185
Aqueous solubility prediction of organic compounds Item Type text; Dissertation-Reproduction (electronic) Authors Yang, Gang Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/07/2018 20:02:39 Link to Item http://hdl.handle.net/10150/298795

AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Embed Size (px)

Citation preview

Page 1: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Aqueous solubility prediction of organic compounds

Item Type text; Dissertation-Reproduction (electronic)

Authors Yang, Gang

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 05/07/2018 20:02:39

Link to Item http://hdl.handle.net/10150/298795

Page 2: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS

by

Gang Yang

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF PHARMACEUTICAL SCIENCES

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 0 5

Page 3: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

UMI Number: 3158221

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI UMI Microform 3158221

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road

P.O. Box 1346 Ann Arbor, Ml 48106-1346

Page 4: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

2

The University of Arizona ® Graduate College

As members of the Final Examination Committee, we certify that we have read the

dissertation prepared by Gang Yang

entitled Aqueous Solubility Prediction of Organic Compounds

and recommend that it be acceptable as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophv

Samuel HTy alkowsky, Ph.D. date

/'QC Michael Mayersohn, Prf®. date

Paul B. Myrdal, Ph.Dr^ date

date

date

Final approval and acceptance of this dissertation is contigent upon the candidate's submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fi^filling the disseration requirement.

Dissertation DirectorfSamuel H. Yalkowsky, Ph.D. date

Page 5: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at The University of Arizona and is deposited in the University Library

to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgment of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may be

granted by the head of the major department or the Dean of the Graduate College when in

his or her judgment the proposed use of the material is in the interests of scholarship. In

all other instances, however, permission must be obtained from the author.

SIGNED:

Page 6: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

4

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Samuel Yalkowsky, for

giving me the opportunity and financial support to study in the field of Pharmaceutical

Sciences, for his expert guidance and mentorship, and for his constant support and

encouragement over the years at Arizona. He has made it a challenging and fun

experience that I will cherish for years to come.

I would like to thank members of my major committee. Dr. Michael Mayersohn and Dr.

Paul Myrdal, for reviewing drafts of the dissertation on a very short notice and providing

helpful comments on the dissertation. My appreciations also go to the members of my

minor committee. Dr. Srini Raghavan and Dr. Scott Saavedra, for dedicating their time to

serve on my committee.

During the years at Arizona, I had the pleasure to work with many friends and colleagues

including Neera, Jeff, Debra, Yingqing, Tapan, Ahbi, Yan, Jenny, Akash, Kia, Stephen,

Ritesh, Yvonne, Huadong, Abhi, Kelly, Phil, Julie, Eric and Will. I would like to thank

all of them for being there for me when I needed help.

My special thanks go to Dr. Wolf-Dietrich Dilenfeldt for his fragmentation program.

I am greatly indebted to many teachers back in China, in particularly, Xinfang Liu and

Manguo Tao for keeping me interested in science and helping me excel.

At last, I would like to thank my family: my fiancee Hui for her love and encouragement

throughout my study; my parents and sister for their years of loving support and

understanding.

Page 7: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

5

DEDICATION

To my parents and Hui

Page 8: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

6

TABLE OF CONTENTS

LIST OF FIGURES 10

LIST OF TABLES 11

ABSTRACT 12

CHAPTER 1: INTRODUCTION 14

CHAPTER 2: AQUEOUS SOLUBILITY PREDICTION METHODS 21

INTRODUCTION 21

THE IDEAL SOLUTION AND REGULAR SOLUTION THEORY 21

Ideal Solution 21

Regular Solution 22

Aqueous Solution 22

Crystalline Solute 23

REVIEW OF LITERATURE 24

Group Contribution Approach 24

Mobile Order Theory 25

Linear Solvation Energy Relationship (LSER) 26

Atom Type Electrotopological State Indices 27

MODEL DEVELOPMENT 28

General Solubility Equation 28

The AQUAFAC Method 29

A New Model 30

CHAPTER 3: DATA COLLECTION AND ANALYSIS 32

INTRODUCTION 32

DATA 33

Solubility Data 33

Melting Point (MP) 36

Octanol-Water Partition Coefficient (P) 36

RELATIONSHIPS 40

Page 9: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

7

TABLE OF CONTENTS - Continued

Regression Analysis 40

CLOGP Prediction Evaluation 41

Predicted versus Experimental Octanol-Water Partition Coefficient 42

Solubility and Octanol-Water Partition Coefficient 44

Solubility and Melting Point 50

CHAPTER 4: STRUCTURAL FRAGMENTATION 52

INTRODUCTION 52

SMILES 54

SMARTS 57

STRUCTURAL FRAGMENTATION PROGRAM 57

FRAGMENTATION SCHEME 59

CHAPTER 5: EVALUATION OF SOLUBILITY PREDICTION BY THE GENERAL

SOLUBILITY EQUATION ON A SET OF DIVERSE COMPOUNDS 64

INTRODUCTION 64

METHODS 65

Data Set 65

Evaluation 66

Regression Analysis 68

RESULTS AND DISCUSSION 69

Overall Performance 69

Solid Versus Liquid 76

Non-electrolyte Versus Weak Electrolyte 78

Regression Analysis 82

SUMMARY 83

CHAPTER 6: COMPARISON OF THE GENERAL SOLUBILITY EQUATION AND

THE METHOD USING AN AMENDED SOLVATION ENERGY RELATIONSHIP. 84

INTRODUCTION 84

METHODS 86

Page 10: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

8

TABLE OF CONTENTS - Continued

RESULTS 87

Octanol-Water Partition Coefficients 87

Melting Point 89

Solubility 90

DISCUSSION 93

SUMMARY 98

CHAPTER 7: DEVELOPMENT OF THE EXTENDED AQUAFAC MODEL 99

INTRODUCTION 99

METHODS 101

Data Set 101

Aqueous Activity Coefficient 101

Structural Fragmentation 102

Regression Analysis 102

RESULTS 103

Fragmentation Performance 103

Regression Analysis 103

Group Contribution Values qi 103

Aqueous Solubility Prediction 107

CHAPTER 8: DEVELOPMENT OF A NEW GROUP CONTRIBUTION MODEL FOR

AQUEOUS SOLUBILITY PREDICTION 108

INTRODUCTION 108

METHODS 110

Data Set 110

Structural Fragmentation 110

Regression Analysis 110

RESULTS Ill

Fragmentation Performance Ill

Regression Analysis Ill

Page 11: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

9

TABLE OF CONTENTS - Continued

Group Contribution Values mi 112

CHAPTER 9: COMPARISON OF AQUEOUS SOLUBILITY PREDICTION MODELS

116

PREDICTION COMPARISON 117

SUMMARY 121

APPENDIX A. Experimental Solubility Collection with Melting Point, log P and

Predicted Solubility Using the General Solubility Equation 122

APPENDIX B. Comparison of Predicted Solubility Using the General Solubility

Equation and the Amended Solvation Energy Relationship 161

APPENDIX C. Predicted Solubility for Test Set 1 175

APPENDIX D. Predicted Solubility for Test Set 2 176

APPENDIX E. Predicted Solubility for Test Set 3 177

REFERENCES 179

Page 12: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

10

LIST OF FIGURES

Figure 3.1: Log solubility (log Sw) distribution of 1804 compounds in the data set 35 Figure 3.2: Melting point (MP) distribution of 1037 solids in the data set 37 Figure 3.3: Calculated log octanol-water partition coefficient (Clog?) distribution of

1804 compounds in the data set 38 Figure 3.4: Experimental log octanol-water partition coefficient (MlogP) distribution

of 1226 compounds in the data set 39 Figure 3.5: Plot of calculated log octanol-water partition coefficients (ClogP) versus

experimental log octanol-water partition coefficients (MlogP) 43 Figure 3.6: Scatterplot of log versus calculated log octanol-water partition

coefficients (ClogP) for 597 liquids or gases in the data set 46 Figure 3.7: Scatterplot of log Sw versus experimental log octanol-water partition

coefficients (MlogP) for 393 liquids or gases with available experimental log P in the data set 47

Figure 3.8: Scatterplot of log aqueous solubilities (log Sw) versus calculated log octanol-water partition coefficients (ClogP) for all 1804 compounds in the data set 48

Figure 3.9: Scatterplot of log aqueous solubilities (log Sw) versus experimental log octanol-water partition coefficients (MlogP) for 1225 compounds with available experimental log P in the data set 49

Figure 3.10: Scatterplot of log Sw versus experimental melting point for 1525 compounds with available melting point information in the data set 51

Figure 4.1: An example illustrating the expression of Benzocaine structure in SMILES 56

Figure 4.2: Fragmentation of benzocaine structure according to the AQUAFAC Scheme 63

Figure 5.1: Plot of predicted log Sw versus experimental log Sw 71 Figure 5.2: Absolute prediction error distribution 72 Figure 5.3: Plot of prediction error against experimental log Sw 73 Figure 5.4: Plot of prediction error against calculated log P (ClogP) 74 Figure 5.5: Plot of prediction error against melting point for 1037 solids 75 Figure 6.1: Plot of measured logP (MlogP) versus ClogP (n = 530) 88 Figure 6.2: Experimental log Sw versus predicted log Sw using the ASER method

(n = 664). The diagonal line is the line of identity 91 Figure 6.3: Experimental log Sw versus predicted log Sw using the GSE method

(n = 664). The diagonal line is the line of identity 92 Figure 6.4: Experimental log Sw versus predicted log Sw using the average of the

ASER prediction and the GSE prediction (n = 664). The diagonal line is the line of identity 97

Page 13: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

11

LIST OF TABLES

Table 3.1: Literature sources of the current data collection 34 Table 4.1: Examples illustrating the SMARTS expressions for substructural

fragments 58 Table 4.2: Fragment list in the extended AQUAFAC fragmentation scheme 61 Table 5.1: Statistical analysis of predicted log Sw values compared with

experimental log Sw values 77 Table 5.2: Statistical analysis of prediction performance of different classes of

Compounds 80 Table 6.1: Statistical analysis of predicted log Sw values compared with

experimental log Sw values 94 Table 7.1: Fragments in the extended AQUAFAC scheme: The number of

occurrences (N), group contribution values (qi) and statistical significance 104

Table 8.1: Fragments for the GClogP model: The number of occurrences (N), group contribution values (mO and statistical significance 113

Table 9.1: Comparison of prediction results of test set 1 119 Table 9.2: Comparison of prediction results of test set 2 119 Table 9.3: Comparison of prediction results of test set 3 120 Table 9.4: Comparison of prediction results of test sets 1 and 2 120

Page 14: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

12

ABSTRACT

Aqueous solubility is one of the most important physical properties to consider in drug

discovery and development. Drug candidates with poor solubility often have poor

bioavailability, which leads to increased developmental cost and efforts. Therefore, there

is a strong trend to perform solubility screening of drug candidates as early as possible in

the drug discovery and development process. While experimental methods are being

developed to increase the throughput of solubility measurement, the development of

aqueous solubility prediction methods can be a powerful complementary tool.

This dissertation starts by compiling a large collection of aqueous solubility data for

organic compounds covering diverse classes of structures. The data set is first used to

critically evaluate the General Solubility Equation (Yalkowsky et al., 1980, 1999), one of

the most widely used methods for aqueous solubility prediction. The General Solubility

Equation performs very well overall as measured by the average absolute error (AAE) of

0.56 log unit. Detailed analyses indicate that it gives better predictions for non-

electrolytes than some classes of weak electrolytes. This method is then compared with a

method based on an amended solvation energy relationship, which considers the

hydrogen bonding potentials of functional groups. It is shown that averaging the

prediction results from the two methods gives better prediction than either method alone.

Page 15: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Following the concept of the AQUAFAC model developed by Myrdal et al. (1992, 1993,

1995), an extended version of the original structural fragmentation scheme is developed.

The model is trained on the data set and has an value of 0.881 and a standard error of

estimation of 0.819 log unit. Group contribution parameters for a set of 104 fragments are

obtained.

A new group contribution model is developed to suit the needs in the early drug

discovery stage, when melting information is generally not available. Calculated octanol-

water partition coefficient is included in the model. The model has a standard error of

estimation of 0.814 log unit. When evaluated on independent test sets, the new model

provides comparable prediction results with the other two models. The independence of

the new model of experimental melting information makes it a suitable tool for aqueous

solubility screening in early drug discovery.

Page 16: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

14

CHAPTER 1: INTRODUCTION

Aqueous solubility is a crucial physical property to consider in pharmaceutical discovery

and development process. It is a major driving force for drug dissolution, which, along

with drug permeability, determines the absorption rate of an orally delivered drug from

the gastrointestinal tract. The lack of adequate solubility may render a good drug

candidate orally inactive due to poor bioavailability. To a significant degree, aqueous

solubility also determines the ease of development of a drug candidate for parenteral and

ophthalmic formulations.

Recent developments in combinatorial synthesis and high-throughput screening

technology have greatly enhanced the structural diversity available for biological activity

testing and the efficiency in lead compound generation. These technologies have become

the major drug lead source. However, it has been noted that drug leads from

combinatorial libraries and high-throughput screening tend to have poorer solubility

profiles than leads generated before these technologies became common (Lipinski et al.,

2001).

A poor solubility problem may be fixed by formulation in some cases but it does pose a

burden on the development process. Developing poorly soluble drugs is often time

consuming and expensive, and it is more difficult to bring them to market and to repay

the development costs compared to more soluble compounds. According to Pfizer's

Page 17: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

profiling of marketed drugs, only about 11% of drugs with very low solubility ever reach

the market (Lipinski et al., 2001). Therefore, it is not surprising to see strong motivation

in performing solubility studies as early as possible in the drug discovery process.

Solubility is an equilibrium property and the equilibrium involved in solubility

measurement can take days or even weeks to reach. Generation of quality solubility

information can be time consuming and labor intensive. In the drug discovery stage,

compounds from combinatorial sjmthesis are never crystallized and are generally stored

as concentrates in DMSO. They have purity in the range of 80-90%. These conditions

preclude the possibility of using the reliable traditional shake-flask method to measure

solubilities of thousands of discovery compounds in a reasonable time frame. To meet the

needs at this stage, several novel methods have been developed to increase the throughput

of solubility data generation at the expense of quality. Once a compound enters the

development stage, quality solubility measurements are required for the

Biopharmaceutics Classification system and the traditional shake-flask method is

recommended by the FDA.

Development of aqueous solubility prediction methods can be a complementary tool to

experimental measurements. Prediction of aqueous solubility can help the design and

evaluation of combinatorial library before its synthesis. Such methods can provide useful

tools for medicinal chemists to guide their synthesis efforts towards chemicals with the

desired properties in the lead optimization process. They can also provide scientists

Page 18: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

estimated solubility information before they perform the experimental solubility

measurement. Thus, such predictions can avoid the unnecessary waste of a limited supply

of sample in early development.

Before developing a solubility prediction method, it is important for the developer to

know the needs of the users of the services. Different users may have different

requirements of the method. Combinatorial chemists want to have a tool to estimate the

solubilities of thousands of compounds in the library before synthesis. The method needs

to be fast, based only on parameters that can be calculated from molecular structure, and

preferably easily implemented into a spreadsheet or computer program. Medicinal

chemists doing lead optimization want to have something to tell them how the solubility

and lipophilicity change if they add, delete or substitute a functional group in the

molecule. The method needs to be simple and straightforward. Something similar to an

atomic weight table would be ideal. Preformulation scientists need to perform solubility

measurements sooner or later. However, with a limited amount of sample in early

development, an estimation of solubility before carrying out the measurement can help

avoid wasting the precious sample. Some physical properties (melting point is a common

one) may be available at this stage. It is easy to use simple semiempirical methods like

the General Solubility Equation. Another factor to consider is that it is desirable for the

prediction model to start from a thermodynamically sound relationship. Methods that

physically make sense are more likely to be acceptable to the users.

Page 19: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Based on the ideal solution and regular solution theory, two solubility prediction methods

have been developed by this research group (Yalkowsky and Valvani, 1980; Jain and

Yalkowsky, 1999; Myrdal et al., 1992; Myrdal et al., 1993; Myrdal et al., 1995). These

two approaches have become the recommended methods for the prediction of aqueous

solubility when melting point information is available (Mackay, 2000).

The General Solubility Equation relates aqueous solubility of an organic non-electrolj^e

compound with its melting point and octanol-water partition coefficient. The method has

been shown to give a reasonable estimation of aqueous solubility for a wide range of

organic compounds (Peterson et al., 2001; Ran et al., 2002). The overall prediction

performances were reported in the studies but little analysis was done to look at the

performance in more details. Considering that the derivation of the relationship was

based on assumptions that may be true only for non-electrolytes, residual error analyses

against different classes of compounds could provide insights into the evaluation of the

assumptions.

Myrdal et al. developed the AQUAFAC group contribution method to predict the

aqueous activity coefficient Yw, which was used together with a crystallinity term to give

aqueous solubility prediction. One of the advantages of this approach is its independence

of partition data. Only aqueous phase data and melting point information is need for the

development of the model. The AQUAFAC approach was shown to be slightly superior

to the General Solubility Equation when applied to a test set of 97 compounds (Myrdal et

Page 20: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

18

al., 1995). The study clearly demonstrated the potential applicability of the AQUAFAC

approach. Two subsequent studies extended the applicability to a wider range of

functional groups (Lee et al., 1996; Pinsuwan et al., 1997). However, due to the lack of

computational tools to break down the molecular structures at the time of development,

the applicability of the approach is still limited to molecules containing a limited number

of groups, whose group counting can be handled manually.

Both of the above methods require melting point information for solubility prediction,

which can be easily measured with a small amount of drug substance at the early drug

development stage. However, the melting point information is generally not available at

the drug discovery stage as the compounds have low purity and they are not crystallized.

While research on the prediction of the melting point of organic compounds from

molecular structures is ongoing, it is generally conceived that melting point prediction

itself is at least as challenging as aqueous solubility prediction. Development of an

aqueous solubility prediction method without the need of melting point information,

therefore, would be more applicable in the drug discovery stage.

With the development of chemical languages to represent chemical structures and

substructural patterns in a computer as well as related computational tools, the

classification and molecular structure fragmentation (group counting) of a large number

of molecules become possible in a reasonable time frame. Taking advantage of these

Page 21: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

19

developments, this dissertation intends to address the issues discussed above. The

specific objectives are as follows

1. To critically evaluate the applicability of the General Solubility Equation against

a variety of classes of compounds;

2. To extend the applicability of the AQUAFAC approach and obtain the group

contribution parameters;

3. To develop a new model of aqueous solubility prediction from molecular

structures without the requirement of melting point information.

Chapter 2 reviews the various prediction models and computational methods available in

the literature. It is followed by an introduction of the ideal solution and regular solution

theory as well as the aqueous solubility parameter, which serves as the theoretical basis

of the General Solubility Equation, the AQUAFAC method and a new model developed.

The development and evaluation of any prediction model cannot be separated from

reliable experimental data. A large collection of compounds with solubility, partition

coefficient and melting point information is introduced in Chapter 3. This data set is used

in later chapters for the evaluation of the General Solubility Equation as well as the

development of an extended AQUAFAC model and a new model without the need for

experimental melting point information.

Page 22: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

20

Chapter 4 introduces the SMILES language for chemical structure representation, the

SMARTS language for substructural pattern (fragment) representation, the automatic

structural fragmentation program, and the structural fragmentation scheme used in this

study.

The General Solubility Equation is a well accepted and referenced method of solubility

prediction when melting point information is available. The performance of the General

Solubility Equation is carefully evaluated for different classes of compounds in Chapter

5.

Chapter 6 compares the General Solubility Equation with another successful solubility

prediction method based on an amended solvation energy relationship.

Chapter 7 extends the AQUAFAC (AQUeous Functional group Activity Coefficient)

method to include a much wider range of functional groups.

Chapter 8 develops a new method by modeling the crystallinity term using the same set

of structural parameters as used in AQUAFAC.

Chapter 9 evaluates the performances of the different models on an independent set of

compounds. The accuracy of different methods is compared.

Page 23: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

21

CHAPTER 2: AQUEOUS SOLUBILITY PREDICTION METHODS

INTRODUCTION

Attempts to predict aqueous solubility with other physical properties started as early as

1965 (Irmann, 1965). Thereafter, various aqueous solubility prediction models have been

developed. Excellent reviews on these methods can be found in the literature (Yalkowsky

and Banerjee, 1982; Huuskonen, 2001; Jorgensen and Duffy, 2002). This chapter gives a

discussion of the underlying theories of different models.

THE IDEAL SOLUTION AND REGULAR SOLUTION THEORY

Ideal Solution

An ideal gas is one in which the intermolecular interactions are negligible. An ideal

solution, on the other hand, is one in which interactions between different kinds of

molecules have the same magnitude as those between molecules of the same kind. There

is no change in heat and volume associated with the formation of an ideal solution. Since

the heat of mixing for an ideal solution is zero and the entropy of mixing is always

positive, the free energy of mixing is always negative. Therefore, two liquids are miscible

in all proportions if they form an ideal solution.

Page 24: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

22

Regular Solution

To form regular solutions, the solute and solvent usually have similar molecular volumes

and similar intermolecular interactions. A regular solution has ideal entropy of mixing

and no change in volume of mixing. However, there is enthalpy change associated with

the formation of a regular solution. The deviation of a regular solution from ideality is

exclusively due to an energetic effect. The regular solution concept is a useful model for

a wide range of mixtures formed by non-hydrogen bonding components. Regular

solutions often have upper critical solution temperatures (Tcrit), temperatures above which

two partially immiscible liquids become completely miscible in all proportions. The

upper critical solution temperature can be calculated using a simplified form of the

relationship described by Hildebrand and Scott (1955)

r V.fe-<?.)' nu 2R

where Vu is the molar volume of solute, 5u and 5v are solubility parameter of the solute

and the solvent. Two liquids are miscible in all proportions at room temperature if the

Tcrit is lower than 25 °C.

Aqueous Solution

Water, as a solvent, strongly associates with other water molecules by the formation of

hydrogen bonds. Aqueous solutions of organic compounds do not follow the ideal

Page 25: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

23

solution or the regular solution theory. The deviation from ideality can be described with

the aqueous activity coefficient yw in

log = log - log (2-2)

where Xw is the molar fractional solubility in water and Xj is the ideal molar fractional

solubility.

The aqueous activity coefficient accounts for the differences in solute-ideal solvent

interactions and solute-water interactions. Similar to octanol-water partition coefficient,

its logarithm can be modeled using group contribution approaches.

Crystalline Solute

It takes additional energy to overcome the cohesive interactions in crystalline solutes. A

hypothetical supercooled liquid (SCL) of the solute is usually used as a reference state.

According to Hildebrand and Scott (1962), the ideal solubility of a crystalline solute (Xj'^)

can be expressed as

logX; =log X'

X SCL

ri n

2.303/? [ T T J 2.303/? [ T -log- (2.3)

where AHm is the melting enthalpy of the crystalline solute; T and T^ are the temperature

of interest and the melting temperature of the solute, respectively; ACp is the difference in

heat capacity of the crystalline and the hypothetical supercooled liquid form of the solute.

Page 26: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

24

The second term on the right hand side of the equation can be ignored since ACp is quite

small. The equation can be simplified as

logx; = -AH.,

2303RT

-T

m \

(2.4)

which can be transformed as

l o g j ; = — ' 2303RT

(2.5)

For a crystalline solute whose hypothetical supercooled liquid can form a mutually

miscible regular solution with a solvent, its solubility in the solvent can be described

using the same equation.

The aqueous solubility of a crystalline solute (Xw") can also be related to the ideal

solubility by considering its deviation from ideality

REVIEW OF LITERATURE

Group Contribution Approach

Adding or removing a fragment from a molecule will change its physical properties.

Group contribution approach is conceptually the most straightforward method. In this

Page 27: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

approach, each molecular fragment is assigned a contribution value towards a certain

property. The property of a molecule can be estimated by summing the frequency (ni) of

each fragment occurring in the molecule times its contribution (Ci).

logS.=2;",C,+C„ (2.7) i

Different structural fragmentation schemes have been proposed in the literature (Wakita

et al., 1986; Klopman et al., 1992; Kuhne et al., 1995; Klopman and Zhu, 2001; Marrero

and Gani, 2002). The aqueous solubility (Sw) was correlated with the group contributions

either directly or with the inclusion of other properties.

Mobile Order Theory

The mobile order theory (Huyskens and Siegel, 1988; Huyskens, 1992) states that "in

hydrogen bonded liquids, a proton donor group follows for most of the time a proton

acceptor group of one or another neighboring molecule in its walk through the liquid.

Both the correlation in the motions of the interacting groups and the mobility of the H-

bonds on a very short timescale bring to the system a particular kinds of order which does

not exist in H-bonded crystals: the mobile order." (Ruelle and Kesselring, 1997b) The

dissolution of nonpolar or weakly polar solutes in H-bonded solvent can further increase

the mobile order because of the hindrance of movement of H-bonded solvent molecules.

The negative entropy explains the origin of the hydrophobic effect.

Page 28: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

26

Based on the theory, Ruelle and Kesselring (1997a, b) developed the following equation

to predict aqueous solubility of nonpolar or slightly polar compounds:

log Sb = A/2.3 + 2.154 - 0.036Vb - 0.2171nVB (2.8)

where Sb is the molar solubility; Vb is the molar volume of the solute calculated by a

group contribution approach; and A = -0.02278(Tni - 298.15).

Linear Solvation Energy Relationship (LSER)

The linear solvation energy relationship was initially developed to correlate solvent

effects with various free energy properties (Kamlet and Taft, 1981; Taft et al., 1985a).

The approach was then generalized to correlate physicochemical properties (Taft et al.,

1985b; Kamlet et al., 1987; Abraham et al., 1994). The following equation was used to

relate a physicochemical property SP to solvation descriptors characteristic of the solute:

log SP = c + rR2 + sTCa" + aEai" + bSpa" + vV^ (2.9)

where

R2 is the excess molar refractivity (MR) index defined as the MR difference over an

alkane of the same molecular volume;

7C2" is the dipolarity/polarizability, a Gibbs-energy related parameter back calculated

from GLPC result and is equivalent to a gas-liquid partition coefficient;

Etta" is a hydrogen bond acidity parameter;

is a hydrogen bond basicity parameter;

Vx is a molecular volume parameter.

Page 29: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

27

These parameters, initially derived from experimental measurements, can now be

calculated from compound structure using a computer program (Platts et al., 1999).

The equation cannot account for intermolecular interaction in the crystal lattice when

applied to solubility prediction. An extra Zai" X ZP2" term was added to deal with

hydrogen bond interactions between acid and basic sites in the solid or liquid (Abraham

andLe, 1999).

Atom Type Electrotopological State Indices

Hall and Kier introduced the atom type electrotopological state (E-state for short) indices

(1995). The approach has both similarity to and difference from the group contribution

approach. It fragments molecular structure to the atomic level instead of functional group

level, which reduces the number of parameters needed. The atom classification is based

on atom (element) identity, valence state, number of bonded hydrogen atoms, and the

identity of other bonded atoms. Not all counts of a certain atom class are treated to have

the same contribution. An E-state index (a) is calculated for each atom by consider the

intrinsic electronic state and the perturbation by the electronic influence of all other

atoms in the molecule within the context of the topological character of the molecule.

The sum index value (A) for each atom class was used in the correlation with aqueous

solubility and a contribution value (Ci) is assigned to each atom class i.

A = (2-10) j

Page 30: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

28

log5 .=2;AC,+C„ (2 .11)

MODEL DEVELOPMENT

The General Solubility Equation and the AQUAFAC approach were developed based on

the ideal solution and regular solution theory. Assuming the entropy of melting follows

Walden's Rule, the ideal solubility of crystalline solute can be estimated at 25 °C using

Eq (2.10)

logX; = -O.Ol(r„, -298) = -0.01(MP-25) (2.12)

where Tm and MP are melting point in K and °C respectively.

General Solubility Equation

Octanol-water partition coefficient has been used widely as a measure of the lipophilicity

of a compound. For a crystalline solute whose hypothetical supercooled liquid can form a

mutually miscible regular solution with octanol, its solubility in octanol can be described

using eq. (2.12). According to the regular solution theory, liquid compounds with a

solubility parameter between 15.1 and 27.1 are completely miscible with octanol. Most

organic non-electrolytes have solubility parameters within the range. Assuming the

solubility ratio in octanol and water is approximately equal to the octanol-water partition

coefficient (P)

Page 31: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

29

C S P = -2- = -iL (2.13)

C,., 5„ W ^ W

The aqueous solubility Sw can be related to octanol solubility So with octanol-water

partition coefficient in

log5^ =log5„-logP (2.14)

The molar octanol solubility can be calculated with eq. (2.12) after conversion from mole

fractional solubility, which introduces the correction term "0.5". It gives the General

Solubility Equation in the following form

log5„ =0.5-0.01(MP-25)-logP (2.15)

For all liquid solutes, there is no crystallinity effect on solubility and the MP is set as 25

°C.

The AQUAFAC Method

Instead of using octanol as a reference solvent, the AQUAFAC method uses a group

contribution approach to estimate the deviation of aqueous solubility from ideal

solubility, the aqueous activity coefficient.

logs, =C„-0m(MP-25)- logr„ (2.16)

logs, =C„ -0.01(M/'-25)-2]n,^, (2.17)

Page 32: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

30

where the constant Co is expected due to conversion from mole fraction solubility to

molar solubility; ni is the counts for a specific group i; and qi is the group contribution

value for group i.

A New Model

The development of a new model aims to eliminate the melting point term from the

prediction equation. Eq. (2.6) can be rearranged to the following form

logX;= (2 .18) ' 2 .303RT 2.303R

The enthalpy of melting of an organic compound is assumed to be dependent upon the

interactions between its molecular fragments and therefore can be estimated using group

contribution approach (Zhao and Yalkowsky, 1999). The entropy of melting can be either

assumed to follow Walden's Rule or estimated by the semiempirical equation of

Dannenfelser and Yalkowsky (1996)

AS,„=56.5-R\n(T+R\n^ (2.19)

where a is the symmetry number of the molecule and O is a measure of the molecular

flexibility. The majority of pharmaceutical compounds are expected to have no symmetry

and have a value of 1. 0 can be calculated by

^ 5/'3+0.55P2+0.5/?/A'G-l ^2

Insertion of Eq. (2.20) into Eq. (2.19) gives

Page 33: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

31

=56.5 + C(SP3 + 0.5^P2 + 0.5i?/iVG-l) (2.21)

which indicates that the entropy of melting can also be estimated by group contribution

approach.

Therefore, it is theoretically reasonable to attempt the use of group contribution approach

to estimate the ideal solubility.

logX;=^n ,m, (2 .22) i

The molar aqueous solubility can then be estimated using

log5,=C„+^n,m,-logP (2.23)

Page 34: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

32

CHAPTER 3: DATA COLLECTION AND ANALYSIS

INTRODUCTION

Development and validation of prediction models rely on the availability of quality

experimental data collection. In order to accomplish the three objectives stated in Chapter

1, it is of great importance to have aqueous solubility data for a set of structurally diverse

compounds. This chapter describes a collection of 1804 organic compounds with aqueous

solubility data. Their melting points were collected, as they are required for the solubility

prediction using the General Solubility Equation and the AQUAFAC method. The

octanol-water partition coefficients were calculated using CLOGP software and available

experimental values were also reported. The representative feature of this data set is

demonstrated by the wide distributions of these properties. Regression analyses were

done to examine the relationship between aqueous solubility and octanol-water partition

coefficient as well as the relationship between aqueous solubility and melting point.

