divide Ratio (1/N)fi = Input frequencyfo = Output frequencyfo/N = Feedback frequency divided by N

From control theory the loop transfer function can berepresented as follows:

A = Kpd Kf Ko Kn Open loop gain

Kpd can be either expressed as being 2.5 V/4.0 π or1.0 mA/2.0 π for the CT–0 circuits. More details aboutperformance of different type PLL loops, refer to Motorolaapplication note AN535.

The loop filter can take the form of a simple low pass filter.A current output, type 2 filter will be used in this discussionsince it has the advantage of improved step response,velocity, and acceleration.

The type 2 low pass filter discussed here is represented asfollows:

FromPhaseDetector

To VCO

R2

C2C1

Figure 97. Loop Filterwith Additional Integrating Element

From Figure 97, capacitor C1 forms an additionalintegrator, providing the type 2 response, and filters thediscrete current steps from the phase detector output. Thefunction of the additional components R2 and C2 is to createa pole and a zero (together with C1) around the 0 dB point ofthe open loop gain. This will create sufficient phase marginfor stable loop operation.

In Figure 98, the open loop gain and the phase isdisplayed in the form of a Bode plot. Since there are twointegrating functions in the loop, originating from the loopfilterand the VCO gain, the open loop gain response follows a

second order slope (–40 dB/dec) creating a phase of –180degrees at the lower and higher frequencies. The filtercharacteristic needs to be determined such that it is adding apole and a zero around the 0 dB point to guarantee sufficientphase margin in this design (Qp in Figure 98).

Phase

Figure 98. Bode Plot of Gain andPhase in Open Loop Condition

A, O

pen

Loop

Gai

n

wp

Open Loop Gain

Qp

–180

–90

0

0

The open loop gain including the filter response can beexpressed as:

Aopenloop KpdKo(1 jw(R2C2))

jwKnjw1 jwR2C1C2C1C2

(1)

The two time constants creating the pole and the zero inthe Bode plot can now be defined as:

T1 R2C1C2C1 C2

T2 R2C2 (2)

By substituting equation (2) into (1), it follows:

Aopenloop KpdKoT1

w2C1KnT21 jwT2

1 jwT1 (3)

The phase margin (phase + 180) is thus determined by:

Qp arctan(wT2)–arctan(wT1) (4)

At w=wp, the derivative of the phase margin may be set tozero in order to assure maximum phase margin occurs at wp(see also Figure 98). This provides an expression for wp:

dQpdw

0 T2

1 (wT2)2– T1

1 (wT1)2(5)

w wp 1

T2T1 (6)

Or rewritten:

T1 1wp

2T2 (7)

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 41: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

41MOTOROLA RF/IF DEVICE DATA

By substituting into equation (4), solve for T2:

T2

tanQp2

4

wp(8)

By choosing a value for wp and Qp, T1 and T2 can becalculated. The choice of Qp determines the stability of theloop. In general, choosing a phase margin of 45 degrees is agood choice to start calculations. Choosing lower phasemargins will provide somewhat faster lock–times, but alsogenerate higher overshoots on the control line to the VCO.This will present a less stable system. Larger values of phasemargin provide a more stable system, but also increaselock–times. The practical range for phase margin is 30degrees up to 70 degrees.

The selection of wp is strongly related to the desiredlock–time. Since it is quite complicated to accuratelycalculate lock time, a good first order approach is:

T_lock 3wp

(9)

Equation (9) only provides an order of magnitude for locktime. It does not clearly define what the exact frequencydifference is from the desired frequency and it does not showthe effect of phase margin. It assumes, however, that thephase detector steps up to the desired control voltagewithout hesitation. In practice, such step response approachis not really valid. The two input frequencies are not locked.Their phase maybe momentarily zero and force the phasedetector into a high impedance mode. Hence, the lock timesmay be found to be somewhat higher.

In general, wp should be chosen far below the referencefrequency in order for the filter to provide sufficientattenuation at that frequency. In some applications, thereference frequency might represent the spacing betweenchannels. Any feedthrough to the VCO that shows up as aspur might affect adjacent channel rejection. In theory, withthe loop in lock, there is no signal coming from the phasedetector. But in practice leakage currents will be supplied toboth the VCO and the phase detector. The externalcapacitors may show some leakage, too. Hence, the lowerwp, the better the reference frequency is filtered, but thelonger it takes for the loop to lock.

As shown in Figure 98, the open loop gain at wp is 1 (or0 dB), and thus the absolute value of the complex open loopgain as shown in equation (3) solves C1:

C1 KpdKoT1

w2KnT2 1wpT22

1wpT12 (10)

With C1 known, and equation (2) solve C2 and R2:

C2 C1T2T1

1 (11)

R2 T2C2

(12)

The VCO gain is dependent on the selection of theexternal inductor and the frequency required. The freerunning frequency of the VCO is determined by:

f 12 LCT (13)

In which L represents the external inductor value and CTrepresents the total capacitance (including internalcapacitance) in parallel with the inductor. The VCO gain canbe easily calculated via the internal varicap transfer curveshown below.

Figure 99. Varicap Capacitanceversus Control Voltage

0

15

, CAP

ACIT

ANC

E (p

F)

14

12

13

11

10

9.0

8.0

7.00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

V cap

As can be derived from Figure 99, the varicap capacitancechanges 1.3 pF over the voltage range from 1.0 V to 2.0 V:

Cvar 1.3 pF

V(14)

Combining (13) with (14) the VCO gain can be determinedby:

Ko 1jw

1

2 LCTCvar

2 1

2 LCTCvar2

(15)

Although the basic loopfilter previously described providesadequate performance for most applications, an extra polemay be added for additional reference frequency filtering.Given that the channel spacing in a CT–0 telephone set isbased on the reference frequency, and any feedthrough to

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 42: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

42 MOTOROLA RF/IF DEVICE DATA

the first LO may effect parameters like adjacent channelrejection and intermodulation. Figure 100 shows a loopfilterarchitecture incorporating an additional pole.

FromPhaseDetector

To VCO

R2

C2C1

Figure 100. Loop Filterwith Additional Integrating Element

C3

R3

For the additional pole formed by R3 and C3 to be efficient,the cut–off frequency must be much lower than the referencefrequency. However, it must also be higher than wp in ordernot to compromise phase margin too much. The followingequations were derived in a similar manner as for the basicfilter previously described.

Similarly, it can be shown:

Aopenloop –KpdKo

Knw2(C1 C2 C3) – w2C1C2C3R2R3

1 jwT21 jwT1 (16)

In which:

T1 (C1 C2)T2 (C1C2)T3

C1 C2 C3 w2C1T2T3(17)

T2 R2C2 T3 R3C3 (19)(18)

From T1 it can be derived that:

C2 (T1 T2)C3 C1T2 T3 T1 w2T1T2T3

T3 T1 (20)

In analogy with (10), by forcing the loopgain to 1 (0 dB) atwp, we obtain:

C1(T1 T2) C2T3 C3T2 KpdKo

Knwp2 1wpT2

2

1wpT12 (21)

Solving for C1:

C1

(T2 T1)T3C3 (T3 T1)T2C3 (T3 T1)KpdKoT1

wp2Kn 1wpT2

2

1wpT12

(T3 T1)T2 (T3 T1)T3 T2 T3 T1 wp2T1T2T3T3

(22)

By selecting wp via (9), the additional time constantexpressed as T3, can be set to:

T3 1Kwp

(23)

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 43: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

43MOTOROLA RF/IF DEVICE DATA

The K–factor shown determines how far the additionalpole frequency will be separated from wp. Selecting too smallof a K–factor, the equations may provide negativecapacitance or resistor values. Too large of a K–factor maynot provide the maximum attenuation.

By selecting R3 to be 100 kΩ, C3 becomes known and C1and C2 can be solved from the equations. By using equations(8) and (7), time constants T2 and T1 can be derived byselecting a phase margin. Finally, R2 follows from T2 and C2.

The following pages, the loopfilter components aredetermined for both handset and baseset the US applicationbased on the equations described. Choose K to beapproximately five times wp (5wp).

In an application, wp is chosen to be 20 times less than thereference frequency of 5.0 kHz and the phase margin has

been set to 45 degrees. This provides a lock time accordingto (9) of about 2.0 ms (order of magnitude). With the adjacentchannels spaced at least 15 kHz away, referencefeedthrough at wp will not be directly disastrous but still, theadditional pole may be added in the loopfilter design foradded safety.

In an application, wp is chosen to be 20 times less than thereference frequency of 5.0 kHz and the phase margin hasbeen set to 45 degrees. This provides a lock time accordingto (9) of about 2.0 ms (order of magnitude). With the adjacentchannels spaced at least 15 kHz away, referencefeedthrough at wp will not be directly disastrous but still, theadditional pole may be added in the loopfilter design foradded safety.

Ope

n Lo

op G

ain

(dB)

Figure 101. Open Loop Response Handset USwith Selected Values

f, FREQUENCY (Hz)

PhaseMargin

100 1000 10000 100000 1000000–80

–40

0

40

80

0

20

40

60

80

Phas

e M

argi

n (d

egre

es)

LoopGain

FromPhaseDetector

To VCO

22 k

.0686800 1000

100 k

Figure 102. Open Loop Response Baseset USwith Selected Values

FromPhaseDetector

To VCO

18 k

.0828200 1000

100 k

Ope

n Lo

op G

ain

(dB)

f, FREQUENCY (Hz)

PhaseMargin

100 1000 10000 100000 1000000–80

–40

0

40

80

0

20

40

60

80

Phas

e M

argi

n (d

egre

es)

LoopGain

Figure 103. Handset US

ConditionsL = 470 uH Fref = 5.0 kHzRF = 46.77 MHz Qp = 45 degreesVCO center = 36.075 MHz wp = wref / 20 radians

Results Equations Select

Kpd = 159.2 uA/radKVCO = 3.56 Mrad/V (14), (15)T2 = 1540 µs (8)T1 = 264 µs (7)T3 = 91 µs with K = 7

C1 = 7.6 nF (21) C1 = 6.8 nFC2 = 70.9 nF (20) C2 = 68 nFR2 = 21.7 kΩ (18) R2 = 22 kΩR3 = 100 kΩ choose: R3 = 100 kΩC3 = 909.5 pF (19) C3 = 1 nf

Figure 104. Baseset US

ConditionsL = 470 uH Fref = 5.0 kHzRF = 49.83 MHz Qp = 45 degreesVCO center = 39.135 MHz wp = wref / 20 radians

Results Equations Select

Kpd = 159.2 uA/radKVCO = 4.54 Mrad/V (14), (15)T2 = 1540 µs (8)T1 = 264 µs (7)T3 = 91 µs with K = 7

C1 = 9.1 nF (21) C1 = 8.2 nFC2 = 83.5 nF (20) C2 = 82 nFR2 = 18.4 kΩ (18) R2 = 18 kΩR3 = 100 kΩ choose: R3 = 100 kΩC3 = 909.5 pF (19) C3 = 1 nf

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 44: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

44 MOTOROLA RF/IF DEVICE DATA

SERIAL PROGRAMMABLE INTERFACE

Microprocessor Serial InterfaceThe Data, Clock, and Enable (“Data”, “Clk”, and “EN”

respectively) pins provide a MPU serial interface forprogramming the reference counters, the transmit andreceive channel divide counters, the switched capacitor filterclock counter, and various other control functions. The “Data”and “Clk” pins are used to load data into the MC13111A shiftregister (Figure 109). Figure 105 shows the timing requiredon the “Data” and “Clk” pins. Data is clocked into the shiftregister on positive clock transitions.

