52
Architecture, Analysis & Design of Skyscraper Under the esteemed guidance of Mr. Botsa Srinivasa Rao M. Tech, Structural Engineering, IIT Guwahati Lecturer, RGUKT Nuzvid By N091918 M Venu N100246 K N S Varsha N100505 M Ravi Teja N100603 Ch Chandra Kala N100654 J L Harika (Civil Engineering, Batch 2016)

ARCHITECTURE, ANALYSIS AND DESIGN OF SKYSCRAPER

  • Upload
    venu-m

  • View
    101

  • Download
    2

Embed Size (px)

Citation preview

Architecture, Analysis &Design of Skyscraper

Under the esteemed guidance of

Mr. Botsa Srinivasa Rao

M. Tech, Structural Engineering, IIT Guwahati

Lecturer, RGUKT – Nuzvid

By

N091918 – M Venu

N100246 – K N S Varsha

N100505 – M Ravi Teja

N100603 – Ch Chandra Kala

N100654 – J L Harika(Civil Engineering, Batch 2016)

Contents

o Introduction

o Software

o Structural Systems

o Planning

o Architecture

o Loads

o Shear wall

o Modelling

o Analysis

25-Apr-16 B. Tech Project - RGUKT Nuzvid 2

o Design

o Results

o Conclusion

o Future scope

o References

Introduction

• Scarcity of land

• Leaping demand for business and residential space

• Thriving economies and booming populations

• Broad casting and research facilities

• Advancements and innovations in structural systems

• Desire for aesthetics

• Tallness of building is more often relative

• Skyscrapers are in general a height greater than 150m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 3

Introduction (Contd.)

• ‘skyscraper’ was coined in 1880s

• Steel has made it all possible

• 1st ever tall building

• Home Insurance Building in Chicago

• Height - 42 m.

• Greater than 150 m as per CTBUH

• Super tall (>300 m)

• Mega tall (>600 m)

• Greater than 15 m as per NBC

• Greater than 21 m as per US General Laws

25-Apr-16 B. Tech Project - RGUKT Nuzvid 4

Softwares

• ETABS (Extended Three dimensional Analysis of Building

Structures) – Computers and Structure Inc.

• Revit Architecture - Autodesk

• AutoCAD – Autodesk

• Pile - Oasys

• MS Excel - Microsoft

25-Apr-16 B. Tech Project - RGUKT Nuzvid 5

Components of tall buildings

• Floor systems

• Gravity load resisting systems

• Lateral load resisting systems

• Connections

• Damping systems

25-Apr-16 B. Tech Project - RGUKT Nuzvid 6

Structural systems

• Knowing the skeleton

25-Apr-16 B. Tech Project - RGUKT Nuzvid 7

Fig.1 Evolution of Structural Systems

Structural systems (Contd.)

• Knowing the interlinks

25-Apr-16 B. Tech Project - RGUKT Nuzvid 8

Fig.2 Classification of Structural Systems

Structural systems (Contd.)

• Moment resisting frames

• Shear frames

• Frame with shear resisting trusses – Interacting

• End channel framed tube with interior trusses – Partial tube

• Exterior framed tube or bundled tube

• Exterior diagonalized tube

25-Apr-16 B. Tech Project - RGUKT Nuzvid 9

Fig.3 Framed tube

Preferred structural system

• Tube in Tube (Hull and Core)

• Similar to Hollow Cantilever beam

• More column free space

• Lateral stiffness by the perimeter frame

• Maximum bending rigidity

• Flange frames normal to the wind carry axial loads

• Web frames parallel to the wind carry shear

25-Apr-16 B. Tech Project - RGUKT Nuzvid 10

Structural systems (Contd.)

Fig.4 Unfolded plane frame

Planning

25-Apr-16 B. Tech Project - RGUKT Nuzvid 11

• Core covers 25% of the total built up area

• Built up area: 13, 600 sq. m

• Core : 3,400 sq. m

Fig.5 Proposed layout of the skyscraper

Planning (Contd.)

• Built up area : 936 sq. m

• Core area: 234 sq. m

• Minimum built up area: 800 sq. m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 12

Fig.6 Scaled layout – Tube in tube

Planning (Contd.)

• Flange planes – overturning moment

• Web planes – lateral shear force

25-Apr-16 B. Tech Project - RGUKT Nuzvid 13

Fig.7 Total layout of the skyscraper

Planning (Contd.)

Child Bed rooms

M Bed room

M Bed room M Bed room

M Bed room

Child Bed rooms

Kitchen

Child Bed rooms Child Bed rooms

Kitchen

Core with elevators

Dining

Dining

Fig.8 Floor plan of the residential stories

Planning (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 15

Conference room

Working cabins

Manager 1 Manager 2

Head

Fig.9 Floor plans for the office floors

Planning (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 16

Terrace area

Res

taura

nt

Res

taura

nt

Elevators Elevators

Spine

Fig.10 Floor plans for the restaurant

Architecture

• Overall shape – based upon drag coefficient

• Vertex of the triangle facing the wind

• Two vertices resisting earthquake

• Opening reduces the wind forces

• Central spine for the stiffening

• 320 mm φ hollow circular steel – spine

• 12 elevators

• Higher weightage for dead load

25-Apr-16 B. Tech Project - RGUKT Nuzvid 17

Fig.11 Architectural view

Architecture (Contd.)