Page 35: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

33

DATA

Solubility Data

The aqueous solubility data of organic compounds were collected from several data sets

with relatively large number of compounds used in the recent literature. The literature

sources are listed in Table 3.1. These data sets were merged to allow only one appearance

for each compound in the final data set. Significant overlap in compound coverage was

observed and many compounds appeared in two or more data sets. When multiple

solubility values were reported for the same compound, the solubility data were evaluated

by comparing with the data in AQUASOL database and the most reliable one was

selected.

The merged data set contains solubility data for 1804 compounds with diverse structures.

All the solubility data are reported in logarithm (log Sw) values, where Sw has a unit of

"mole per liter". The log Sw values range from -12.95 (decachlorodiphenyl ether) to 2.06

(ethylamine) with the distribution graph shown in Figure 3.1. The average log Sw is -2.93

for the compounds in the data set, 77.7 % of which has log Sw in the range of -5 to 0 and

88.4% of which in the range of -6 to 1.

Page 36: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

34

Table 3.1; Literature sources of the current data collection.

Reference N Description Yalkowsky and Banerjee (1982) 21 Compounds of environmental or

pharmaceutical interests, complex structures, often with multiple functionalities

Mitchell and Jurs (1998) 332 Diverse classes of compounds; hydrocarbon, halocarbons, sugar, steroids, PCBs, organic acids, barbiturates

Abraham and Le (1999) 664 Hydrocarbons, halocarbons, PCBs, monofunctional organic compounds, and a small percentage of barbiturates, steroids

Huuskonen (2000) 1297 Large collection of structurally diverse compounds

Huuskonen et al. (2000) 38 Pharmaceutical compounds Chen et al. (2002) 267(train)

54(test) Drug or drug-like solid compounds

Ran et al. (2003) 1026 Mostly non-electrolytes

Page 37: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

35

400

350

300

250

E 200

*5 150

100

50

\

log S„

Figure 3.1: log solubility (log Sw) distribution of 1804 compounds in the data set.

Page 38: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

36

Melting Point (MP)

Melting point information was collected from Merck Index, ChemFinder database,

Beilstein database and CRC Handbook of Chemistry and Physics. Within the data set,

1037 compounds were found to have a melting point higher than 25 °C, 488 compounds

to have a melting point lower than or equal to 25 °C, 109 compounds to be liquid at 25 °C

but without reported melting point information, and 170 compounds to have no

information on melting point or physical state at 25 °C. Figure 3.2 shows the melting

point distribution of the compounds with melting point higher than 25 °C. These

compounds have an average melting point of 143 °C.

Octanol-Water Partition Coefficient (P)

The logarithms of octanol-water partition coefficients (log P) of these compounds were

calculated using CLOGP software Version 4.0 (BioByte Corp., Claremont, CA). The

software also provides experimental octanol-water partition coefficients (MlogP) of a

compound if it is included in the database attached with the software. Experimental

values for 1226 compounds in the data set were reported. The distribution graphs for

calculated and experimental log P are shown in Figure 3.3 and Figure 3.4. The ClogP

average is 2.51 for all the compounds in the data set and the MlogP average is 2.44 for

the 1226 compounds with measured values reported.

Page 39: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

37

300

» 200

P 150

"5 « 100

MP ("C)

Figure 3.2: Melting point (MP) distribution of 1037 solids in the data set.

Page 40: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

38

400

350

300 -

w 1 250 -3

§• 200 -o u "5 150 -*

100 -

50

A A <0 o> -N \

ClogP

Figure 3.3: Calculated log octanol-water partition coefficient (ClogP) distribution of 1804

compounds in the data set.

Page 41: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

39

300 1

250

M 200

E 150

* 100

50

A A <b Q> \ ,N

MlogP

Figure 3.4: Experimental log octanol-water partition coefficient (MlogP) distribution of

1226 compounds in the data set.

Page 42: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

40

RELATIONSHIPS

Regression Analysis

Regression analysis can be used to explore the relationship between a dependent variable

and one or more independent variables or covariables. In this study, we looked at the

relationship between aqueous solubility and octanol-water partition coefficient as well as

the relationship between aqueous solubility and melting point. For each model, the R^,

regression coefficient and standard error of estimation were obtained to evaluate the

relationship. SPSS version 10.0 (SPSS Inc., Chicago, IL) was used to perform the

regression analyses. Data can be read into the software directly from an Excel

spreadsheet file.

Page 43: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

41

CLOGP Prediction Evaluation

The prediction performance of CLOGP was evaluated by calculating the average error

(AE)

AE = [ S ( Clog? - MlogP )] / n

the average absolute error (AAE) is determined as

AAE = ( S I ClogP - MlogP I) / n

and the root mean square error (RMSE) as

RMSE = [ I (ClogP - MlogP)^ I

where ClogP and MlogP are the logarithms of the predicted and experimental octanol-

water partition coefficient respectively, and n is the number of compounds.

Page 44: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

42

Predicted versus Experimental Octanol-Water Partition Coefficient

The log octanol-water partition coefficients can be estimated using a number of software

packages either freely available (e.g., KOWWIN) or commercially available (e.g., ClogP,

ACDlogP, i.a.). In this study, the ClogP version 4.0 was used. It gave a prediction with

average error (AE) of 0.00, average absolute error (AAE) of 0.18 and root mean sqare

error (RMSE) of 0.29 for the 1225 compounds with experimental log P data reported.

Figure 5 shows a plot of the calculated log P values against the measured log P data.

Regression analysis gave the following correlation relationship.

ClogP = l.OHMlogP - 0.0304 N = 1225, R^ = 0.981, SE = 0.290

Page 45: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

MIogP

Figure 3.5: Plot of calculated log octanol-water partition coefficients (ClogP)

experimental(measured) log octanol-water partition coefficients (MlogP).

Page 46: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

44

Solubility and Octanol-Water Partition Coefficient

The aqueous solubility of an organic compound has an inverse relationship with its

lipophilicity as measured by the octanol-water partition coefficient. Hansch et al. showed

that the relationship between log Sw and log P for a group of liquids can be described by

log Sw = -1.339 log P + 0.978 N = 156, = 0.874, SE = 0.472

The relationship can be seen in the plots of log Sw versus either ClogP (Figure 6) or

MlogP (Figure 3.7) for the liquids in the current set of compounds. The equations and

results obtained from regression analyses underline the strong relationship as indicated by

the high for the correlation.

log Sw = -1.073 ClogP + 0.597 N = 597, R^ = 0.894, SE = 0.559

log Sw = -1.112 MlogP + 0.690 N = 393, R^ = 0.905, SE = 0.531

With the bigger data set we used, the coefficients for ClogP and MlogP and the constant

were slightly different from those obtained in Hansch's study. At the same time, the

standard error of estimation grew bigger.

A similar relationship can still be observed when solids were included in the plots (Figure

3.8 and Figure 3.9). However, the correlation seemed to be not as strong as shown by

Page 47: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

liquid solutes only. R decreased significantly while the SE increased one fold. The

coefficients for log P were still close to "-1" but their magnitude decreased, indicating

that the log decreases less with log P for solids than for liquids. It is also interesting to

note that the constant terms changed from positive numbers to negative numbers, which

translates into that, in general, a solid solute has a lower solubility than a liquid solute

when they have similar octanol-water partition coefficients.

log Sw =

log Sw =

-0.843 ClogP - 0.809

-0.906 MlogP - 0.602

N = 1804, = 0.714, SE = 1.212

N = 1225, R^ = 0.723, SE = 1.141

Page 48: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

46

Figure 3.6: Scatterplot of log Sw versus calculated log octanol-water partition coefficients

(ClogP) for 597 liquids or gases in the data set.

Page 49: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

47

Figure 3.7: Scatterplot of log Sw versus experimental log octanol-water partition

coefficients (MlogP) for 393 liquids or gases with available experimental log P in the

data set.

Page 50: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

48

4 n

-14 T 1 1 1 1 1

-8 -4 0 4 8 12

ClogP

Figure 3.8: Scatterplot of log aqueous solubilities (log Sw) versus calculated log octanol-

water partition coefficients (ClogP) for all 1804 compounds in the data set.

Page 51: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

49

Figure 3.9: Scatterplot of log aqueous solubilities (log Sw) versus experimental log

octanol-water partition coefficients (MlogP) for 1225 compounds with available

experimental log P in the data set.

Page 52: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

50

Solubility and Melting Point

Scatterplot of experimental log against melting point reveals a negative correlation

(Figure 3.10). However, the correlation between the two variables is very weak as

indicated in the results of regression analyses. The first equation is for 1525 compounds

with available melting point information. The second equation is for 1037 solid

compounds with available melting point information.

log Sw = -0.0050 MP - 2.645 N = 1525, = 0.0614, SE = 2.276

log Sw = -0.0007 MP - 3.408 N = 1037, = 0.0004, SE = 2.455

Page 53: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

-14 i ^ 1 1 1 1 1 1

-200 -100 0 100 200 300 400 500

MP (°C)

Figure 3.10: Scatterplot of log Sw versus experimental melting point for 1525 compounds

with available melting point information in the data set.

Page 54: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

52

CHAPTER 4: STRUCTURAL FRAGMENTATION

INTRODUCTION

Group contribution approaches have been used for the prediction of physical properties

such as octanol-water partition coefficient, enthalpy of melting, entropy of melting, etc.

They start by breaking down the molecular structures into a predefined set of

substructural fragments. Regression analysis is then performed to assign a group

contribution value towards the property of interest for each substructural fragment.

Property of a new molecule can be predicted by summing up the number of occurrences

of each fragment in the molecule times its group contribution value.

The structure breakdown process is generally called structural fragmentation. The

substructural fragments can be defined in a variety of ways. The different ways of

defining the substructural fragments are called fragmentation schemes. Early group

contribution works were done "manually" by looking at the molecular structures and

counting the number of presences of defined fragments. Small data sets can be

manageable with the "manual" approach. However, it will take enormous amounts of

time when large data sets need to be processed.

The recent developments in chemical information system and computational chemistry

have greatly enhanced the productivity in processing structural information in chemistry.

Page 55: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Various chemical languages and file formats have been developed to represent and

communicate chemical structures, reactions and data (Weininger, 1988; Bebak et al.,

1989; Barnard, 1990; Dalby et al., 1992; Allen et al., 1995). Efficient processing and

storage of the chemical information are now possible with the development of ancillary

computer programs.

Page 56: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

54

SMILES

SMILES (Simplified Molecular Input Line Entry Specifications) is a language used for

chemical structure representation in computer systems (Weininger, 1988). It allows the

representation of molecular structure by a linear string of symbols. Compared with other

chemical notation languages, one of the major advantages of SMILES is its user-

friendliness. Good chemical notation systems need to give a unique notation for a

molecular structure to serve as the identifier of the structure for storage and processing.

To achieve that, many rules need to be followed to generate a unique notation for a

structure. SMILES is designed to avoid putting the burden on users. Users are given great

flexibility in following only a small set of rules that are easy and natural to learn. This

can lead to various equally valid notations of a structure. The conversion of them into a

unique notation is handled by a build-in algorithm in the system.

The five basic rules of SMILES language are as follows:

1. Atoms are represented by atomic symbols;

2. Double and triple bonds are represented by = and # respectively;

3. Branching is indicated by parentheses;

4. Ring closures are indicated by matching digits appended to symbols;

5. Aromaticity may be indicated by writing atomic symbols in lower cases.

Page 57: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

55

An example is given in Figure 4.1 to illustrate these rules. More details about the

SMILES language can be found in the literature (Weininger, 1988; Weininger et al.;

1989) and the Daylight web site.

Page 58: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

56

o

NHc

CC0C(=0)clccc(N)ccl

Nc(ccl)ccclC(=0)0CC

NC(C=C 1 )=CC=C 1 C(=0)0CC

Figure 4.1: An example illustrating the expression of Benzocaine structure in SMILES.

Page 59: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

57

SMARTS

Structural fragmentation is an important step in group contribution methods. SMARTS

(Smiles Arbitrary Target Specification) was developed by Daylight Chemical

Information System, Inc. to allow the representation of substructural fragments. It uses

rules that are straightforward extensions of the SMILES language. Logical operators and

a few new symbols were included to allow precise specification of the fragments and

their bonding environments. Table 4.1 gives some examples to illustrate the expression of

substructural fragments in SMARTS.

STRUCTURAL FRAGMENTATION PROGRAM

Structural fragmentations in this study were performed using an online service freely

accessible at the University of Erlangen. Users are allowed to define and implement their

own fragmentation schemes in SMARTS language. Input of molecular structures in

SMILES format can be processed in batch mode. Fragmentation results can be given in a

number of formats, which facilitate the transport of data to different software.

Page 60: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

58

Table 4.1: Examples illustrating the SMARTS expressions for substructural fragments.

cc Any pair of attached aliphatic carbons

c-c Any pair of aromatic carbons joined by a single bond

(e.g. biphenyl)

[0;H1] Hydroxy group

[F,CI,Br,I] Any one of the four halogen atoms

[!C;R] Atom that is NOT an aliphatic carbon AND is in a ring

[C;H0;X{2-3}] Any carbon atom that has no bonded hydrogen and is

connected to two or three atoms (e.g. -C=, =C=, >C=)

F[$([a]),$([C;A;X{2-3}])] Any fluorine atom that is connected to an aromatic

atom or an carbon atom that has no bonded hydrogen

and is connected to two or three atoms

[0;Hl][$([c])] Phenol group

[0;Hl][c] A group composed of a phenol group with the attached

aromatic carbon

Page 61: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

59

FRAGMENTATION SCHEME

The current fragmentation scheme is developed on the basis of the AQUAFAC scheme

described previously (Myrdal et al. 1992, 1993,1995). It can be considered an extended

version of the AQUAFAC fragmentation scheme. Sulfur and phosphorus containing

fragments are now included to extend the applicability to a wide range of compounds.

As in the original AQUAFAC scheme, fragmentation is based on fundamental groups

and the hybrid state of the atom(s) to which they are bonded. The fundamental groups are

listed in the first column of Table 4.2. Depending on the types of neighboring atom(s)

they are bonded to, some commonly encountered ones are further classified. Two types

of neighboring atoms are defined. An atom is designated by an "X" if it is a sp carbon,

amine nitrogen, ether oxygen, divalent sulfur or any of the four common halogens. The

neighboring atoms that are designated by a "Y" include sp and sp carbons, aromatic

atoms, nitrogens in nitro groups, pentavalent phosphorus atoms, and sulfur atoms in

sulfoxide or sulfonyl group. Fundamental groups are given a prefix to indicate the

neighboring connection(s). A prefix of "X" indicates all neighboring atoms are "X" type

while a prefix of "Y" indicates one neighboring atom is "Y" type. "YY" is used as prefix

when two or more neighboring atoms of a fragment are "Y" type.

Page 62: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

60

The classification system does not apply to aromatic fragments. For aromatic carbons,

they are differentiated as normal aromatic carbons, biphenyl carbons and bridgehead

carbons (as in fused aromatic rings).

Fragments such as -C(=0)0-, -C(=0)N< and -C(=0)NH-, have more than one atom for

neighbor bonding. Myrdal et al. indicated that consideration of only the neighbor which

is bonded to the carbonyl group is necessary for the classification of these fragments

(1995).

To keep the number of fragments to a reasonable range, the less commonly encountered

fragments are not differentiated. Three atomic fragments are included to minimize the

possibility of missing fragments.

Figure 4.2 shows an example of structure fragmentation using the AQUAFAC scheme.

The benzocaine structure is broken into 10 fragments according to the scheme.

Page 63: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

61

Table 4.2: Fragment list in the extended AQUAFAC fragmentation scheme.

Neighboring Group Fragment X Y YY

-CH3 XCH3 YCH3 *

-CH2- XCH2 YCH2 YYCH2 >CH- XCH YCH YYCH >C< XC YC YYC CH2= CH2dbl * *

-CH= XCHdbl YCHdbl >C= XCdbl YCdbl YYCdbi CH= CHtri * *

-C= XCtri YCtri *

=C= Callenic * *

-F XF YF *

-CI XCl YCl *

-Br XBr YBr *

-I XI YI *

-OH XOH YOH *

-0- XO YO YYO -NH2 XNH2 YNH2 *

>NH XNH YNH YYNH >N- XN YN YYN NH= NHdbl * *

-N= XNdbl YNdbl *

-SH XSH YSH *

>S XS YS YYS -C(=0)H XCHO YCHO *

>C=0 XCO YCO YYCO -C(=0)0H XCOOH YCOOH YYCOOH -C(=0)0- XCOO YCOO YYCOO HC(=0)0- HCOO * *

-C(=0)NH2 XC0NH2 YC0NH2 YYC0NH2 -C(=0)NH- XCONH YCONH YYCONH -C(=0)N< XCON YCON YYCON -C=N XCN YCN YYCON HC(=0)N< HCON * *

-N(=0)=0 XN02 YN02

* Non-existent fragment

Page 64: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 4.2: (Continued).

Fragment Name Fragment Name C aromatic Car >S=0 SO C biphenyl Cbp >S(=0)=0 S02 CH aromatic CHar -S(=0)(=0)NH2 S02NH2 C bridgehead Cbr -S(=0)(=0)NH- S02NH 0 aromatic Oar -S(=0)(=0)N< S02N N aromatic Nar -SC(=0)NH- SCONH S aromatic Sar -SC(=0)N< SCON Car=0 Car=0 -SC=N SCN -0C(=0)NH- OCONH -N=C=S NCS -0C(=0)N< OCON PO4 P04 -C(=0)0C(=0)- COOCO P(=0)02S P03S -NHC(=0)NH2 NHC0NH2 P(=0)0S2 P02S2 -NHC(=0)NH- NHCONH P(=S)03 PS03 >NC(=0)NH2 NC0NH2 P(=S)02S PS02S >NC(=0)NH- NCONH -P(=0)02 P03 >NC(=0)N< NCON -P(=0)0S P02S -C(=0)NHC(=0)- CONHCO -P(=S)02 PS02 -C(=0)NC(=0)- CONCO -P(=S)OS PSOS -CH=N- CH=N 0= Odbl_other >C=N- C=N >P(<)- Pv5_other -CH=NOH CH=NOH s= Sdbl_other >C=NOH C=:NOH

Page 65: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

63

XCH2

XCH

NH YCOO

YNH2

Figure 4.2: Fragmentation of benzocaine structure according to the AQUAFAC scheme.

Page 66: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

64

CHAPTER 5: EVALUATION OF SOLUBILITY PREDICTION BY

THE GENERAL SOLUBILITY EQUATION ON A SET OF DIVERSE

COMPOUNDS

INTRODUCTION

The General Solubility Equation (GSE) was originally proposed by Yalkowsky et al.

(1980) and recently revised by Jain and Yalkowsky (2001). It relates the molar aqueous

solubility (Sw) to the melting point (MP) in Celsius and the octanol-water partition

coefficient (P) by the following simple equation:

log Sw = 0.5 - 0.01(MP - 25) - log P

The General Solubility Equation has been shown to produce reasonable predictions for a

wide variety of organic non-electrolyte compounds (Peterson et al., 2001; Ran et al.,

2002). In this study, we intend to test the GSE on an even more diverse data set including

non-electrolytes and weak electrolytes. The performance of GSE on different classes of

compounds is evaluated.

Page 67: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

65

METHODS

Data Set

Since the coefficients in the General Solubility Equation were not obtained by regression

on a particular training set of compounds, any compounds in the data set described in

Chapter 3 can be used to test the performance of the General Solubility Equation. For the

1804 compounds in the data set, melting information were not found for 170 of them.

The remaining 1604 compounds were used as a test set for the study.

Page 68: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

66

Evaluation

The General Solubility Equation was used to estimate the 1634 compounds with melting

point or physical state information. The prediction performance was evaluated by

calculating the average error (AE)

AE = [ S (log Scale - log Sw)] / n

, the average absolute error (AAE) is determined as

AAE = ( Z I log Scale - log Sw I ) / n

and the root mean square error (RMSE) as

RMSE = [ Z (log Scale - log Sw )^ / n ]

where log Scale and log Sw are the logarithms of the predicted and experimental aqueous

solubility respectively, and n is the number of compounds.

The AE indicates whether the predictions are biased. The AAE and RMSE are

representative of the size of a "typical" error of prediction. They are generally used to

compare the prediction performance of different models. The RMSE is more sensitive

than the AAE to the occasional large errors because the squaring process gives much

more weight to very large errors. Therefore, the RMSE is usually slightly bigger than the

AAE.

Residual diagnostics was performed by analysis of the residual distribution plot; plots of

residuals against experimental log Sw, MP and ClogP; residual comparisons of liquids

Page 69: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

versus solids, non-electrolytes versus weak electrolytes, zwitterions and compounds with

specific functional groups.

Page 70: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

68

Regression Analysis

Regression analysis can be used to explore the relationship between a dependent variable

and one or more independent variables or covariables. In this study, we looked at the

relationship between aqueous solubility and octanol-water partition coefficient, the

relationship between aqueous solubility and melting point, and the relationship between

aqueous solubility and both octanol-water partition coefficient and melting point. For

each model, the R^, regression coefficient and standard error of estimation were obtained

to evaluate the relationship. SPSS version 10.0 (SPSS Inc., Chicago, IL) was used to

perform the regression analyses. Data can be read into the program directly from an

Excel spreadsheet file.

Page 71: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

69

RESULTS AND DISCUSSION

Overall Performance

For the 1634 compounds with known melting point or known to be liquid at 25 °C, the

General Solubility Equation gave a good prediction of the aqueous solubility as shown in

Figure 5.1. The average absolute error of estimation of 0.56 log unit corresponds to a

factor of about 3.6 normal units. The error distribution plot (Figure 5.2) indicates that the

GSE predicted the solubilities of about 60 % of the compounds with errors below 0.5 log

unit and about 85 % with errors below 1 log unit.

The prediction error was plotted against experimental log Sw, ClogP and melting point in

Figures 5.3, 5.4 and 5.5 respectively. No trends were observed in the plots of prediction

error against the experimental log Sw or the melting point, indicating that there is little

systemic deviation in the prediction. However, there was a slight trend in the plot with

respect to ClogP. It can be seen that aqueous solubilities of compounds with low ClogP

tend to be overestimated. There is no definite explanation for this trend currently. Two

factors may be considered as part of the reason. One is that a significant portion of this

group of compounds are zwitterionic in nature. The other is the prediction error

associated with log P estimation for this group of compounds using CLOGP. For

example, the two compounds with the largest prediction error are cephaloridine and

Page 72: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

natamycin. CLOGP gives warning messages "error uncertain for charged structure"

"possible low due to hydrophilic overlap" for the calculation of their log P values.

Page 73: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

8 n

6 -

-12 - o' o

-14 I ^ ! I ^ ^ 1 I I I I I

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8

Experimental log Sw

Figure 5.1: Plot of predicted log Sw versus experimental log Sw

Page 74: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

72

70

60

50 -in

E I 40 E o O 30 . o s?

20

1 0 -

0 ! 1 t , r—

O <0 1/ 'b ^ <D fc <0' N-

Absolute Predicted Error

Figure 5.2: Absolute prediction error distribution.

Page 75: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

~n

4 -14 -12 -10 -8 -6 -4 -2 0

Experimental log Sw

Figure 5.3: Plot of prediction error against experimental log Sw.

Page 76: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

-8 -4 0 4

ClogP

12

Figure 5.4: Plot of prediction error against calculated log P (ClogP).

Page 77: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

O o O o o o o O O O - • o O

O nB ̂*̂ 0̂ 0 ODO

•^o^O " o o","

1 1 1 1

0 50 100 150 200 250 300 350 400 450

0/ MP f C)

Figure 5.5: Plot of prediction error against melting point for 1037 solids.

Page 78: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

76

Solid Versus Liquid

It is apparent from Table 5.1 that the General Solubility Equation provided better

prediction for liquids than for solids. Part of the reason might be that liquids tend to have

simpler structures than solids. Most of the liquids in the data set are hydrocarbons,

halogen substituted hydrocarbons, or simple alcohols. As a result of the simplicity in

structure, less complicated intramolecular and intermolecular interactions are expected,

which always makes the modeling more accurate.

It should be noted that compounds exist in gas state at 25 °C are not separeated from the

liquids in the current study. The treatment did not result in significantly larger prediction

errors for gases than for liquids.

Page 79: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

77

Table 5.1: Statistical analysis of predicted log Sw values compared with experimental log

Sw values.

N AE AAE RMSE

All 1634 0.07 0.56 0.82

Liquids/Gases 597 0.08 0.40 0.57

Solids 1037 0.06 0.66 0.93

Page 80: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

78

Non-electrolyte Versus Weak Electrolyte

The General Solubility Equation was derived based on assumptions applicable for

organic non-electrolytes. Strictly speaking, it is only applicable for non-electrolytes. The

fact that it performs so well on non-electrolytes has led to its extended use in predicting

solubilities of organic weak electrolytes. When applied to organic weak electrolytes, the

predicted solubilities by GSE refer to the solubilities of the neutral or unionized species,

i.e. intrinsic solubilities. Solubilities of weak electrolytes can be affected by solution pH

and the relevant equations describing the variation have been given in the literature

(Grant and Higuchi, 1990). An acidic solute with pKa of 4 is expected to have a solubility

about 1000 fold of its intrinsic solubility at pH 7 due to ionization (assuming Ksp is not

reached). However, an acidic solute with pKa of greater than 8 is expected to have a

solubility no more than 10 % deviated from its intrinsic solubility at pH 7. Dissolved

weak electrolyte in water can affect the pH of the solution depending on the pKa and the

concentration of the solute. The relationship has been evaluated in recent studies

(Abraham and Le, 1999; Sanghvi et al., 2003). Upon dissolving in water, a weakly acidic

solute is expected to lower the pH of the solution and minimize the deviation from

intrinsic solubility due to ionization. For compounds with the same or similar pKa's, the

higher its intrinsic solubility, the more it lowers the solution pH and the less the

deviation. Therefore, significant deviation of solubility from intrinsic solubility is

expected for acidic compounds with low pKa's or low intrinsic solubilities, or basic

compounds with high pKa's or low intrinsic solubilities.

Page 81: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

79

Dissociation constant (pKa) information is not as widely available as the aqueous

solubility information. It will be very hard to collect pKa data for so many compounds in

the current data set. However, pKa can be roughly estimated for compounds with certain

functional groups. For example, conjugative acids of amines have pKa's of about 10-11

while those of anilines have pKa's of about 4-5.

In this study, the prediction performance was evaluated on three groups of compounds,

carboxylic acids, amines and zwitterions. Zwitterions were identified by the presence of

both a carboxylic acid functional group and an amine functional group. The prediction

results are summarized in Table 3. As can be seen from the table, the General Solubility

Equation tends to underestimate the solubilities for carboxylic acids and amines, which

may be partially explained by the pH effect due to ionization of the solute itself.

According to the theoretical calculations (Abraham and Le, 1999; Sanghvi et al., 2003),

little effect is expected for high solubility compounds and the more negative deviation is

expected for low solubility compounds. However, residual analyses on the different

classes of compounds indicate that ionization is not the only factor. Residual plots of

compounds containing an XCOOH group is shown to illustrate this point (Figure 5.6). It

is supprising to see that the solubilities of zwitterionic compounds are overestimated by

the GSE. The GSE gives solubility prediction for the hypothetical charge-free form of a

zwitterionic compounds which, in theory, should be less soluble than the charged form.

Page 82: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

80

Table 5.2: Statistical analysis of prediction performance of different classes of

compounds.

N AE

(Pred - Exp)

AAE RMSE

Carboxylic acids

YCOOH

47 -0.60 0.74 0.87

Carboxylic acids

XCOOH

77 -0.47 0.78 1.03

Primary amines 18 -0.21 1.04 1.28

Secondary amines 22 -0.49 0.70 0.93

Ternary amines 59 -0.23 0.99 1.28

Zwitterions 29 1.32 1.34 1.96

Others 1383 0.12 0.50 0.72

All 1634 0.07 0.56 0.82

Page 83: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

y = -0.0154x-0.5103

= 0.001

o 9 O O ^ O o CO

Ul ° S O? OO o • f U "lA W _ ^ O ^ 'O o o OOo o

0 O O t f>

^ ^ 1 _ _

-4 -2 0

I

4 -10 -8 -6

log S W

Figure 5.6: Residue plot of compounds containing XCOOH group.

Page 84: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

82

Regression Analysis

Regression analysis using ClogP and (MP - 25) as the independent variables to correlate

with log Sw gave the following equation and results.

log Sw = 0.304 - 0.947 ClogP - 0.0101 (MP - 25)

N = 1634, = 0.880, SE = 0.8067

Comparing with the correlation between log Sw and ClogP alone, it is obvious that the

correlation improved significantly with the inclusion of (MP - 25). The fact that the

coefficients for ClogP and (MP - 25) obtained from regression are very close to those in

the General Solubility Equation lends support to the validity of the assumption made in

the derivation of GSE.

Page 85: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

83

SUMMARY

The prediction performance of the General Solubility Equation is evaluated on a large

collection of structurally diverse environmental and pharmaceutical compounds. The data

set contains a total of 1634 non-electrolytes and weak electrolytes. The GSE gives an

overall prediction with AAE of 0.56 and RMSE of 0.82 log unit. Predictions are

generally more accuate for liquids than for solids. The GSE also provides better

predictions for non-electrolytes than for weak electrolytes. Solubilities of carboxylic

acids and amines are generally underestimated while those of zwitterionic compounds are

overestimated by the GSE.

Page 86: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

84

CHAPTER 6: COMPARISON OF THE GENERAL SOLUBILITY

EQUATION AND THE METHOD USING AN AMENDED

SOLVATION ENERGY RELATIONSHIP

INTRODUCTION

An Amended Solvation Energy Relationship (ASER) was recently proposed to predict

the aqueous solubility of organic compounds. (Abraham and Le, 1999) The method starts

with an equation that relates a solvation property (SP) to a sum of the following specific

interaction terms: the excess molar refraction (R2), a combined dipolarity/polarizability

TT U

descriptor (K2 ), the overall solute hydrogen bond acidity (Sa2 ), the overall solute

hydrogen bond basicity (SP2"), and the McGowan's characteristic molecular volume

(Vx). In view of the influence of intermolecular interactions on melting points and

solubilities, a product term "Za2" x EP2"" was incorporated to partly account for the

absence of a solid correction term. This leads to the amended solvation energy

relationship as follows

log Sw = c + rR2 + sTiz" + ai:a2" + bipz" + ld:a2" x IP2" + vV^ (6.1)

where each term is determined by a separate formula and/or a set of group contribution

values. Multiple linear regression analysis was used to construct the prediction equation.

This method was applied to a diverse set of 664 organic liquids and solids with

Page 87: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

85

satisfactory results. In this chapter, the General Solubility Equation is applied to the same

set of compounds and the prediction results are compared.

Page 88: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

86

METHODS

The melting point data for the 664 compounds were obtained from the Merck Index,

AQUASOL dATAbASE and several internet databases. The octanol-water partition

coefficients were calculated with CLOGP software (Version 4.0, BioByte Corp.,

Claremont, CA). Experimental octanol-water partition coefficients are listed if available.

The experimental aqueous solubilities and the ASER predicted solubilities are those

reported by Abraham and Le (1999). The aqueous solubilities were also calculated using

the General Solubility Equation (GSE) of Jain and Yalkowsky (2001). For each

calculation the average absolute error (AAE) is determined as

AAE = ( 2 I log Scale - log Sw I) / n

and the root mean square error (RMSE) as

R M S E = [ E ( l o g S c a l e - l o g S ^ f / n

where logScaic and log Sw are the logarithms of the predicted and experimental aqueous

solubility respectively, and n is the number of compounds.