Figure 105. Data and Clock Timing Requirement

Data,Clk, EN

Data

Clk

tsuDC

tr tf

50%

50%

th

10%

90%

After data is loaded into the shift register, the data islatched into the appropriate latch register using the “EN” pin.This is done in two steps. First, an 8–bit address is loadedinto the shift register and latched into the 8–bit address latchregister. Then, up to 16–bits of data is loaded into the shiftregister and latched into the data latch register. It is specifiedby the address that was previously loaded. Figure 106 showsthe timing required on the EN pin. Latching occurs on thenegative EN transition.

Figure 106. Enable Timing Requirement

Clk

EN

tsuEC

50%

50% 50%

trec

Previous Data Latched

LastClock

FirstClock

50%

The state of the “EN” pin when clocking data into the shiftregister determines whether the data is latched into theaddress register or a data register. Figure 107 shows theaddress and data programming diagrams. In the dataprogramming mode, there must not be any clock transitionswhen “EN” is high. The clock can be in a high state (defaulthigh) or a low state (default low) but must not have anytransitions during the “EN” high state. The convention inthese figures is that latch bits to the left are loaded into theshift register first. A minimum of four “Clk” rising edgetransition must occur before a negative “EN” transition willlatch data or an address into a register.

Figure 107. Microprocessor InterfaceProgramming Mode Diagrams

Data

Latch

8–Bit Address

EN

Data

EN

Address Register Programming Mode

16–Bit Data

Data Register Programming Mode

Latch

LatchMSB

MSB LSB

LSB

The MPU serial interface is fully operational within 100 µsafter the power supply has reached its minimum level duringpower–up (see Figure 108). The MPU Interface shiftregisters and data latches are operational in all four powersaving modes; Inactive, Standby, Rx, and Active Modes.Data can be loaded into the shift registers and latched intothe latch registers in any of the operating modes.

Figure 108. Microprocessor SerialInterface Power–Up Delay

VCC tpuMPU

2.7 V

Data,Clk, EN

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 45: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

45MOTOROLA RF/IF DEVICE DATA

Data RegistersFigure 109 shows the data latch registers and addresses

which are used to select each of each registers. Latch bits tothe left (MSB) are loaded into the shift register first. The LSBbit must always be the last bit loaded into the shift register.Bits proceeding the register must be “0’s” as shown.

Power–Up Defaults for Data RegistersWhen the IC is first powered up, all latch registers are

initialized to a defined state. The device is initially placed in the

Rx mode with all mutes active. The reference counter is set togenerate a 5.0 kHz reference frequency from a 10.24 MHzcrystal. The switched capacitor filter clock counter is setproperly for operation with a 10.24 MHz crystal. The Tx and Rxcounter registers are set for USA handset channel frequency,number 21 (Channel 6 for previous FCC 10 Channel Band).Figure 110 shows the initial power–up states for all latchregisters.

6. (00000110)

SCF Clock Dividers Latch (MC13111A only)

06–b Switched

Capacitor FilterClock Counter Latch

4–b VoltageReference Adjust MSB LSBMSB LSB

3–b Low BatteryDetect Threshold Select 0 0

Figure 109. Microprocessor Interface Data Latch Registers

14–b Tx CounterMSB LSB 1. (00000001)

2. (00000010)

3. (00000011)

4. (00000100)

5. (00000101)

6. (00000110)

Latch Address

Tx Counter Latch

Rx Counter Latch

Reference Counter Latch

Mode Control Latch

Gain Control Latch

SCF Clock Dividers Latch (MC13110A only)

12–b Reference CounterMSB LSBU.K.BS

Select

StdbyMode4–b Vol Control

RxMode

TxMute

Rx Mute

SP Mute

5–b Tx Gain Control 5–b Rx Gain Control 5–b CD Threshold Control

U.K.HS

Select

0ALC

DisableMPUClk 2

LimiterDisable

ClkDisable

00

0

0

06–b Switched

Capacitor FilterClock Counter Latch

4–b VoltageReference Adjust MSB LSBMSB LSB

MSB LSB MSB LSB MSB LSB

MSB LSB

0

MPUClk 1

MPUClk 0

3–b Low BatteryDetect Threshold Select

14–b Rx CounterMSB LSB0IP3

Increase

Tx SblBypass

7. (00000111)

Auxillary Latch

0 0 0 0 0 0 0 0 0 3–b Test Mode 4–b 1st LO Capacitor Selection

Rx SblBypass

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 46: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

46 MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 110. Latch Register Power–Up Defaults

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MSB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LSB

ÁÁÁÁÁÁÁÁÁÁ

RegisterÁÁÁÁÁÁÁÁ

CountÁÁÁÁ

15ÁÁÁÁÁÁ

14ÁÁÁÁÁÁ

13 ÁÁÁÁ

12ÁÁÁÁÁÁ

11ÁÁÁÁ

10ÁÁÁÁÁÁ

9ÁÁÁÁÁÁ

8 ÁÁÁÁ

7ÁÁÁÁÁÁ

6 ÁÁÁÁ

5ÁÁÁÁÁÁ

4ÁÁÁÁÁÁ

3 ÁÁÁÁ

2ÁÁÁÁÁÁ

1 ÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁ

Tx ÁÁÁÁÁÁÁÁ

9966 ÁÁÁÁ

–ÁÁÁÁÁÁ

–ÁÁÁÁÁÁ

1 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁ

Rx ÁÁÁÁÁÁÁÁ

7215 ÁÁÁÁ

–ÁÁÁÁÁÁ

–ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁ

Ref ÁÁÁÁÁÁÁÁ

2048 ÁÁÁÁ

–ÁÁÁÁÁÁ

–ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

1 ÁÁÁÁ

0ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁ

Mode ÁÁÁÁÁÁÁÁ

N/A ÁÁÁÁ

–ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁ

Gain ÁÁÁÁÁÁÁÁ

N/A ÁÁÁÁ

–ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

0 ÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁ

SCF(MC13110A)

ÁÁÁÁÁÁÁÁ

31 ÁÁÁÁ

–ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1ÁÁÁÁÁÁ

1 ÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SCF(MC13111A)

ÁÁÁÁÁÁÁÁÁÁÁÁ

31ÁÁÁÁÁÁ

–ÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

–ÁÁÁÁÁÁÁÁÁ

–ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

1

ÁÁÁÁÁÁÁÁÁÁ

Aux ÁÁÁÁÁÁÁÁ

N/A ÁÁÁÁ

–ÁÁÁÁÁÁ

–ÁÁÁÁÁÁ

– ÁÁÁÁ

–ÁÁÁÁÁÁ

– ÁÁÁÁ

–ÁÁÁÁÁÁ

–ÁÁÁÁÁÁ

– ÁÁÁÁ

–ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0ÁÁÁÁÁÁ

0 ÁÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTE: 12. Bits 6 and 7 in the SCF latch register are ”Don’t Cares” for the MC13111A since this part does not have a scrambler.

Tx and Rx Counter RegistersThe 14 bit Tx and Rx counter registers are used to select

the transmit and receive channel frequencies. In the Rxcounter there is an “IP3 Increase” bit that allows the ability totrade off increased receiver mixer performance versusreduced power consumption. With “IP3 increase” = <1>,there is about a 10 dB improvement in 1 dB compression and3rd order intercept for both the 1st and 2nd mixers. However,there is also an increase in power supply current of 1.3 mA.The power–up default for the MC13111A is “IP3 Increase”= <0>. The register bits are shown in Figure 111.

Reference Counter RegisterReference Counter

Figure 113 shows how the reference frequencies for theRx and Tx loops are generated. All countries except the U.K.require that the Tx and Rx reference frequencies be identical.

In this case, set “U.K. Base Select” and “U.K. HandsetSelect” bits to “0”. Then the fixed divider is set to “1” and theTx and Rx reference frequencies will be equal to the crystaloscillator frequency divided by the programmable referencecounter value.

The U.K. is a special case which requires a differentreference frequency value for Tx and Rx. For U.K. baseoperation, set “U.K. Base Select” to “1”. For U.K. handsetoperation, set “U.K. Handset Select” to “1”. The Netherlandsis also a special case. A 2.5 kHz reference frequency is usedfor both the Tx and Rx reference and the total divider valuerequired is 4096. This is larger than the maximum dividevalue available from the 12–bit reference divider (4095). Inthis case, set “U.K. Base Select” to “1” and set “U.K. HandsetSelect” to “1”. This will give a fixed divide by 4 for both the Txand Rx reference. Then set the reference divider to 1024 toget a total divider of 4096.

Figure 111. R x and Tx Counter Register Latch Bits

14–b Tx CounterMSB LSB

14–b Rx CounterMSB LSB

Tx Counter Latch

0

0

IP3Increase

0

Rx Counter Latch

Figure 112. Reference Counter Register

12–b Ref CounterMSB LSBU.K.