• Visible opening in the neglected wind direction

25-Apr-16 B. Tech Project - RGUKT Nuzvid 18

Fig.12 Front view of the skyscraper

Architecture (Contd.)

• Front yard and rear yards – 10 m. each

• Side yard – 6 m

• Total plot area: 2674 sq. m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 19

Fig.13 Front perspective

Architecture (Contd.)

• Front door – 1.5 m each

25-Apr-16 B. Tech Project - RGUKT Nuzvid 20

Fig.14 Entrance through revolving doors

Architecture (Contd.)

• Bed room – 23. 88 sq. m

• Minimum – 12 sq. m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 21

Fig.15 Bed room

Architecture (Contd.)

• Area: 130. 81 sq. m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 22

Fig.16 Conference room

Architecture (Contd.)

• Terrace area: 695 sq. m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 23

Fig.17 Sky line view

Architecture (Contd.)

• Area of each restaurant: 82.50 sq. m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 24

Fig.18 Inner view of restaurant

Architecture (Contd.)

• Analogous to isometric view

25-Apr-16 B. Tech Project - RGUKT Nuzvid 25

Fig.19 Perspective view

Loads• Dead load

• Live load

• Earthquake load

• Wind load (Arrow indicates the direction of wind)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 26

𝐶𝑑 = 1.2 𝐶𝑑 = 1.4

𝐶𝑑 = 2.0 𝐶𝑑 = 2.2

𝐶𝑑 = 2.2 𝐶𝑑 = 1.5

Fig.20 Drag coefficients for different shapes

Loads (Contd.)

• Seismic zone – III

• Critical wind and MCE will not occur simultaneously

• Considering equivalent static design base shear

25-Apr-16 B. Tech Project - RGUKT Nuzvid 27

S. No Parameter Magnitude/Description

1. Basic Wind speed (Vb) 50 m/sec

2. Terrain Category 4

3. Class of the structure C

4. TopographyNumerous large high closely

spaced obstructions

5. Life of the structure(N) 100 yrs.

6. Wind zone 5

Table.1 Wind data for the skyscraper

Shear wall

25-Apr-16 B. Tech Project - RGUKT Nuzvid 28

Fig.21 Models – 1,2,3,4

Shear wall (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 29

Fig. 22 Model - 5

Shear wall (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 30

Fig.23 Maximum Joint displacements under gravity loading

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

Sto

rey N

o

Joint displacement (mm)

Joint displacements for gravity loading

without shear wall

Shear wall at Core

Shear wall at edges

Shear wall at Corners

At core without beams

Shear wall (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 31

Fig. 24 Applied Lateral loading the joints of floors

0 100 200 300 400 500

Story 6

Story 5

Story 4

Story 3

Story 2

Story 1

Base

Lateral load onto the floors

Lateral load(kN)

Shear wall (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 32

Fig.25 Maximum Joint displacements under Gravity loading + Lateral loading

0

1

2

3

4

5

6

7

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Sto

rey N

o

Displacement(mm)

With Lateral loading

Shear wall (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 33

Efficiency of the models

With Gravity loading alone,

Model 5 = Model 2 > Model 4 = Model 3 > Model 1

With Gravity loading + Lateral loading

Model 5 ≈ Model 2 > Model 4 > Model 3 > Model 1

Modelling

• Grid based modelling of the structure

• Columns for the hull

• Connecting through beams

• Core with Shear Walls

• Replicate up to 50 stories

• Defining material and section properties

• Assigning material and section properties

• Defining load cases, patterns and combinations

• Applying the loads

• Setting load cases to run, analysis and design

25-Apr-16 B. Tech Project - RGUKT Nuzvid 34

Modelling (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 35

Fig.26 Grid and Columns for the hull

Fig.27 3 D view of story 1

Modelling (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 36

Fig.28 Evolution of the modelling

• Step-by-step models for resisting the loads

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 37

Fig.29 Auto lateral loads due to (a) EQx ,(b) WLx

• More the weight of floor, more it contributes to lateral load.