Page 89: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

87

RESULTS

Octanol-Water Partition Coefficients

Experimental partition coefficients were found for 530 of the 664 compounds. As shown

in Figure 6.1, the calculated partition coefficients using CLOGP® are in very good

agreement with the available measured values (MLOGP), with an AAE of only 0.121 log

units. CLOGP version 4.0 seems to give more accurate estimations of octanol-water

partition coefficients than the previous version. Partition coefficients calculated with

CLOGP are used in the solubility calculations since they are easily determined and are

available for compounds with no available experimental values. The CLOGP and the

available MLOGP values for Abraham's data set are listed in the second and third

column of the APPENDIX II.

Page 90: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

MLOGP

Figure 6.1: Plot of measured logP (MlogP) versus ClogP (n = 530).

Page 91: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Melting Point

Melting points were found for 662 of the 664 compounds. The other two compounds

(hydrocortisone 21-acetate and morphine) decompose upon melting and thus may not

have true melting points. (Note that the use of a decomposition temperature in the GSE

gives the maximum solubility estimation. The predicted solubility would be lower if the

true melting point were higher than the decomposition temperature.) If polymorphs or

hydrates of the compound exist, the melting point of the most stable form in equilibrium

with the solution should be used. The melting points used in the GSE are listed in the

fourth column of the APPENDIX II. Note that an MP of 25°C is used for all liquids so

that the crystal term vanishes.

Page 92: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

90

Solubility

The solubility values used by Abraham for the 664 compounds studied are listed in the

5th column of the APPENDIX II. All of these values were confirmed to be in agreement

with the values in the AQUASOL dATAbASE. The solubilities predicted by Abraham's

ASER and by the GSE are listed in column 6 and 7 of the APPENDIX II, respectively.

They are also plotted against the experimental solubility values in Figures 6.2 and 6.3

respectively. The average absolute prediction error for the 662 compounds is 0.446 log

units and the root mean square error 0.622 log units, which are consistent with the results

of previous studies (Jain and Yalkowsky, 2001; Ran and Yalkowsky, 2001; Ran et al.,

2001). As shown in Table 6.1, the results are similar when the two compounds which

decompose before melting are included.

Page 93: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

91

3

1

1

3

5

•7

9

11

11 9 7 •5 •3 1 1 3

Experimental log Sw

Figure 6.2: Experimental log Sw versus predicted log Sw using the ASER method (n =

664). The diagonal line is the line of identity.

Page 94: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

92

3

1

1

•3

•5

•7

•9

11

9 3 1 3 11 7 5 1

Experimental log Sw

Figure 6.3; Experimental log Sw versus predicted log Sw using the GSE method (n = 664).

The diagonal line is the line of identity.

Page 95: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

93

DISCUSSION

In spite of the fact that the General Solubility Equation uses only two input variables and

does not use any training set or fitted parameters, it gives quite reasonable predictions.

The ASER method produces only marginally better predictions (Table 6.1). However it

uses seven coefficients, six variables derived from a very large number of structural

descriptor values, and multiple linear regression analysis.

As can be seen in Table 6.1, both methods give better predictions for the 408 liquids than

for the 256 solids. The average absolute error of the GSE prediction is 0.358 for liquids

and 0.588 for solids. The ASER method gives an AAE of 0.338 for liquids and 0.575 for

solids. The success of the GSE for liquid non-electrolytes is based upon the relationship

between the octanol-water partition coefficient and the water solubility originally

proposed by Hansch et al. (1968) and validated by Yalkowsky and Valvani (1980).

When applied to solid compounds, the General Solubility Equation assumes that the

entropy of melting of organic non-electrolytes obeys Walden's rule (i.e. ASm = 56.6 JK"

'mole ') and that the solid-liquid heat capacity difference is negligible (i.e. ACpm = 0).

(Note: CLOGP alone gives better prediction for liquids than solids.) In the ASER

method, the product term "Za2" x i;p2""deals with hydrogen-bond interactions between

acid and basic sites in the solid or liquid. The addition of a term "Tta" x 712"" to deal with

dipole/dipole interactions did not improve the prediction.

Page 96: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

94

Table 6.1: Statistical analysis of predicted log Sw values compared with experimental log

Sw values.

All n = 664

All - 2" n = 662

Liquids n = 408

Solids n = 256

AAE ASER 0.430 0.431 0.338 0.575

AAE GSE 0.447 0.446 0.358 0.588 AAE AVG 0.377 0.376 0.309 0.486

RMSE ASER 0.615 0.615 0.490 0.774

RMSE GSE 0.623 0.622 0.505 0.775 RMSE AVG 0.534 0.533 0.453 0.642

''All compounds except two which decompose before melting.

Page 97: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

95

The ASER method predicts aqueous solubilities from compound structures without the

need of experimental melting point values. However, it is limited by the availability of

descriptors for the contribution of specific groups present in a compound to the six

parameters used. For example, dicarboxylic acids are not included in the ASER study

because descriptors for these compounds have not yet been finalized.

The applicability of the General Solubility Equation depends on the availability of

melting point and octanol-water partition coefficient data. As shown in previous studies,

octanol-water partition coefficients can be reliably predicted using CLOGP or other

software (Jain and Yalkowsky, 2001; Ran and Yalkowsky, 2001; Ran et al., 2001). On

the other hand, melting point data are not always available and a reliable general method

of predicting melting point from compound structures is not available currently. Most

attempts to predict melting point are either unsatisfactory or applicable to only a very

small group of compounds (Joback, 1984; Boethling et al., 1988; Dearden, 1991;

Simamora and Yalkowsky, 1994; Krzyzaniak et al., 1995). However, if melting points

can be predicted with a 30 °C error it would correspond to only a two-fold error in

solubility.

It is interesting to note that the average (AVG) of the predicted log values using the

two independent methods gives a better prediction than either method used alone (Figure

6.4). Table 6.1 shows that the AAE and RMSE are generally reduced when the average

values are used. Furthermore, the two predictions differ by less than a factor of 2 (0.30

Page 98: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

96

log units) from each other for about half of the compounds. For more than 60% of these

331 compounds the average of the two calculations is within a factor of 2 of the observed

value.

Page 99: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

97

3

1

o O -3 d) W c (0 -5 k. V > < -7

-9

-11

- 1 1 - 9 - 7 - 5 - 3 - 1 1 3

Experimental log Sw

Figure 6.4: Experimental log Sw versus predicted log Sw using the average of the ASER

prediction and the GSE prediction (n = 664). The diagonal line is the line of identity.

Page 100: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

98

SUMMARY

Both the ASER and the GSE methods give satisfactory prediction for the compound set.

The ASER is based on multiple linear regression analysis of a large training set that may

or may not contain the required structural fragments while the GSE is simpler and user-

friendlier. However the latter requires knowledge of either an experimentally determined

or an estimated melting point of the solute. This study provides support for the reliability

of the GSE in estimating the aqueous solubilities of organic compounds. It can be used

alone or in combination with the ASER calculation to provide confirmatory results.

Page 101: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

99

CHAPTER 7: DEVELOPMENT OF THE EXTENDED AQUAFAC

MODEL

INTRODUCTION

As discussed in Chapter 2, the deviation of aqueous solubility from ideal solubility is

generally described by the aqueous activity coefficient Yw Myrdal et al. developed the

AQUAFAC group contribution method to estimate the molar aqueous activity

coefficient,

l o g ^ ^ = C + ( 7 . 1 ) i

where C is a constant; n; is the counts for a specific group i; and qj is the group

contribution value for group i.

Estimation of the aqueous activity coefficient allows the development of a solubility

prediction model from aqueous phase data and avoids the use of octanol as a reference

solvent. Together with melting point (MP) information, the aqueous solubility can be

predicted using

= -0.01(MP-25)-log;/, (7.2)

When tested on a set of 97 compounds, the AQUAFAC approach was shown to be

slightly superior to the General Solubility Equation (Myrdal et al., 1995). The study

Page 102: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

100

clearly demonstrated the potential applicability of the AQUAFAC approach. Two

subsequent studies extended the applicability to a wider range of functional groups (Lee

et al, 1996; Pinsuwan et al., 1997). However, due to the lack of computational tools to

break down the molecular structures at the time of development, the applicability of the

approach is still limited to molecules containing a limited number of groups, whose group

counting can be handled "manually".

This chapter intends to take advantage of the computational tools described in Chapter 4.

The AQUAFAC scheme is extended to a set of 114 fragments covering a diverse range of

functional groups. Group contribution values for 104 fragments are obtained from

multiple linear regression analysis.

Page 103: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

101

METHODS

Data Set

Aqueous solubility and melting point information contained in the data set described in

Chapter 3 was used for the development of the extended AQUAFAC model. Part of the

data set was taken out and reserved as test set for the comparison of the prediction

performances using different methods. It includes a set of 21 environmental and

pharmaceutical compounds compiled by Yalkowsky and Banerjee (1982), a test set of 38

pharmaceutical compounds used by Huuskonen et al. (2000), and a set of 54 drug or

drug-like compounds tested in a study by Chen et al. (2002). Compounds with no melting

information (no melting point found or not known as liquid at 25 °C) were excluded, as

melting information is required for the development of the AQUAFAC model. As a

result, the final training set contains 1574 compounds.

Aqueous Activity Coefficient

The aqueous activity coefficient Yw was calculated from the aqueous solubility Sw,

through the following equations as previously described (Myrdal et al., 1993)

^ogr„=- \ogS„ (7.5)

for liquid solute, and

l ogr„=-O.Ol (MP-25) - logS^ (7.6)

Page 104: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

102

for solid solute.

The calculated aqueous activity coefficients were used in the regression analysis to

generate the group contribution values for different fragments.

Structural Fragmentation

The structural fragmentation program, developed by Dr. Ihlenfeldt at the University of

Erlangen, was used to count the occurrence of each fragment in the molecules. The

program takes SMILES names as structure input and has two build-in fragmentation

schemes. It also allows users to customize the fragmentation schemes according to their

own need or preference. The extended AQUAFAC scheme described in Chapter 4, was

implemented in SMARTS language and used for this study.

Regression Analysis

The regression analyses were performed using SPSS for Windows version 10.0 (SPSS

Inc., Chicago, IL). The data set containing the aqueous activity coefficients and group

counts was prepared in Excel and used as input for SPSS. The multiple linear regression

analysis function of SPSS was used to generate group contribution values qi. Regression

analyses with or without a constant term were both performed.

Page 105: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

103

RESULTS

Fragmentation Performance

With the extended AQUAFAC scheme, the molecular structures of all 1574 compounds

in the training set were fragmented. Out of the 114 defined fragments, 104 fragments

were found in those structures.

Regression Analysis

Although the original studies found that the inclusion of a constant term in the regression

equation was not necessary, the result of the regression analysis performed on a large

data set in this study indicates that the constant term is significant. The constant term has

a value of -0.742. The model with a constant term has an of 0.881 and a standard error

of estimation of 0.819 for the training set. Without the constant term, the model gives a

standard error of estimation of 0.838.

Group Contribution Values qi

Table 7.1 lists the group contribution values for 104 fragments encountered in the

training set. These parameters constitute the basis for the estimation of aqueous activity

coefficients of new compounds.

Page 106: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

104

Table 7.1: Fragments in the extended AQUAFAC scheme: The number of occurrences

(N), group contribution values (qi) and statistical significance.

Code Name N Qi Sig. 0 Const. -0.742 0.000 1 YCH3 365 0.588 0.000 2 XCH3 1476 0.696 0.000 3 YYCH2 37 0.338 0.036 4 YCH2 470 0.267 0.000 5 XCH2 2214 0.476 0.000 6 YYCH 34 0.096 0.610 7 YCH 187 0.060 0.408 8 XCH 731 0.144 0.000 9 YYC 59 -0.170 0.347 10 YC 187 -0.483 0.000 11 XC 136 -0.653 0.000 12 CH2dbl 72 0.758 0.000 13 YCHdbl 133 0.106 0.100 14 XCHdbl 155 0.425 0.000 15 YYCdbl 30 0.596 0.000 16 YCdbl 72 0.650 0.001 17 XCdbl 141 0.013 0.894 18 CHtri 14 0.288 0.309 19 YCtri 0 20 XCtri 16 0.601 0.019 21 Callenic 1 0.859 0.305 22 Car 2522 0.145 0.004 23 Cbp 194 0.427 0.000

24 CHar 4387 0.337 0.000 25 Cbr 416 0.333 0.000 26 Nar 239 -0.497 0.000 27 Sar 20 0.829 0.000 28 Oar 1 0.214 0.794 29 YF 29 0.517 0.000 30 XF 87 0.670 0.000 31 YCI 900 0.834 0.000 32 XCI 213 0.762 0.000 33 YBr 56 1.190 0.000 34 XBr 42 0.843 0.000 35 YI 25 1.197 0.000 36 XI 10 1.146 0.000 37 YOH 173 -0.624 0.000 38 XOH 361 -0.482 0.000

Page 107: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 7.1: Continued.

Code Name N Qi Sig. 39 YYO 76 0.849 0.000 40 YO 136 -0.275 0.000 41 XO 94 -0.447 0.000 A1 YSH 4 1.188 0.005 43 XSH 3 0.323 0.499 44 YYS 13 0.519 0.125 45 YS 20 0.945 0.000 46 XS 19 0.046 0.798 A1 YCHO 15 -0.030 0.890 48 XCHO 9 -0.242 0.393 49 YYCO 40 -0.215 0.182 50 YCO 50 -0.213 0.136 51 XCO 81 -0.627 0.000 52 YCOOH 53 -0.559 0.000 53 XCOOH 111 -0.876 0.000 54 YCOO 64 -0.194 0.077 55 XCOO 86 -0.666 0.000 56 HCOO 6 -0.363 0.286 57 CarO 20 0.648 0.001 58 YNH2 106 -0.359 0.000 59 XNH2 46 -0.800 0.000 60 YYNH 19 -0.401 0.099 61 YNH 42 -0.192 0.111 62 XNH 25 -1.783 0.000 63 YYN 23 -0.597 0.027 64 YN 28 -0.831 0.000 65 XN 57 -2.008 0.000 66 NHdbl 0 67 YNdbl 2 -0.304 0.463 68 XNdbl 4 0.423 0.682 69 YCN 12 -0.099 0.642 70 XCN 7 -0.090 0.782 71 YCONH2 13 0.384 0.109 72 XCONH2 5 -0.675 0.073 73 YCONH 27 -0.458 0.011 74 XCONH 67 -0.820 0.000 75 HCONH 3 1.151 0.004 76 YCON 9 -1.183 0.000

Page 108: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 7.1: Continued.

Code Name N Qi Sig. 77 XCON 28 -1.453 0.000 78 HCON 0 79 YN02 74 0.443 0.000 80 XN02 6 0.259 0.454 81 OCON 4 -0.757 0.076 82 OCONH 22 -0.632 0.000 83 NHCONH2 5 -1.017 0.006 84 NHCONH 8 -0.873 0.008 85 NCONH2 2 -0.358 0.668 86 NCONH 14 -1.558 0.000 87 NCON 1 -2.981 0.000 88 CONHCO 42 -0.540 0.003 89 CONGO 11 -0.492 0.084 90 COOCO 1 -0.566 0.493 91 SO 6 -0.858 0.023 92 S02 13 -0.403 0.120 93 S02NH2 17 -1.102 0.000 94 S02NH 31 -0.781 0.000 95 SCON 8 -0.646 0.031 96 SCONH 0 97 CH=N 14 0.211 0.349 98 C=N 26 0.021 0.898 99 CH=NOH 1 -0.308 0.716

100 C=NOH 0 101 SCN 0 102 NCS 2 1.474 0.011 103 P04 2 -1.564 0.008 104 P03S 0 105 P02S2 0 106 PS03 10 0.397 0.149 107 PS02S 8 0.417 0.122 108 P03 1 -2.221 0.008 109 P02S 0 110 PS02 2 -0.277 0.648 111 PSOS 0 112 Odbl_other 6 -0.236 0.783 113 Pv5_other 1 -3.087 0.027 114 Sdbl_other 16 0.051 0.837

* Refer to Chapter 4 for the descriptions of the fragments.

Page 109: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

107

Aqueous Solubility Prediction

The predictive ability of the extended AQUAFAC model will be evaluated in Chapter 9

on an independent set of compounds not included in the training set. The prediction

performance will be compared with other models.

Page 110: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

108

CHAPTER 8: DEVELOPMENT OF A NEW GROUP

CONTRIBUTION MODEL FOR AQUEOUS SOLUBILITY

PREDICTION

INTRODUCTION

Both of the General Solubility Equation and the AQUAFAC approach require melting

point information for solubility prediction, which can be easily measured with a small

amount of drug substance at the early drug development stage. However, the melting

point information is generally not available at the drug discovery stage as the compounds

have low purity and they are not crystallized. While research on the prediction of the

melting point of organic compounds from molecular structures is ongoing, it is generally

conceived that melting point prediction itself is at least as challenging as aqueous

solubility prediction. Development of aqueous solubility prediction method without the

need of melting point information therefore would be more applicable at the drug

discovery stage.

The purpose of this Chapter is to develop such a model for predicting aqueous solubility

based on the theory of ideal solution and regular solution.

As discussed in Chapter 2, it is theoretically reasonable to attempt the use of group

contribution approach to estimate the ideal solubility

Page 111: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

109

logX,^ (8.1) i

where iii is the counts of fragment i and mi is the group conribution of fragment i.

The molar aqueous solubility can then be estimated using

log5.=C„+2;'i,'n,-log/' (8.2) i

The log octanol-water partition coefficient can be either calculated using commercial

software or modeled using the same set of fragments. The second approach will have the

form of

log5„ = C„ (8.3) / /

The two group contribution terms can be combined to give

logi.=C,+j;n,s, (8.4) i

Equation (8.4) is essentially the basis of a pure group contribution approach for aqueous

solubility prediction. Both Equation (8.2) and Equation (8.4) will be explored to model

aqueous solubility in this chapter.

Page 112: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

110

METHODS

Data Set

Development of the new model requires only aqueous solubility and calculated log P

value. Therefore, all the compounds contained in the data set described in Chapter 3 can

be used. For comparison of prediction performance, part of the data set was taken out and

reserved as a test set as described in Chapter 7. The final training set contains 1691

compounds.

Structural Fragmentation

The structural fragmentation procedure is the same as described in Chapter 7.

Regression Analysis

The regression analyses were performed using SPSS for Windows version 10.0 (SPSS

Inc., Chicago, IL). The data set containing the aqueous solubility, ClogP information and

group counts was prepared in Excel and used as input for SPSS. The multiple linear

regression analysis function of SPSS was used to generate group contribution values Sj.

Page 113: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

I l l

RESULTS

Fragmentation Performance

All the molecular structures of the training set compounds were break down successfully

using the extended AQUAFAC fragmentation scheme and no missing fragment was

found.

Regression Analysis

Two independent regression analyses, based on Equation (8.2) and Equation (8.4)

respectively, were conducted in SPSS. The first regression gives an R of 0.595 and

standard error of estimation of 0.814. The second regression considers the contribution of

each fragment towards log solubility. The model has an R of 0.865 and a standard error

of estimation of 0.873 for the training set. The two R^ are not comparable because the

variables are different in the two regressions. The first regression analysis is with regard

to the part of solubility variance that cannot be explained by the lipophilicity of a

compound, while, the second is about all the solubility variance. Since log P is a major

variable in determining aqueous solubility and can be modeled using group contribution

approach, it is not surprising to see that the second analysis has a much higher R . The

standard error of estimation is a better indication of the "fitness" of the two models. The

first model has a smaller standard error of estimation and is selected for further

Page 114: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

112

development and evaluation. This model is referred as GClogP model since it is a Group

Contribution model with Clog? as a parameter.

Group Contribution Values nii

Table 8.1 lists the group contribution values for 104 fragments encountered in the

training set. Together with calculated octanol-water partition coefficients, these

parameters can be used for the estimation of aqueous solubility of new compounds.

Page 115: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 8.1: Fragments for the GClogP model: The number of occurrences (N), group

contribution values (mi) and statistical significance.

Code Name N m Sis. 0 Const. 0.148 0.077 1 YCH3 399 0.331 0.000 2 XCH3 1603 0.232 0.000 3 YYCH2 46 -0.217 0.138 4 YCH2 524 0.105 0.057 5 XCH2 2412 0.049 0.000 6 YYCH 43 -0.272 0.096 7 YCH 217 -0.246 0.000 8 XCH 783 -0.097 0.000 9 YYC 80 -0.010 0.952 10 YC 204 -0.286 0.001 11 XC 146 -0.227 0.005 12 CH2dbl 77 0.249 0.011 13 YCHdbl 146 0.013 0.833 14 XCHdbl 175 -0.069 0.367 15 YYCdbl 35 -0.284 0.036 16 YCdbl 76 -0.435 0.015 17 XCdbl 166 -0.134 0.119 18 CHtri 15 -0.092 0.742 19 YCtri 0 20 XCtri 17 -0.300 0.236 21 Callenic 1 -0.629 0.449 22 Car 2736 -0.210 0.000 23 Cbp 201 -0.449 0.000 24 CHar 4709 0.084 0.000 25 Cbr 458 -0.366 0.000 26 Nar 339 -0.228 0.000 27 Sar 24 -0.217 0.227 28 Oar 1 0.014 0.986 29 YF 35 0.142 0.188 30 XF 96 0.082 0.158 31 YCl 916 0.168 0.001 32 XCI 221 0.056 0.215 33 YBr 56 -0.082 0.365 34 XBr 42 0.008 0.935 35 YI 34 0.116 0.302 36 XI 10 0.000 0.999 37 YOH 188 0.360 0.000 38 XOH 391 -0.167 0.000

Page 116: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 8.1: Continued.

Code Name N nii Sig. 39 YYO 79 -0.343 0.004 40 YO 155 -0.029 0.678 41 XO 98 -0.120 0.080 42 YSH 5 -0.931 0.014 43 XSH 3 -0.280 0.555 44 YYS 16 0.866 0.004 45 YS 24 -0.049 0.808 46 XS 23 -0.371 0.029 47 YCHO 15 0.013 0.952 48 XCHO 9 -0.068 0.809 49 YYCO 45 -0.632 0.000 50 YCO 54 -0.480 0.000 51 XCO 87 -0.478 0.000 52 YCOOH 61 -0.226 0.036 53 XCOOH 120 -0.502 0.000 54 YCOO 67 -0.524 0.000 55 XCOO 93 -0.223 0.017 56 HCOO 6 -0.272 0.420 57 CarO 20 -0.535 0.006 58 YNH2 119 -0.462 0.000 59 XNH2 49 -0.994 0.000 60 YYNH 23 -0.970 0.000 61 YNH 52 -0.319 0.003 62 XNH 30 -0.086 0.532 63 YYN 29 -0.609 0.009 64 YN 36 -0.490 0.002 65 XN 66 0.193 0.101 66 NHdbl 0 67 YNdbl 3 -0.173 0.643 68 XNdbl 4 -0.971 0.209 69 YCN 14 -0.482 0.016 70 XCN 8 -0.636 0.035 71 YCONH2 13 -1.545 0.000 72 XCONH2 5 -0.878 0.019 73 YCONH 31 -1.035 0.000 74 XCONH 97 -0.640 0.000 75 HCONH 3 -1.147 0.003 76 YCON 10 -0.224 0.435

Page 117: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 8.1: Continued.

Code Name N mi Sig. 77 XCON 35 -0.578 0.000 78 HCON 0 79 YN02 76 -0.233 0.010 80 XN02 7 -0.809 0.011 81 OCON 4 -0.341 0.418 82 OCONH 26 -0.706 0.000 83 NHCONH2 5 -1.005 0.007 84 NHCONH 9 -1.144 0.000 85 NCONH2 4 -1.213 0.012 86 NCONH 18 -1.462 0.000 87 NCON 3 1.109 0.003 88 CONHCO 69 -1.294 0.000 89 CONCO 20 -0.450 0.033 90 COOCO 1 0.145 0.860 91 SO 6 -0.692 0.062 92 S02 17 -0.642 0.003 93 S02NH2 21 -1.073 0.000 94 S02NH 32 -0.848 0.000 95 SCON 8 -0.910 0.002 96 SCONH 0 97 CH=N 20 -0.586 0.003 98 C=N 37 -0.430 0.002 99 CH=NOH 1 -0.428 0.611

100 C=NOH 0 101 SCN 0 102 NCS 2 -0.112 0.846 103 P04 2 -0.618 0.289 104 P03S 0 105 P02S2 0 106 PS03 10 -0.810 0.003 107 PS02S 8 -0.755 0.005 108 P03 1 0.319 0.699 109 P02S 0 110 PS02 2 0.254 0.669 111 PSOS 0 112 Odbl_other 7 0.908 0.134 113 Pv5_other 1 -2.940 0.014 114 SdbI_other 16 -0.449 0.059

Page 118: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

116

CHAPTER 9: COMPARISON OF AQUEOUS SOLUBILITY

PREDICTION MODELS

Comparison of different aqueous solubility prediction methods is challenging in that

there are no objective criteria for evaluation. The following aspects are generally

considered in choosing a suitable prediction method: accuracy, applicability and ease of

use.

In this chapter, the accuracy of different aqueous solubility prediction models are

evaluated and compared using three independent test sets from the literature. These

include a set of 21 environmental and pharmaceutical compounds compiled by

Yalkowsky and Banerjee (1982), a test set of 38 pharmaceutical compounds used by

Huuskonen et al. (2000), and a set of 54 drug or drug-like compounds tested in a study by

Chen et al. (2002). One compound in test set 3, zidovudine, contains an azide group that

is not defined in the AQUAFAC fragmentation scheme. This compound was therefore

excluded from the evaluation.

Page 119: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

117

PREDICTION COMPARISON

The predicted aqueous solubility for the three test sets of compounds is listed in

Appendices C, D and E respectively. Since melting point information was not found for a

large portion of test set 3, it was not used for the evaluation of the General Solubility

Equation and the AQUAFAC approach. In Tables 9.1-9.4, the prediction results from the

three models are compared to those of recently published methods and the General

Solubility Equation (GSE). H_MLR refers to Huuskonen's E-state indices with multiple

linear regression model and H_ANN refers to his artificial neural network (ANN) model.

The models of both Klopman et al. and Kuhne et al. are group contribution methods. A

recently published method by a group from Bristol-Myers Squibb (BMS) uses similar

descriptors to those in the linear solvation energy relationship (LSER).

Although average absolute error is

The GClogP method provides surprisingly good results on test set 1, even better than

Huuskonen's ANN model. Prediction performance of the new method is comparable to

that of Huuskonen's MLR model but not as good as his ANN model. The GClogP

method did not do as well as the BMS model on test set 3, but still better than Klopman's

group contribution model.

Page 120: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Compared with the AQUAFAC method, the GSE method provides slightly better

predictions on test set 1 but worse on test set 2. Overall, the AQUAFAC gives better

predictions on combined data sets of 1 and 2 than both the GSE and the GClogP method.

One point that needs to be noted here is that, when evaluating the performance of a

prediction method or comparing different methods, it is possible for a small test set to

give a misleading result as quite different prediction errors are observed on the three test

sets.

For possible future improvement of the AQUAFAC and the GClogP methods, some

correction factors can be considered. Proximity takes into account the effects of halogen

substitution on the same atom or neighboring atoms. Secondary substructural units take

into account the connection of several functional groups. Formation of intramolecular

hydrogen bond may change the contribution of individual functional groups.

Page 121: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

119

Table 9.1: Comparison of prediction results of test set 1.

GClogP AQUAFAC GSE H_MLR H_ANN Klopman Kuhne

AAE 0.55 0.77 0.59 0.79 0.62 0.76 0.86

RMSE 0.68 0.93 0.83 1.05 0.81 0.99 1.09

Table 9.2: Comparison of prediction results of test set 2.

GCIogP AQUAFAC GSE H_MLR H_ANN

AAE 0.70 0.65 0.78 0.62 0.54

RMSE 1.05 0.81 1.08 0.74 0.62

Page 122: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

Table 9.3: Comparison of prediction results of test set 3.

GClogP BMS Klopman

AAE 0.86 0.66 1.16

RMSE 1.14 0.79 1.58

Table 9.4: Comparison of prediction results of test sets 1 and 2.

GClogP AQUAFAC GSE H_MLR H_ANN

AAE 0.65 0.69 0.71 0.68 0.57

RMSE 0.94 0.85 1.00 0.86 0.69

Page 123: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

121

SUMMARY

Three models for aqueous solubility prediction are evaluated. Overall, they provide

similar prediction performances. The General Solubility Equation has the simplest form

and relates the aqueous solubility to its two most critical determinants: octanol-water

partition coefficient and melting point. Prediction by the GSE is most accurate on non-

electrolytes and slightly worse on weak electrolytes. The extended AQUAFAC method

provides an alternative to the GSE when melting point information is available. It gives

slightly better predictions than the GSE. The GClogP method predicts aqueous solubility

from compound structure alone and provides comparable prediction performances to the

GSE and the AQUAFAC methods. It can be a valuable tool for early drug discovery

scientists. Inclusion of CLOG? as a parameter in the model provides better prediction

than other group contribution methods.

Page 124: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

122

APPENDIX A. Experimental Solubility Collection with Melting Point,

log P and Predicted Solubility Using the General Solubility Equation.