HandsetSelect

U.K.Base Select

00

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 47: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

47MOTOROLA RF/IF DEVICE DATA

Figure 113. Reference Counter Register Programming Mode

0011

0101

12544

14254

LO2 Out

Tx Reference Frequency

12–b Programmable

ReferenceCounter

÷ 25

÷1.0

÷ 4.0

LO2 In

Rx Reference Frequency

U.K. Base

U.K. Handset

U.K. Handset

U.K. Base

U.K. HandsetSelect

U.K. BaseSelect

LO2

Tx DividerValue

Rx DividerValue Application

All but U.K. and NetherlandsU.K. Base SetU.K. Hand Set

Netherlands Base and Hand Set

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFigure 114. Reference Frequency and Divider Values

MC13110AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMC13111AÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁReference

ÁÁÁÁÁÁÁÁÁÁU.K. Base/

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁSC Filter

ÁÁÁÁÁÁÁÁÁÁSC Filter

ÁÁÁÁÁÁÁÁÁÁÁÁScrambler

ÁÁÁÁÁÁÁÁÁÁScramblerÁÁÁÁÁÁ

ÁÁÁÁÁÁCrystal

ÁÁÁÁÁÁÁÁÁÁ

DividerÁÁÁÁÁÁÁÁÁÁ

HandsetÁÁÁÁÁÁÁÁÁÁ

ReferenceÁÁÁÁÁÁÁÁÁÁ

ClockÁÁÁÁÁÁÁÁÁÁ

ClockÁÁÁÁÁÁÁÁÁÁÁÁ

ModulationÁÁÁÁÁÁÁÁÁÁ

ModulationÁÁÁÁÁÁÁÁÁÁÁÁ

Frequency ÁÁÁÁÁÁÁÁÁÁ

Value ÁÁÁÁÁÁÁÁÁÁ

Divider ÁÁÁÁÁÁÁÁÁÁ

Frequency ÁÁÁÁÁÁÁÁÁÁ

Divider ÁÁÁÁÁÁÁÁÁÁ

Frequency ÁÁÁÁÁÁÁÁÁÁÁÁ

Divider ÁÁÁÁÁÁÁÁÁÁ

Frequency

ÁÁÁÁÁÁÁÁÁÁÁÁ

10.24 MHz ÁÁÁÁÁÁÁÁÁÁ

2048 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

5.0 kHz ÁÁÁÁÁÁÁÁÁÁ

31 ÁÁÁÁÁÁÁÁÁÁ

165.16 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.129 kHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

10.24 MHz ÁÁÁÁÁÁÁÁÁÁ

1024 ÁÁÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁÁ

5.0 kHz ÁÁÁÁÁÁÁÁÁÁ

31 ÁÁÁÁÁÁÁÁÁÁ

165.16 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.129 kHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

11.15 MHz ÁÁÁÁÁÁÁÁÁÁ

2230 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

5.0 kHz ÁÁÁÁÁÁÁÁÁÁ

34 ÁÁÁÁÁÁÁÁÁÁ

163.97 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.099 kHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

12.00 MHz ÁÁÁÁÁÁÁÁÁÁ

2400 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

5.0 kHz ÁÁÁÁÁÁÁÁÁÁ

36 ÁÁÁÁÁÁÁÁÁÁ

166.67 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.167 kHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

11.15 MHz ÁÁÁÁÁÁÁÁÁÁ

1784 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

6.25 kHz ÁÁÁÁÁÁÁÁÁÁ

34 ÁÁÁÁÁÁÁÁÁÁ

163.97 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.099 kHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

11.15 MHz ÁÁÁÁÁÁÁÁÁÁ

446 ÁÁÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁÁ

6.25 kHz ÁÁÁÁÁÁÁÁÁÁ

34 ÁÁÁÁÁÁÁÁÁÁ

163.97 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.099 kHz

ÁÁÁÁÁÁÁÁÁÁÁÁ

11.15 MHz ÁÁÁÁÁÁÁÁÁÁ

446 ÁÁÁÁÁÁÁÁÁÁ

25 ÁÁÁÁÁÁÁÁÁÁ

1.0 kHz ÁÁÁÁÁÁÁÁÁÁ

34 ÁÁÁÁÁÁÁÁÁÁ

163.97 kHzÁÁÁÁÁÁÁÁÁÁÁÁ

40 ÁÁÁÁÁÁÁÁÁÁ

4.099 kHz

Figure 115. Mode Control Register

StdbyMode

4–b VolumeControl

RxMode

TxMute

Rx Mute

SP Mute

ALCDisable

LimiterDisable

ClkDisable0

MPUClk 1

MPUClk 0

MPUClk 2

Reference Frequency SelectionThe “LO2 In” and “LO2 Out” pins form a reference oscillator

when connected to an external parallel–resonant crystal. Thereference oscillator is also the second local oscillator for theRF Receiver. Figure 114 shows the relationship betweendifferent crystal frequencies and reference frequencies forcordless phone applications in various countries. “LO2 In”may also serve as an input for an externally generatedreference signal which is ac–coupled. The switchedcapacitor filter 6–bit programmable counter must beprogrammed for the crystal frequency that is selected sincethis clock is derived from the crystal frequency and must beheld constant regardless of the crystal that is selected. Theactual switched capacitor clock divider ratio is twice theprogrammed divider ratio due to the a fixed divide by 2.0 afterthe programmable counter. The scrambler mixer modulationfrequency is the switched capacitor clock divided by 40 forthe MC13110A.

Mode Control RegisterThe power saving modes; mutes, disables, volume

control, and microprocessor clock output frequency are all

set by the Mode Control Register. Operation of the ControlRegister is explained in Figures 115 through 119.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 116. Mute and Disable Control Bit Descriptions

ÁÁÁÁÁÁÁÁÁÁÁÁ

ALC Disable ÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Automatic Level Control DisabledNormal Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Limiter DisableÁÁÁÁÁÁ

10

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Limiter DisabledNormal Operation

ÁÁÁÁÁÁÁÁÁÁÁÁ

Clock Disable(MC13110A/111A)

ÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MPU Clock Output DisabledNormal OperationÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

Tx MuteÁÁÁÁÁÁ

10

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Transmit Channel MutedNormal Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx Mute ÁÁÁÁÁÁ

10

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Receive Channel MutedNormal Operation

ÁÁÁÁÁÁÁÁÁÁÁÁ

SP Mute ÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Speaker Amp MutedNormal Operation

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 48: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

48 MOTOROLA RF/IF DEVICE DATA

Power Saving Operating ModesWhen the MC13110A or MC13111A are used in a handset,

it is important to conserve power in order to prolong batteryl i fe . There are f ive modes of operat ion for theMC13110A/MC13111A; Active, Rx, Standby, Interrupt, andInactive. They are Active, Rx, and Standby. In the Activemode, all circuit blocks are powered. In the Rx mode, allcircuitry is powered down except for those circuit sectionsneeded to receive a transmission from the base. In theStandby and Interrupt Modes, all circuitry is powered downexcept for the circuitry needed to provide the clock output forthe microprocessor. In the Inactive Mode, all circuitry ispowered down except the MPU serial interface. Latchmemory is maintained in all modes. Figure 118 shows thecontrol register bit values for selection of each power savingmode and Figure 118 shows the circuit blocks which arepowered in each of these operating modes.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 117. Power Saving Mode SelectionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁStdby Mode Bit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRx Mode Bit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

“CD Out/Hardware

Interrupt” Pin

ÁÁÁÁÁÁÁÁÁÁÁÁ

PowerSavingModeÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMC13110A/MC13111AÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁX

ÁÁÁÁÁÁÁÁActiveÁÁÁÁÁÁ

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁX

ÁÁÁÁÁÁÁÁRxÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁX

ÁÁÁÁÁÁÁÁStandbyÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1 or HighImpedance

ÁÁÁÁÁÁÁÁÁÁÁÁ

Inactive

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

InterruptÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MC13110B/MC13111B [Note 14]ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

X ÁÁÁÁÁÁÁÁ

Active

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

X ÁÁÁÁÁÁÁÁ

RxÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

X ÁÁÁÁÁÁÁÁÁÁ

X ÁÁÁÁÁÁÁÁ

Standby

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

Interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTES: 13. “X” is a don’t care14. MPU Clock Out is ”Always On”

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 118. Circuit Blocks PoweredDuring Power Saving Modes

ÁÁÁÁÁÁÁ MC13110A/MC13111AÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MC13110A/MC13111A

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Circuit Blocks ÁÁÁÁÁÁ

ActiveÁÁÁÁÁÁ

RxÁÁÁÁÁÁÁÁ

Standby ÁÁÁÁÁÁ

Inactive

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

“PLL Vref” Regulated Voltage

ÁÁÁÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁÁÁÁÁ

X1 ÁÁÁÁÁÁÁÁÁ

X1, 2

ÁÁÁÁÁÁÁMPU Serial Interface ÁÁÁXÁÁÁXÁÁÁÁX ÁÁÁX2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ2nd LO Oscillator

ÁÁÁÁÁÁXÁÁÁÁÁÁXÁÁÁÁÁÁÁÁX

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁMPU Clock Output

ÁÁÁÁÁÁ

XÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RF Receiver and 1st LO VCO

ÁÁÁÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRx PLL ÁÁÁXÁÁÁXÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁCarrier DetectÁÁÁÁÁÁXÁÁÁÁÁÁXÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁData Amp

ÁÁÁÁÁÁ

XÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁLow Battery Detect ÁÁÁ

ÁÁÁXÁÁÁÁÁÁ

XÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁTx PLL ÁÁÁ

ÁÁÁXÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁRx and Tx Audio PathsÁÁÁ

ÁÁÁXÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNOTE: 15. In Standby and Inactive Modes, “PLL Vref” remains powered

but is not regulated. It will fluctuate with VCC.

Power Saving ApplicationIn some handset applications it may be desirable to power

down all circuitry including the microprocessor (MPU). Firstput the MC13110A/MC13111A into the Inactive mode. Thisturns off the MPU Clock Output (see Figure 119) and disablesthe microprocessor. Once a command is given to switch theIC into an “Inactive” mode, the MPU Clock output will remainactive for a minimum of one reference counter cycle (about200 µs) and up to a maximum of two reference countercycles (about 400 µs). This is performed in order to give theMPU adequate time to power down.

An external timing circuit should be used to initiate theturn–on sequence. The “CD Out” pin has a dual function. Inthe Active and Rx modes it performs the carrier detectfunction. In the Standby and Inactive modes the carrierdetect circuit is disabled and the “CD Out” pin is in a “High”state, because of an external pull–up resistor. In the Inactivemode, the “CD Out” pin is the input for the hardware interruptfunction. When the “CD Out” pin is pulled “low”, by theexternal timing circuit, the IC switches from the Inactive to theInterrupt mode. Thereby turning on the MPU Clock Output.The MPU can then resume control of the IC. The “CD Out”pin must remain low until the MPU changes the operatingmode from Interrupt to Standby, Active, or Rx modes.A

RC

HIV

E IN

FO

RM

AT

ION

AR

CH

IVE

INF

OR

MA

TIO

N

Page 49: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

49MOTOROLA RF/IF DEVICE DATA

Figure 119. Power Saving Application

MPU ClkDivider

Clk In

SPI Port

Clk Out

SPI Port

LO2 Out

LO2 In

MC13110A/MC13111A

Microprocessor

CD Out/HW Interrupt

Interrupt

External Timer

VCC

Mode

EN

CD Out/Hardware Interrupt

MPU Clock Out

CD Out Low

Delay after MPU selects Inactive Mode to when CD turns off.