Analysis

• 40 columns and 300 beams

• In the columns

• Critical combination – 1.5(DL+FFL+EQy)

• Max. axial force (P) = 86,769.8 kN; Column in Story 1

• Max. moment (M2) = 5717.6 kN – m; Column in story 8

• In the beams

• Critical combination – 1.5(DL+FFL-EQx)

• Beam beside the core in story 15

• Max. V2 = 2595.34 kN

• Max. M3 = 6265.50 kN-m

25-Apr-16 B. Tech Project - RGUKT Nuzvid 38

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 39

Fig.30 Drifts for diaphragm (a) without outriggers ,(b) with outriggers

• Outrigger truss – W 40 X 593 of Fe 415

• Location: Every one – third height

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 40

• Maximum sway: 1 in 357

• Range: 1 in 800 - 1 in 200

Fig.31 Displacements

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 41

• Maximum story drift – 0.4 % (IS 1893, part 1: 2002)

• Obtained story drift – 0.28 %

Fig.32 Auto lateral loads due to EQy

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 42

Fig.33 Story shears and overturning moment

• Base shear force – 93, 000 kN

• Overturning moment (x) – 46 X 106 kN-m

• Overturning moment (y) – 65 X 106 kN-m

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 43

• Modal analysis – deflected shape and direction

• 12 modes – may vary based on time period

• Arbitrary scaling

• Period of vibration decreases with increase in mode number

Fig.34 All the mode shapes

Analysis (Contd.)

25-Apr-16 B. Tech Project - RGUKT Nuzvid 44

Fig.35 Non-linear static analysis- (a) Hinge formation,(b) static pushover curve

• Static excitation and non – linear response

• Displacement control

Design

• Beam design – IS 456: 2000

• Reinforcement – 1.99 %

25-Apr-16 B. Tech Project - RGUKT Nuzvid 45

Fig.36 Location of critical beams

• Composite column design

• Embedded I section: W 40 X 593

25-Apr-16 B. Tech Project - RGUKT Nuzvid 46

Design (Contd.)

Fig.37 Beam cross-section

1000mm X 1000mm

Fig.38 Colum cross-section

1500mm X 1500mm

• 50 mm φ longitudinal rebars

• Symmetry reduces crookedness

• Torsional moment – 0.0094 kN – m (negligible for design)

• Composite column design

• Code: AISC 360 -10

25-Apr-16 B. Tech Project - RGUKT Nuzvid 47

Design (Contd.)

Fig.39 Column capacity ratios

• Max. vertical load from an isolated column = 86,770 kN

25-Apr-16 B. Tech Project - RGUKT Nuzvid 48

Design of pile

Dep

th (

m)

• Safety factor – 2.5

Fig.40 (a) Soil profile, (b) Design in Oasys Pile

25-Apr-16 B. Tech Project - RGUKT Nuzvid 49

Conclusions

• Architectural views are drawn

• Reduction in torsional moment because of symmetry

• Lateral sway is 44% less compared with the existing ones

• Lateral drift is 0.28% only

• Drift is 86% lesser compared to that of threat to human safety

• Comprehensive Linear static analysis

• Composite Columns are designed

• Isolated pile is designed

• Tube-in-tube system is well appreciated

25-Apr-16 B. Tech Project - RGUKT Nuzvid 50

Future scope

• Increase in base dimension and height of skyscraper

• Employing work station for further analyses

• Non-linear Static analysis by hinge formation

• Non-linear Dynamic analysis for real time response

• Max. displacement during the disasters can be identified

• Design of pile cap over the piles and/or spun piles

References• Aainawala M. S, Dr. Pajgade P. S (2014), “Design of Multistoried R.C.C. Buildings with

and without Shear Walls”, International Journal of Engineering Sciences and Research

Technology, ISSN 2277-9655, Vol.3 (7).

• Taranath B. S (1988), “Structural Analysis and Design of Tall Buildings”, McGraw – Hill

Publishing Company Ltd., ISBN 0-07-062878-5.

• Ali M, Moon K. S (2007), “Structural Developments in Tall Buildings: Current Trends

and Future Prospects”, Architectural Science Review, Vol. 50.3, pp. 2015-223.

• Wagh S.A, Waghe U. P (2014), “Comparative Study of R.C.C and Steel Concrete

Composite Structures”, Int. Journal of Engineering Research and Applications, Vol.4,

Issue 4, pp.369-376.

• David Spires, Arora J.S (1990), “Optimal Design of Tall RC-Framed Tube Buildings”,

Journal of Structural Engineering, ASCE, Vol. 116, No.4.

• Aminmansour A (2010), “Integrated Design and Construction of Tall Buildings”, Journal

of Architectural Engineering, ASCE, Vol. 53.

• Alaghmandan M, Elnimeiri M (2013), “Reducing impact of wind on tall buildings through

design and aerodynamic modifications”, ASCE, pp. 847 -856.

• Chang P.C, Foutch D. A (1984), “Static and dynamic modeling and analysis of tube

frames”, Journal of Structural Engineering, ASCE, Vol.110, No.12, pp.2955-2975.

• Baker W. F et al. (2009),”The Challenges in Designing the World’s Tallest Structure: The

Burj Dubai Tower”, Structures Congress, ASCE, pp. 1471-1480.

25-Apr-16 B. Tech Project - RGUKT Nuzvid 51

25-Apr-16 B. Tech Project - RGUKT Nuzvid 52