Name CASRN CLOGP MLOGP MP("C) log logS„ Error Expt GSE Pred-Obs

(4-chIoro-2-methylphenoxy) 94-74-6 2.70 2.75 118 -2.23 -3.13 -0.90 acetic acid (d,l)-alanine 302-72-7 -3.12 -2.96 289 0.243 0.98 0.74 (dl)-leucine 328-39-2 -1.67 -1.52 294.5 -1.1 -0.53 0.58 (l)-alanine 56-41-7 -3.12 -2.98 316 0.25 0.72 0.47 (l)-aspartic acid 56-84-8 -2.41 270 -1.41 0.46 1.87 (l)-leucine 61-90-5 -1.67 -1.52 294 -0.75 -0.52 0.23 (l)-norleucine 327-57-1 -1.54 -1.54 327 -0.975 -0.98 -0.01 (l)-phenylalanine 63-91-2 -1.56 -1.52 283 -0.804 -0.52 0.28 1,1,1,2-tetrachloroethane 630-20-6 3.03 2.62 -42 -2.18 -2.53 -0.35 1,1,1 -trichloroethane 71-55-6 2.48 2.49 -33 -2.00 -1.98 0.02 1,1,1 -trifluoro-2-propanol 374-01-6 0.83 0.71 -52 0.30 -0.33 -0.63 1,1,2,2-tetrabromoethane 79-27-6 3.20 -1 -2.72 -2.70 0.02 1,1,2,2-tetrachloroethane 79-34-5 2.64 2.62 -43 -1.76 -2.14 -0.38 1,1,2-trichloroethane 79-00-5 2.05 2.07 -36 -1.48 -1.55 -0.07 1,1,2-trichlorofluoroethane 811-95-0 2.59 -105 -3.04 -2.09 0.95 1,1,2-trichlorotrilluoroethane 76-13-1 3.29 3.16 -36 -3.04 -2.79 0.25 1,1,3,4,4-pentachloro-1,2- 112042-51-0 3.85 <25 -4.23 -3.35 0.88 butadiene 1,1,3-trimethylcyclohexane 3073-66-3 4.91 -66 -4.85 -4.41 0.44 1,1,3-trimethylcyclopentane 4516-69-2 4.35 -142 -4.48 -3.85 0.63 1,1-dichlorobutane 541-33-3 2.84 <25 -2.40 -2.34 0.06 1,1 -dichloroethane 75-34-3 1.78 1.79 -97 -1.29 -1.28 0.01 1,1 -dichloroethylene 75-35-4 2.37 2.13 -122 -1.64 -1.87 -0.23 1,1-diethoxyethane 105-57-7 0.93 0.84 -100 -0.43 -0.43 0.00 1,1 -dimethoxyethane 25154-53-4 0.93 0.84 <25 -0.43 -0.43 0.00 1,1 '-ethylidenebis(4-chloro- 3424-82-6 6.74 80 -6.36 -6.79 -0.43 benzene) 1,1 '-iminobis-2-propanol 110-97-4 -0.85 -0.82 33 0.81 1.27 0.46 1,2,3,4,6,7,8- 67562-39-4 8.60 236 -11.48 -10.21 1.27 heptachlorodibenzofuran 1,2,3,4,6,7,8- 35822-46-9 9.21 265 -11.25 -11.11 0.14 heptachlorodibenzo-p-dioxin 1,2,3,4,7,8- 70648-26-9 8.48 226 -10.66 -9.99 0.67 hexachlorodibenzofuran 1,2,3,4,7,8-hexachlorodibenzo- 39227-28-6 8.61 273 -9.95 -10.59 -0.64 p-dioxin 1,2,3,4,7-pentachlorodibenzo-p- 39227-61-7 8.02 7.79 195 -9.48 -9.22 0.26 dioxin 1,2,3,4-tetrachlorobenzene 634-66-2 4.75 4.55 46 -4.38 -4.46 -0.08 1,2,3,4-tetrachlorodibenzo-p- 30746-58-8 7.31 7.18 185 -8.77 -8.4] 0.36 dioxin 1,2,3,4-tetrahydronaphthalene 119-64-2 3.71 3.49 -35 -3.47 -3.21 0.26

Page 125: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

123

1,2,3,5-tetrachlorobenzene 634-90-2 4.75 4.66 54 -4.63 -4.54 0.09 1,2,3,5-tetrafluorobenzene 2367-82-0 2.57 -48 -2.31 -2.07 0.24 1,2,3,6,7,8- 57117-44-9 7.88 233 -10.33 -9.46 0.87 hexachlorodibenzofuran 1,2,3,6,7,8-hexahydropyrene 1732-13-4 5.34 133 -5.96 -5.92 0.04 1,2,3,7-tetrachlorodibenzo-p- 67028-18-6 7.05 175 -8.65 -8.05 0.60 dioxin 1,2,3,-trichlorobenzene 87-61-6 4.04 4.11 53 -4.08 -3.82 0.26 1,2,3,-trimethylbenzene 526-73-8 3.54 3.59 -25 -3.20 -3.04 0.16 1,2,3-tribromobenzene 608-21-9 4.33 87 -5.04 -4.45 0.59 1,2,3-trichloropropane 96-18-4 1.98 -15 -1.92 -1.48 0.44 1,2,4,5-tetrabromobenzene 636-28-2 5.19 5.13 182 -6.98 -6.26 0.72 1,2,4,5-tetrachlorobenzene 95-94-3 4.75 4.60 139 -5.47 -5.39 0.08 1,2,4,5-tetrafluorobenzene 327-54-8 2.57 4 -2.38 -2.07 0.31 1,2,4,5-tetramethylbenzene 95-93-2 4.04 4.00 80 -4.59 -4.09 0.50 1,2,4-tribromobenzene 615-54-3 4.53 41 -4.50 -4.19 0.31 1,2,4-trichlorobeiizene 120-82-1 4.16 3.97 16 -3.64 -3.66 -0.02 1,2,4-trichlorodibenzo-p-dioxin 39227-58-2 6.71 7.47 129 -7.53 -7.25 0.28 1,2,4-trimethylbenzene 95-63-6 3.59 3.63 -44 -3.33 -3.09 0.24 1,2-benzanthracene 56-55-3 5.66 5.44 160 -7.19 -6.51 0.68 1,2-benzenediamine 95-54-5 -0.31 0.15 101 -0.42 0.05 0.47 1,2-benzenediol 120-80-9 0.88 0.88 104 0.62 -1.17 -1.79 1,2-dibromo-3-chlorpropane 96-12-8 2.26 <25 -2.38 -1.76 0.62 1,2-dibromobenzene 583-53-9 3.67 3.64 4 -3.50 -3.17 0.33 1,2-dibromoethane 106-93-4 1.74 1.96 10 -1.68 -1.24 0.44 1,2-dibronioethylene 540-49-8 1.95 <25 -1.32 -1.45 -0.13 1,2-dibromopropane 78-75-1 2.27 -55 -2.15 -1.77 0.38 1,2-dichlorobenzene 95-50-1 3.45 3.43 -15 -3.05 -2.95 0.10 1,2-dichloroethane 107-06-2 1.46 1.47 -35 -1.06 -0.96 0.10 1,2-dichloroethylene 540-59-0 1.77 1.86 -57 -1.30 -1.27 0.03 1,2-dichloropropane 78-87-5 1.99 1.99 -100 -1.60 -1.49 0.11 1,2-dichlorotetrafluoroethane 76-14-2 2.85 2.82 -94 -2.74 -2.35 0.39 1,2-diethoxyethane 629-14-1 0.93 0.66 -74 -0.77 -0.43 0.34 1,2-diethylbenzene 135-01-3 4.15 3.72 -31 -3.28 -3.65 -0.37 1,2-diiodoethylene 590-27-2 2.51 -11 -3.22 -2.01 1.21 1,2-dimethoxydiethyl ether 24424-51-9 -0.06 <25 0.88 0.56 -0.32 1,2-dimethoxyethane 110-71-4 0.93 0.66 -58 -0.77 -0.43 0.34 1,2-dimethylcyclohexane 583-57-3 4.39 <25 -4.30 -3.89 0.41 1,2-dinitrobenzene 528-29-0 1.63 1.69 118 -3.10 -2.06 1.04 1,2-propylene oxide 75-56-9 0.18 0.03 -112 -0.59 0.32 0.91 1,3,5-tribromobenzene 626-39-1 4.73 4.51 121 -5.60 -5.19 0.41 1,3,5-trichlorobenzene 108-70-3 4.28 4.19 -4.44 1,3,5-trimethylbenzene 108-67-8 3.64 3.58 -45 -3.40 -3.14 0.26 1,3,5-trinitrobenzene 99-35-4 1.37 1.18 123 -2.89 -1.85 1.04 1,3,6,8-tetrachlorodibenzo-p- 33423-92-6 7.55 6.29 219 -9.00 -8.99 0.01 dioxin 1,3-benzenediol 108-46-3 0.81 0.80 110 0.81 -1.16 -1.97 1,3-butadiene 106-99-0 1.90 1.99 -109 -1.87 -1.40 0.47 1,3-dibromobenzene 108-36-1 3.87 3.75 -7 -3.54 -3.37 0.17

Page 126: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

124

1,3-dibromopropane 109-64-8 1.99 2.37 -34 -2.08 -1.49 0.59 1,3-dichloro-2-propanol 96-23-1 0.20 -4 -0.11 0.30 0.41 l,3-dichloro-5,5- 118-52-5 0.47 145 -2.6 -1.17 1.43 dimethylhydantoin 1,3-dichlorobenzene 541-73-1 3.57 3.53 -25 -3.04 -3.07 -0.03 1,3-dichloropropane 142-28-9 1.71 2.00 -99 -1.62 -1.21 0.41 1,3-difluorobenzene 372-18-9 2.43 2.21 -59 -2.00 -1.93 0.07 1,3-dimethylnaphthalene 575-41-7 4.31 4.42 -5 -4.29 -3.81 0.48 1,3-dinitrobenzene 99-65-0 1.63 1.49 90.02 -2.29 -1.78 0.51 1,4,5-tritnethylnaphthalene 2131-41-1 4.81 4.90 62 -4.92 -4.68 0.24 1,4-benzenediamine 106-50-3 1.08 141 -0.38 -1.74 -1.36 1,4-benzenediol 123-31-9 0.81 0.59 170 -0.17 -1.76 -1.59 1,4-cyclohexadiene 628-41-1 2.39 2.30 -49 -1.97 -1.89 0.08 1,4-dibromobenzene 106-37-6 3.87 3.79 87 -4.07 -3.99 0.08 1,4-diethylbenzene 105-05-5 4.20 -43 -3.75 -3.70 0.05 1,4-difluorobenzene 540-36-3 2.43 -13 -1.97 -1.93 0.04 1,4-diiodobenzene 624-38-4 4.39 4.11 131 -5.37 -4.95 0.42 1,4-dimethylcyclohexane 589-90-2 4.39 -87 -4.47 -3.89 0.58 1,4-dimethylnaphthalene 571-58-4 4.31 4.37 8 -4.14 -3.81 0.33 1,4-dinitrobenzene 100-25-4 1.63 1.47 173 -3.39 -2.61 0.78 1,4-pentadiene 591-93-5 2.37 2.47 -148 -2.09 -1.87 0.22 1,5-dimethylnaphthalene 571-61-9 4.31 4.38 81 -4.69 -4.37 0.32 1,5-hexadiene 592-42-7 2.90 2.87 -141 -2.68 -2.40 0.28 1,7-phenanthroline 230-46-6 2.05 2.51 79 -2.68 -2.09 0.59 11-alpha-hydroxyprogesterone 80-75-1 2.85 2.36 165 -3.82 -3.75 0.07 11-aminoundecanoic acid 2432-99-7 0.41 188 -2.7 -1.54 1.16 13h-dibenzo(a,i)carbazole 239-64-5 5.51 216 -7.41 -6.92 0.49 17-methyl testosterone 58-18-4 3.74 3.36 164 -3.97 -4.63 -0.66 1-acetylurea 591-07-1 -1.03 218 -0.9 -0.40 0.50 1-aminoacridine 578-06-3 2.86 2.47 180 -4.22 -3.91 0.31 l-anthranol 529-86-2 3.82 158 -4.73 -4.65 0.08 1 -bromo-2-chlorobenzene 694-80-4 3.58 -12 -3.19 -3.08 0.11 1 -bromo-2-methylpropane 78-77-3 2.53 -118 -2.43 -2.03 0.40 1 -bromo-3-chloropropane 109-70-6 1.85 -59 -1.85 -1.35 0.50 1 -bromo-3-methylbutane 107-82-4 3.06 -112 -2.89 -2.56 0.33 1 -bromo-4-chlorobenzene 106-39-8 3.72 3.54 67 -3.63 -3.64 -0.01 1 -bromobutane 109-65-9 2.66 2.75 -112 -2.37 -2.16 0.21 l-bromoheptane 629-04-9 4.25 4.36 -58 -4.43 -3.75 0.68 l-bromohexane 111-25-1 3.72 3.80 -85 -3.81 -3.22 0.59 1 -bromonaphthalene 90-11-9 4.18 -1 -4.19 -3.68 0.51 1-bromooctane 111-83-1 4.78 4.89 -55 -5.06 -4.28 0.78 1-bromopentane 110-53-2 3.19 3.37 -95 -3.07 -2.69 0.38 1 -bromopropane 106-94-5 2.13 2.10 -108 -1.73 -1.63 0.10 l-butanol 71-36-3 0.82 0.88 -90 0.00 -0.32 -0.32 1-butene 106-98-9 2.33 2.40 -185 -1.94 -1.83 0.11 1 -butyltheobromine 1.53 -1.63 1 -butyne 107-00-6 1.45 1.46 -126 -1.24 -0.95 0.29 1 -chloro-2-bronioethane 107-04-0 1.60 -16 -1.32 -1.10 0.22 1 -chloro-2-methylpropane 513-36-0 2.39 -131 -2.00 -1.89 0.11

Page 127: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

125

l-chlorobutane 109-69-3 2.52 2.64 -123 -2.03 -2.02 0.01 1 -chlorodibenzo-p-dioxin 39227-53-7 5.15 5.05 98 -5.72 -5.38 0.34 1-chloroheptane 629-06-1 4.11 4.15 -70 -3.99 -3.61 0.38 1-chlorohexane 544-10-5 3.58 3.66 -94 -3.12 -3.08 0.04 1 -chloronaphthalene 90-13-1 4.03 4.10 -20 -3.93 -3.53 0.40 1-chloropentane 543-59-9 3.05 3.11 -99 -2.73 -2.55 0.18 1-chloropropane 540-54-5 1.99 2.04 -122 -1.47 -1.49 -0.02 1 -decanol 112-30-1 4.00 4.57 6 -3.63 -3.50 0.13 1-decene 872-05-9 5.50 -66 -5.51 -5.00 0.51 1-ethylnaphthalene 1127-76-0 4.34 4.39 -14 -4.16 -3.84 0.32 1 -ethyltheobromine 39832-36-5 -0.15 -0.15 165 -0.72 -0.75 -0.03 1 -fluoro-4-iodobenzene 352-34-1 3.41 -20 -3.13 -2.91 0.22 1-heptanol 111-70-6 2.41 2.72 -36 -1.81 -1.91 -0.10 1-heptene 592-76-7 3.91 3.99 -119 -3.73 -3.41 0.32 1-heptyne 628-71-7 3.04 3.32 -81 -3.01 -2.54 0.47 1-hexadecanol 124-29-8 7.17 56 -7.00 -6.98 0.02 1-hexanol 111-27-3 1.88 2.03 -52 -1.23 -1.38 -0.15 l-hexen-3-one 1629-60-3 1.04 <25 -0.83 -0.54 0.29 1-hexene 592-41-6 3.38 3.39 -140 -3.23 -2.88 0.35 l-hexene-3-ol 4798-44-1 1.38 <25 -0.59 -0.88 -0.29 1-hexyne 693-02-7 2.51 2.73 -132 -2.20 -2.01 0.19 1 -hydroxychlordene 2597-11-7 3.36 201 -5.46 -4.62 0.84 1 -iodobutane 542-69-8 3.05 3.08 -103 -2.96 -2.55 0.41 1 -iodoheptane 4282-40-0 4.64 4.70 -48 -4.81 -4.14 0.67 1-iodonaphthalene 90-14-2 4.44 5 -4.55 -3.94 0.61 1-iodopropane 107-08-4 2.52 2.54 -101 -2.29 -2.02 0.27 1-methyl fluorene 1730-37-6 4.57 4.97 87 -5.22 -4.69 0.53 1-methyl uric acid 708-79-2 -0.61 -0.57 400 -1.56 -2.64 -1.08 1 -methylcyclohexene 591-49-1 3.39 -120 -3.27 -2.89 0.38 1 -methylnaphthalene 90-12-0 3.81 3.87 -22 -3.69 -3.31 0.38 1 -methylphenanthrene 832-69-9 4.99 5.08 123 -5.85 -5.47 0.38 1 -methyluracil 615-77-0 -1.20 -1.2 238 -0.8 -0.43 0.37 1-naphthaleneacetic acid 86-87-3 2.59 132 -2.65 -3.16 -0.51 1-naphthol 90-15-3 2.65 2.84 96 -2.22 -2.86 -0.64 1-naphthyl isothiocyanate 551-06-4 4.48 4.34 58 -4.6 -4.31 0.29 1 -naphthylamine 134-32-7 2.09 2.25 49 -1.92 -1.83 0.09 1 -nitronaphthalene 86-57-7 3.06 3.19 59 -3.54 -2.90 0.64 1 -nitropropane 108-03-2 0.77 0.87 <25 -0.80 -0.27 0.53 1 -nitroso-1 -ethy lurea 759-73-9 0.32 0.23 103 -0.96 -0.60 0.36 1 -nitroso-1 -methylurea 684-93-5 -0.20 -0.03 124 -0.85 -0.29 0.56 1 -nonanol 143-08-8 3.47 3.67 -7 -3.01 -2.97 0.04 1 -nonene 124-11-8 4.97 5.15 -81 -5.05 -4.47 0.58 1-nonyne 3452-09-3 4.10 4.51 -50 -4.24 -3.60 0.64 1-octadecanol 112-92-5 8.43 61 -8.40 -8.29 0.11 1 -octanol 111-87-5 2.94 3.00 -15 -2.39 -2.44 -0.05 1-octene 111-66-0 4.44 4.57 -102 -4.44 -3.94 0.50 1-octyne 629-05-0 3.57 3.92 -80 -3.66 -3.07 0.59 1-pentadecanol 629-76-5 6.64 46 -6.35 -6.35 0.00 1-pentanol 71-41-0 1.35 1.56 -108 -0.61 -0.85 -0.24

Page 128: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

126

1-pentene 109-67-1 2.86 2.80 -165 -2.68 -2.36 0.32 1-phenylethanol 98-85-1 1.41 1.42 20 -0.92 -0.91 0.01 1-propanol 71-23-8 0.29 0.25 -126 0.62 0.21 -0.41 1-propene 115-07-1 1.80 1.77 -185 -2.20 -1.30 0.90 1 -propyltheobromine 63906-63-8 1.00 -1.21 1-tetradecanol 112-72-1 6.11 6.36 40 -5.84 -5.76 0.08 2-(lh)quinolinone 59-31-4 2.32 199 -2.14 -3.56 -1.42 2-(2,4,5- 93-72-1 3.86 3.8 176 -3.31 -4.87 -1.56 trichlorophenoxy)propionic acid 2-(4-aminophenyl)-6-methyl- 92-36-4 3.64 191 -3.68 -4.80 -1.12 benzothiazole 2,2,2,o,p'- 789-02-6 6.76 74 -6.80 -6.75 0.05 pentachloroethylidenebisbenzene 2,2,2-trichloro-1,1 -ethanediol 302-17-0 0.71 0.99 57 0.72 -0.53 -1.25 2,2',3,3',4,4',5,5' 6'- 83992-73-8 10.26 158 -10.55 -11.09 -0.54 nonachlorodiphenyl ether 2,2',3,3',4,4',5,5',6- 40186-72-9 9.34 9.14 205 -10.26 -10.64 -0.38 nonachlorobiphenyl 2,2',3,3',4,4',5,5'- 35694-08-7 8.99 7.40 156 -9.47 -9.80 -0.33 octachlorobiphenyl 2,2',3,3',4,4',5,5'- 57379-40-5 9.00 126 -10.13 -9.51 0.62 octachlorodiphenyl ether 2,2',3,3',4,4',5- 71585-40-5 8.29 104 -9.12 -8.58 0.54 heptachlorodiphenyl ether 2,2',3,3',4,4',6- 52663-71-5 7.91 122 -8.30 -8.38 -0.08 heptachlorobiphenyl 2,2',3,3',4,4'-hexachlorobiphenyl 38380-07-3 7.33 7.32 152 -7.79 -8.10 -0.31 2,2',3,3',4,4'-hexachlorodiphenyl 71585-39-2 7.58 138 -8.14 -8.21 -0.07 ether 2,2',3,3',4,5,5',6,6'- 52663-77-1 9.21 204 -10.41 -10.50 -0.09 nonachlorobiphenyl 2,2',3,3',4,5,5'6'- 85918-38-3 8.89 205 -10.10 -10.19 -0.09 octachlorodiphenyl ether 2,2',3,3',4',5,6- 83992-71-6 8.83 81 -9.09 -8.89 0.20 heptachlorodiphenyl ether 2,2',3,3',4,5-hexachlorobiphenyl 55215-18-4 7.45 7.32 101 -7.79 -7.71 0.08 2,2',3,3',4-pentachlorobiphenyl 52663-62-4 6.73 119 -7.05 -7.17 -0.12 2,2',3,3',5,5',6,6'- 2136-99-4 8.73 7.73 160 -9.15 -9.58 -0.43 octachlorobiphenyl 2,2',3,3',5,5'-hexachlorobiphenyl 35694-04-3 7.69 7.07 65 -6.96 -7.59 -0.63 2,2',3,3',5',6-hexachlorobiphenyl 52704-70-8 7.32 7.25 132 -7.90 -7.89 0.01 2,2',3,3',6,6'-hexachlorobiphenyl 38411-22-2 7.07 7.12 114 -8.09 -7.46 0.63 2,2',3,3'-tetrachlorobiphenyl 38444-93-8 6.26 5.60 121 -7.28 -6.72 0.56 2,2',3,4,4',5,5'6- 83992-75-0 8.83 168 -10.14 -9.76 0.38 octachlorodiphenyl ether 2,2',3,4,4',5,5'- 83992-69-2 8.91 89 -9.50 -9.05 0.45 heptachlorodiphenyl ether 2,2',3,4,4',5',6- 52663-69-1 8.27 7.30 83 -7.92 -8.35 -0.43 heptachlorobiphenyl 2,2',3,4,4',5'-hexachlorobiphenyl 35065-28-2 7.69 7.25 80 -7.69 -7.74 -0.05 2,2',3',4,4',5-hexachlorodiphenyl 71585-38-1 7.82 79 -8.44 -7.86 0.58 ether

Page 129: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

127

2,2',3,4,4',5'-hexachlorodiphenyl 71585-36-9 7.70 69 -8.31 -7.64 0.67 ether 2,2',3,4,4',6'-hexachlorodiphenyl 106220-83-1 7.59 121 -8.10 -8.05 0.05 ether 2,2',3,4,4'-pentachlorodiphenyl 71585-37-0 7.11 66 -7.44 -7.02 0.42 ether 2,2',3,4,5,5',6- 52712-05-7 8.27 7.00 147 -8.94 -8.99 -0.05 heptachlorobiphenyl 2,2',3,4',5,5',6- 52663-68-0 8.27 7.00 147 -8.94 -8.99 -0.05 heptachlorobiphenyl 2,2',3,4',5,5',6- 109828-23-1 8.83 118 -9.05 -9.26 -0.21 heptachlorodiphenyl ether 2,2',3,4,5,5 '-hexachlorobiphenyl 52712-04-6 7.69 7.19 85 -7.68 -7.79 -0.11 2,2', 3,4,5 '-hexachlorobiphenyl 38380-02-8 6.85 6.85 112 -6.97 -7.22 -0.25 2,2',3,4,5-pentachlorobiphenyl 55312-69-1 6.97 100 -7.21 -7.22 -0.01 2,2',3,4,6-pentachlorobiphenyl 55215-17-3 6.84 100 -7.43 -7.09 0.34 2,2',3,5,5 ',6-hexachlorobipheny 1 52663-63-5 7.56 6.85 100 -7.42 -7.81 -0.39 2,2',3,5'-tetrachlorobiphenyl 41464-39-5 6.26 6.00 47 -6.47 -5.98 0.49 2,2,3-trimethyl-3-pentanol 7294-05-5 2.33 -6 -1.27 -1.83 -0.56 2,2,3-trimethylbutane 464-06-2 4.01 <25 -4.36 -3.51 0.85 2,2',4,4',5,5 '-hexachlorobiphenyl 35065-27-1 7.69 6.90 103 -7.63 -7.97 -0.34 2,2',4,4',5,5'-hexachlorodiphenyl 71859-30-8 8.16 114 -8.36 -8.55 -0.19 ether 2,2',4,4',5,6'-hexachlorodiphenyl 106220-81-9 7.71 95 -8.04 -7.91 0.13 ether 2,2',4,4',6,6'-hexachlorobiphenyl 33979-03-2 7.31 7.00 113 -8.20 -7.69 0.52 2,2',4,4'-tetrachlorobiphenyl 2437-79-8 6.38 6.29 83 -6.51 -6.46 0.05 2,2',4,4'-tetrachlorodiphenyl 28076-73-5 6.97 69 -6.82 -6.91 -0.09 ether 2,2',4,5,5'-pcb 37680-73-2 6.97 6.85 77 -6.77 -6.99 -0.22 2,2',4,5'-tetrachlorobiphenyl 41464-40-8 6.38 6.10 64 -6.57 -6.27 0.30 2,2',4,6,6'-pentachlorobiphenyl 56558-16-8 6.59 5.81 85 -7.32 -6.69 0.63 2,2,4-trimethylpentane 540-84-1 4.54 -107 -4.67 -4.04 0.63 2,2',5,5'-tetrabromobiphenyl 59080-37-4 6.88 143 -8.06 -7.56 0.50 2,2',5,5'-tetrachlorobiphenyl 35693-99-3 6.38 6.26 87 -6.23 -6.50 -0.27 2,2',5,6'-tetrachlorobiphenyl 41464-41-9 6.13 5.50 103 -6.80 -6.41 0.39 2,2',5-trichlorobiphenyl 37680-65-2 5.67 5.60 44 -5.65 -5.36 0.29 2,2,5-trimethylhexane 3522-94-9 5.06 -106 -5.05 -4.56 0.49 2,2',6,6'-tetrachlorobiphenyl 15968-05-5 5.88 5.94 198 -7.39 -7.11 0.28 2,2'-bipyridine 366-18-7 1.56 1.73 72 -1.42 -1.53 -0.11 2,2'-dichlorobiphenyl 13029-08-8 4.96 4,90 61 -5.27 -4.82 0.45 2,2-dimethyl- 1-butanol 1185-33-7 1.62 -35 -1.04 -1.12 -0.08 2,2-dimethyl-1 -pentanol 2370-12-9 2.15 <25 -1.52 -1.65 -0.13 2,2-dimethyl-1 -propanol 75-84-3 1.09 1.31 50 -0.40 -0.84 -0.44 2,2-dimethyl-3-pentanol 3970-62-5 1.93 -5 -1.15 -1.43 -0.28 2,2-diinethylbutane 75-83-2 3.61 3.82 -100 -3.55 -3.11 0.44 2,2-diinethylpentane 590-35-2 4.14 -124 -4.36 -3.64 0.72 2,3,3',4,4',5-hexachlorobiphenyl 38380-08-4 7.82 7.57 129 -7.82 -8.36 -0.54 2,3,3',4,4',5-hexachlorodiphenyl 109828-22-0 8.32 135 -8.78 -8.92 -0.14 ether

Page 130: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

128

2,3,3',4,4',6-hexachlorobiphenyl 74472-42-7 7.69 7.25 107 -7.66 -8.01 -0.35 2,3,3',4,4'-pentachlorodiphenyl 85918-31-6 7.45 65 -7.67 -7.35 0.32 ether 2,3,3',4',5,6-hexachlorobiphenyl 74472-44-9 7.57 122 -7.83 -8.04 -0.21 2,3,3'4,4',5,6- 83992-70-5 8.99 169 -9.46 -9.93 -0.47 heptachlorodiphenyl ether 2,3,3-trimethyl-2-butanol 594-83-2 1.80 17 -0.72 -1.30 -0.58 2,3 ',4,4',5,5 '-hexachlorodiphenyl 131138-20-0 8.20 84 -8.72 -8.29 0.43 ether 2,3,4,4',5,6-hexachlorodiphenyl 63646-56-0 7.34 146 -8.94 -8.05 0.89 ether 2,3',4,4',5-pentachlorobiphenyl 31508-00-6 7.10 7.12 109 -7.39 -7.44 -0.05 2,3',4,4'-tetrachlorobiphenyl 32598-10-0 6.51 5.90 128 -6.89 -7.04 -0.15 2,3,4,5,6-pentachlorobiphenyl 18259-05-7 7.09 6.74 124 -7.78 -7.58 0.20 2,3,4,5-tetrachloroanisole 938-86-3 4.64 4.50 88 -5.26 -4.77 0.49 2,3,4,5-tetrachlorobiphenyl 33284-53-6 6.51 6.41 91 -7.16 -6.67 0.49 2,3',4',5-tetrachlorobiphenyl 32598-11-1 6.51 6.39 104 -7.25 -6.80 0.45 2,3,4,5-tetrachlorophenol 4901-51-3 4.18 4.21 116 -3.15 -4.59 -1.44 2,3,4,5-tetraiodopyrrol 87-58-1 4.30 140 -3.46 -4.95 -1.49 2,3,4,6-tetrachlorophenol 58-90-2 4.09 4.12 70 -3.10 -4.04 -0.94 2,3,4,7,8- 57117-31-4 7.29 6.92 196 -9.16 -8.50 0.66 pentachlorodibenzofuran 2,3,4-trichloroanisole 54135-80-7 4.11 4.03 70 -4.29 -4.06 0.23 2',3,4-trichlorobipheny 1 38444-86-9 5.80 5.87 60 -6.29 -5.65 0.64 2,3,4'-trichlorobiphenyl 38444-85-8 5.80 5.42 69 -6.26 -5.74 0.52 2,3,4-trichlorophenol 15950-66-0 3.58 79 -2.67 -3.62 -0.95 2,3,4-trimethylpentane 565-75-3 4.54 -109 -4.80 -4.04 0.76 2,3,5,6-tetrachlorophenol 935-95-5 3.97 3.88 114 -3.37 -4.36 -0.99 2,3',5-trichlorobiphenyl 38444-81-4 5.92 5.76 40 -6.01 -5.57 0.44 2,3,5-trichlorophenol 933-78-8 3.58 57 -2.67 -3.40 -0.73 2,3,6-trichlorobiphenyl 55702-45-9 5.67 5.67 56 -6.29 -5.48 0.81 2,3,6-trichlorophenol 933-75-5 3.37 3.77 56 -2.64 -3.18 -0.54 2,3,7,8-tetrachlorodibenzofuran 51207-31-9 6.70 6.53 227 -8.86 -8.22 0.64 2,3,7,8-tetrachlorodibenzo-p- 1746-01-6 7.31 6.42 305 -10.22 -9.61 0.61 dioxin 2,3-benzofluorene 243-17-4 5.25 5.77 208 -7.73 -6.58 1.15 (benzo[b]fluorene) 2,3-dichloro-2-methylbutane 507-45-9 2.91 <25 -2.69 -2.41 0.28 2,3-dichloroanisole 1984-59-4 3.32 3.24 32 -3.31 -2.89 0.42 2,3-dichlorobutane 7581-97-7 2.52 <25 -2.35 -2.02 0.33 2,3-dichlorodibenzo-p-dioxin 29446-15-9 5.74 160 -7.23 -6.59 0.64 2,3-dichloronitrobenzene 3209-22-1 3.11 3.05 61 -3.48 -2.97 0.51 2,3-dichlorophenol 576-24-9 2.84 2.84 59 -1.30 -2.68 -1.38 2,3-dimethyl-1,3-butadiene 513-81-5 2.70 -76 -2.40 -2.20 0.20 2,3-dimethyl-1 -butanol 594-60-5 1.40 1.48 -14 -0.39 -0.90 -0.51 2,3-dimethyl-2-pentanol 4911-70-0 1.93 <25 -0.89 -1.43 -0.54 2,3-diinethyl-3-pentanol 595-41-5 1.93 <25 -0.85 -1.43 -0.58 2,3-ditnethylbutane 79-29-8 3.61 3.42 -129 -3.63 -3.11 0.52 2,3-dimethylbutanol 19550-30-2 1.62 <25 -0.39 -1.12 -0.73 2,3-diniethylnaphthalene 581-40-8 4.26 4.40 102 -4.72 -4.53 0.19