CD Turns Off

External TimerPulls Pin Low

MPU InitiatesMode Change

Timer OutputDisabled

MPU InitiatesInactive Mode

“MPU Clock Out” remains active for a minimum of one count of referencecounter after “CD Out/Hardware Interrupt” pin goes high

Active/Rx Inactive Interrupt Standby/Rx/Active

MPU “Clk Out” Divider ProgrammingThe “Clk Out” signal is derived from the second local

oscillator. It can be used to drive a microprocessor (MPU) clockinput. This will eliminate the need for a separate crystal to drivethe MPU, thus reducing system cost. Figure 120 shows therelationship between the second LO crystal frequency and the

clock output for each divide value. Figure 121 shows the “ClkOut” register bit values. With a 10.24 MHz crystal, the divide by312.5 gives the same clock frequency as a clock crystal andallows the MPU to display the time on a LCD display withoutadditional external components.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 120. Clock Output ValuesÁÁÁÁÁÁÁÁÁÁCrystal

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock Output Divider

ÁÁÁÁÁÁÁÁÁÁ

CrystalFrequencyÁÁÁÁÁ

ÁÁÁÁÁ2 ÁÁÁÁÁÁÁÁ

2.5 ÁÁÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁÁ

20 ÁÁÁÁÁÁÁÁ

80 ÁÁÁÁÁÁÁÁÁÁ

312.5

ÁÁÁÁÁÁÁÁÁÁ

10.24 MHzÁÁÁÁÁÁÁÁÁÁ

5.120 MHzÁÁÁÁÁÁÁÁ

4.096 MHzÁÁÁÁÁÁÁÁÁÁ

3.413 MHzÁÁÁÁÁÁÁÁÁÁ

2.560 MHz ÁÁÁÁÁÁÁÁ

2.048 MHzÁÁÁÁÁÁÁÁÁÁ

512 kHz ÁÁÁÁÁÁÁÁ

128 kHzÁÁÁÁÁÁÁÁÁÁ

32.768 kHz

ÁÁÁÁÁÁÁÁÁÁ

11.15 MHzÁÁÁÁÁÁÁÁÁÁ

5.575 MHzÁÁÁÁÁÁÁÁ

4.460 MHzÁÁÁÁÁÁÁÁÁÁ

3.717 MHzÁÁÁÁÁÁÁÁÁÁ

2.788 MHz ÁÁÁÁÁÁÁÁ

2.230 MHzÁÁÁÁÁÁÁÁÁÁ

557 kHz ÁÁÁÁÁÁÁÁ

139 kHzÁÁÁÁÁÁÁÁÁÁ

35.680 kHz

ÁÁÁÁÁÁÁÁÁÁ

12.00 MHzÁÁÁÁÁÁÁÁÁÁ

6.000 MHzÁÁÁÁÁÁÁÁ

4.800 MHzÁÁÁÁÁÁÁÁÁÁ

4.000 MHzÁÁÁÁÁÁÁÁÁÁ

3.000 MHz ÁÁÁÁÁÁÁÁ

2.400 MHzÁÁÁÁÁÁÁÁÁÁ

600 kHz ÁÁÁÁÁÁÁÁ

150 kHzÁÁÁÁÁÁÁÁÁÁ

38.400 kHz

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 50: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

50 MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 121. Clock Output DividerÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MPU Clk Bit #2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MPU Clk Bit #1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MPU Clk Bit #0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clk Out Divider Value

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

3

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

5

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

2.5

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

20

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

80

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

312.5

MPU “Clk Out” Power–Up Default Divider ValueThe power–up default divider value is “divide by 5”. This

provides a MPU clock of about 2.0 MHz after initialpower–up. The reason for choosing a relatively low clockfrequency at in i t ia l power–up is because somemicroprocessors operate using a 3.0 V power supply andhave a maximum clock frequency of 2.0 MHz. After initialpower–up, the MPU can change the clock divider value andset the clock to the desired operating frequency. Special carewas taken in the design of the clock divider to insure that the

transition between one clock divider value and another is“smooth” (i.e. there will be no narrow clock pulses to disturbthe MPU).

MPU “Clk Out” Radiated Noise on Circuit BoardThe clock line running between the MC13110A or

MC13111A and the microprocessor has the potential toradiate noise. Problems in the system can occur, especially ifthe clock is a square wave digital signal with large highfrequency harmonics. In order to minimize the radiated noise,a 1000 Ω resistor is included on–chip in series with the “ClkOut” output driver. A small capacitor or inductor with acapacitor can be connected to the “Clk Out” line on the PCBto form a one or two pole low pass filter. This filter shouldsignificantly reduce noise radiated by attenuating the highfrequency harmonics on the signal line. The filter can also beused to attenuate the signal level so that it is only as large asrequired by the MPU clock input. To further reduce radiatednoise, the PCB signal trace length should be kept to aminimum.

Volume Control ProgrammingThe volume control adjustable gain block can be

programmed in 2 dB gain steps from –14 dB to +16 dB. Thepower–up default value for the MC13110A and MC13111A is0 dB. (see Figure 122)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 122. Volume Control

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Volume ControlBit #3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Volume ControlBit #2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Volume ControlBit #1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Volume ControlBit #0

ÁÁÁÁÁÁÁÁ

VolumeControl #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain/AttenuationAmount

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–14 dBÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–12 dBÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–10 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–8 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–6 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–4 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

6ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–2 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

7ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

8ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

9ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

11ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

12ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

13ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

12 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

14ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

14 dBÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

15ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16 dB

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 51: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

51MOTOROLA RF/IF DEVICE DATA

Gain Control RegisterThe gain control register contains bits which control the Tx

Voltage Gain, Rx Voltage Gain, and Carrier Detect threshold.Operation of these latch bits are explained in Figures 123,124 and 125.

Tx and Rx Gain ProgrammingThe Tx and Rx audio signal paths each have a

programmable gain block. If a Tx or Rx voltage gain, other

than the nominal power–up default, is desired, it can beprogrammed through the MPU interface. Alternately, theseprogrammable gain blocks can be used during final test of thetelephone to electronically adjust for gain tolerances in thetelephone system (see Figure 124). In this case, the Tx andRx gain register values should be stored in ROM during finaltest so that they can be reloaded each time the IC is poweredup.

Figure 123. Gain Control Latch Bits

5–b Tx Gain Control 5–b Rx Gain Control 5–b CD Threshold Control0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 124. T x and Rx Gain Control

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain ControlBit #4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain ControlBit #3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain ControlBit #2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain ControlBit #1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain ControlBit #0

ÁÁÁÁÁÁÁÁÁÁÁÁ

GainControl #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Gain/AttenuationAmount

ÁÁÁÁÁÁÁÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁÁÁÁÁ

– ÁÁÁÁÁÁÁÁ

<6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–9 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–9 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–8 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–7 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

9 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–6 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–5 dBÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ11

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–4 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ12

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–3 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ13

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–2 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ14

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–1 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ15

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ0 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ16

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ1 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ17

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ2 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ18

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ3 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ19

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ4 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ20

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ5 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ21

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ6 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ22

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ7 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ23

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ8 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ24

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ9 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ25

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ10 dBÁÁÁÁÁÁ

ÁÁÁÁÁÁ–ÁÁÁÁÁÁÁÁÁÁÁÁ–

ÁÁÁÁÁÁÁÁÁÁ–

ÁÁÁÁÁÁÁÁÁÁÁÁ–

ÁÁÁÁÁÁÁÁÁÁÁÁ–

ÁÁÁÁÁÁÁÁ>25

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ10 dB

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 52: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

52 MOTOROLA RF/IF DEVICE DATA

Carrier Detect Threshold ProgrammingThe “CD Out” pin gives an indication to the microprocessor

if a carrier signal is present on the selected channel. Thenominal value and tolerance of the carrier detect threshold isgiven in the carrier detect specification section of thisdocument. If a different carrier detect threshold value isdesired, it can be programmed through the MPU interface asshown in Figure 125 below. Alternately, the carrier detectthreshold can be electronically adjusted during final test ofthe telephone to reduce the tolerance of the carrier detect

threshold. This is done by measuring the threshold and thenby adjusting the threshold through the MPU interface. In thiscase, it is necessary to store the carrier detect register valuein ROM so that the CD register can be reloaded each time thecombo IC is powered up. If a preamp is used before the firstmixer it may be desirable to scale the carrier detect range byconnecting an external resistor from the “RSSI” pin toground. The internal resistor is 187 kΩ.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFigure 125. Carrier Detect Threshold ControlÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDBit #4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDBit #3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDBit #2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDBit #1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDBit #0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CDControl #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Carrier DetectThreshold

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–20 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–19 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–18 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–17 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–16 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–15 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–14 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–13 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–12 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

9 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–11 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–10 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

11 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–9 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

12 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–8 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

13 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–7 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

14 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–6 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

15 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–5 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

16 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–4 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

17 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–3 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

18 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–2 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

19 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

–1 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

20 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

21 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

22 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

23 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

24 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

25 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

26 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

27 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

7 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

28 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

29 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

9 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

30 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10 dB

ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

31 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

11 dB

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 53: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

53MOTOROLA RF/IF DEVICE DATA

Clock Divider/Voltage Adjust RegisterThis register controls the divider value for the

programmable switched capacitor filter clock divider, the lowbattery detect threshold select, the voltage reference adjust,and the scrambler bypass mode (MC13110A only).Operation is explained in Figures 126 through 133. Figure128 describes the operation of the Tx and Rx Audio bits. Notethe power–up default bit is set to <0>, which is the scramblerbypass mode.

Low Battery DetectThe low battery detect circuit can be operated in

programmable and non–programmable threshold modes.

The non–programmable threshold mode is only available inthe 52 QFP package. In this mode, there are two low batterydetect comparators and the threshold values are set byexternal resistor dividers which are connected to the REF1and REF2 pins. In the programmable threshold mode,several different threshold levels may be selected throughthe “Low Battery Detect Threshold Register” as shown in Figure127. The power–on default value for this register is <0,0,0> andis the non–programmable mode. Figure 129 shows equivalentschematics for the programmable and non–programmableoperating modes.