Page 131: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

129

2,3-diinethylpentane 565-59-3 4.14 <25 -4.28 -3.64 0.64 2,3-dimethylpyridine 583-61-9 1.59 -17 0.38 -1.09 -1.47 2,3-xylenol 526-75-0 2.42 2.48 75 -1.43 -2.42 -0.99 2,4,4',6-tetrachlorobiphenyl 32598-12-2 6.38 93 -6.94 -6.56 0.38 2,4,4'-trichlorobiphenyl 7012-37-5 5.92 5.62 57 -6.21 -5.74 0.47 2,4,4'-trichlorodiphenyl ether 59039-21-3 6.41 50 -6.22 -6.16 0.06 2,4,5,6-tetrachloroanisole 938-22-7 4.53 5.75 64 -5.13 -4.42 0.71 2,4,5-t 93-76-5 3.33 3.31 158 -2.96 -4.16 -1.20 2,4,5-trichlorobiphenyl 15862-07-4 5.92 5.90 76 -6.27 -5.93 0.34 2,4',5-trichlorobiphenyl 16606-02-3 5.92 5.79 67 -6.25 -5.84 0.41 2,4,5-trichlorodiphenyl ether 52322-80-2 6.29 61 -6.58 -6.15 0.43 2,4,5-trichlorophenoI 95-95-4 3.58 3.72 68 -2.21 -3.51 -1.30 2,4,6-tribromobiphenyl 59080-33-0 6.02 66 -7.30 -5.93 1.37 2,4,6-trichloroanisole 87-40-1 3.93 4.04 61 -4.20 -3.79 0.41 2,4,6-trichlorobiphenyl 35693-92-6 5.67 5.60 63 -6.00 -5.55 0.46 2,4,6-trichlorophenol 88-06-2 3.37 3.69 69.5 -2.34 -3.32 -0.98 2,4,6-trimethylphenol 527-60-6 2.97 71 -2.05 -2.93 -0.88 2,4,6-trinitrotoluene 118-96-7 1.71 1.60 80.9 -3.22 -1.77 1.45 2,4-d 94-75-7 2.73 2.81 138 -2.51 -3.36 -0.85 2,4-db 94-82-6 3.42 3.53 117 -3.73 -3.84 -0.11

2,4'-dichlorobiphenyl 34883-43-7 5.21 5.10 43 -5.28 -4.89 0.39 2,4-dichlorobiphenyl 33284-50-3 5.21 5.10 24 -5.25 -4.71 0.54 2,4'-dichlorodiphenyl ether 6903-65-7 5.69 31 -5.52 -5.25 0.27 2,4-dichlorophenol 120-83-2 2.96 3.06 45 -1.55 -2.66 -1.11 2,4-diinethyl-1 -pentanol 6305-71-1 2.15 <25 -1.60 -1.65 -0.05 2,4-dimethyl-2-pentanol 625-06-9 1.93 <25 -0.92 -1.43 -0.51 2,4-dimethyl-3-pentanol 600-36-2 1.93 -70 -1.22 -1.43 -0.21 2,4-dimethylpentane 108-08-7 4.14 -119 -4.26 -3.64 0.62 2,4-dimethylphenol 105-67-9 2.47 2.30 27.5 -1.19 -2.00 -0.81 2,4-diinethylpyridine 108-47-4 1.64 -60 0.38 -1.14 -1.52 2,4-diniethyIquinoline 1198-37-4 3.03 <25 -1.94 -2.53 -0.59 2,4-dinitrotoluene 121-14-2 2.05 1.98 69 -2.82 -1.99 0.83 2,4-octadione 14090-87-0 1.13 -35 -1.56 -0.63 0.93 2,4-pentanedione 123-54-6 -0.46 0.40 -23 0.22 0.96 0.74 2,5-dichlorobiphenyl 34883-39-1 5.21 5.16 23 -5.27 -4.71 0.56 2,5-dimethoxybenzaldehyde 93-02-7 1.79 1.91 52 -2.32 -1.56 0.76 2,5-dimethylpiperazine 106-55-8 -0.45 102 0.49 0.18 -0.31 2,5-dimethylpyridine 589-93-5 1.64 -15 0.4 -1.14 -1.54 2,5-piperazinedione 106-57-0 -1.72 233 -0.83 0.14 0.97 2,5-xylenol 95-87-4 2.47 2.33 74 -1.54 -2.46 -0.92 2,6-dichloroanisole 1984-65-2 3.21 3.14 31 -3.10 -2.77 0.33 2,6-dichlorobenzonitrile 1194-65-6 2.74 2.74 144 -3.98 -3.43 0.55 2,6-dichlorobenzyl alcohol 15258-73-8 1.79 97 -2.10 -2.01 0.09 2,6-dichlorobiphenyl 33146-45-1 4.96 5.00 35 -4.97 -4.56 0.41 2,6-dichlorodiphenyl ether 28419-69-4 5.69 39 -5.06 -5.33 -0.27 2,6-dichlorophenol 87-65-0 2.63 2.75 67 -1.79 -2.55 -0.76 2,6-diethylaniline 579-66-8 2.87 3 -2.35 -2.37 -0.02 2,6-dimethyl-4-pyrimidinamine 461-98-3 0.63 0.39 180 -1.28 -1.68 -0.40 2,6-dimethylnaphthalene 581-42-0 4.31 4.31 109 -4.89 -4.65 0.24

Page 132: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

130

2,6-dimethylphenol 576-26-1 2.47 2.36 49 -1.29 -2.21 -0.92 2,6-dimethylpyridine 108-48-5 1.64 1.68 -6.1 0.45 -1.14 -1.59 2,6-dinitrotoluene 606-20-2 1.97 2.10 65 -3.00 -1.87 1.13 2,7-dichlorodibenzo-p-dioxin 33857-26-0 5.86 201 -7.83 -7.12 0.71 2,7-dimethylquinoline 93-37-8 3.03 61 -1.94 -2.89 -0.95 2,8-dichlorodibenzofuran 5409-83-6 5.51 5.65 184 -7.21 -6.60 0.61 2,8-dichlorodibenzo-p-dioxin 38964-22-6 5.86 6.38 151 -7.18 -6.62 0.56 2-aminiopteridine 700-81-2 -0.83 -2.3 2-aniinoanthracene 613-13-8 3.26 239 -5.17 -4.90 0.27 2-aminothiazole 96-50-4 0.22 0.38 93 -0.36 -0.40 -0.04 2-bromobenzoic acid 88-65-3 2.20 2.20 149 -2.28 -2.94 -0.66 2-bromofluorobenzene 1072-85-1 3.15 14 -2.70 -2.65 0.05 2-bronionaphthalene 580-13-2 4.18 54 -4.40 -3.97 0.43 2-bromopropane 75-26-3 2.13 2.14 -89 -1.59 -1.63 -0.04 2-broniotoluene 95-46-5 3.50 -26 -2.23 -3.00 -0.77 2-butoxyethanol 111-76-2 0.84 0.83 -74 -0.42 -0.34 0.08 2-butyl benzene 135-98-8 4.10 -78 -3.89 -3.60 0.29 2-chloro-2-methylbutane 594-36-5 2.92 2.52 -74 -2.51 -2.42 0.09 2-chloroacetanilide 533-17-5 1.28 1.28 88 -1.40 -1.41 -0.01 2-chloroanisole 766-51-8 2.75 2.68 -27 -2.46 -2.25 0.21 2-chlorobutane 78-86-4 2.52 2.33 -140 -1.96 -2.02 -0.06 2-chlorodibenzo-p-dioxin 39227-54-8 5.15 5.45 89 -5.82 -5.29 0.53 2-chlorodiphenyl ether 2689-07-8 5.09 45 -4.78 -4.79 -0.01 2-chloronaphthalene 91-58-7 4.03 4.14 60 -4.14 -3.88 0.26 2-chloropentane 625-29-6 3.05 -138 -2.63 -2.55 0.08 2-chlorophenol 95-57-8 2.15 2.15 <25 -1.06 -1.65 -0.59 2-chlorophenoxyacetic acid 614-61-9 1.97 1.86 146 -2.16 -2.68 -0.52 2-chloropropane 75-29-6 1.99 1.90 -117 -1.41 -1.49 -0.08 2-chlorpteridine -0.14 -0.7 2-cyanoguanidine 461-58-5 -1.15 -1.15 209 -0.31 -0.19 0.12 2-decanone 693-54-9 3.49 3.73 4 -3.31 -2.99 0.32 2-dimethylaminopteridine 41047-52-3 0.07 0.36 2-ethyl pyridine 100-71-0 1.67 1.69 -63 0.51 -1.17 -1.68 2-ethyl-1,3-hexanediol 94-96-2 1.26 -40 -0.54 -0.76 -0.22 2-ethyl-1 -butanol 97-95-0 1.75 <25 -1.17 -1.25 -0.08 2-ethyl-1-hexanol 104-76-7 2.81 -76 -2.11 -2.31 -0.20 2-ethyl-2-propanol 75-85-4 1.00 0.89 -12 -0.20 -0.50 -0.30 2-ethylanthracene 52251-71-5 5.52 5.85 150 -6.89 -6.27 0.62 2-ethylbutyric acid 88-09-5 1.92 1.68 -14 -0.81 -1.42 -0.61 2-ethylhexylaniine 104-75-6 2.91 2.82 -76 -1.71 -2.41 -0.70 2-ethylnaphthalene 939-27-5 4.34 4.38 -7 -4.29 -3.84 0.45 2-ethylthiophene 872-55-9 2.82 3.01 <25 -2.59 -2.32 0.27 2-ethyltoluene 611-14-3 3.62 3.53 -17 -3.21 -3.12 0.09 2-furoic acid 88-14-2 1.01 129 -0.48 -1.55 -1.07 2-heptanol 543-49-7 2.19 2.31 <25 -1.55 -1.69 -0.14 2-heptanone 110-43-0 1.91 1.98 -31 -1.42 -1.41 0.01 2-hexanol 626-93-7 1.66 1.76 <25 -0.89 -1.16 -0.27 2-hydroxyacetanilide 614-80-2 0.72 0.72 208 -2.24 -2.05 0.19 2-hydroxypteridine -0.20 -1.95

Page 133: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

131

2-hydroxypyridine 72762-00-6 0.93 106 1.02 -1.24 -2.26 2-imidazolidinethione 96-45-7 -0.66 -0.66 203 -0.71 -0.62 0.09 2-iodopropane 75-30-9 2.52 2.89 -90 -2.09 -2.02 0.07 2-isopropyltoluene 527-84-4 4.02 -71 -3.76 -3.52 0.24 2-niercaptobenzothiazole 149-30-4 2.95 2.41 179 -3.18 -3.99 -0.81 2-mercaptopteridine 16878-76-5 0.16 205 -2.36 -1.46 0.90 2-methoxypteridine 102170-44-5 0.09 150 -1.11 -0.84 0.27 2-methyl pentane 107-83-5 3.74 -154 -3.74 -3.24 0.50 2-methyl tetrahydrofuran 96-47-9 1.04 -136 0.11 -0.54 -0.65 2-methyl-1,3-butadiene 78-79-5 2.30 -120 -2.03 -1.80 0.23 2-methyl-1-butanol 137-32-6 1.22 -70 -0.47 -0.72 -0.25 2-methyl-1 -butene 563-46-2 2.73 -138 -2.73 -2.23 0.50 2-methyl-1 -pentanol 105-30-6 1.75 <25 -1.11 -1.25 -0.14 2-methyl-1 -pentene 763-29-1 3.25 -136 -3.03 -2.75 0.28 2-methyl-2-butene 513-35-9 2.73 2.67 -134 -2.56 -2.23 0.33 2-methyl-2-heptanol 625-25-2 2.59 -50 -1.72 -2.09 -0.37

2-methyl-2-hexanol 625-23-0 2.06 <25 -1.08 -1.56 -0.48

2-methyl-2-pentanol 590-36-3 1.53 -107 -0.49 -1.03 -0.54 2-methyl-2-propanol 75-65-0 0.47 0.35 26 0.63 0.02 -0.61 2-methyl-3-pentanol 565-67-3 1.53 <25 -0.70 -1.03 -0.33 2-methylaniline 95-53-4 1.36 1.32 -15 -0.85 -0.86 -0.01 2-methylanthracene 613-12-7 4.99 205 -6.69 -6.29 0.40 2-methylbenzimidazole 615-15-6 1.83 176 -1.96 -2.84 -0.88 2-methylbutane 78-78-4 3.21 -160 -3.18 -2.71 0.47 2-methylcyclohexanone 583-60-8 1.38 -14 -0.94 -0.88 0.06 2-methylheptane 592-27-8 4.80 -109 -4.48 -4.30 0.18 2-methylhexane 591-76-4 4.27 -118 -4.60 -3.77 0.83 2-methylnaphthalene 91-57-6 3.81 3.86 34 -3.75 -3.40 0.35 2-methyl-nevirapine 135794-77-3 2.85 235 -4.27 -4.45 -0.18 2-methylphenanthrene 2531-84-2 4.99 4.86 57 -5.84 -4.81 1.03 2-methylphenol 95-48-7 1.97 1.95 30.9 -0.62 -1.53 -0.91 2-methylpiperazine 109-07-9 -0.97 66 0.74 1.06 0.32 2-methylpropane 75-28-5 2.68 2.76 -159 -2.55 -2.18 0.37 2-methylpropene 115-11-7 2.20 2.34 -140 -2.33 -1.70 0.63 2-methylpteridine 2432-20-4 -0.36 <25 -0.12 0.86 0.98 2-methylthiopteridine 16878-77-6 0.35 136 -1.76 -0.96 0.80 2-naphthol 135-19-3 2.65 2.70 121 -2.28 -3.11 -0.83 2-nitroacetanilide 552-32-9 1.00 1 93 -1.91 -1.18 0.73 2-nitropropane 79-46-9 0.55 0.80 <25 -0.62 -0.05 0.57 2-nonanol 628-99-9 3.25 -35 -2.74 -2.75 -0.01 2-nonanone 821-55-6 2.94 3.14 -21 -2.58 -2.44 0.14 2-octanol 123-96-6 2.72 2.90 -39 -2.09 -2.22 -0.13 2-octanone 111-13-7 2.44 2.37 -16 -2.05 -1.94 0.11 2-pentanol 6032-29-7 1.13 1.19 -50 -0.29 -0.63 -0.34 2-pentanone 107-87-9 0.85 0.91 -78 -0.19 -0.35 -0.16 2-pentene 109-68-2 2.86 -140 -2.54 -2.36 0.18 2-phenoxyethanol 122-99-6 1.19 1.16 14 -0.70 -0.69 0.01 2-phenyl-3,1 -benzoxazin-4-one 1022-46-4 2.55 124 -4.61 -3.04 1.57 2-phenylethanol 60-12-8 1.33 1.36 -14 -0.74 -0.83 -0.09

Page 134: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

132

2-phenylphenol 90-43-7 3.36 3.09 57 -2.39 -3.18 -0.79 2-propanol 67-63-0 0.07 0.05 -89 0.43 0.43 0.00 2-propenamide 79-06-1 -0.61 -0.67 85 0.95 0.51 -0.44 2-pyrazinecarboxaniide 98-96-4 -0.71 -0.6 190 -0.91 -0.44 0.47 2-thiouracil 141-90-2 -0.37 -0.28 340 -2.26 -2.28 -0.02 2-toluenesulfonatnide 88-19-7 0.80 0.84 156 -2.02 -1.61 0.41 2-undecanol 1653-30-1 4.31 -11 -2.94 -3.81 -0.87 3,3',4,4'-tetrachlorobiphenyl 32598-13-3 6.64 6.63 180 -8.68 -7.69 0.99 3,3'!4,4'-tetrachlorodiphenyl 56348-72-2 6.85 70 -6.98 -6.80 0.18 ether 3,3 ',5,5'-tetrachlorobipheny 1 33284-52-5 6.88 6.85 164 -8.54 -7.77 0.77 3,3'-dichlorobenzidine 91-94-1 3.57 3.51 133 -4.92 -4.15 0.77 3,3'-dichlorobiphenyl 2050-67-1 5.46 5.30 29 -5.80 -5.00 0.80 3,3-dimethyl-1 -butanol 624-95-3 1.62 -62 -0.50 -1.12 -0.62 3,3-dimethyl-2-butanol 464-07-3 1.40 1.47 5 -0.62 -0.90 -0.28 3,3-dimethyl-2-butanone 75-97-8 1.25 1.20 -53 -0.73 -0.75 -0.02 3,3-dimethylpentane 562-49-2 4.14 -134 -4.23 -3.64 0.59 3,4,4'-trichlorobipheny 1 38444-90-5 6.05 5.90 88 -7.06 -6.18 0.88 3,4,5,6-tetrachloro veratrole 944-61-6 4.38 90 -5.24 -4.53 0.71 3,4,5-trichlorodiphenyl ether 63646-53-7 6.14 54 -6.77 -5.93 0.84 3,4,5 -trichloro veratrole 16766-29-3 3.67 66 -4.37 -3.58 0.79 3,4-benzopyrene 50-32-8 6.12 6.13 -7.82 3,4-dichloroaniline 95-76-1 2.59 2.69 72 -3.24 -2.56 0.68 3,4-dichlorobiphenyl 2974-92-7 5.34 5.29 50 -7.44 -5.09 2.35 3,4-dichloronitrobenzene 99-54-7 3.19 3.12 41 -3.20 -2.85 0.35 3,4-dichloropheno 1 95-77-2 3.17 3.33 67 -1.25 -3.09 -1.84 3,4-dimethy Iphenol 95-65-8 2.42 2.23 62.5 -1.38 -2.30 -0.92 3,4-dimethylpyridine 583-58-4 1.59 -12 0.36 -1.09 -1.45 3,5-dichlorophenol 591-35-5 3.29 3.52 68 -1.34 -3.22 -1.88 3,5-diiodosalicylic acid 133-91-5 4.24 4.56 233 -3.31 -5.82 -2.51 3,5 -diiodotyrosine 66-02-4 -0.29 204 -2.86 -1.00 1.86 3,5 -dimethy Iphenol 108-68-9 2.47 2.35 64 -1.40 -2.36 -0.96 3,5-dimethylphenyl 2655-14-3 2.21 2.23 99 -2.58 -2.45 0.13 methylcarbamate 3,5-dimethylpyridine 591-22-0 1.64 1.78 -6.6 0.38 -1.14 -1.52 3-bromo-4- 2973-78-6 2.15 1.83 124 -2.18 -2.64 -0.46 hydroxybenzaldehyde 3-bromopropylene 106-95-6 1.65 1.79 -50 -1.50 -1.15 0.35 3-chloroanisole 2845-89-8 2.91 2.98 <25 -2.78 -2.41 0.37 3-chlorobiphenyl 2051-61-8 4.74 4.71 18 -4.88 -4.24 0.64 3-chloropentane 616-20-6 3.05 -106 -2.63 -2.55 0.08 3-chlorophenol 108-43-0 2.48 2.50 34 -0.70 -2.07 -1.37 3-chloropropionitrile 542-76-7 0.20 0.18 -51 -0.29 0.30 0.59 3-chloropropylene 107-05-1 1.51 -135 -1.36 -1.01 0.35 3-ethoxy-4- 121-32-4 1.80 1.61 78 -1.77 -1.83 -0.06 hydroxybenzaldehyde 3-ethyl-3-pentanol 597-49-9 2.06 -12 -0.85 -1.56 -0.71 3-heptanol 589-82-2 2.19 2.24 -70 -1.47 -1.69 -0.22 3-hexanol 623-37-0 1.66 1.65 <25 -0.80 -1.16 -0.36 3-hexanone 589-38-8 1.38 -56 -0.83 -0.88 -0.05

Page 135: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

133

3-hexyne 928-49-4 2.51 -103 -1.99 -2.01 -0.02 3-hydroxy-5-methylisoxazole 10004-44-1 0.62 0.47 85 -0.07 -0.72 -0.65 3-hydroxypyridine 109-00-2 0.93 0.52 129 -0.46 -1.47 -1.01 3-hydroxytetrahydrofuran 453-20-3 -0.78 <25 1.05 1.28 0.23 3-methyl cholanthrene 56-49-5 6.62 6.42 179 -7.92 -7.66 0.26 3-methyl-l-butanol acetate 123-92-2 2.17 2.25 -79 -1.92 -1.67 0.25 3-niethyl-l-butene 563-45-1 2.73 -168 -2.73 -2.23 0.50 3-methyl-2-butanol 598-75-4 1.00 1.28 <25 -0.20 -0.50 -0.30 3-inethyl-2-butanone 563-80-4 0.85 0.84 -92 -0.12 -0.35 -0.23 3-methyl-2-heptanol 31367-46-1 2.59 -114 -1.72 -2.09 -0.37 3-methyl-2-pentanol 565-60-6 1.53 <25 -0.72 -1.03 -0.31 3-methyl-2-pentanone 565-61-7 1.38 <25 -0.67 -0.88 -0.21 3-methyl-3-heptanol 5582-82-1 2.59 -83 -1.60 -2.09 -0.49 3-methyl-3-hexanol 597-96-6 2.06 <25 -1.00 -1.56 -0.56 3-methyl-3-pentanol 77-74-7 1.53 -24 -0.38 -1.03 -0.65 3-methyl-4-chlorophenol 59-50-7 2.98 3.1 67 -1.57 -2.90 -1.33

3-methylacetanilide 537-92-8 1.66 1.68 66 -2.09 -1.57 0.52 3-methylcyclohexanone 591-24-2 1.38 -75 -1.87 -0.88 0.99 3-methylheptane 589-81-1 4.80 -121 -5.16 -4.30 0.86 3-methylhexane 589-34-4 4.27 -119 -4.47 -3.77 0.70 3-methylindole 83-34-1 2.63 2.60 95 -2.42 -2.83 -0.41 3-methylpentane 96-14-0 3.74 3.60 -118 -3.68 -3.24 0.44 3-methylphenol 108-39-4 1.97 1.96 11.5 -0.68 -1.47 -0.79 3-methylthiophene 616-44-4 2.29 2.45 -69 -2.39 -1.79 0.60 3-octanol 589-98-0 2.72 -45 -1.98 -2.22 -0.24 3-pentanol 584-02-1 1.13 1.21 <25 -0.24 -0.63 -0.39 3-pentanone 96-22-0 0.85 0.82 -39 -0.28 -0.35 -0.07 3-pentenenitrile 16529-66-1 0.82 <25 -0.96 -0.32 0.64 3-phenylpropanol 122-97-4 1.71 1.68 0 -1.38 -1.21 0.17 3-propyl-2,4-pentadione 1540-35-8 1.13 <25 -0.88 -0.63 0.25 3-pyridinemethanol 100-55-0 -0.39 -0.02 -8 0.96 0.89 -0.07 3-trifluoromethylaniline 98-16-8 2.29 2.29 5 -1.47 -1.79 -0.32 4(3h)-pyridone 51953-17-4 -1.29 -1.38 164 0.59 0.40 -0.19 4,4'-bipyridine 553-26-4 1.14 112 -1.54 -1.51 0.03 4,4'-dibromobiphenyl 92-86-4 5.76 5.72 170 -7.74 -6.71 1.03 4,4'-dichlorobiphenyl 2050-68-2 5.46 5.30 149 -6.56 -6.20 0.36 4,4-dimethyl-1 -pentanol 3121-79-7 2.15 <25 -1.55 -1.65 -0.10 4,5,7-trichloro-2,l,3- 1982-55-4 4.25 122 -4.98 -4.72 0.26 benzothiadiazole 4,5-dichloroquiaiacol 2460-49-3 2.91 3.26 72 -2.53 -2.88 -0.35 4,5-dichloroveratrole 2772-46-5 3.19 83 -3.46 -3.27 0.19 4,7-dimethyl-l,10- 3248-05-3 3.05 193 -3.97 -4.23 -0.26 phenanthroline 4-aminoacetanilide 122-80-5 -0.07 0.08 165 -0.98 -0.83 0.15 4-aminobenzoic acid 150-13-0 0.98 0.83 -1.37 4-aminopteridine 6973-01-9 -0.83 -2.31 4-bromobenzoic acid 586-76-5 2.85 2.86 245.5 -3.54 -4.56 -1.02 4-bromophenol 106-41-2 2.63 2.59 66 -1.09 -2.54 -1.45 4-bromotoluene 106-38-7 3.50 3.42 29 -3.19 -3.04 0.16

Page 136: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

134

4-chloro-3,5-dimethylphenol 88-04-0 3.48 3.27 115 -2.8 -3.88 -1.08 4-chloroanisole 623-12-1 2.91 2.78 -18 -2.78 -2.41 0.37 4-chlorophenol 106-48-9 2.48 2.39 43.2 -0.70 -2.16 -1.46 4-chlorophenoxyacetic acid 122-88-3 2.20 2.25 157 -2.29 -3.02 -0.73 4-dimethylaminopteridine 0.07 -1.02 4-ethoxy-3- 120-25-2 1.97 65 -2.19 -1.87 0.32 methoxybenzaldehyde 4-ethyl pyridine 536-75-4 1.67 1.65 -91 0.83 -1.17 -2.00 4-ethyltoluene 622-96-8 3.67 -62 -3.11 -3.17 -0.06 4-formy 1 acetanil ide 122-85-0 1.05 154 -1.58 -1.84 -0.26 4-heptanol 589-55-9 2.19 2.22 -42 -1.40 -1.69 -0.29 4-heptanone 123-19-3 1.91 2.04 -33 -1.30 -1.41 -0.11 4-hexylresorcinol 136-77-6 3.95 3.45 65 -2.59 -3.85 -1.26 4-hydroxy-2-methylquinoline 607-67-0 2.81 235 -1.2 -4.41 -3.21 4-hydroxypteridine -0.20 -1.47 4-hydroxypyridine 626-64-2 0.93 148 1.02 -1.66 -2.68 4-iodoacetanilide 622-50-4 2.54 2.71 184 -3.25 -3.63 -0.38 4-isopropyltoluene 99-87-6 4.07 4.10 -67 -3.77 -3.57 0.20 4-mercaptopteridine 65882-61-3 0.16 176 -2.77 -1.17 1.60 4-methoxypteridine 30564-38-6 0.09 193 -1.11 -1.27 -0.16 4-methyl-1 -pentanol 626-89-1 1.75 <25 -1.14 -1.25 -0.11 4-methyl-1 -pentene 691-37-2 3.25 -154 -3.24 -2.75 0.49 4-methyl-2-pentanol 108-11-2 1.53 -90 -0.80 -1.03 -0.23 4-niethyl-2-pentanone 108-10-1 1.25 1.31 -80 -0.74 -0.75 -0.01 4-methylbiphenyl 644-08-6 4.53 4.63 45 -4.62 -4.23 0.39 4-methylcyciohexanol 589-91-3 1.79 1.79 -41 -0.88 -1.29 -0.41 4-inethylinorphoHne 109-02-4 0.20 -66 1.00 0.30 -0.70 4-niethyloctane 2216-34-4 5.32 -113 -6.05 -4.82 1.23 4-methylpentanol 106-67-2 1.75 <25 -1.14 -1.25 -0.11 4-methylpteridine 2432-21-5 -0.36 152 -0.47 -0.41 0.06 4-inethylthiopteridine 6966-78-5 0.35 191 -2.36 -1.51 0.85 4-methyoxyacetanilide 51-66-1 0.86 131 -1.30 -1.42 -0.12 4-nitroacetanilide 104-04-1 1.46 1.66 215 -2.69 -2.86 -0.17 4-nitroaniline 100-01-6 1.26 1.39 146 -2.37 -1.97 0.40 4-pentene-l-ol 821-09-0 0.87 <25 -0.15 -0.37 -0.22 4-phenylsemicarbazide 537-47-3 -0.22 123 -2.33 -0.26 2.07 5-(3-methyl-2-butenyl)-5- 21149-88-2 1.63 1.73 155 -2.25 -2.43 -0.18 ethylbarbital 5-(3-methyl-2-butenyl)-5- 2.23 2.23 131.3 -2.59 -2.80 -0.20 isoprbarbital 5,5-diallylbarbital (allobarbital) 52-43-7 0.75 1.15 174 -2.08 -1.74 0.34 5,5-diisopropylbarbital 99167-69-8 1.45 1.56 228 -2.77 -2.98 -0.21 5,5-dimethyl-2,4-hexadione 7307-04-2 1.00 -1.63 5,5-dimethylbarbituric acid 24448-94-0 -0.40 -0.44 278 -1.74 -1.63 0.11 5,5-diphenylbarbiturate 21914-07-8 1.88 1.96 -4.2 5,5-dipropylbarbiturate 2217-08-5 1.71 1.75 -2.53 5,6,7,8-tetrahydro-2-naphthol 1125-78-6 3.05 2.9 57 -1.99 -2.87 -0.88 5,6-dehydroisoandrosterone 853-23-6 4.13 166 -4.46 -5.04 -0.58 acetate 5,6-diitiethy Ichry sene 3697-27-6 6.61 128 -7.01 -7.14 -0.13

Page 137: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

5-allyl-5-ethylbarbital 5 -ally 1-5 -isopropylbarbital (aprobarbital) 5 -ally 1-5 -methylbarbital 5-allyl-5-phenylbarbital (phenallymal) 5-aminosalicylic acid 5-ethyl-5-(3-methylbut-2-enyl)barbiturate 5-ethyl-5-(3-methylbutyObarbital (amobarbital) 5-ethyl-5-heptylbarbiturate 5-ethyl-5-isopropylbarbituric acid (probarbital) 5-ethyl-5-nonylbarbiturate 5-ethyl-5-octylbarbiturate 5-ethyl-5-pentylbarbiturate 5-ethyl-5-propylbarbiturate 5-ethyl-barbiturate 5-ethylhydantoin 5-fluorouracil 5-hydroxyquinoline 5-(-propyl-5-(3-methylbut-2-enyl)barbiturate 5-isopropylbarbiturate 5-methyl barbiturate 5-methyl-2-hexanol 5-methyl-2-hexanone 5-methyl-2-thiouracil 5-methyl-5-(3-methylbut-2-enyl)barbiturate 5-methyl-5-allylbarbiturate 5-methyl-5-ethylbarbiturate 5-methylchrysene 5-niethylcytosine 5-methyluracil 5-nitrobarbituric acid 5-nonanone 5-f-butyl-5-(3-methylbut-2-enyl)barbiturate 6-aminochrysene 6-aminopteridine 6-chlorpteridine 6-hydroxypteridine 6-hydroxyquinoline 6-methoxypteridine 6-methyl-2,4-heptadione 6-methylchrysene 6-methylprednisolone

135

2373-84-4 0.70 0.87 160 -1.61 -1.55 0.06 77-02-1 1.37 1.37 143 -1.71 -2.05 -0.34

0.17 0.36 166 -1.16 -1.08 0.08 115-43-5 1.41 1.69 158 -2.18 -2.24 -0.06

89-57-6 1.06 -2.26 1.63 1.73 -2.25

57-43-2 2.11 2.07 156 -2.66 -2.92 -0.26

3.30 -3.22 76-76-6 1.05 1.10 203 -2.15 -2.33 -0.18

4.36 -4.46 3.83 -3.94

115-58-2 2.24 2.24 -2.34 33376-25-9 1.18 -1.49 2518-72-1 -0.39 -0.35 -1.43

15414-82-1 -0.64 120 -0.06 0.19 0.25 51-21-8 -0.58 -1 281 -1.07 -1.48 -0.41

578-67-6 2.08 2.1 224 -2.54 -3.57 -1.03 2.03 2.23 -2.59

7391-69-7 0.01 -0.02 -1.46 -0.92 -1.13

627-59-8 2.06 <25 -1.38 -1.56 -0.18 110-12-3 1.78 1.88 -74 -1.33 -1.28 0.05 636-26-0 -1.39 284 -2.45 -0.70 1.75

1.10 1.17 -2.6

0.17 0.36 -1.16 0.13 0.08 -1.16

3697-24-3 6.16 117 -6.59 -6.58 0.01 58366-64-6 -1.40 -0.56

65-71-4 -0.56 -0.62 316 -1.52 -1.85 -0.33 28176-10-5 -1.72 -2.28

502-56-7 2.97 2.88 -50 -2.59 -2.47 0.12 2.43 2.56 -3.55

2642-98-0 4.44 4.98 210 -6.2 -5.79 0.41 -0.83 -2.34 -0.14 -1.12 -0.20 -2.71

580-16-5 2.08 1.8 192 -2,16 -3.25 -1.09 0.09 -1.14

3002-23-1 1.00 <25 -1.60 -0.50 1.10 1705-85-7 6.16 160 -6.57 -7.01 -0.44

83-43-2 1.70 228 -2.99 -3.23 -0.24

Page 138: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

6-methyluracil 626-48-2 -0.56 -0.77 318 -1.26 -1.87 -0.61 7,12-dimethylbenz[a]anthracene 57-97-6 6.66 5.80 122 -7.02 -7.13 -0.11 7-aminopteridine 769-66-4 -0.83 -2.31 7-butyltheophylline 1.53 -1.81 7-chlorpteridine 1125-84-4 -0.14 -0.88 7-dimethylaminopteridine 0.07 -0.02 7-ethyltheophylline 0.47 -0.76 7-hydroxypteridine -0.20 -2.12 7-isobutyltheophylline 1.40 -0.94 7-mercaptopteridine -0.21 -2.71 7-methoxypteridine 204443-27-6 0.09 -0.91 7-methoxypteridine 0.09 -0.91 7-methylpteridine -0.36 -0.85 7-methylthiopteridine 204443-30-1 0.35 -1.55 8-quinolinol 148-24-3 2.08 2.02 72 -2.42 -2.05 0.37 9,10-dimethyl-l,2- 56-56-4 6.66 123 -6.83 -7.14 -0.31 benzanthracene 9,10-dimethylanthracene 781-43-1 5.49 5.69 183 -6.57 -6.57 0.00 9-methylanthracene 779-02-2 4.99 5.07 79 -5.89 -5.03 0.86 a-aminoisobutyric acid 62-57-7 -2.62 335 0.21 0.02 -0.19 abietic acid 514-10-3 6.28 173 -3.8 -7.26 -3.46 acenaphthalene 83-32-9 3.62 90 -3.96 -3.77 0.19 acenaphthylene 208-96-8 3.77 3.92 95 -3.96 -3.97 -0.01 acetamide 60-35-5 -1.11 -1.09 81 1.58 1.05 -0.53 acetanilide 103-84-4 1.16 1.16 114 -1.33 -1.55 -0.22 acetazolamide 59-66-5 -1.25 -0.26 -2.49 acetic acid 64-19-7 -0.19 -0.17 16.6 2.00 0.69 -1.31 acetohexamide 968-81-0 2.25 2.44 189 -2.06 -3.39 -1.33 acetonitrile 75-05-8 -0.39 -0.34 -48 0.26 0.89 0.63 acetophenone 98-86-2 1.58 1.58 20 -1.28 -1.08 0.20 acetylsalicylicacid 50-78-2 1.02 1.19 135 -1.61 -1.62 -0.01 acridine 260-94-6 3.41 3.4 107 -3.67 -3.73 -0.06 acrolein 107-02-8 -0.01 -0.01 -88 0.57 0.51 -0.06 acrylonitrile 107-13-1 0.29 0.25 -84 0.15 0.21 0.06 adenine 73-24-5 -0.29 -0.09 363 -2.43 -2.59 -0.16 adenosine 58-61-7 -2.27 -1.05 -1.73 adipic acid 124-04-9 -0.02 0.08 152 -0.82 -0.75 0.07 adrenosterone 382-45-6 2.04 185 -3.48 -3.14 0.34 a-endosulfan 959-98-8 3.95 3.83 109 -5.89 -4.29 1.60 ajmaline 4360-12-7 2.17 160 -2.82 -3.02 -0.20 alachlor 15972-60-8 3.19 3.52 40 -3.17 -2.84 0.33 alclofenac 22131-79-9 2.73 2.47 -3.13 aldicarb 116-06-3 1.12 1.13 100 -1.50 -1.37 0.13 aldosterone 52-39-1 1.57 164 -3.85 -2.46 1.39 aldrin 309-00-2 5.41 6.50 104 -6.31 -5.70 0.61 alizarin 72-48-0 2.38 287 -2.78 -4.50 -1.72 allantoin 97-59-6 -2.23 238 -1.6 0.60 2.20 allicin 539-86-6 1.90 <25 -0.83 -1.40 -0.57 allopurinol 315-30-0 -0.88 -0.55 360 -2.26 -1.97 0.29

Page 139: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

137

alloxan 50-71-5 -1.84 -1.84 256 -1.25 0.03 1.28 alloxantin(uroxine) 76-24-4 -4.88 -1.99 alpha-aminobutyric acid 80-60-4 -2.60 -2.53 285 0.31 0.50 0.19 alpha-chlorotoluene 100-44-7 2.70 -39 -2.39 -2.20 0.19 amertryn 834-12-8 2.98 2.98 84 -3.04 -3.07 -0.03 amikacin 37517-28-5 -4.12 203 -0.5 2.84 3.34 aminocarb 2032-59-9 1.98 1.9 93 -2.36 -2.16 0.20 aminopyrine 58-15-1 0.57 1 108 -0.36 -0.90 -0.54 amitraz 33089-61-1 5.50 86 -5.47 -5.61 -0.14 amitriptyline 50-48-6 4.85 4.92 193 -4.46 -6.03 -1.57 amitrole 61-82-5 -0.53 -0.87 159 0.52 -0.31 -0.83 ampicillin 800-79-3 -1.20 -1.13 200 -1.54 -0.05 1.49 ampyrone 83-07-8 -0.75 108 -0.62 0.42 1.04 amygdalin 29883-15-6 -2.19 224 -0.77 0.70 1.47 amylacetate 628-63-7 2.30 2.29 -71 -1.89 -1.80 0.09 ancymidol 12771-68-5 0.76 110 -2.6 -1.11 1.49 androstane-17-one 36378-49-1 5.08 119 -5.70 -5.52 0.18 androstanedione 846-46-8 3.15 3.60 142 -3.76 -3.82 -0.06

androstenedione 63-05-8 3.15 3.6 142 -3.69 -3.82 -0.13 androsterone 53-41-8 3.55 3.69 185 -4.40 -4.65 -0.25 anethole 104-46-1 3.31 22 -3.13 -2.81 0.32 aniline 62-53-3 0.91 0.90 <25 -0.41 -0.41 0.00 anisole 100-66-3 2.06 2.11 -37 -1.85 -1.56 0.29 anisomycin 22862-76-6 1.48 142 -1.61 -2.15 -0.54 antazoline 91-75-8 4.11 122 -2.6 -4.58 -1.98 anthracene 120-12-7 4.49 4.45 216 -6.35 -5.90 0.45 anthraquinone 84-65-1 2.62 3.39 284 -5.19 -4.71 0.48 antipyrine 60-80-0 0.20 0.23 111 0.39 -0.56 -0.95 arecoline 63-75-2 0.90 <25 0.81 -0.40 -1.21 ascorbic acid 50-81-7 -1.76 -1.64 191 0.28 0.60 0.32 asulam 3337-71-1 -0.31 -0.27 153 -1.66 -0.47 1.19 atrazine 1912-24-9 2.50 2.61 175 -3.55 -3.50 0.05 atrazine 1912-24-9 2.50 2.61 -3.49 atropic acid 492-38-6 1.90 1.84 107 -2.06 -2.22 -0.16 atropine 51-55-8 1.32 1.83 116 -2.2 -1.73 0.47 azathioprine 446-86-6 0.01 0.1 -3.44 azelaic acid 123-99-9 1.56 1.57 100 -1.89 -1.81 0.08 azintamide 1830-32-6 0.99 -1.72 azobenzene 103-33-3 3.85 3.82 69 -2.75 -3.79 -1.04 aztreonam 78110-38-0 0.66 227 -1.64 -2.18 -0.54 baclofen 1134-47-0 -0.62 -0.96 -1.7 barban 101-27-9 3.98 75 -4.37 -3.98 0.39 barbital 57-44-3 0.66 0.65 190 -2.4 -1.81 0.59 benazolin 3813-05-6 1.34 1.30 192 -2.61 -2.51 0.10 bendroflumethiazide 73-48-3 1.69 1.19 224 -3.59 -3.18 0.41 benfluralin 1861-40-1 5.29 5.29 65 -5.53 -5.19 0.34 benodanil 15310-01-7 2.92 137 -4.21 -3.54 0.67 benperidol 2062-84-2 3.82 -4.28 bensulide 741-58-2 4.37 4.22 34 -4.20 -3.96 0.24

Page 140: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

138

bentazon 25057-89-0 2.80 2.8 138 -2.68 -3.43 -0.75 benzaldehyde 100-52-7 1.50 1.47 -55 -1.19 -1.00 0.19 benzamide 55-21-0 0.65 0.64 129 -0.96 -1.19 -0.23 benzanthracene 5.66 5.54 -7.21 (benzo [a] anthracene) benzene 71-43-2 2.14 2.13 6 -1.64 -1.64 0.00 benzenesulfonamide 98-10-2 0.30 0.31 151 -1.56 -1.06 0.50 benzhydrol 91-01-0 2.45 2.67 66 -2.55 -2.36 0.19 benzilic acid 76-93-7 1.85 2.3 151 -2.21 -2.61 -0.40 benznidazole 22994-85-0 0.89 0.91 190 -2.81 -2.04 0.77 benzo(a)fluorene 238-84-6 5.25 5.68 187 -6.68 -6.37 0.31 benzo(a)pyrene 50-32-8 6.12 6.13 178 -8.25 -7.15 1.10 benzo(b)fluoranthene 205-99-2 6.12 167 -7.79 -7.04 0.75 benzo(b)fluorene 243-17-4 5.25 5.77 212 -8.04 -6.62 1.42 benzo(e)pyrene 192-97-2 6.12 6.44 178 -7.80 -7.15 0.65 benzo(f)quinoline 85-02-9 3.20 3.4 93 -3.36 -3.38 -0.02 benzo(g,h,i)perylene 191-24-2 6.58 6.63 278 -9.02 -8.61 0.41 benzo(j)fluoranthene 205-82-3 6.12 165 -8.00 -7.02 0.98 benzo(k)fluoranthene 207-08-9 6.12 6.11 216 -8.49 -7.53 0.96 benzocaine 94-09-7 1.92 1.86 89 -2.32 -2.06 0.26 benzoic acid 65-85-0 1.88 1.87 122 -1.55 -2.35 -0.80 benzoin 579-44-2 2.38 2.13 134 -2.85 -2.97 -0.12 benzonitrile 100-47-0 1.57 1.56 -13 -1.00 -1.07 -0.07 benzophenone 119-61-9 3.18 3.18 49 -3.12 -2.92 0.20 benzothiazole 95-16-9 2.08 2.01 2 -1.50 -1.58 -0.08 benzotriazole 95-14-7 1.41 1.44 99 -0.78 -1.65 -0.87 benzoxazole 273-53-0 1.41 1.59 28 -1.16 -0.94 0.22 benzyl butyl phthalate 85-68-7 3.88 4.91 -35 -5.64 -3.38 2.26 benzylamine 100-46-9 1.09 1.09 10 -1.54 -0.59 0.95 benzylurea 538-32-9 0.73 0.73 148 -0.95 -1.46 -0.51 beta-aminobutyric acid 2835-82-7 -2.83 190 1.08 1.68 0.60 beta-endosulfan 33213-65-9 3.95 3.83 209 -6.08 -5.29 0.79 beta-estradiol 50-28-2 3.78 3.86 173 -4.85 -4.76 0.09 beta-iodopropionic acid 141-76-4 0.93 81 -0.43 -0.99 -0.56 betamethasone 378-44-9 1.75 2.01 230 -3.77 -3.30 0.47 betamethasone-17-valerate 2152-44-5 3.87 3.60 196 -4.71 -5.08 -0.37 bibenzyl 103-29-7 4.59 4.79 50 -4.62 -4.34 0.28 bifonazole 60628-96-8 4.77 4.99 142 -5.95 -5.44 0.51 biphenyl 92-52-4 4.03 4.01 70 -4.30 -3.98 0.32 biquinoline 119-91-5 5.10 5.02 71 -5.4 -5.06 0.34 bis-(2-chloroethyl)-ether 111-44-4 1.00 1.29 -45 -1.12 -0.50 0.62 bis-(2-chloroethyl)-sulfone 471-03-4 -0.31 56 -1.50 0.50 2.00 bis-(2-chloroethyl)-sulfoxide 5819-08-9 -0.19 110 -1.16 -0.16 1.00 bis-(p-aminophenyl)-methane 101-77-9 1.75 1.59 93 -2.3 -1.93 0.37 borneol(sp) 507-70-0 2.58 2.72 206 -2.32 -3.89 -1.57 brinzolamide 138890-62-7 0.18 -2.95 bromacil 314-40-9 2.69 2.11 158 -2.52 -3.52 -1.00 bromazepam 1812-30-2 1.69 1.69 238 -3.48 -3.32 0.17 bromobenzene 108-86-1 3.01 2.99 -31 -2.55 -2.51 0.04

Page 141: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

139

bromochloromethane 74-97-5 1.39 1.41 -87 -0.89 -0.89 0.00 bromocyclohexane 108-85-0 3.33 3.20 -57 -2.30 -2.83 -0.53 bromodichloromethane 75-27-4 2.09 2.10 -57 -1.54 -1.59 -0.05 bromoethane 74-96-4 1.60 1.61 -118 -1.09 -1.10 -0.01 bromomethane 74-83-9 1.08 1.19 -94 -0.85 -0.58 0.27 bromophos 2104-96-3 5.09 5.21 51 -6.09 -4.85 1.24 bromopropylate 18181-80-1 4.97 5.40 76 -4.93 -4.98 -0.05 bromoxynil 1689-84-5 2.88 2.8 190 -3.33 -4.03 -0.70 brompyrazone 3042-84-0 1.40 220 -3.12 -2.85 0.27 brucine 357-57-3 1.31 0.98 177 -2.09 -2.33 -0.24 bumetanide 28395-03-1 3.35 230 -3.56 -4.90 -1.34 bupirimate 41483-43-6 2.70 2.7 -4.16 busulfan 55-98-1 -0.59 -0.52 -2.27 butabarbital 125-40-6 1.58 1.65 166 -2.39 -2.49 -0.10 butacarb 2655-19-8 4.86 100 -4.24 -5.11 -0.87 butachlor 23184-66-9 4.78 4.50 <25 -4.19 -4.28 -0.09 butalbital 77-26-9 1.63 -2.12 butamben 94-25-7 3.08 2.87 58 -3.08 -2.91 0.17 butan-2-ol 78-92-2 0.60 0.61 -115 0.18 -0.10 -0.28 butane 106-97-8 2.81 2.89 -138 -2.95 -2.31 0.64 butanethiol 109-79-5 2.23 2.28 -116 -2.18 -1.73 0.45 butethal 77-28-1 1.71 1.73 127 -1.83 -2.23 -0.40 buturon 3766-60-7 2.66 3.00 143 -3.90 -3.34 0.56 butyl acetate 123-86-4 1.77 1.78 -106 -1.24 -1.27 -0.03 butyl benzene 104-51-8 4.23 4.38 -88 -4.06 -3.73 0.33 butyl benzoate 136-60-7 3.70 3.84 -22 -3.48 -3.20 0.28 butylamine 109-73-9 0.92 0.97 -50 0,96 -0.42 -1.38 butylate 2008-41-5 4.01 4.15 <25 -3.68 -3.51 0.17 butyl-p-hydroxybenzoate 94-26-8 3.57 3.57 68 -2.72 -3.50 -0.78 butyltoluene 27458-20-4 4.68 <25 -4.06 -4.18 -0.12 butyraldehyde 123-72-8 0.83 0.88 -96 -0.01 -0.33 -0.32 butyric acid 107-92-6 0.86 0.79 -8 -0.19 -0.36 -0.17 caffeine 58-08-2 -0.06 -0.07 235 -0.88 -1.54 -0.66 camphor(sp) 76-22-2 2.18 2.38 177 -1.99 -3.20 -1.21 caproaldehyde 66-25-1 1.89 1.78 -56 -1.30 -1.39 -0.09 caprylaldehyde 124-13-0 2.95 14 -2.36 -2.45 -0.09 caprylic acid 124-07-2 2.98 3.05 17 -2.3 -2.48 -0.18 captafol 2939-80-2 3.74 3.83 162 -5.4 -4.61 0.79 carbamazepine 298-46-4 1.98 2.19 -3.29 carbanilide 102-07-8 3.01 3 238 -3.15 -4.64 -1.49 carbaryl 63-25-2 2.38 2.36 142 -3.28 -3.05 0.23 carbazole 86-74-8 3.52 3.48 247 -5.27 -5.24 0.03 carbetamide 16118-49-3 1.35 -1.83 carbofuran 1563-66-2 2.47 1.63 152 -2.80 -3.24 -0.44 carbophenothion 786-19-6 5.94 5.33 <25 -5.74 -5.44 0.30 carboxin 5234-68-4 2.10 2.14 92 -3.14 -2.27 0.87 carbromal 77-65-6 1.62 1.54 118 -2.68 -2.05 0.63 carbutamide 339-43-5 1.02 1.01 144 -2.18 -1.71 0.47 carvacrol 499-75-2 3.40 3 -2.08 -2.90 -0.82

Page 142: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

140

carvone 99-49-0 2.01 2.01 <25 -2.06 -1.51 0.55 cefamandole 34444-01-4 0.31 0.25 -0.14 cefazolin 26970-89-8 -1.16 -0.58 -2.62 ceftazidime 78439-06-2 -6.22 -2.04 cephaloridine 50-59-9 -6.63 184 -1.32 5.54 6.86 cephradine 38821-53-3 -1.53 -1.22 cetyl alcohol 6653-82-4 7.17 56 -7.26 -6.98 0.28 chenodeoxycholic acid 474-25-9 4.51 166 -3.64 -5.42 -1.78 chloral hydrate 302-17-0 0.71 0.99 1.7 chloralose 15879-93-3 0.41 1.02 183 -1.84 -1.49 0.35 chloramben 133-90-4 1.95 195 -2.47 -3.15 -0.68 chloramben methyl ester 7286-84-2 2.49 57 -3.26 -2.31 0.95 chloramphenicol 56-75-7 1.28 1.14 151 -2.11 -2.04 0.07 chlordane 57-74-9 5.80 6 <25 -5.35 -5.30 0.05 chlordene 3734-48-3 5.09 5.44 -62 -5.39 -4.59 0.80 chlordiazepoxide 58-25-3 2.46 2.44 -2.18 chlordimeform 6164-98-3 2.79 2.89 32 -2.86 -2.36 0.50 chlorfenac 85-34-7 3.43 3.2 161 -3.08 -4.29 -1.21 chlorfenprop-methyl 14437-17-3 3.40 <25 -3.77 -2.90 0.87 chlorflurecol 2464-37-1 2.67 194 -4.18 -3.86 0.32 chloroacetamide 79-07-2 -0.50 -0.53 117 -0.02 0.08 0.10 chloroacetic acid 79-11-8 -0.08 0.22 61 1.81 0.22 -1.59 chlorobenzene 108-90-7 2.86 2.89 -46 -2.38 -2.36 0.02 chlorodibromomethane 124-48-1 2.23 2.24 -22 -1.90 -1.73 0.17 chloroethane 75-00-3 1.47 1.43 -136 -1.06 -0.97 0.09 chloroethylene 75-01-4 1.52 -154 -1.36 -1.02 0.34 chloroform 67-66-3 1.95 1.97 -64 -1.17 -1.45 -0.28 chloroneb 2675-77-6 3.20 134 -4.41 -3.79 0.62 chloropham 101-21-3 3.37 3.51 41 -3.38 -3.03 0.35 chloropicrin 76-06-2 1.60 2.09 <25 -2.00 -1.10 0.90 chloropropylate 5836-10-2 4.87 73 -4.53 -4.85 -0.32 chlorothalonil 1897-45-6 3.47 2.90 250 -5.64 -5.22 0.42 chlorothiazide 58-94-6 -0.31 -0.24 342 -3.05 -2.36 0.69 chloroxuron 1982-47-4 3.79 151 -4.89 -4.55 0.34 chlorpheniramine 132-22-9 3.15 3.17 <25 -0.24 -2.65 -2.42 chlorpromazine 50-53-3 5.80 5.35 57 -5.1 -5.62 -0.52 chlorpropamide 94-20-2 2.35 2.27 127 -3.03 -2.87 0.16 chlorpyrifos methyl 5598-13-0 3.81 4.31 46 -4.82 -3.52 1.30 chlorpyriphos 2921-88-2 4.49 4.82 43 -5.67 -4.17 1.50 chlorquinox 3495-42-9 3.81 190 -5.43 -4.96 0.47 chlortetracycline 57-62-5 -0.09 168 -2.88 -0.84 2.04 chlorthalidone 77-36-1 0.45 -3.45 chlorzoxazone 95-25-0 1.87 -2.83 cholanthrene 479-23-2 6.12 173 -7.85 -7.10 0.75 cholic acid 81-25-4 2.43 200 -3.37 -3.68 -0.31 chrysene 218-01-9 5.66 5.81 256 -7.58 -7.47 0.11 cimetidine 51481-61-9 0.35 0.40 142 -1.35 -1.02 0.33 cinchomeronicacid 490-11-9 -0.25 262 -1.86 -1.62 0.24 cinchonidine 485-71-2 2.49 2.82 201 -3.07 -3.75 -0.68

Page 143: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

141

cinchonine 118-10-5 2.49 2.82 259 -3.09 -4.33 -1.24 cinmetacin 20168-99-4 3.95 170 -5.54 -4.90 0.64 cinnamic acid 621-82-9 2.24 2.13 133 -2.48 -2.82 -0.34 cis-1,2-dichloroethylene 156-59-2 1.77 1.86 -81 -1.30 -1.27 0.03 cis-1,2-dimethy Icyclohexane 2207-01-4 4.39 -50 -4.27 -3.89 0.38 cis-2-pentene 627-20-3 2.86 -151 -2.54 -2.36 0.18 citral 5392-40-5 2.95 <25 -2.06 -2.45 -0.39 citric acid 77-92-9 -1.56 -1.72 153 0.51 0.78 0.27 clofazimine 2030-63-9 6.69 7.48 -5.8 cocaine 50-36-2 2.57 2.3 98 -2.25 -2.80 -0.55 codeine 76-57-3 0.98 1.14 155 -1.52 -1.78 -0.26 colchicine 64-86-8 1.19 1.3 -0.94 coronene 191-07-1 7.04 438 -9.38 -10.67 -1.29 corticosterone 50-22-6 2.32 1.94 181 -3.24 -3.38 -0.14 cortisone 53-06-5 1.30 1.47 -3.27 cortisone-acetate 50-04-4 1.83 2.10 235 -4.00 -3.43 0.57 coumaphos 56-72-4 4.33 4.13 91 -5.38 -4.49 0.89 coumarin 91-64-5 1.41 1.39 70 -1.73 -1.36 0.37 coumatetralyl 5836-29-3 4.83 180 -2.84 -5.88 -3.04 crotonaldehyde (2-butenal) 4170-30-3 0.52 -77 0.32 -0.02 -0.34 cyanazine 21725-46-2 1.39 2.22 167 -3.15 -2.31 0.84 cycloate 1134-23-2 3.66 3.97 12 -3.40 -3.16 0.24 cyclobarbital 52-31-3 1.87 1.77 171 -2.02 -2.83 -0.81 cyclobutyl-5-spirobarbituric acid 6128-03-6 -0.57 -0.27 256 -1.66 -1.24 0.42 cycloheptane 291-64-5 3.91 4.00 -12 -3.51 -3.41 0.10 cycloheptanol 502-41-0 1.83 2 -0.88 -1.33 -0.45 cycloheptatriene 544-25-2 2.55 2.63 -80 -2.15 -2.05 0.10 cycloheptene 628-92-2 3.43 -56 -3.18 -2.93 0.25 cyclohexane 110-82-7 3.35 3.44 7 -3.10 -2.85 0.25 cyclohexanecarboxylic acid 98-89-5 1.84 30 -1.45 -1.39 0.06 cyclohexane-spirobarbiturate 1.11 1.36 266 -3.17 -3.02 0.15 cyclohexanol 108-93-0 1.27 1.23 23 -0.44 -0.77 -0.33 cyclohexanol acetate 622-45-7 2.21 <25 -1.67 -1.71 -0.04 cyclohexanone 108-94-1 0.86 0.81 -47 -0.60 -0.36 0.24 cyclohexene 110-83-8 2.87 2.86 -104 -2.59 -2.37 0.22 cycloheximide 66-81-9 0.23 0.55 120 -1.13 -0.68 0.45 cyclohexyl-5-spirobarbituric 52-44-8 0.55 0.91 289 -3.06 -2.69 0.37 acid cyclooctane 292-64-8 4.47 4.45 15 -4.15 -3.97 0.18 cyclooctanol 696-71-9 2.38 15 -1.29 -1.88 -0.59 cyclooctyl-5-spirobarbituric acid 1.67 1.79 228 -2.98 -3.20 -0.22 cyclopentane 287-92-3 2.79 3.00 -94 -2.64 -2.29 0.35 cyclopentene 142-29-0 2.31 -135 -1.73 -1.81 -0.08 cyclopentyl-5-spirobarbituric 56209-30-4 -0.01 0.24 270 -2.35 -1.94 0.41 acid cyclopropyl-5-spirobarbituric 6947-77-9 -1.13 -0.53 325 -1.89 -1.37 0.52 acid cycloserine 68-41-7 -1.19 156 -0.01 0.38 0.39 cycluron 2163-69-1 2.58 130 -2.36 -3.13 -0.77

Page 144: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

142

cyproheptadine 129-03-3 4.92 4.69 -1.9 cytisine 485-35-8 0.01 155 0.36 -0.81 -1.17 cytosine 71-30-7 -1.85 -1.73 320 -1.14 -0.60 0.54 d,l-mepivacaine 96-88-8 2.12 1.95 150 -1.55 -2.87 -1.32 daminozide 1596-84-5 -1.03 -1.5 163 -0.2 0.15 0.35 danazol 17230-88-5 3.93 3.93 225 -5.51 -5.43 0.08 danthron 117-10-2 2.84 -5.19 dapsone 80-08-0 0.89 0.97 175 -2.82 -1.89 0.93 dazomet 533-74-4 0.86 104 -2.13 -1.15 0.98 d-camphoric acid 124-83-4 1.75 184 -1.42 -2.84 -1.42 decachlorobiphenyl 2051-24-3 9.92 8.27 304 -11.89 -12.21 -0.32 decachlorodiphenyl ether 31710-30-2 10.93 221 -12.95 -12.39 0.56 decalin 91-17-8 4.79 -31 -4.35 -4.29 0.06 decane 124-18-5 5.98 -30 -6.44 -5.48 0.96 decanoic acid 334-48-5 4.04 4.09 31 -3.44 -3.60 -0.16 delmadinone acetate 13698-49-2 4.11 169 -4.95 -5.05 -0.10 delta-hexachlorocyclohexane 319-86-8 3.75 3.72 142 -4.51 -4.42 0.09 demeclocycline 127-33-3 -0.61 176 -2.52 -0.40 2.12 deoxycholic acid 83-44-3 4.51 174 -3.95 -5.50 -1.55 deoxycorticosterone 64-85-7 3.25 2.88 136 -3.45 -3.86 -0.41 deoxycorticosterone acetate 56-47-3 3.79 3.08 -136 -4.63 -3.29 1.34 des 56-53-1 4.96 5.07 169 -4.35 -5.90 -1.55 desipramine 50-47-5 4.47 4.9 212 -3.66 -5.84 -2.18 desmedipham 13684-56-5 3.40 3.39 120 -4.63 -3.85 0.78 dexamethasone 50-02-2 1.75 2.01 263 -3.61 -3.63 -0.02 dexamethasone-17-acetate 1177-87-3 2.28 2.91 263 -4.90 -4.16 0.74 d-fenchone 4695-62-9 2.18 6 -1.85 -1.68 0.17 di(2-ethylhexyl)-phthalate 117-81-7 8.71 7.45 -50 -6.96 -8.21 -1.25 dialifos 10311-84-9 4.36 68 -6.34 -4.29 2.05 diallate 2303-16-4 3.67 25 -4.08 -3.17 0.91 diallyl phthalate 131-17-9 3.11 3.23 -70 -3.13 -2.61 0.52 diatrizoic acid 117-96-4 0.65 -2.79 diazepam 439-14-5 3.16 2.99 125 -3.76 -3.66 0.10 diazinon 333-41-5 3.50 3.3 120 -3.76 -3.95 -0.19 dibenz(a,h)anthracene 53-70-3 6.84 6.50 266 -8.74 -8.75 -0.01 dibenzofurane 132-64-9 4.09 4.12 82 -4.60 -4.16 0.44 dibenzo-p-dioxin 262-12-4 4.62 4.38 123 -5.31 -5.10 0.21 dibenzothiophene 132-65-0 4.56 4.49 97 -5.21 -4.78 0.43 dibromomethane 74-95-3 1.53 1.88 -53 -1.17 -1.03 0.14 dibucaine 85-79-0 5.34 4.4 64 -3.7 -5.23 -1.53 dibutyl ether 142-96-1 2.91 3.22 -95 -1.99 -2.41 -0.42 dibutylamine 111-92-2 2.66 2.83 -59 -1.44 -2.16 -0.72 dibutylphthalate 84-74-2 4.65 4.72 -35 -4.40 -4.15 0.25 dicamba 1918-00-9 2.23 2.21 115 -1.7 -2.63 -0.93 dicapthon 2463-84-5 3.55 3.88 53 -4.31 -3.33 0.98 dichlormid 37764-25-3 1.92 1.64 5 -1.62 -1.42 0.20 dichlorodifluoromethane 75-71-8 2.00 2.16 -155 -1.99 -1.50 0.49 dichlorodiphenyldichloroethane 72-54-8 6.06 6.22 110 -6.55 -6.41 0.15 (ddd)