Figure 126. Clock Divider/Voltage Adjust Latch Bits

0 06–b Switched

Capacitor Filter Clock Counter Latch4–b Voltage

Reference Adjust3–b Low Battery

Detect Threshold Select0 MSB MSBLSB LSB

(MC13111A)

Tx SblBypass

Rx SblBypass

6–b SwitchedCapacitor Filter Clock Counter Latch

4–b VoltageReference Adjust

3–b Low BatteryDetect Threshold Select0 MSB MSBLSB LSB

(MC13110A)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 127. Low Battery Detect Threshold SelectionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low BatteryDetect

ThresholdSelect Bit #2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low BatteryDetect

ThresholdSelect Bit #1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Low BatteryDetect

ThresholdSelect Bit #0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Select #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Operating Mode

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Nominal LowBattery Detect

Threshold Value (V)

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Non–Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

N/A

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2.850

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2.938

ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3.025

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3.200

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3.288

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3.375

ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Programmable ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3.463

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTE: 17. Nominal Threshold Value is before electronic adjustment.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 128. MC13110A Bypass Mode Bit Description(MC13110A Only)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Scrambler

Bypass

ÁÁÁÁÁÁ

1

0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx Scrambler Post–Mixer LPF and Mixer Bypassed

Normal Operation with Tx Scrambler

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx Scrambler

Bypass

ÁÁÁÁÁÁ

1

0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx Scrambler Post–Mixer LPF and Mixer Bypassed

Normal Operation Rx Scrambler

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 54: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

54 MOTOROLA RF/IF DEVICE DATA

Figure 129. Low Battery Detect Equivalent Schematics

Ref2

Ref 1

VB

50

51

52

BD2 Out

BD1 Out

16

14

Vref

Non–Programmable Threshold Mode: 52–QFP Package

VB

47

VCC Audio

BD Out

21

14

Vref

Programmable Threshold Mode: 48–LQFP Package

VB

52

VCC Audio

BD2 Out

23

16

Vref

Programmable Threshold Mode: 52–QFP Package

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 55: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

55MOTOROLA RF/IF DEVICE DATA

Voltage Reference AdjustmentAn internal 1.5 V bandgap voltage reference provides the

voltage reference for the “BD1 Out” and “BD2 Out” low batterydetect circuits, the “PLL Vref” voltage regulator, the “VB”reference, and all internal analog ground references. Theinitial tolerance of the bandgap voltage reference is ±6%. Thetolerance of the internal reference voltage can be improved to±1.5% through MPU serial interface programming. Duringfinal test of the telephone, the battery detect threshold ismeasured. Then, the internal reference voltage value isadjusted electronically through the MPU serial interface toachieve the desired accuracy level. The voltage referenceregister value should be stored in ROM during final test sothat it can be reloaded each time the MC13110A orMC13111A is powered up (see Figure 130).

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 130. Bandgap Voltage Reference Adjustment

ÁÁÁÁÁÁÁÁ

Vref Adj.Bit #3ÁÁÁÁÁÁ

Vref Adj.Bit #2ÁÁÁÁÁÁÁÁ

Vref Adj.Bit #1ÁÁÁÁÁÁ

Vref Adj.Bit #0ÁÁÁÁÁÁÁÁ

Vref Adj.#ÁÁÁÁÁÁÁÁ

Vref Adj.AmountÁÁÁÁ

ÁÁÁÁ0ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

–9.0%ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

–7.8%ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁ

–6.6%

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁ

–5.4%

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁ

–4.2%

ÁÁÁÁ0 ÁÁÁ1ÁÁÁÁ0 ÁÁÁ1ÁÁÁÁ5 ÁÁÁÁ–3.0%ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

6ÁÁÁÁÁÁÁÁ

–1.8%ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

7ÁÁÁÁÁÁÁÁ

–0.6%ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁ

+0.6 %

ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

9 ÁÁÁÁÁÁÁÁ

+1.8 %

ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁ

+3.0 %

ÁÁÁÁ1 ÁÁÁ0ÁÁÁÁ1 ÁÁÁ1ÁÁÁÁ11 ÁÁÁÁ+4.2 %ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁ12

ÁÁÁÁÁÁÁÁ+5.4 %ÁÁÁÁ

ÁÁÁÁ1ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

13ÁÁÁÁÁÁÁÁ

+6.6 %ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

14 ÁÁÁÁÁÁÁÁ

+7.8 %

ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

15 ÁÁÁÁÁÁÁÁ

+9.0 %

Switched Capacitor Filter Clock ProgrammingA block diagram of the switched capacitor filter clock

divider is show in Figure 131. There is a fixed divide by 2 afterthe programmable divider. The switched capacitor filter clockvalue is given by the following equation;

(SCF Clock) = F(2nd LO) / (SCF Divider Value * 2).

The scrambler modulation clock frequency (SMCF) isproportional to the SCF clock. The following equation definesits value:

SMCF = (SCF Clock)/40

The SCF divider should be set to a value which brings theSCF Clock as close to 165.16 kHz as possible. This is basedon the 2nd LO frequency which is chosen in Figure 114.

Figure 131. SCF Clock Divider Circuit

LO2 Out

6–bProgrammable

SCF Clock Counter

LO2 In

2nd LOCrystal

SCFClockDivide

By 2.0

ScramblerModulationClock

DivideBy 40

MC13110Aonly

Corner Frequency Programming for MC13110A andMC13111A

Four different corner frequencies may be selected byprogramming the SCF Clock divider as shown in Figures 132and 133. It is important to note, that all filter cornerfrequencies will change proportionately with the SCF ClockFrequency and Scrambler Modulation Frequency. Thepower–up default SCF Clock divider value is 31.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 132. Corner Frequency Programming for 10.240 MHz 2nd LO

MC13110AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MC13111AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SCF ClockDivider

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TotalDivideValue

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SCF ClockFreq. (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx UpperCorner

Frequency (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx UpperCorner

Frequency (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ScramblerModulationFrequency

(Clk/40) (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ScramblerLower Corner

Frequency (Hz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ScramblerUpper Corner

Frequency (kHz)ÁÁÁÁÁÁÁÁÁÁ

29ÁÁÁÁÁÁÁÁ

58ÁÁÁÁÁÁÁÁ

176.55ÁÁÁÁÁÁÁÁÁÁÁÁ

4.147ÁÁÁÁÁÁÁÁÁÁ

3.955ÁÁÁÁÁÁÁÁÁÁÁÁ

4.414ÁÁÁÁÁÁÁÁÁÁ

267.2ÁÁÁÁÁÁÁÁÁÁÁÁ

3.902ÁÁÁÁÁÁÁÁÁÁ

2930 ÁÁÁÁÁÁÁÁ

5860 ÁÁÁÁÁÁÁÁ

176.55170.67 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

4.1474.008 ÁÁÁÁÁ

ÁÁÁÁÁ

3.9553.823 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

4.4144.267 ÁÁÁÁÁ

ÁÁÁÁÁ

267.2258.3 ÁÁÁÁÁÁÁÁÁÁÁÁ

3.9023.772

ÁÁÁÁÁ31 ÁÁÁÁ62 ÁÁÁÁ165.16 ÁÁÁÁÁÁ3.879 ÁÁÁÁÁ3.700 ÁÁÁÁÁÁ4.129 ÁÁÁÁÁ250.0 ÁÁÁÁÁÁ3.650ÁÁÁÁÁÁÁÁÁÁ

32ÁÁÁÁÁÁÁÁ

64ÁÁÁÁÁÁÁÁ

160.00ÁÁÁÁÁÁÁÁÁÁÁÁ

3.758ÁÁÁÁÁÁÁÁÁÁ

3.584ÁÁÁÁÁÁÁÁÁÁÁÁ

4.000ÁÁÁÁÁÁÁÁÁÁ

242.2ÁÁÁÁÁÁÁÁÁÁÁÁ

3.536ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTE: 18. All filter corner frequencies have a tolerance of ±3%.19. Rx and Tx Upper Corner Frequencies are the same corner frequencies for the MC13110A in scrambler bypass

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 56: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

56 MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 133. Corner Frequency Programming for 11.15 MHz 2nd LO

MC13110AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

MC13111AÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SCF ClockDivider

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TotalDivideValue

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SCF ClockFreq. (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Rx UpperCorner

Frequency (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tx UpperCorner

Frequency (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ScramblerModulationFrequency

(Clk/40) (kHz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ScramblerLower Corner

Frequency (Hz)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ScramblerUpper Corner

Frequency (kHz)ÁÁÁÁÁÁÁÁÁÁ32

ÁÁÁÁÁÁÁÁ64

ÁÁÁÁÁÁÁÁ174.22

ÁÁÁÁÁÁÁÁÁÁÁÁ4.092

ÁÁÁÁÁÁÁÁÁÁ3.903

ÁÁÁÁÁÁÁÁÁÁÁÁ4.355

ÁÁÁÁÁÁÁÁÁÁÁÁ263.7

ÁÁÁÁÁÁÁÁÁÁÁÁ3.850ÁÁÁÁÁ

ÁÁÁÁÁ

3233 ÁÁÁÁÁÁÁÁ

6466 ÁÁÁÁÁÁÁÁ

174.22168.94 ÁÁÁÁÁÁÁÁÁÁÁÁ

4.0923.968 ÁÁÁÁÁ

ÁÁÁÁÁ

3.9033.785 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

4.3554.223 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

263.7255.7 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

3.8503.733

ÁÁÁÁÁÁÁÁÁÁ

34 ÁÁÁÁÁÁÁÁ

68 ÁÁÁÁÁÁÁÁ

163.97 ÁÁÁÁÁÁÁÁÁÁÁÁ

3.851 ÁÁÁÁÁÁÁÁÁÁ

3.673 ÁÁÁÁÁÁÁÁÁÁÁÁ

4.099 ÁÁÁÁÁÁÁÁÁÁÁÁ

248.2 ÁÁÁÁÁÁÁÁÁÁÁÁ

3.624

ÁÁÁÁÁ35ÁÁÁÁ

70ÁÁÁÁ

159.29ÁÁÁÁÁÁ

3.741ÁÁÁÁÁ

3.568ÁÁÁÁÁÁ

3.982ÁÁÁÁÁÁ

241.1ÁÁÁÁÁÁ

3.520ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

NOTES: 20. All filter corner frequencies have a tolerance of ±3%.21. Rx and Tx Upper Corner Frequencies are the same corner frequencies for the MC13110A in scrambler bypass

Figure 134. Auxiliary Register Latch Bits

4–b 1st LO CapacitorSelection3–b Test ModeMSB LSB MSB LSB000000000

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 135. Digital Test Mode Description

ÁÁÁÁÁÁTM #ÁÁÁÁÁÁTM 2ÁÁÁÁÁÁTM 1ÁÁÁÁÁÁTM 0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Counter Under Test orTest Mode Option

ÁÁÁÁÁÁÁÁÁÁ

“T x VCO”Input Signal

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ“Clk Out” Output ExpectedÁÁÁ

ÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNormal Operation

ÁÁÁÁÁÁÁÁÁÁ>200 mVpp

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ–ÁÁÁ

ÁÁÁ1ÁÁÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁRx Counter

ÁÁÁÁÁÁÁÁÁÁ0 to 2.5 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput Frequency/Rx Counter ValueÁÁÁ

ÁÁÁ2ÁÁÁÁÁÁ0ÁÁÁÁÁÁ1ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTx Counter

ÁÁÁÁÁÁÁÁÁÁ0 to 2.5 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput Frequency/Tx Counter ValueÁÁÁ

ÁÁÁ3ÁÁÁÁÁÁ0ÁÁÁÁÁÁ1ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReference Counter + Divide by 4/25

ÁÁÁÁÁÁÁÁÁÁ0 to 2.5 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput Frequency/Reference Counter Value * 100ÁÁÁ

ÁÁÁ4ÁÁÁÁÁÁ1ÁÁÁÁÁÁ0ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSC Counter

ÁÁÁÁÁÁÁÁÁÁ0 to 2.5 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁInput Frequency/SC Counter Value * 2ÁÁÁ

ÁÁÁ5ÁÁÁÁÁÁ1ÁÁÁÁÁÁ0ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁALC Gain = 10 Option

ÁÁÁÁÁÁÁÁÁÁN/A

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁN/AÁÁÁ

ÁÁÁ6ÁÁÁÁÁÁ1ÁÁÁÁÁÁ1ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁALC Gain = 25 Option

ÁÁÁÁÁÁÁÁÁÁN/A

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁN/A

Auxiliary RegisterThe auxiliary register contains a 4–bit First LO Capacitor

Selection latch and a 3–bit Test Mode latch. Operation ofthese latch bits are explained in Figures 134, 135 and 136.

Test ModesTest modes are be selected through the 3–bit Test Mode

Register. In test mode, the “Tx VCO” input pin is multiplexedto the input of the counter under test. The output of thecounter under test is multiplexed to the “Clk Out” output pinso that each counter can be individually tested. Make suretest mode bits are set to “0’s” for normal operation. Testmode operation is described in Figure 135. During normaloperation, the “Tx VCO” input can be a minimum of 200 mVppat 80 MHz and should be AC coupled. Input signals should bestandard logic levels of 0 to 2.5 V and a maximum frequency of16 MHz.

First Local Oscillator Programmable Capacitor SelectionThere is a very large frequency difference between the

minimum and maximum channel frequencies in the 25Channel U.S. standard. The internal varactor adjustment

range is not large enough to accommodate this largefrequency span. An internal capacitor with 15 programmablecapacitor values can be used to cover the 25 channelfrequency span without the need to add external capacitorsand switches. The programmable internal capacitor can alsobe used to eliminate the need to use an external variablecapacitor to adjust the 1st LO center frequency duringtelephone assembly. Figure 32 shows the schematic of the1st LO tank circuit. Figure 136 shows the register control bitvalues.

The internal programmable capacitor is composed of amatrix bank of capacitors that are switched in as desired.Programmable capacitor values between about 0 and 16 pFcan be selected in steps of approximately 1.1 pF. The internalparallel resistance values in the table can be used tocalculate the quality factor (Q) of the oscillator if the Q of theexternal inductor is known. The temperature coefficient of thevaractor is 0.08%/°C. The temperature coefficient of theinternal programmable capacitor is negligible. Tolerance onthe varactor and programmable capacitor values is ±15%.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 57: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

57MOTOROLA RF/IF DEVICE DATA

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Figure 136. First Local Oscillator Internal Capacitor Selection

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1st LOCap.Bit 3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1st LOCap.Bit 2

ÁÁÁÁÁÁÁÁÁÁÁÁ

1st LOCap.Bit 1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1st LOCap.Bit 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1st LOCap.

Select

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

InternalProgrammable

CapacitorValue (pF)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VaractorValue over

0.3 to 2.5 V (pF)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EquivalentInternalParallel

Resistanceat 40 MHz (kΩ )

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

EquivalentInternalParallel

Resistanceat 51 MHz (kΩ )

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ

0.0 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

1200 ÁÁÁÁÁÁÁÁÁÁÁÁ

736ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁ

0.6 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

79.3 ÁÁÁÁÁÁÁÁÁÁÁÁ

48.8

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ

1.7 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

131 ÁÁÁÁÁÁÁÁÁÁÁÁ

80.8

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁÁ

2.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

31.4 ÁÁÁÁÁÁÁÁÁÁÁÁ

19.3

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁ

3.9 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

33.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

20.8

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁÁ

4.9 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

66.6 ÁÁÁÁÁÁÁÁÁÁÁÁ

41

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

4 ÁÁÁÁÁÁÁÁÁÁ

6.0 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

49.9 ÁÁÁÁÁÁÁÁÁÁÁÁ

30.7

ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁ

7.1 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

40.7 ÁÁÁÁÁÁÁÁÁÁÁÁ

25.1

ÁÁÁÁ1 ÁÁÁÁ0 ÁÁÁ0ÁÁÁÁ0 ÁÁÁÁ8 ÁÁÁÁÁ8.2 ÁÁÁÁÁÁ9.7 to 5.8 ÁÁÁÁÁÁ27.1 ÁÁÁÁÁÁ16.7ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁ0ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁÁÁÁ9

ÁÁÁÁÁÁÁÁÁÁ9.4

ÁÁÁÁÁÁÁÁÁÁÁÁ9.7 to 5.8

ÁÁÁÁÁÁÁÁÁÁÁÁ21.6

ÁÁÁÁÁÁÁÁÁÁÁÁ13.3ÁÁÁÁ

ÁÁÁÁ1ÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁ1ÁÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁ10

ÁÁÁÁÁÁÁÁÁÁ10.5

ÁÁÁÁÁÁÁÁÁÁÁÁ9.7 to 5.8

ÁÁÁÁÁÁÁÁÁÁÁÁ20.5

ÁÁÁÁÁÁÁÁÁÁÁÁ12.6ÁÁÁÁ

ÁÁÁÁ1ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

11ÁÁÁÁÁÁÁÁÁÁ

11.6ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8ÁÁÁÁÁÁÁÁÁÁÁÁ

18.6ÁÁÁÁÁÁÁÁÁÁÁÁ

11.5ÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

12ÁÁÁÁÁÁÁÁÁÁ

12.7ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8ÁÁÁÁÁÁÁÁÁÁÁÁ

17.2ÁÁÁÁÁÁÁÁÁÁÁÁ

10.6ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

0ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

13 ÁÁÁÁÁÁÁÁÁÁ

13.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

15.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁ

14 ÁÁÁÁÁÁÁÁÁÁ

14.9 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

15.3 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.4

ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ

1ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁ

15 ÁÁÁÁÁÁÁÁÁÁ

16.0 ÁÁÁÁÁÁÁÁÁÁÁÁ

9.7 to 5.8 ÁÁÁÁÁÁÁÁÁÁÁÁ

14.2 ÁÁÁÁÁÁÁÁÁÁÁÁ

8.7

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 58: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

58 MOTOROLA RF/IF DEVICE DATA

OTHER APPLICATIONS INFORMATION

PCB Board Lay–Out ConsiderationsThe ideal printed circuit board (PCB) lay out would be

double–sided with a full ground plane on one side. Theground plane would be divided into separate sections toprevent any audio signal from feeding into the first localoscillator via the ground plane. Leaded components, canlikewise, be inserted on the ground plane side to improveshielding and isolation from the circuit side of the PCB. Theopposite side of the PCB is typically the circuit side. It has theinterconnect traces and surface mount components. In caseswhere cost allows, it may be beneficial to use multi–layerboards to further improve isolation of components andsensitive sections (i.e. RF and audio). For the CT–0 band, itis also permissible to use single–sided PC layouts, but withcontinuous full ground fill in and around the components.

The proper placement of certain components specified inthe application circuit may be very critical. In a lay–outdesign, these components should be placed before the otherless critical components are inserted. It is also imperativethat all RF paths be kept as short as possible. Finally, theMC13110A and MC13111A ground pins should be tied toground at the pins and VCC pins should have adequatedecoupling to ground as close to the IC as possible. In mixedmode systems where digital and RF/Analog circuitry arepresent, the VCC and VEE buses need to be ac–decoupledand isolated from each other. The design must also takegreat caution to avoid interference with low level analogcircuits. The receiver can be particularly susceptible tointerference as they respond to signals of only a fewmicrovolts. Again, be sure to keep the dc supply lines for thedigital and analog portions separate. Avoid ground pathscarrying common digital and analog currents, as well.

Component SelectionThe evaluation circuit schematics specify particular

components that were used to achieve the results shown inthe typical curves and tables, but alternate componentsshould give similar results. The MC13110A and MC13111AIC are capable of matching the sensitivity, IMD, adjacentchannel rejection, and other performance criteria of amulti–chip analog cordless telephone system. For the mostpart, the same external components are used as in themulti–chip solution.

VB and PLL V refVB is an internally generated bandgap voltage. It functions

as an ac reference point for the operational amplifiers in theaudio section as well as for the battery detect circuitry. Thispin needs to be sufficiently filtered to reduce noise andprevent crosstalk between Rx audio to Tx audio signal paths.A practical capacitor range to choose that will minimizecrosstalk and noise relative to start up time is 0.5 µf to 10 µf.The start time for a 0.5 µf capacitor is approximately 5.0 ms,while a 10µf capacitor is about 10 ms.

The “PLL Vref” pin is the internal supply voltage for the Rxand Tx PLL’s. It is regulated to a nominal 2.5 V. The “VCCAudio” pin is the supply voltage for the internal voltageregulator. Two capacitors with 10 µF and 0.01 µF values mustbe connected to the “PLL Vref” pin to filter and stabilize thisregulated voltage. The “PLL Vref” pin may be used to powerother IC’s as long as the total external load current does notexceed 1.0 mA. The tolerance of the regulated voltage isinitially ±8.0%, but is improved to ±4.0% after the internalBandgap voltage reference is adjusted electronically throughthe MPU serial interface. The voltage regulator is turned off inthe Standby and Inactive modes to reduce current drain. Inthese modes, the “PLL Vref” pin is internally connected to the“VCC Audio” pin (i.e., the power supply voltage is maintainedbut is now unregulated).

It is important to note that the momentary drop in voltagebelow 2.5 V during this transition may affect initial PLL locktimes and also may trigger the reset. To prevent this, the PLLVref capacitor described above should be kept the same orlarger than the VB capacitor, say 10 µf as shown in theevaluation and application diagrams.