Page 145: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

143

dichlorodiphenyldichloroethylen 72-55-9 6.74 6.96 89 -6.90 -6.88 0.02 e (p,p'-dde) dichloromethane 75-09-2 1.25 1.25 -97 -0.74 -0.75 -0.01 dichlorophen 97-23-4 4.89 177.5 -3.95 -5.92 -1.96

dichlorprop 120-36-5 3.26 3.43 118 -2.83 -3.69 -0.86

diclofenac 15307-86-5 4.32 4.4 -5.1 diclofopmethyl 51338-27-3 5.50 4.80 40 -3.82 -5.15 -1.33 didanosine 69655-05-6 -1.98 -1.24 -0.94 dieldrin 60-57-1 3.70 4.55 175 -6.29 -4.70 1.59

dienestrol 84-17-3 4.50 227 -4.95 -6.02 -1.07 diethyl disulfide 110-81-6 2.80 -102 -2.42 -2.30 0.12 diethyl ether 60-29-7 0.87 0.89 -116 -0.09 -0.37 -0.28

diethyl phthalate 84-66-2 2.62 2.47 -33 -2.35 -2.12 0.23 diethyl succinate 123-25-1 1.48 1.19 -20 -0.96 -0.98 -0.02 diethyl sulfide 352-93-2 1.90 1.95 -104 -1.34 -1.40 -0.06 diethyl sulfone 597-35-3 -0.44 -0.59 73 0.04 0.46 0.42 diethylamine 109-89-7 0.54 0.58 -50 1.03 -0.04 -1.07 difenoxuron 14214-32-5 2.99 -4.16 diflunisal 22494-42-4 4.39 4.44 -4.48 difluron 35367-38-5 3.95 3.88 231 -6.02 -5.51 0.51 digitoxin 71-63-6 3.05 2.83 256 -5.28 -4.86 0.42 digoxin 20830-75-5 2.27 1.26 260 -4.16 -4.12 0.04 dihydroequilenin 3.53 -4.64 dihydroequilin 3.30 -4.4 diiodomethane 75-11-6 2.31 2.30 5 -2.34 -1.81 0.53 diisobutylphthalate 84-69-5 4.39 4.11 -58 -4.66 -3.89 0.77 diisopropyl ether 108-20-3 1.49 1.52 -87 -1.10 -0.99 0.11 diisopropyl sulfide 625-80-9 2.52 2.84 -78 -2.24 -2.02 0.22 diisopropylketone 565-80-0 1.91 1.86 -80 -1.30 -1.41 -0.11 dimetan 122-15-6 1.83 46 -0.85 -1.54 -0.69 dimethirimol 5221-53-4 2.05 1.9 102 -2.24 -2.32 -0.08 dimethoate 60-51-5 0.75 0.78 52 -0.74 -0.52 0.22 dimethoxymethane 109-87-5 -0.43 0.18 -105 0.48 0.93 0.45 dimethyl carbate 5826-73-3 1.10 38 -1.20 -0.73 0.47 dimethyl disulfide 624-92-0 1.74 1.77 -85 -1.44 -1.24 0.20 dimethyl phthalate 131-11-3 1.56 1.56 2 -1.66 -1.06 0.60 dimethylsulfide 75-18-3 0.84 1.05 -98 -0.45 -0.34 0.11 dimethylterephthalate 120-61-6 2.08 2.25 141 -4.01 -2.74 1.27 dimorpholamine 119-48-2 3.96 0.1 dinitramine 29091-05-2 4.02 98 -5.47 -4.25 1.22 dinoseb 88-85-7 3.54 3.56 56 -3.38 -3.35 0.03 d-inositol 643-12-9 -0.12 224 0.35 -1.37 -1.72 diosgenin 512-04-9 5.91 195 -7.32 -7.11 0.21 dioxacarb 6988-21-2 0.28 114 -1.57 -0.67 0.90 diphenamid 957-51-7 2.31 135 -2.98 -2.91 0.07 diphenic acid 482-05-3 1.80 2.07 227 -2.28 -3.32 -1.04 diphenyl ether 101-84-8 4.24 4.21 27 -3.91 -3.76 0.15 diphenylacetic acid 117-34-0 2.76 3.09 147 -3.22 -3.48 -0.26 diphenylamine 122-39-4 3.62 3.50 52 -3.50 -3.39 0.11

Page 146: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

144

diphenylmethane 101-81-5 4.21 4.14 26 -4.08 -3.72 0.36 diphenylnitrosamine 86-30-6 3.16 3.13 67 -3.75 -3.08 0.67 diphenylolpropane 80-05-7 3.67 3.32 150 -2.82 -4.42 -1.60 dipropyl ether 111-43-3 1.93 2.03 -123 -1.62 -1.43 0.19 dipropyl sulfide 111-47-7 2.96 -103 -2.58 -2.46 0.12 dipropylamine 142-84-7 1.60 1.67 <25 -0.46 -1.10 -0.64 disopyramide 3737-09-5 2.58 2.71 -1.7 disulfiram 97-77-8 3.88 3.88 70 -4.86 -3.83 1.03 disulfoton 298-04-4 4.17 4.02 108 -4.23 -4.50 -0.27 ditalimfos 5131-24-8 3.48 3.47 82 -3.35 -3.55 -0.20 ditolyl ether 28299-41-4 5.24 <25 -4.85 -4.74 0.11 diuron 330-54-1 2.68 2.68 159 -3.76 -3.52 0.24 dl-1,2-diphenylethanol 614-29-9 2.98 67 -2.52 -2.90 -0.38 dl-2-(2-chlorophenoxy)propionic 76466-16-5 2.50 114 -2.22 -2.89 -0.67 acid dl-coniine 458-88-8 2.51 -18 -1.5 -2.01 -0.51 d-limonene 5989-27-5 4.35 -74 -4.00 -3.85 0.15 dl-tartaric acid 133-37-9 -2.78 205 0.767 1.48 0.71 dl-tropic acid 552-63-6 0.43 0.77 119 -0.93 -0.87 0.06 d-mandelic acid 611-71-2 0.50 0.62 131 0.0414 -1.06 -1.10 d-mannitol 69-65-8 -2.05 -2.65 168 0.07 1.12 1.05 dnoc 534-52-1 2.29 2.13 85.8 -1.46 -2.40 -0.94 dodecane 112-40-3 7.04 6.10 -10 -7.67 -6.54 1.13 dodecanol 112-53-8 5.06 5.13 24 -4.67 -4.56 0.11 doxepin 1668-19-5 4.09 120 -3.4 -4.54 -1.14 doxycycline 564-25-0 -0.51 201 -2.87 -0.75 2.12 d-querticol 488-73-3 -1.05 234 -0.17 -0.54 -0.37 d-tartaric acid 147-71-7 -2.78 173 0.837 1.80 0.96 dulcin 150-69-6 1.48 173 -2.17 -2.46 -0.29 dyphylline 479-18-5 -1.30 161.5 -0.17 0.44 0.61 ecgonine 481-37-8 -2.71 <25 -0.02 3.21 3.23 endosulfan 115-29-7 3.95 3.83 106 -6.15 -4.26 1.89 endothall 145-73-3 -0.34 144 -0.27 -0.35 -0.08 endrin 72-20-8 3.70 4.55 200 -6.18 -4.95 1.23 ephedrine 299-42-3 0.89 0.93 38 -0.47 -0.52 -0.05 epiandrosterone 481-29-8 3.55 3.69 162 -4.16 -4.42 -0.26 epichlorohydrin 106-89-8 0.46 0.45 -57 -0.15 0.04 0.19 epinephrine 51-43-4 0.89 0.93 -2.74 epitiostanol 2363-58-8 4.45 127 -5.41 -4.97 0.44 equilenin 517-09-9 3.27 258 -5.24 -5.10 0.14 equilin 474-86-2 2.90 238 -5.28 -4.53 0.75 eriodictyol 552-58-9 1.84 2.02 257 -3.62 -3.66 -0.04 erythritol 149-32-6 -1.71 -2.29 122 0.70 1.24 0.54 estradiol 57-91-0 3.78 3.86 220 -5.03 -5.23 -0.20 estragole 140-67-0 3.13 <25 -2.92 -2.63 0.29 estriol 50-27-1 3.20 2.45 -4.96 estrone 53-16-7 3.38 3.13 255 -5.53 -5.18 0.35 ethambutol 74-55-5 0.12 88 -0.57 -0.25 0.32 ethane 74-84-0 1.75 1.81 -183 -2.73 -1.25 1.48

Page 147: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

145

ethanethiol 75-08-1 1.17 -148 -0.60 -0.67 -0.07 ethanol 64-17-5 -0.24 -0.31 -114 1.10 0.74 -0.36 ethinyl-estradiol 57-63-6 3.86 3.67 142 -4.30 -4.53 -0.23 ethiofencarb 29973-13-5 2.20 2.04 <25 -2.09 -1.70 0.39 ethion 563-12-2 5.57 5.07 -25 -5.54 -5.07 0.47 ethirimol 23947-60-6 2.41 2.20 158 -3.02 -3.24 -0.22 ethisterone 434-03-7 3.30 269 -5.66 -5.24 0.42 ethofumesate 26225-79-6 2.32 2.70 70 -3.42 -2.27 1.15 ethoxyzolamide 452-35-7 2.02 2.01 189 -3.81 -3.16 0.65 ethyl acrylate 140-88-5 1.33 1.32 -72 -0.74 -0.83 -0.09 ethyl caprinate 110-38-3 4.94 <25 -4.10 -4.44 -0.34 ethyl cinnamate 103-36-6 3.14 2.99 7 -3.00 -2.64 0.36 ethyl dipropylthiocarbamate 759-94-4 3.21 3.21 <25 -2.70 -2.71 -0.01

ethyl formate 109-94-4 0.26 -113 0.15 0.24 0.09 ethyl heptanoate 106-30-9 3.36 -87 -2.74 -2.86 -0.12 ethyl pelargonate 123-29-5 4.41 -36 -3.80 -3.91 -0.11 ethyl propionate 105-37-3 1.24 1.21 -99 -0.66 -0.74 -0.08 ethyl propyl ether 628-32-0 1.40 -127 -0.66 -0.90 -0.24 ethyl valerate 539-82-2 2.30 -91 -1.75 -1.80 -0.05 ethyl vinyl ether 109-92-2 1.01 1.04 -116 -0.85 -0.51 0.34 ethyl-4-aminobenzoate 94-09-7 1.92 1.86 -2.62 (benzocaine) ethylacetate 141-78-6 0.71 0.73 -84 -0.02 -0.21 -0.19 ethylamine 75-04-7 -0.13 -0.13 -81 2.06 0.63 -1.43 ethylbenzene 100-41-4 3.17 3.15 -95 -2.77 -2.67 0.10 ethylbenzoate 93-89-0 2.64 2.64 -31 -2.32 -2.14 0.18 ethyl-biscoumacetate 548-00-5 3.21 177 -3.66 -4.23 -0.57 ethylbutyrate 105-54-4 1.77 1.71 -135 -1.28 -1.27 0.01 ethyl-caproate 123-66-0 2.83 -68 -2.31 -2.33 -0.02 ethyl-caprylate 106-32-1 3.88 -47 -3.39 -3.38 0.01 ethylcyclohexane 1678-91-7 4.40 -111 -4.25 -3.90 0.35 ethylene 74-85-1 1.27 1.13 -169 -0.40 -0.77 -0.37 ethylene glycol 107-21-1 -1.37 -1.36 -13 1.06 1.87 0.81 ethyl-isopropyl-ether 625-54-7 1.18 <25 -0.55 -0.68 -0.13 ethyl-p-hydroxybenzoate 120-47-8 2.51 2.47 117 -2.35 -2.93 -0.58 ethyne 74-86-2 0.39 0.37 -81 0.29 0.11 -0.18 etofenprox 80844-07-1 7.36 7.05 37 -8.60 -6.98 1.62 etomidate 33125-97-2 2.66 3.05 -6.74 etryptamine 2235-90-7 2.26 97 -2.57 -2.48 0.09 eucalyptol 470-82-6 2.76 2.50 36 -2.49 -2.37 0.12 eugenol 97-53-0 2.40 15 -1.56 -1.90 -0.34 fenarimol 60168-88-9 2.86 3.6 117 -4.38 -3.28 1.10 fenbuconazole 114369-43-6 4.01 3.23 -6.23 fenbufen 36330-85-5 3.14 3.20 186 -5.06 -4.25 0.81 fenchlorphos 299-84-3 4.96 5.07 -4.1 fenclofenac 34645-84-6 4.71 4.80 136 -3.85 -5.32 -1.47 fenfuram 24691-80-3 1.93 110 -3.30 -2.28 1.02 fenitrothion 122-14-5 3.21 3.3 3.4 -4.04 -2.71 1.33 fenoxycarb 72490-01-8 4.46 4.30 54 -4.70 -4.25 0.46

Page 148: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

146

fenpiclonil 74738-17-3 3.66 3.86 -5.07 fensulfothion 115-90-2 2.24 2.23 <25 -2.30 -1.74 0.56 fentanyl 437-38-7 3.62 3.89 83 -1.13 -3.70 -2.57 fenthion 55-38-9 3.84 4.09 8 -4.57 -3.34 1.23 fenuron 101-42-8 0.98 0.98 133 -1.6 -1.56 0.04 fluconazole 86386-73-4 0.47 0.47 139 -1.80 -1.11 0.69 flucytosine 2022-85-7 -1.65 -0.96 fludioxonil 131341-86-1 4.15 4.12 -5.21 fludrocortisone 127-31-1 1.54 1.67 -3.43 flufenamic acid 530-78-9 4.88 5.25 134 -4.36 -5.47 -1.11 fluometuron 2164-17-2 2.39 2.42 163 -3.43 -3.27 0.16 fluoranthene 206-44-0 4.95 5.16 110 -5.89 -5.30 0.59 fluorene 86-73-7 4.07 4.18 116 -4.91 -4.48 0.43 fluorodifen 15457-05-3 4.74 3.65 90 -5.22 -4.89 0.33 fluoromethalone 426-13-1 2.07 2.00 296 -4.10 -4.28 -0.18 fluotrimazole 31251-03-3 5.15 164 -8.4 -6.04 2.36 fluphenazine 69-23-8 4.63 4.36 165 -4.15 -5.53 -1.38 flurbiprofen 5104-49-4 3.75 4.16 -3.74 fluridone 59756-60-4 2.80 2.93 213 -4.44 -4.18 0.26 flurobenzene 462-06-6 2.28 2.27 -42 -1.80 -1.78 0.02 flutriafol 76674-21-0 2.32 2.3 130 -3.37 -2.87 0.50 folic acid 59-30-3 -2.17 -5.44 formanilide 103-70-8 1.16 1.15 47 -0.68 -0.88 -0.20 formetanate 22259-30-9 0.56 -2.34 fructose 57-48-7 -2.06 129 0.64 1.52 0.88 furan 110-00-9 1.32 1.34 -86 -0.82 -0.82 0.00 furfural 98-01-1 0.67 0.41 -37 -0.10 -0.17 -0.07 furosemide 54-31-9 1.87 2.03 206 -3.66 -3.18 0.48 gallic acid 149-91-7 0.43 0.7 222 -1.16 -1.90 -0.74 gamma-butyrolatone 96-48-0 -0.39 -45 1.07 0.89 -0.18 gentisin(sp) 437-50-3 3.05 266 -2.93 -4.96 -2.03 gibberellic acid 77-06-5 -0.57 0.24 227 -1.84 -0.95 0.89 glafenine 3820-67-5 3.04 -4.57 glucose 50-99-7 -2.21 -2.41 146 0.74 1.50 0.76 glutamine 56-85-9 -3.37 -3.64 185 -0.55 2.27 2.82 glutaric acid 110-94-1 -0.13 -0.29 97.5 1 -0.10 -1.10 glutethimide 77-21-4 1.99 1.9 -2.34 glyburide 10238-21-8 4.23 170 -5.09 -5.18 -0.09 glybuthiazole 535-65-9 1.54 221 -3.74 -3.00 0.74 glycerol 56-81-5 -1.54 -1.96 18 1.12 2.04 0.92 glyceryl triacetate 102-76-1 0.67 0.25 3 -0.60 -0.17 0.43 glycine 56-40-6 -3.21 -3.21 233 0.493 1.63 1.14 glycocholic acid 475-31-0 1.71 166 -5.15 -2.62 2.53 griseofulvin 126-07-8 1.75 2.18 220 -4.60 -3.20 1.40 guaiacol 90-05-1 1.32 1.32 28 -1.96 -0.85 1.11 guaifenesin 93-14-1 0.10 -0.6 guanidinoacetic acid 352-97-6 -2.54 300 -1.51 0.29 1.80 guanine 73-40-5 -1.28 -0.96 -3.58 haloperidol 52-86-8 3.85 4.28 148 -4.43 -4.58 -0.15

Page 149: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

147

halothane 151-67-7 2.45 2.30 <25 -1.71 -1.95 -0.24 hematein 475-25-2 -0.18 250 -2.7 -1.57 1.13

heptabarbital 509-86-4 2.43 2.03 -3 heptachlor 76-44-8 4.92 6.10 95 -6.32 -5.12 1.20 heptachlor-epoxide 1024-57-3 3.87 4.98 160 -6.05 -4.72 1.33 heptanal 111-71-7 2.42 -43 -1.70 -1.92 -0.22 heptane 142-82-5 4.40 4.66 -91 -4.53 -3.90 0.63 heptobarbital (5-methyl-5- 76-94-8 0.84 0.91 -2.38 phenylbarbital) heptyl-4-aminobenzoate 14309-40-1 4.57 4.5 75 -4.6 -4.57 0.03 heptylamine 111-68-2 2.51 2.57 -23 -0.90 -2.01 -1.11 heroin 561-27-3 1.50 1.58 -2.8 hexabarital 56-29-1 1.63 1.49 145 -2.74 -2.33 0.41 hexachloro-1,3-butadiene 87-68-3 4.90 4.78 -21 -4.92 -4.40 0.52 hexachlorobenzene 118-74-1 6.06 5.73 227 -7.56 -7.58 -0.02 hexachlorocyclopentadiene 77-47-4 5.05 5.04 -10 -5.18 -4.55 0.63 hexachloroethane(sp) 67-72-1 4.61 4.14 187 -3.67 -5.73 -2.06 hexachlorophene 70-30-4 7.08 7.54 165 -3.71 -7.98 -4.27 hexadecane 544-76-3 9.16 18 -8.40 -8.66 -0.26 hexamethylbenzene 87-85-4 4.99 4.61 164 -5.23 -5.88 -0.65 hexanoic acid 142-62-1 1.92 1.92 -3 -1.06 -1.42 -0.36 hexes trol 5635-50-7 5.11 185 -4.43 -6.21 -1.78 hexethal ((5-ethyl-5- 77-30-5 2.77 2.47 -3.05 hexylbarbituric acid) hexyl acetate 142-92-7 2.83 2.96 -112 -2.46 -2.33 0.13 hexyl-4-aniinobenzoate 13476-55-6 4.04 3.95 62 -3.95 -3.91 0.04 hexylamine 111-26-2 1.98 2.06 -23 -0.25 -1.48 -1.23 hexylbenzene 1077-16-3 5.29 5.52 -61 -5.21 -4.79 0.42 hippuric acid 495-69-2 0.65 0.31 189 -1.68 -1.79 -0.11 histidine 71-00-1 -3.73 -3.56 282 -0.53 1.66 2.19 hydantoin 461-72-3 -1.69 -1.69 222 -0.4 0.22 0.62 hydrastine 118-08-1 2.08 132 -4.11 -2.65 1.46 hydrazobenzene 122-66-7 2.97 2.94 131 -2.92 -3.53 -0.61 hydrobenzoin 27134-24-3 1.77 1.91 120 -1.93 -2.22 -0.29 hydrochlorothiazide 58-93-5 -0.40 -0.07 -2.69 hydrocinnamic acid 501-52-0 1.90 1.84 49 -1.41 -1.64 -0.23 hydrocortisone 50-23-7 1.70 1.61 218 -3.08 -3.13 -0.05 hydrocortisone 21-acetate 50-03-3 2.23 2.19 223 -4.88 -3.71 1.17 hydrocortisone tebutate 508-96-3 3.69 230 -5.51 -5.24 0.27 hydroflumethiazide 135-09-1 -0.25 0.36 -3.04 hydroxyisoandrosterone 514-17-0 2.63 193 -3.59 -3.81 -0.22 hydroxyprogesterone-17a 68-96-2 3.15 3.17 276 -3.82 -5.16 -1.34 hydroxyurea 127-07-1 -1.80 -1.80 145 1.12 1.10 -0.02 hyocholic acid 547-75-1 2.43 261 -4.35 -4.29 0.06 hyodeoxycholic acid 83-49-8 4.51 198 -3.82 -5.74 -1.92 hyoscyamine 101-31-5 1.62 1.83 116 -1.91 -2.03 -0.12 hypoxanthine 68-94-0 -1.20 -1.11 150 -2.29 0.45 2.74 ibuprofen 15687-27-1 3.68 3.5 76 -3.76 -3.69 0.07 ibuproxam 53648-05-8 2.61 123 -3.04 -3.09 -0.05

Page 150: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

148

idobutal (5-butyl-5- 3146-66-5 1.76 -2.17 allylbarbiturate) imipramine 50-49-7 5.04 4.44 174 -4.19 -6.03 -1.84 indane 496-11-7 3.15 3.18 -51 -3.03 -2.65 0.38 indapamide 26807-65-8 2.94 -3.79 indazole 271-44-3 1.63 1.77 147 -2.16 -2.35 -0.19 indole 120-72-9 2.13 2.14 52 -1.52 -1.90 -0.38 indole-3-acetic acid 87-51-4 1.40 1.41 168 -2.07 -2.33 -0.26 indoline 496-15-1 1.78 <25 -1.04 -1.28 -0.24 indomethacine 53-86-1 4.18 4.27 159 -4.62 -5.02 -0.40 indoprofen 31842-01-0 2.74 2.77 -4.82 inosine 58-63-9 -3.16 -2.1 212 -1.23 1.79 3.02 iodamide 440-58-4 0.69 -2.32 iodobenzene 591-50-4 3.27 3.25 -29 -2.78 -2.77 0.01 iodoethane 75-03-6 2.00 2.00 -108 -1.60 -1.50 0.10 iodofenphos 18181-70-9 5.49 5.51 72 -5.31 -5.46 -0.15 iodomethane 74-88-4 1.47 1.51 -67 -1.00 -0.97 0.03 iopanoic acid 96-83-3 4.89 -4.58 ioxynil 1689-83-4 3.26 3.43 200 -3.61 -4.51 -0.90 iprodione 36734-19-7 3.12 3.1 -4.41 isoamyl salicylate 87-20-7 4.32 <25 -3.16 -3.82 -0.66 isobutanol 78-83-1 0.69 0.76 -108 0.03 -0.19 -0.22 isobutyl acetate 110-19-0 1.64 1.76 -99 -1.21 -1.14 0.07 isobutylacetate 106-63-8 2.25 2.22 <25 -1.21 -1.75 -0.54 isobutylbenzene 538-93-2 4.63 -51 -4.12 -4.13 -0.01 isobutylformate 542-55-2 1.19 -95 -1.01 -0.69 0.32 isobutyltoluene 28517-37-5 4.55 <25 -4.12 -4.05 0.07 isobutyric acid 79-31-2 0.86 -46 0.28 -0.36 -0.64 isocarbamid 30979-48-7 1.03 -2.15 isocarboxazid 59-63-2 0.97 1.49 -2.46 isocinchomeronicacid 100-26-5 1.29 156 -2.14 -2.10 0.04 isoguanine 492-32-0 0.35 -3.4 isoniazid 54-85-3 -0.67 -0.7 171.4 0.01 -0.29 -0.30 isopentanol 123-51-3 1.22 1.16 -117 -0.52 -0.72 -0.20 isopentyl formate 110-45-2 1.72 -93 -1.52 -1.22 0.30 isophorone 78-59-1 2.09 -8 -1.06 -1.59 -0.53 isoprocarb 2631-40-5 2.29 2.31 93 -2.86 -2.47 0.39 isopropyl formate 625-55-8 0.57 -108 -0.63 -0.07 0.56 isopropyl tert-butyl ether 17348-59-3 1.89 1.52 -88 -2.37 -1.39 0.98 isopropylacetate 108-21-4 1.24 1.22 -73 -0.60 -0.74 -0.14 isopropylbenzene 98-82-8 3.57 3.66 -96 -3.27 -3.07 0.20 isoproturon 34123-59-6 2.40 2.50 158 -3.54 -3.23 0.31 isoquinoline 119-65-3 1.82 2.08 26 -1.45 -1.33 0.12 karbutilate 4849-32-5 1.47 1.66 169 -2.93 -2.41 0.52 kebuzone 853-34-9 0.90 128 -3.27 -1.43 1.84 ketoprofen 22071-15-4 2.76 3.12 94 -3.25 -2.95 0.30 khellin 82-02-0 2.57 154 -2.40 -3.36 -0.96 1-arabinose 87-72-9 -2.18 -2.32 162 0.39 1.32 0.93 1-asparagine 70-47-3 -1.42 -1.9 290 -0.74 -0.73 0.01

Page 151: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

149

1-carvone 6485-40-1 2.01 <25 -2.06 -1.51 0.55 l-dihydrocarvone 619-02-3 2.35 -2.18 l-dopa 63-84-3 -2.82 -2.74 -1.82 lenacil 2164-08-1 2.83 2.31 290 -4.59 -4.98 -0.39 leptophos 21609-90-5 6.39 6.31 60 -5.66 -6.24 -0.58 levodopa 59-92-7 -2.82 -2.74 295 -1.6 0.62 2.22 lidocaine 137-58-6 1.95 2.26 -1.77 limonene 138-86-3 4.35 4.35 -95 -4.00 -3.85 0.15 linalool 78-70-6 2.75 <25 -1.99 -2.25 -0.26 lindane 58-89-9 3.75 3.72 113 -4.6 -4.13 0.47 linuron 330-55-2 3.00 3.2 -3.52 liothyronine 6893-02-3 2.63 -5.22 1-mandelic acid 17199-29-0 0.50 0.62 131 -0.185 -1.06 -0.88 1-menthone 14073-97-3 2.83 -6 -2.49 -2.33 0.16 lomefloxacin 98079-51-7 -0.32 -0.8 -2.53 lorazepain 846-49-1 2.36 2.39 167 -3.6 -3.28 0.32 lovastatin 75330-75-5 4.30 4.26 174 -6 -5.29 0.71 1-tryptophan 73-22-3 -1.57 -1.06 282 -1.23 -0.50 0.73 l-tyrosine 60-18-4 -2.22 -2.26 342 -2.57 -0.45 2.12 lutidinic acid 499-80-9 1.29 247 -1.83 -3.01 -1.18 malathion 121-75-5 2.70 2.38 <25 -3.36 -2.20 1.16 malonic acid 141-82-2 -0.71 -0.81 135 0.762 0.11 -0.65 malonic acid diethyl ester 105-53-3 1.13 0.96 -50 -0.82 -0.63 0.19 m-aminoacetophenone 99-03-6 0.86 97 -1.28 -1.08 0.20 mannitol 87-78-5 -2.05 -2.65 167 0.06 1.13 1.07 m-bromotoluene 591-17-3 3.50 3.41 -40 -3.52 -3.00 0.52 m-chloroaniline 108-42-9 1.96 1.88 -10.3 -1.37 -1.46 -0.09 m-chlorobenzoic acid 535-80-8 2.70 2.68 158 -2.59 -3.53 -0.94 m-chlorobromobenzene 108-37-2 3.72 3.70 -21 -3.21 -3.22 -0.01 m-chloroiodobenzene 625-99-0 3.98 55 -3.55 -3.78 -0.23 m-chloronitrobenzene 121-73-3 2.60 2.47 43 -2.77 -2.28 0.49 m-chlorotoluene 108-41-8 3.35 3.28 -48 -3.52 -2.85 0.67 mebandazole 31431-39-7 3.06 2.83 289 -3.88 -5.20 -1.32 meconin 569-31-3 0.72 102 -1.89 -0.99 0.90 mecoprop 93-65-2 3.13 3.23 93 -2.55 -3.31 -0.76 medinoterb acetate 2487-01-6 3.25 86 -4.47 -3.36 1.11 medrogestone 977-79-7 4.19 138 -5.27 -4.82 0.45 mefenamic acid 61-68-7 4.94 5.12 -3.77 mefluidide 53780-34-0 1.87 2.02 184 -3.24 -2.96 0.28 megestrol acetate 595-33-5 3.58 214 -5.35 -4.97 0.38 melphalan 148-82-3 -0.21 -3.49 menadione 58-27-5 2.45 2.20 105 -3.03 -2.75 0.28 menthol 89-78-1 3.23 3.23 42 -2.54 -2.90 -0.36 menthone 10458-14-7 2.83 -6 -2.35 -2.33 0.02 meperidine 57-42-1 2.23 2.45 30 -1.89 -1.78 0.11 meprobamate 57-53-4 0.91 0.7 -1.81 metalaxyl 57837-19-1 2.71 1.65 72 -1.6 -2.68 -1.08 methacrylic acid 79-41-4 0.66 0.93 <25 0.00 -0.16 -0.16 methanol 67-56-1 -0.76 -0.77 -98 1.56 1.26 -0.30

Page 152: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

150

methapyrilene 91-80-5 2.95 <25 -2.64 -2.45 0.19 methaqualone 72-44-6 2.93 2.5 -2.92 metharbital 50-11-3 1.14 1.15 154 -2.23 -1.93 0.30 methazolamide 554-57-4 0.09 0.13 213 -1.83 -1.47 0.36 methazole 20354-26-1 2.59 123 -2.82 -3.07 -0.25 methionine 63-68-3 -1.73 -1.87 280 -0.42 -0.32 0.10 methocarbamol 532-03-6 0.15 -0.99 methoprene 40596-69-8 5.54 5.50 164 -5.34 -6.43 -1.09 methotrimeprazine 60-99-1 5.33 4.68 117 -4.22 -5.75 -1.53 methoxsalen 298-81-7 2.30 1.93 143 -3.66 -2.98 0.68 methoxychlor 72-43-5 5.17 5.08 78 -6.54 -5.20 1.34 methoxychlor 72-43-5 5.17 5.08 89 -6.89 -5.31 1.58 methyclothiazide 135-07-9 0.90 -3.78 methyl acetate 79-20-9 0.18 0.18 -98 0.46 0.32 -0.14 methyl acrylate 96-33-3 0.80 0.80 -77 -0.22 -0.30 -0.08 methyl benzoate 93-58-3 2.11 2.12 <25 -1.85 -1.61 0.24 methyl butyl ether 628-28-4 1.40 1.66 -116 -0.99 -0.90 0.09 methyl butylketone 591-78-6 1.38 1.38 -57 -0.80 -0.88 -0.08 methyl butyrate 623-42-7 1.24 1.29 -95 -0.82 -0.74 0.08 methyl caprate 110-42-9 4.41 4.41 -13 -4.63 -3.91 0.72 methyl caprylate 111-11-5 3.36 -37 -2.88 -2.86 0.02 methyl chloride 74-87-3 1.25 1.25 -97 -0.88 -0.75 0.13 methyl ethyl ketone 78-93-3 0.32 0.29 -86 0.52 0.18 -0.34 methyl formate 107-31-3 -0.26 0.03 -100 0.58 0.76 0.18 methyl gallate 99-24-1 0.93 200 -1.24 -2.18 -0.94 methyl hydrazine 60-34-4 -1.06 -1.05 -20.09 1.34 1.56 0.22 methyl isopropyl ether 598-53-8 0.65 <25 -0.06 -0.15 -0.09 methyl isothiocyanate 556-61-6 1.17 0.94 30 -1.00 -0.72 0.28 methyl laurate 111-82-0 4.94 41 -4.69 -4.60 0.09 methyl methacrylate 80-62-6 1.11 1.38 -48 -0.80 -0.61 0.19 methyl nicotinate 93-60-7 0.77 0.83 43 -0.46 -0.45 0.02 methyl nonanoate 1731-84-6 3.88 3.87 -34 -3.38 -3.38 0.00 methyl propionate 554-12-1 0.71 0.82 -88 -0.14 -0.21 -0.07 methyl propyl ether 557-17-5 0.87 1.21 <25 -0.39 -0.37 0.02 methyl salicylate 119-36-8 2.33 2.34 20 -2.34 -1.83 0.51 methyl valerate 624-24-8 1.77 1.96 -91 -1.36 -1.27 0.09 methyl-2-chloro-9- 2536-31-4 2.67 194 -4.18 -3.86 0.32 hydroxyfluorene-9-carboxylate methyl-4-aminobenzoate 619-45-4 1.39 1.35 110 -1.59 -1.74 -0.15 methyl-4-methoxybenzoate 121-98-2 2.28 2.27 50 -2.41 -2.03 0.38 methyl-capronate 106-70-7 2.30 2.42 -71 -2.00 -1.80 0.20 methylcyclohexane 108-87-2 3.87 3.61 -126 -3.81 -3.37 0.44 methylcyclopentane 96-37-7 3.31 3.37 -142 -3.30 -2.81 0.49 methyldymron 42609-73-4 3.24 3.01 60 -3.35 -3.09 0.26 methylparaben 99-76-3 1.98 1.96 128 -1.83 -2.51 -0.68 methyl-/>-hydroxybenzoate 99-76-3 1.98 1.96 -1.71 methyl-t-butyl ether 1634-04-4 1.05 0.94 -109 -0.24 -0.55 -0.31 methyltestosterone 58-18-4 3.74 3.36 -3.99 methylthiouracil 56-04-2 -1.39 330 -2.43 -1.16 1.27