DC CouplingChoosing the right coupling capacitors for the compander

is also critical. The coupling capacitors will have an affect onthe audio distortion, especially at lower audio frequencies. Auseful capacitor range for the compander timing capacitors is0.1 µf to 1.0 µf. It is advised to keep the compandercapacitors the same value in both the handset and basesetapplications.

All other dc coupling capacitors in the audio section willform high pass filters. The designer should choose theoverall cut off frequency (–3.0 dB) to be around 200 Hz.Designing for lower cut off frequencies may add unnecessarycost and capacitor size to the design, while selecting too highof a cut off frequency may affect audio quality. It is notnecessary or advised to design each audio couplingcapacitors for the same cut off frequency. Design for theoverall system cut off frequency. (Note: Do not expect theapplication, evaluation, nor production test schematics tonecessarily be the correct capacitor selections.) The goals ofthese boards may be different than the systems approach adesigner must consider.

For the supply pins (VCC Audio and VCC RF) choose a 10µf in parallel with a high quality 0.01 µf capacitor. Separationof the these two supply planes is essential, too. This is toprevent interference between the RF and audio sections. It isalways a good design practice to add additional coupling oneach supply plane to ground as well.

The IF limiter capacitors are recommended to be 0.1 µf.Smaller values lower the gain of the limiter stage. The–3.0 dB limiting sensitivity and SINAD may be adverselyaffected.

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 59: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

59MOTOROLA RF/IF DEVICE DATA

APPENDIX A

Figure 137.

12

Mix

O

ut L

im In

2BN

CBN

C

40 41 42 43 44 45 46 47 48 49 50 51 52

12

34

56

78

910

1112

13

26 25 24 23 22 21 20 19 18 17 16 15 14

3938

3736

3534

3332

3130

2928

27

C38

0.01

C37

0.01

R34

txt

C35

0.01

MC

1311

1A

R37

txt

C28

txt

F1 txt

F2 txt

C31 0.1

C30

0.1

R28 tx

tL1 tx

tC

5310

00C

540.

01C

5510

µ

R53

47

V CC

Gnd

RSS

I

BNC D

et O

ut

DA

In

T xIn

Amp

Out

T xO

ut

BD2

Out

DA

Out

BD1

Out

R xPD

PLL

V ref

T xPD

T xVC

OC

lk O

utC

D O

ut

Con

nect

orC

ontro

llor

RF

In1

RF

In2

LO2

In

V cap

Ctrl

SA O

ut

E O

ut

Scr O

ut

BNC

BNC

BNC

C39

0.0

1

R39

49.9

R40

49.9

T2–L

2tx

tC

40tx

t

R44

150

C44

47µ

C45

220

pR

4547

k

R46

47 k

C46

0.1

C47

0.4

7

C48

0.4

7

V CC

V CC

V CC

R51

a82

kR

50a

110

k

R51

b10

0 k

R50

b10

0 k

C52

10µ

R42

a tx

tR

4a tx

t

C42

atx

tR

42b

txt

R4b

txt

C1

txt

C2

txt

C3

0.1

XC txt

C42

btx

tC

4tx

t

C5a

0.01

R9

10 k

R10

10 k

R11

10 k

R13

100

k

V CC

R14

100

k

R16

100

k

V CC

V CC

V CC

C18

0.4

7C19

0.1

R20

47 k

C20

220

p

R21

47

kC

21 0

.1

C23

a 0.

01

C24

0.0

1

C23

b10

µ

C26

0.0

47

Mix

1In

1

Mix

1In

2

Mix

1O

utG

nd RF

Mix

2O

utM

ix2

InSG

ndR

FLi

m InLi

m C1

Lim C2

V CC

RF

Lim

Out

Q Coi

lLO

1In

LO1

Out

V cap

Ctrl

Gnd

Aud

io

SA O

ut

SA In

E O

ut

E C

ap

E In

Scr O

ut

Ref

2

Ref

1

V B

RSS

I

Det

Out

R xAu

dio

In

V CC

Audi

o

DA

In

T xIn

Amp

Out

C In

C C

ap

T xO

ut

BD2

Out

DA

Out

BD1

Out

LO2

InV a

gPL

LV

T x PDG

ndPL

LD

ata

ENC

lkC

lkO

utC

DO

utLO

2O

utR x PD

ref

T x VCO

Mix

Out

Mix

In

T1 txt

txt:

see

text

C5b

10µ

Fig

ure

138.

Eva

luat

ion

Boa

rd S

chem

atic

MC

1311

0A

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 60: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

60 MOTOROLA RF/IF DEVICE DATA

APPENDIX A

Figure 138. Evaluation Board Bill of Materials for U.S. and French Application

USA Application Handset French Application Base

RF RF Crystal RF CeramicComp. Number (50 Ω) RF Matched (50 Ω) (50 Ω) RF Matched

INPUT MATCHING

T1 n.m. Toko 1:5 n.m. n.m. Toko 1:5292GNS–765A0 292GNS–765A0

C38 0.01 n.m. 0.01 0.01 n.m.

C39 0.01 n.m. 0.01 0.01 n.m.

10.7 MHz FILTER

F1 Ceramic Ceramic Crystal Ceramic Ceramic

R37 0 0 1.2 k 0 0

R34 360 360 3.01 k 360 360

450 kHz FILTER

F2 4 Element 4 Element 4 Element 4 Element 4 ElementMurata E Murata E Murata G Murata G Murata G

DEMODULATOR

L1 Q Coil Toko Q Coil Toko Ceramic Murata Ceramic Murata Ceramic Murata7MCS–8128Z 7MCS–8128Z CDBM 450C34 CDBM 450C34 CDBM 450C34

R28 22.1 k 22.1 k 2.7 k 2.7 k 2.7 k

C28 10 p 10 p 390 p 390 p 390 p

OSCILLATOR

Xtal 10.24 10.24 11.15 11.15 11.15C1 = 10 p C1 = 10 p C1 = 18 p C1 = 18 p C1 = 18 p

C2 18 p 18 p 33 p 33 p 33 p

C1 5–25 p 5–25 p 15 p + 5–25 p 15 p + 5–25 p 15 p + 5–25 p

FIRST LO

L2 0.47Toko T1370

0.47Toko T1370

0.22Toko T1368

0.22Toko T1368

0.22Toko T1368

C40 HS/BS HS: 27 pF HS: 27 pF BS: 100 p BS: 100 p BS: 100 pBS: 22 pF BS: 22 pF HS: 68 pF HS: 68 pF HS: 68 pF

LOOP FILTER HANDSET/BASESET

R4a HS: 0 HS: 0 HS: 0 HS: 0 HS: 0BS: 0 BS: 0 BS: 0 BS: 0 BS: 0

R4b HS: 0 HS: 0 HS: 0 HS: 0 HS: 0BS: 0 BS: 0 BS: 0 BS: 0 BS: 0

C4 HS: 6800 HS: 6800 HS: 8600 HS: 8600 HS: 8600BS: 8200 BS: 8200 BS: 6800 BS: 6800 BS: 6800

R42a HS: 100 k HS: 100 k HS: 100 k HS: 100 k HS: 100 kBS: 100 k BS: 100 k BS: 100 k BS: 100 k BS: 100 k

R42b HS: 22 k HS: 22 k HS: 18 k HS: 18 k HS: 18 kBS: 18 k BS: 18 k BS: 22 k BS: 22 k BS: 22 k

C42a HS: 1000 HS: 1000 HS: 1000 HS: 1000 HS: 1000BS: 1000 BS: 1000 BS: 1000 BS: 1000 BS: 1000

C42b HS: 0.068 HS: 0.068 HS: 0.082 HS: 0.082 HS: 0.082BS: 0.082 BS: 0.082 BS: 0.068 BS: 0.068 BS: 0.068

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 61: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

61MOTOROLA RF/IF DEVICE DATA

APPENDIX B

APPLICATIONS CIRCUIT

RF

Inpu

t

T R

F–In

Gnd

Dup

lexe

r

12

34

56

C2

0.1

R1

33 k

R4

220

C4

0.01

Q1

MPS

H10

Gnd

0.03

3C

3

Gnd

T1

R3

220

R2

100

k

8519

N

P1P2

P3

S1 S2

C6

47µF

SP1

150–

300

Ω+

220.

47µH

L3

R8

47 k

R7

47 k

0.1

C10

C9

220

0.47

C12

V CC

–A

0.47

C13

R10

110

k

R12

82 k 0.

1C

160.

1

C15

R13

100

kR

1110

0 k

V B

10µF

C14

Gnd

C18

5.0–

25X1 10.2

4

C17

18

C19

0.1

100

k

1000

Gnd

Gnd

C22

0.01

10µF

C23

C27 10

R16 30 3.3

µFC

24

22µF

C25

R17

1.0

kR18 680

R19

18 k

T V

T

4.7

µFC

26

Gnd

T V

CO

R20

10 k

R21

10 kR

2210

k

FL1

R36 330

FL2

23

12

3

1

C74

0.10 C73

0.10

C70 10

R34

22 k

Gnd

Gnd

V CC

–RF

P35

47

0.01

C72

C71

10µF

T2

8128Z

RSS

I 0.01

C86

C89

0.04

7R

328.

2 k

R33

47 k

C87

1000

C88

0.15

0.01

C35

C34

33 0.1

C29

C28 0.47

V CC

–A T A

udio

V CC

–A

R25

100

kR

2410

0 k

R23

100

kV C

CC

ar–D

etec

t

Batt

Dea

d

R

Dat

a

Low

Bat

t

Clk

Out

Clk EN Dat

a

C7

10

Gnd

Gnd

C33

3300

R28 27

kR

3068

0 k

R29

27 k

0.04

7

C31

6800

C30

Gnd

Gnd

C84

0.01

R31 47

V CC

–AV C

C3.

9 k

1.0

k

10µF

C32

Gnd

Mic

1M

ic

Elec

tret

Fig

ure

140.

Bas

ic C

ordl

ess

Tele

phon

e Tr

ansc

eive

r App

licat

ion

Circ

uit

12

34

56

78

910

1112

13

1415161718192021222324252627

2829

3031

3233

3435

3637

3839

40 41 42 43 44 45 46 47 48 49 50 51 52L O 2 I n

L O 2 O u t

V a g

R x P D

L L V r e fP

T x P D

n d P L LGT x C OV

D a t aE N

C l k

CD

Out

u tOC l k

V BRef

1

Ref

2

Scr O

ut

E In

E cap

E O

ut

SA In

SA O

ut

Gnd

Aud

io

V cap

Ctrl

LO1

Out

LO1

InM

ix1

In1

M i x 1 I n 2

M i x 1 O u t

G n d R F

M i x 2 O u t

M i x 2 I n

S G N D R F

L i m I n

L i m C 1

L i m C 2

V C C R F

L i m O u t

Q C

oil RSS

I

Det

Out

R xAu

dio

In

V CC

Audi

o

DA

In

T xIn

Amp

Out

C In

C C

ap

T xO

ut

BD2

Out

DA

Out

BD1

Out

IC1

R xT x

n tA

R26

R27

C5

n dGn dG

n dGV C

C–R

F

x

x

x

x

x

MC1

3110

A

Spea

ker

Figure 139.

++

++

+

+1000

10

0.06

8

18 k

8200

µF

Lege

nd:

If 1

, the

n ca

paci

tor v

alue

= p

FIf

<1, t

hen

capa

cito

r val

ue =

MC1

3111

A

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 62: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

62 MOTOROLA RF/IF DEVICE DATA

APPENDIX B

Batt1

V+

V– C5410 Fµ

C530.01

Gnd

VCC

VCC–RF

VCC–A

L656 Hµ

C550.22

Gnd

C5810 Fµ

Gnd

Gnd

C560.1

C572.2 Fµ

Tx Audio

R54100 k

R5368 k

R51

110 kR3722 k

R39110 k

Tx Data

R41

27 k R4291 k

C40

10

C388.0

C37

6800

U5

C49

2.0

C48120

L40.22 Hµ

C59180

T VT

2109VR2

1

21

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

C46

36

C47

36T VCO

R50

1.5 kC4510 Gnd

R49 100

C44

4700

13630

T3Cx

7.5

P1

P2

P3

S1

S2

C4151

T RF–In51

L50.22 Hµ

C43

51

R4775 k

R46220 k

R45

110

R44

110

R43

110

0.022C50

0.022C51

0.022C52

C600.1 Fµ

x

VCC

VRx

x

x

IC2

MC2

833D

VariableRF Osc

Decoupling RF Osc

Modulator RF

Mic Amp Tr 2

Mic Amp Tr 2

Gnd Tr 2

Tr 1V

Tr 1 Tr 1

ReactanceOutput

Input

Output

Input

Emitter

Base

Output

Base

Emitter

Collector

CC

Collector

+

+

+

Ω

Figure 140. Basic Cordless Telephone Transceiver Application Circuit (continued)

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 63: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

63MOTOROLA RF/IF DEVICE DATA

APPENDIX C – MEASUREMENT OF COMPANDER ATTACK/DECAY TIME

This measurement definition is based on EIA/CCITTrecommendations.

Compressor Attack TimeFor a 12 dB step up at the input, attack time is defined as

the time for the output to settle to 1.5X of the final steady statevalue.

Compressor Decay TimeFor a 12 dB step down at the input, decay time is defined

as the time for the input to settle to 0.75X of the final steadystate value.

Decay Time

0.75X Final Value

1.5X Final Value

Attack Time

0 mV

0 mV

Input

Output

12 dB

Expander AttackFor a 6.0 dB step up at the input, attack time is defined as

the time for the output to settle to 0.57X of the final steadystate value.

Expander DecayFor a 6.0 dB step down at the input, decay time is defined

as the time for the output to settle to 1.5X of the final steadystate value.

Decay Time

1.5X Final Value

0.57X Final Value

Attack Time

0 mV

Input

Output

6.0 dB

0 mV

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 64: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

64 MOTOROLA RF/IF DEVICE DATA

FB SUFFIXPLASTIC PACKAGE

CASE 848B–04(QFP–52)ISSUE C

OUTLINE DIMENSIONS

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF

LEAD AND IS COINCIDENT WITH THE LEAD WHERETHE LEAD EXITS THE PLASTIC BODY AT THEBOTTOM OF THE PARTING LINE.

4. DATUMS –A–, –B– AND –D– TO BE DETERMINED ATDATUM PLANE –H–.

5. DIMENSIONS S AND V TO BE DETERMINED ATSEATING PLANE –C–.

6. DIMENSIONS A AND B DO NOT INCLUDE MOLDPROTRUSION. ALLOWABLE PROTRUSION IS 0.25(0.010) PER SIDE. DIMENSIONS A AND B DOINCLUDE MOLD MISMATCH AND ARE DETERMINEDAT DATUM PLANE –H–.

7. DIMENSION D DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBAR PROTRUSIONSHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE DDIMENSION AT MAXIMUM MATERIAL CONDITION.DAMBAR CANNOT BE LOCATED ON THE LOWERRADIUS OR THE FOOT.

DETAIL A

L

39

40 26

27

1

52 14

13

L

–A–

B

V

SA–BM0.20 (0.008) D SH

A–B0.05 (0.002)

SA–BM0.20 (0.008) D SC

–D–B V

–B–

SA–

BM

0.20

(0.0

08)

DS

H

A–B

0.05

(0.0

02)

SA–

BM

0.20

(0.0

08)

DS

C

–H–

0.10 (0.004)–C– SEATING

PLANE

DATUMPLANE

MGH

EC M

DETAIL C

U

Q

XW

KT

R

DETAIL C

DIM MIN MAX MIN MAXINCHESMILLIMETERS

A 9.90 10.10 0.390 0.398B 9.90 10.10 0.390 0.398C 2.10 2.45 0.083 0.096D 0.22 0.38 0.009 0.015E 2.00 2.10 0.079 0.083F 0.22 0.33 0.009 0.013G 0.65 BSC 0.026 BSCH ––– 0.25 ––– 0.010J 0.13 0.23 0.005 0.009K 0.65 0.95 0.026 0.037L 7.80 REF 0.307 REFM 5 10 5 10 N 0.13 0.17 0.005 0.007Q 0 7 0 7 R 0.13 0.30 0.005 0.012S 12.95 13.45 0.510 0.530T 0.13 ––– 0.005 –––U 0 ––– 0 –––V 12.95 13.45 0.510 0.530W 0.35 0.45 0.014 0.018X 1.6 REF 0.063 REF

B

B

DETAIL A

–A–, –B–, –D–

D

F

BASE METAL

SECTION B–B

SA–BM0.02 (0.008) D SC

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N

Page 65: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

65MOTOROLA RF/IF DEVICE DATA

FTA SUFFIXPLASTIC PACKAGE

CASE 932–02(LQFP–48)ISSUE D

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÉÉÉÉÉÉÉÉ

A

A1

–T–

Z0.200 (0.008) AB T–U

–U–

4X

Z0.200 (0.008) AC T–U

4X

B

B1

1

12

13 24

25

36

3748

–Z–S1

S

V

V1

P

AE AE

–T–, –U–, –Z–

DETAIL Y

DETAIL Y

BASE METAL

N J

FD

ST–UM0.080 (0.003) Z SAC

SECTION AE–AE

–AB–

–AC–AD

G 0.080 (0.003) AC

M

TOP & BOTTOM

Q

W

K

X

EC

H

0.250 (0.010)GAUGE PLANE

R

9

DETAIL AD

DIMA

MIN MAX MIN MAXINCHES

7.000 BSC 0.276 BSC

MILLIMETERS

A1 3.500 BSC 0.138 BSCB 7.000 BSC 0.276 BSCB1 3.500 BSC 0.138 BSCC 1.400 1.600 0.055 0.063D 0.170 0.270 0.007 0.011E 1.350 1.450 0.053 0.057F 0.170 0.230 0.007 0.009G 0.500 BASIC 0.020 BASICH 0.050 0.150 0.002 0.006J 0.090 0.200 0.004 0.008K 0.500 0.700 0.020 0.028M 12 REF 12 REFN 0.090 0.160 0.004 0.006P 0.250 BASIC 0.010 BASICQ 1 5 1 5 R 0.150 0.250 0.006 0.010S 9.000 BSC 0.354 BSCS1 4.500 BSC 0.177 BSCV 9.000 BSC 0.354 BSCV1 4.500 BSC 0.177 BSCW 0.200 REF 0.008 REFX 1.000 REF 0.039 REF

NOTES:1 DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2 CONTROLLING DIMENSION: MILLIMETER.3 DATUM PLANE –AB– IS LOCATED AT BOTTOM OF

LEAD AND IS COINCIDENT WITH THE LEADWHERE THE LEAD EXITS THE PLASTIC BODY ATTHE BOTTOM OF THE PARTING LINE.

4 DATUMS –T–, –U–, AND –Z– TO BE DETERMINEDAT DATUM PLANE –AB–.

5 DIMENSIONS S AND V TO BE DETERMINED ATSEATING PLANE –AC–.

6 DIMENSIONS A AND B DO NOT INCLUDE MOLDPROTRUSION. ALLOWABLE PROTRUSION IS0.250 (0.010) PER SIDE. DIMENSIONS A AND B DOINCLUDE MOLD MISMATCH AND AREDETERMINED AT DATUM PLANE –AB–.

7 DIMENSION D DOES NOT INCLUDE DAMBARPROTRUSION. DAMBAR PROTRUSION SHALLNOT CAUSE THE D DIMENSION TO EXCEED0.350 (0.014).

8 MINIMUM SOLDER PLATE THICKNESS SHALL BE0.0076 (0.0003).

9 EXACT SHAPE OF EACH CORNER IS OPTIONAL.

OUTLINE DIMENSIONSA

RC

HIV

E IN

FO

RM

AT

ION

AR

CH

IVE

INF

OR

MA

TIO

N

Page 66: ARCHIVE INFORMATION ARCHIVE INFORMATION · !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# !2#()6%$"9&2%%3#!,%3%-)#/.$5#4/2 ).# mc13111afb mc13111afta universal narrowband fm receiver integrated

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

AR

CH

IVE

D B

Y F

RE

ES

CA

LE

SE

MIC

ON

DU

CTO

R, I

NC

. 200

5

MC13110A MC13111A

66 MOTOROLA RF/IF DEVICE DATA

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regardingthe suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, andspecifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motoroladata sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights ofothers. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or otherapplications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injuryor death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorolaand its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney feesarising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges thatMotorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an EqualOpportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.How to reach us:USA/EUROPE/Locations Not Listed : Motorola Literature Distribution; JAPAN : Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1–800–521–6274

Mfax : [email protected] – TOUCHTONE 1 –602–244–6609 ASIA /PACIFIC : Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

– http://sps.motorola.com/mfax/ 852–26668334HOME PAGE: http://motorola.com/sps/

MC13110A/D◊

AR

CH

IVE

INF

OR

MA

TIO

N

AR

CH

IVE

INF

OR

MA

TIO

N