Page 153: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

151

methyprylon 125-64-4 1.78 0.78 -0.38 metiazinic acid 13993-65-2 3.90 146 -3.94 -4.61 -0.67 metoclopramide 364-62-5 2.21 2.62 146 -3.18 -2.92 0.26 metolachlor 51218-45-2 3.25 3.13 <25 -2.73 -2.75 -0.02 metolazone 17560-51-9 2.42 252 -3.78 -4.19 -0.41 metolcarb 1129-41-5 1.71 1.70 75 -1.80 -1.71 0.09 metoxuron 19937-59-8 1.78 1.64 125 -2.56 -2.28 0.28 metronidazole 443-48-1 -0.46 -0.02 160 -1.22 -0.39 0.83 m-flourobenzoic acid 455-38-9 2.13 2.15 123 -1.97 -2.61 -0.64 m-fluorobromobenzene 1073-06-9 3.15 <25 -2.67 -2.65 0.02 mininoxidil 38304-91-5 0.48 1.24 260 -1.98 -2.33 -0.35 minocycline 10118-90-8 0.19 -0.94 m-iodobenzoic acid 618-51-9 3.11 3.13 187 -3.27 -4.23 -0.96 mitomycin c 50-07-7 -2.55 -0.4 -2.56 m-methylaniline 108-44-1 1.36 1.32 -30 -0.85 -0.86 -0.01 m-nitroaniline 99-09-2 1.38 1.37 114 -2.19 -1.77 0.42 m-nitrobenzoic acid 121-92-6 1.84 1.83 142 -1.68 -2.51 -0.83 m-nitrophenol 554-84-7 1.85 2.00 97 -1.01 -2.07 -1.06 m-nitrotoluene 99-08-1 2.38 2.42 <25 -2.44 -1.88 0.56 monolinuron 1746-81-2 2.31 2.30 80 -2.57 -2.36 0.21 monuron 150-68-5 1.99 1.94 171 -2.92 -2.95 -0.03 morin 480-16-0 1.54 1.73 299 -3.08 -3.78 -0.70 morphine 57-27-2 0.59 0.76 254 -3.28 -2.38 0.90 morpholine 110-91-8 -0.41 -0.86 <25 1.97 0.91 -1.06 m-toluic acid 99-04-7 2.38 2.37 112 -2.14 -2.75 -0.61 m-xylene 108-38-3 3.14 3.20 -48 -2.82 -2.64 0.18 n, n'-diethylthiourea 105-55-5 0.79 0.57 76 -1.46 -0.80 0.66 n,n-diethylaniline 91-66-7 3.23 3.31 -38.8 -3.03 -2.73 0.30 n,n-dimethylacetamide 127-19-5 -0.80 -0.77 <25 1.11 1.30 0.19 n,n-dimethylaniline 121-69-7 2.34 2.31 2.45 -1.92 -1.84 0.08 n-[4-(aminosulfonyl)phenyl]- 121-61-9 -0.35 -0.21 218 -1.61 -1.08 0.53 acetamide nadolol 42200-33-9 0.38 0.71 130 -1.01 -0.93 0.08 naepaine 2188-67-2 3.00 66 -3.27 -2.91 0.36 nalidixic acid 389-08-2 1.32 1.59 227 -3.37 -2.84 0.53 nalidixic acid 389-08-2 1.32 1.59 -3.37 n-amyl-carbamate 638-42-6 1.41 1.35 94 -1.47 -1.60 -0.13 naphthacene 92-24-0 5.66 5.90 341 -8.19 -8.32 -0.13 naphthalene 91-20-3 3.32 3.30 80 -3.58 -3.37 0.21 naphthalene-1,5-did 83-56-7 1.98 1.82 260 -2.92 -3.83 -0.91 napropamide 15299-99-7 3.79 3.36 75 -3.57 -3.79 -0.22 naproxen 22204-53-1 2.82 3.34 153 -4.2 -3.60 0.60 natamycin 7681-93-8 -4.55 200 -3.21 3.30 6.51 n-benzoylbenzamide 614-28-8 3.17 -2.27 neburon 555-37-3 4.02 4.10 102 -4.76 -4.29 0.47 n-ethylaniline 103-69-5 2.17 2.16 -64 -1.70 -1.67 0.03 nevirapine 129618-40-2 2.35 1.81 248 -3.19 -4.08 -0.89 n-heptyl carbamate 4248-20-8 2.47 2.36 66 -2.62 -2.38 0.24 n-hexane 110-54-3 3.87 3.90 -95 -3.84 -3.37 0.47

Page 154: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

152

n-hexyl carbamate 2114-20-7 1.94 1.85 62 -1.92 -1.81 0.11 niclosamide 50-65-7 4.31 223 -4.7 -5.79 -1.09 nicotinamide 98-92-0 -0.21 -0.37 132 0.61 -0.36 -0.97 nicotine 54-11-5 0.90 1.17 -7.9 0.79 -0.40 -1.19 nicotinic acid 59-67-6 0.80 -0.85 nifedipine 21829-25-4 3.41 2.86 173 -4.76 -4.39 0.37 niflumic acid 4394-00-7 3.79 4.43 198 -4.17 -5.02 -0.85 nifuroxime 6236-05-1 1.10 0.3 158 -2.19 -1.93 0.26 nimetazepam 2011-67-8 2.34 2.16 156 -3.8 -3.15 0.65 niridazole 61-57-4 0.77 0.95 260 -3.22 -2.62 0.60 nitrapyrin 1929-82-4 3.42 3.41 63 -3.76 -3.30 0.46 nitrazipam 146-22-5 2.31 2.13 224 -3.8 -3.80 0.00 nitrobenzene 98-95-3 1.88 1.85 5 -1.80 -1.38 0.42 nitroethane 79-24-3 0.25 0.18 <25 -0.22 0.25 0.47 nitrofen 1836-75-5 5.60 4.64 70.5 -5.46 -5.56 -0.09 nitrofurantoin 67-20-9 -0.47 -0.47 272 -3.38 -1.50 1.88 nitrofurantoin 67-20-9 -0.47 -0.47 -3.48 nitroguanidine 556-88-7 -1.68 239 -1.37 0.04 1.41 nitromethane 75-52-5 -0.28 -0.35 <25 0.26 0.78 0.52 n-methyl-2-pyridone 694-85-9 -0.09 -0.23 31 0.96 0.53 -0.43 n-methylacetanilide 579-10-2 1.11 1.12 102 -0.95 -1.38 -0.43 n-methylaniline 100-61-8 1.64 1.66 <25 -1.28 -1.14 0.14 n-methylanthranilic acid 119-68-6 2.36 172 -2.88 -3.33 -0.45 n-methylpiperidine 626-67-5 1.40 1.3 -18 0.23 -0.90 -1.13 n-methylpyrrolidone 872-50-4 -0.40 -0.54 -24 1.00 0.90 -0.10 n-methylurea 598-50-5 -1.30 -1.40 130 1.13 0.75 -0.38 n-nitrosopiperidine 100-75-4 0.45 0.36 <25 -0.17 0.05 0.22 nonanal 124-19-6 3.48 63 -3.17 -3.36 -0.19 nonane 111-84-2 5.65 5.45 -53 -5.88 -5.15 0.73 norethindrone 68-22-4 2.78 2.97 203 -4.63 -4.06 0.57 norethisterone 1236-00-6 1.39 -4.63 norethisterone-acetate 51-98-9 3.74 161 -4.79 -4.60 0.19 norfloxacin 70458-96-7 -0.99 -1.03 228 -3.06 -0.54 2.52 norflurazon 27314-13-2 2.89 2.45 177 -4.04 -3.91 0.13 norleucine 616-06-8 -1.54 -1.54 327 -1.06 -0.98 0.08 noscapine 128-62-1 2.06 175 -3.14 -3.06 0.08 n-phenyldiethanolamine 120-07-0 0.83 57 -0.73 -0.65 0.08 o,p'-ddt 789-02-6 6.76 74 -6.62 -6.75 -0.13 o,p'- 53-19-0 6.06 76 -6.51 -6.07 0.44 dichlorodiphenyldichloroethane (o,p'-ddd) o-aminobenzoic acid 118-92-3 1.21 1.21 145 -1.52 -1.91 -0.39 o-aminophenol 95-55-6 0.62 0.62 175 -0.72 -1.62 -0.90 o-benzyl carbamate 621-84-1 1.20 1.2 88 -0.35 -1.33 -0.98 o-butyl carbamate 592-35-8 0.88 0.85 54 -0.66 -0.67 -0.01 o-chloroaniline 95-51-2 1.96 1.90 -1.94 -1.52 -1.46 0.06 o-chlorobenzoic acid 118-91-2 2.10 2.05 142 -1.89 -2.77 -0.88 o-chlorobiphenyl 2051-60-7 4.49 4.30 34 -4.54 -4.08 0.46 o-chloroiodobenzene 615-41-8 3.98 1 -3.54 -3.48 0.06

Page 155: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

153

o-chloronitrobenzene 88-73-3 2.40 2.52 34 -2.55 -1.99 0.56 o-chlorotoluene 95-49-8 3.35 3.42 -35 -3.52 -2.85 0.67 octachlorodibenzofuran 39001-02-0 9.31 258 -11.59 -11.14 0.45 octachlorodibenzo-p-dioxin 3268-87-9 9.42 9.22 322 -12.79 -11.89 0.90 octafluorocyclobutane 115-25-3 1.74 -41 -3.92 -1.24 2.68 octane 111-65-9 4.93 5.18 -56 -5.24 -4.43 0.81 octyl-4-aminobenzoate 14309-41-2 4.33 4.31 194 -5.4 -5.52 -0.12 octylamine 111-86-4 3.04 3.09 1 -1.46 -2.54 -1.08 o-ethylphenol 90-00-6 2.50 2.47 -18 -1.36 -2.00 -0.64 o-fluorobenzoic acid 445-29-4 1.77 1.77 124 -1.29 -2.26 -0.97 o-hydroxybenzamide 65-45-2 1.28 1.28 140 -1.82 -1.93 -0.11 o-iodobenzoic acid 88-67-5 2.40 2.4 162 -2.73 -3.27 -0.54 o-isobutyl carbamate 2114-15-0 0.75 0.65 63 -0.30 -0.63 -0.33 o-methyl carbamate 598-55-0 -0.70 -0.66 57 0.97 0.88 -0.09 o-nitroaniline 88-74-4 1.92 1.85 71.5 -1.96 -1.89 0.08 o-nitroanisole 91-23-6 1.82 1.73 <25 -1.96 -1.32 0.64 o-nitrobenzoicacid 552-16-9 1.47 1.27 148 -1.35 -2.20 -0.85 o-nitrophenol 88-75-5 1.85 1.79 44 -1.74 -1.54 0.20 o-nitrotoluene 88-72-2 2.30 2.30 <25 -2.33 -1.80 0.53 o-octyl carbamate 2029-64-3 3.00 2.84 67 -3.30 -2.92 0.38 o-phenanthroline 66-71-7 2.05 1.78 115 -1.82 -2.45 -0.63 o-phthalic acid 88-99-3 0.73 0.73 230 -2.11 -2.28 -0.17 orotic acid 65-86-1 -0.75 345 -1.93 -1.95 -0.02 oryzalin 19044-88-3 2.92 141 -3.61 -3.58 0.03 osthole 484-12-8 4.27 83 -4.31 -4.35 -0.04 o-t-butyl carbamate 4248-19-5 0.53 0.47 110 0.1 -0.88 -0.98 o-toluic acid 118-90-1 2.38 2.40 105 -2.06 -2.68 -0.62 o-toluidine 95-53-4 1.36 1.32 -14.7 -2.21 -0.86 1.35 oxadiazon 19666-30-9 4.80 4.80 89 -5.69 -4.94 0.75 oxalic acid 144-62-7 -3.03 189 0.38 1.89 1.51 oxamniquine 21738-42-1 1.81 2.24 -2.97 oxazepam 604-75-1 2.29 2.24 205 -3.95 -3.59 0.36 oxycarboxin 5259-88-1 0.65 0.74 120 -2.43 -1.10 1.33 o-xylene 95-47-6 3.09 3.12 -25 -2.77 -2.59 0.18 oxyphenbutazone 129-20-4 2.72 2.72 124 -3.73 -3.21 0.52 oxytetracycline 79-57-2 -1.28 184 -3.14 0.19 3.33 p,p'-biphenyldiamine 92-87-5 1.58 1.34 128 -2.70 -2.11 0.59 p,p'-ddt 50-29-3 6.76 6.91 109 -8.08 -7.10 0.98 p-acetoxy-acetanilide 2623-33-8 0.67 0.80 153 -1.91 -1.45 0.46 palmitic acid 57-10-3 7.21 62 -6.81 -7.08 -0.27 p-aminoacetophenone 99-92-3 0.86 0.83 106 -1.61 -1.17 0.44 p-aminophenol 123-30-8 0.25 0.04 189 -0.80 -1.39 -0.59 p-aminopropiophenone 70-69-9 1.39 142 -2.63 -2.06 0.57 /7-aminosalicylic acid 65-49-6 1.06 1.32 -1.96 parabanic acid 120-89-8 -2.54 230 -0.4 0.99 1.39 paracetamol 103-90-2 0.49 0.51 169 -0.99 -1.43 -0.44 parathion 56-38-2 3.47 3.83 <25 -4.29 -2.97 1.32 parathion methyl 298-00-0 2.79 2.86 36 -3.68 -2.40 1.28 parethoxycaine 94-23-5 3.96 <25 -2.71 -3.46 -0.75

Page 156: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

154

p-bromoacetanilide 103-88-8 2.28 2.29 165 -3.08 -3.18 -0.10 p-bromoiodobenzene 589-87-7 4.13 90 -4.56 -4.28 0.28 p-chloroacetanilide 539-03-7 2.13 2.12 178 -2.84 -3.16 -0.32 p-chloroaniline 106-47-8 1.96 1.88 72.5 -1.66 -1.94 -0.28 p-chlorobenzoic acid 74-11-3 2.70 2.65 243 -3.31 -4.38 -1.07 p-chiorobiphenyl 2051-62-9 4.74 4.61 78 -5.20 -4.77 0.43 p-chloroiodobenzene 637-87-6 3.98 53 -4.03 -3.76 0.27 p-chloronitrobenzene 100-00-5 2.60 2.39 84 -2.92 -2.69 0.23 p-chlorotoluene 106-43-4 3.35 3.33 8 -3.08 -2.85 0.23 p-cresol 106-44-5 1.97 1.94 33 -0.73 -1.55 -0.82 p-dichlorobenzene 106-46-7 3.57 3.44 54 -3.31 -3.35 -0.04 pebulate 1114-71-2 3.74 3.84 <25 -3.35 -3.24 0.11 pecazine 60-89-9 5.59 80 -4.74 -5.64 -0.90 pelargonic acid 112-05-0 3.51 3.45 12 -2.75 -3.01 -0.26 pelletierine 4396-01-4 0.85 <25 -0.45 -0.35 0.10 penicillamine 52-67-5 -1.73 200 -0.13 0.48 0.61 pent-l-yne 627-19-0 1.98 1.98 -106 -1.64 -1.48 0.16 pentachlorobenzene 608-93-5 5.35 5.18 84 -5.66 -5.44 0.22 pentachlorobutadiene 55880-77-8 4.05 <25 -4.23 -3.55 0.68 pentachloroethane 76-01-7 3.63 3.22 -28 -2.60 -3.13 -0.53 pentachlorophenol 87-86-5 4.68 5.12 174 -4.28 -5.67 -1.39 pentadecanoic acid 1002-84-2 6.68 52 -4.31 -6.45 -2.14 pentaerythritol 115-77-5 -0.93 260 -0.44 -0.92 -0.48 pentamethylbenzene 700-12-9 4.49 4.56 54 -4.00 -4.28 -0.28 pentane 109-66-0 3.34 3.39 -130 -3.18 -2.84 0.34 pentanoic acid 109-52-4 1.39 1.39 -21 -0.51 -0.89 -0.38 pentazocin 359-83-1 4.67 4.64 -3.8 pentobarbital 76-74-4 2.11 2.10 129 -2.39 -2.65 -0.26 pentoxifylline 6493-05-6 0.10 0.29 -0.56 pentyl propanoate 624-54-4 2.83 2.67 -73 -2.25 -2.33 -0.08 pentyl-4-aminobenzoate 13110-37-7 3.51 3.47 52 -3.26 -3.28 -0.02 pentylamine 110-58-7 1.45 1.49 -50 0.27 -0.95 -1.22 pentylbenzene 538-68-1 4.76 4.90 -75 -4,64 -4.26 0.38 pentylcyclopentane 3741-00-2 5.43 -83 -6.08 -4.93 1.15 perfluidone 37924-13-3 3.78 142 -3.8 -4.45 -0.65 pericyazine 2622-26-6 3.74 3.65 116 -3.98 -4.15 -0.17 permethrin 52645-53-1 7.38 6.50 36 -6.29 -6.99 -0.70 perphenazine 58-39-9 4.32 4.2 97 -4.16 -4.54 -0.38 perthane 72-56-0 6.69 60 -7.04 -6.54 0.50 perylene 198-55-0 6.12 5.82 278 -8.80 -8.15 0.65 p-fluoroacetanilide 351-83-7 1.56 1.47 153 -1.78 -2.34 -0.56 p-fluorobenzyl chloride 352-11-4 2.85 -18 -2.54 -2.35 0.19 phenacetin 62-44-2 1.77 1.58 135 -2.35 -2.37 -0.02 phenanthrene 85-01-8 4.49 4.47 100 -5.21 -4.74 0.47 phenanthridine 229-87-8 3.20 3.47 106 -2.78 -3.51 -0.73 phenbutamide 3149-00-6 2.00 130 -3.05 -2.55 0.50 phenetole 103-73-1 2.59 2.51 -30 -2.33 -2.09 0.24 phenmedipham 13684-63-4 3.37 3.59 143 -4.78 -4.05 0.73 phenobarbital 50-06-6 1.37 1.47 176 -2.34 -2.38 -0.04

Page 157: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

155

phenol 108-95-2 1.47 1.47 40.5 0.00 -1.13 -1.13 phenolphthalein 77-09-8 2.63 264 -2.9 -4.52 -1.62 phenothrin 26002-80-2 7.20 <25 -5.24 -6.70 -1.46 phenoxyacetic acid 122-59-8 1.35 1.34 100 -1.1 -1.60 -0.50 phenyl hydrazine 100-63-0 1.26 1.25 19 0.07 -0.76 -0.83 phenyl salicylate 118-55-8 3.84 42 -3.15 -3.51 -0.36 phenylacetic acid 103-82-2 1.41 1.41 77 -0.89 -1.43 -0.54 phenylbutazone 50-33-9 3.38 3.16 105 -3.81 -3.68 0.13 phenylethanolamine 7568-93-6 0.27 58 -0.48 -0.10 0.38 phenylhydroxylamine 100-65-2 0.80 0.79 83 -0.74 -0.88 -0.14 phenylmethanol 100-51-6 1.10 1.10 -15 -0.40 -0.60 -0.20 phenylthiourea 103-85-5 0.75 0.73 154 -1.77 -1.54 0.23 phenytoin 57-41-0 2.08 2.26 295 -3.99 -4.28 -0.29 phorate 298-02-2 3.84 3.83 -43 -4.11 -3.34 0.77 phthalamide 88-96-0 -1.81 -1.73 228 -2.92 0.28 3.20 phthalic-anhydride 85-44-9 1.60 1.60 131 -1.39 -2.16 -0.77 phthalimide 85-41-6 1.15 1.15 238 -2.61 -2.78 -0.17 phthalonitrile 91-15-6 1.01 0.99 139 -2.38 -1.65 0.73 p-hydroxybenzaldehyde 123-08-0 1.44 1.35 <25 -0.96 -0.94 0.02 p-hydroxybenzoic acid 99-96-7 1.56 1.58 217 -1.41 -2.98 -1.57 picene 213-46-7 6.84 7.11 366 -8.05 -9.75 -1.70 picloram 1918-02-1 2.39 2.3 215 -2.75 -3.79 -1.04 picric acid 88-89-1 1.59 0.89 122 -1.26 -2.06 -0.80 pindone 83-26-1 2.05 110 -4.11 -2.40 1.71 pipemedic acid 51940-44-4 -2.73 253 -2.98 0.95 3.93 piperazine 110-85-0 -1.48 -1.5 106 1.07 1.17 0.10 piperidine 110-89-4 0.93 0.84 -13 1.07 -0.43 -1.50 piperine 94-62-2 2.91 132 -3.46 -3.48 -0.02 piperonal 120-57-0 1.35 1.05 38 -1.63 -0.98 0.65 pirimicarb 23103-98-2 1.15 1.7 91 -1.95 -1.31 0.64 piroxicam 36322-90-4 1.89 1.98 210 -4.16 -3.24 0.92 p-methoxybenzaldehyde 123-11-5 1.78 1.76 -1 -1.49 -1.28 0.21 p-methylbenzyl alcohol 589-18-4 1.60 1.58 60 -1.20 -1.45 -0.25 p-nitroanisole 100-17-4 2.10 2.03 54 -2.41 -1.89 0.52 p-nitrobenzoic acid 62-23-7 1.84 1.89 242 -2.80 -3.51 -0.71 p-nitrophenol 100-02-7 1.85 1.91 113 -0.74 -2.23 -1.49 p-nitrotoluene 99-99-0 2.38 2.37 54.5 -2.49 -2.18 0.32 p-phenylphenol 92-69-3 3.36 3.20 167 -3.48 -4.28 -0.80 prasterone 53-43-0 3.07 3.23 150 -4.06 -3.82 0.24 praziquantel 55268-74-1 3.36 137 -2.89 -3.98 -1.09 prednisolone 50-24-8 1.38 1.62 240 -3.18 -3.03 0.15 prednisolone acetate 52-21-1 1.92 2.40 232 -4.37 -3.49 0.88 prednisone 53-03-2 1.62 1.47 234 -3.48 -3.21 0.27 prednisonone-21- 1107-99-9 3.78 233 -4.58 -5.36 -0.78 trimethylacetate pregnenolone 145-13-1 4.03 4.22 193 -4.65 -5.21 -0.56 primidone 125-33-7 0.88 0.91 281 -2.64 -2.94 -0.30 procaine 59-46-1 2.54 2.14 61 -1.78 -2.40 -0.62 prochlorperazine 58-38-8 4.90 4.6 197 -4.4 -6.12 -1.72

Page 158: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

156

progesterone 57-83-0 3.77 3.87 127 -4.42 -4.29 0.13 proline 147-85-3 -2.41 -2.5 1.15 promazine 58-40-2 4.90 4.55 30 -4.3 -4.45 -0.15 promethazine 60-87-7 4.90 4.81 60 -4.26 -4.75 -0.49 prometryn 7287-19-6 3.29 3.51 118 -4.10 -3.72 0.38 propachlor 1918-16-7 2.06 2.18 72 -2.48 -2.03 0.45 propane 74-98-6 2.28 2.36 -188 -2.84 -1.78 1.06 propanil 709-98-8 3.33 3.07 92 -3.22 -3.50 -0.28 propazine 139-40-2 2.80 2.93 213 -4.43 -4.18 0.25 propionaldehyde (propanal) 123-38-6 0.30 0.59 -81 0.58 0.20 -0.38 propionanilide 620-71-3 1.69 1.61 106 -1.92 -2.00 -0.08 propionitrile 107-12-0 0.13 0.16 -93 0.28 0.37 0.09 propiophenone 93-55-0 2.11 2.19 19 -1.83 -1.61 0.22 propoxur 114-26-1 1.65 1.52 91 -2.05 -1.81 0.24 propranolol 525-66-6 2.75 2.98 96 -0.71 -2.96 -2.25 propyl acetate 109-60-4 1.24 1.24 -96 -0.72 -0.74 -0.02 propyl benzoate 2315-68-6 3.17 3.01 -51 -2.67 -2.67 0.00 propyl butyrate 105-66-8 2.30 2.15 -95 -1.92 -1.80 0.12 propyl formate 110-74-7 0.79 0.83 -93 -0.49 -0.29 0.20 propyl gallate 121-79-9 1.99 150 -1.78 -2.74 -0.96 propyl isopropyl ether 627-08-7 1.71 <25 -1.34 -1.21 0.13 propyl propanoate 106-36-5 1.77 -76 -1.34 -1.27 0.07 propylamine 107-10-8 0.39 0.47 -83 1.52 0.11 -1.41 propylbenzene 103-65-1 3.70 3.72 -102 -3.25 -3.20 0.05 propylcyclopentane 2040-96-2 4.37 -117 -4.74 -3.87 0.87 propylparaben 94-13-3 3.04 3.04 -2.56 propylthiouracil 51-52-5 -0.33 -2.19 propyne 74-99-7 0.92 0.94 -103 -0.41 -0.42 -0.01 prostaglandin e2 363-24-6 2.01 2.82 67 -2.47 -1.93 0.54 proxyphylline 603-00-9 -0.58 -0.77 0.62 pteridine 91-18-9 -0.86 -0.58 140 0.02 0.21 0.19 p-terphenyl 92-94-4 5.92 6.03 213 -7.11 -7.30 -0.19 p-tert-butylphenol 98-54-4 3.30 3.31 98 -2.41 -3.53 -1.12 p-toluenesulfonamide 70-55-3 0.80 0.82 139 -1.74 -1.44 0.30 p-toluic acid 99-94-5 2.38 2.27 182 -2.60 -3.45 -0.85 p-xylene 106-42-3 3.14 3.15 13 -2.77 -2.64 0.13 pyracarbolid 24691-76-7 2.13 109 -2.56 -2.47 0.09 pyrazon 1698-60-8 1.20 1.19 205 -2.87 -2.50 0.37 pyrene 129-00-0 4.95 4.88 156 -6.18 -5.76 0.42 pyridazine 289-80-5 -0.73 -0.72 -8 1.10 1.23 0.13 pyridine 110-86-1 0.64 0.65 <25 0.76 -0.14 -0.90 pyrimidine 289-95-2 -0.31 -0.4 21 1.1 0.81 -0.29 pyrolan 87-47-8 2.10 50 -2.09 -1.85 0.24 pyrrole 109-97-7 0.75 0.75 -23 -0.17 -0.25 -0.08 pyrrolidine 123-75-1 0.38 0.47 -60 1.15 0.12 -1.03 pyrrolidone 616-45-5 -0.97 -0.85 24 1.07 1.47 0.40 quinethazone 73-49-4 0.55 250 -3.29 -2.30 0.99 quinidine 56-54-2 2.79 2.64 167 -3.37 -3.71 -0.34 quinine 130-95-0 2.79 2.64 177 -2.76 -3.8! -1.05

Page 159: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

157

quinoline 91-22-5 2.03 2.03 <25 -1.30 -1.53 -0.23 quinolinic acid 89-00-9 0.17 189 -1.19 -1.31 -0.12 quinonamid 27541-88-4 2.99 212 -5.03 -4.36 0.67 quinone 106-51-4 0.13 0.20 116 -0.56 -0.54 0.02 quintozene 82-68-8 5.05 4.64 144 -5.82 -5.74 0.08 reposal 3625-25-0 2.19 213 -2.64 -3.57 -0.93 rhodanine 141-84-4 4.77 169 -1.77 -5.71 -3.94 riboflavin 83-88-5 -0.73 290 -3.68 -1.42 2.26 risocaine 94-12-2 2.55 2.43 75 -2.45 -2.55 -0.10 rolitetracycline 751-97-3 0.48 162 -1.42 -1.35 0.07 ronnel 299-84-3 4.96 5.07 35 -3.90 -4.56 -0.66 rotenone 83-79-4 4.19 4.10 165 -4.42 -5.09 -0.67 saccharin 81-07-2 0.72 0.91 229 -1.64 -2.26 -0.62 salbutamol 18559-94-9 0.11 150 -1.22 -0.86 0.36 salicin 138-52-3 -1.06 -1.22 198 -0.85 -0.17 0.68 salicyl alcohol 90-01-7 0.44 0.73 84 -0.29 -0.53 -0.24 salicylaldehyde 90-02-8 1.81 1.81 1 -0.86 -1.31 -0.45 salicylanilide 87-17-2 3.27 3.27 137 -3.59 -3.89 -0.30 salicylic acid 69-72-7 2.19 2.26 -1.8 santonin 481-06-1 1.65 171 -3.09 -2.61 0.48 scopolamine 51-34-3 0.30 59 -0.48 -0.14 0.34 secbutabarbital 143-81-7 1.58 1.65 -2.33 secobarbital 76-73-3 2.16 1.97 132 -2.36 -2.73 -0.37 siduron 1982-49-6 3.65 3.80 137 -4.11 -4.27 -0.16 simazine 122-34-9 2.19 2.18 225 -4.12 -3.69 0.43 simvastatin 79902-63-9 4.70 4.68 -4.15 sorbic acid 110-44-1 1.51 1.33 135 -1.77 -2.11 -0.34 sorbitol 50-70-4 -2.05 -2.65 111 1.09 1.69 0.60 sparteine 90-39-1 2.72 32 -1.89 -2.29 -0.40 spironolactone 52-01-7 2.25 2.26 201 -4.28 -3.51 0.77 stadacaine 3772-43-8 5.79 <25 -3.84 -5.29 -1.45 stanolone 521-18-6 3.55 3.66 -4.74 stearic acid 57-11-4 8.27 70 -5.68 -8.22 -2.54 strychnine 57-24-9 1.66 1.93 -3.33 styphnic acid 82-71-3 1.19 180 -1.66 -2.24 -0.58 styrene 100-42-5 2.87 2.95 -30 -2.82 -2.37 0.45 styrene oxide 96-09-3 1.29 1.61 -37 -1.60 -0.79 0.81 subericacid 505-48-6 1.03 142 -1.29 -1.70 -0.41 succinic acid 110-15-6 -0.53 -0.59 184 -0.2 -0.56 -0.36 succinimide 123-56-8 -1.17 124 0.3 0.68 0.38 sucrose 57-50-1 -3.09 -3.01 191 0.0719 1.93 1.86 sufentanil 56030-54-7 3.45 3.95 97 -3.71 -3.67 0.04 sulfadiazine 68-35-9 0.07 -0.09 258 -3.51 -1.90 1.61 sulfadimethoxine 122-11-2 1.90 1.63 202 -2.96 -3.17 -0.21 sulfaethidole 94-19-9 0.75 1.01 188 -1.94 -1.88 0.06 sulfaguanidine 57-67-0 -1.24 -1.22 190 -1.99 0.09 2.08 sulfallate 95-06-7 3.42 <25 -3.39 -2.92 0.47 sulfamerazine 127-79-7 0.57 0.14 235 -2.85 -2.17 0.68 sulfameter 651-06-9 0.59 0.41 213 -2.58 -1.97 0.61

Page 160: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

158

sulfamethazine 57-68-1 1.07 0.28 198 -2.27 -2.30 -0.03 sulfamethiazole 144-82-1 0.22 0.54 208 -2.41 -1.55 0.86 sulfamethomidine 3772-76-7 1.49 0.61 146 -2.54 -2.20 0.34 sulfamethoxazole 723-46-6 0.55 0.89 -2.71 sulfamethoxypyridazine 80-35-3 0.35 0.32 182 -3.28 -1.42 1.86 sulfamoxole 729-99-7 0.50 193 -2.44 -1.68 0.76 sulfanilacetamide 144-80-9 -0.98 -0.96 183 -1.23 -0.10 1.13 sulfanilamide 63-74-1 -0.57 -0.62 165 -1.36 -0.33 1.03 sulfaperine 599-88-2 0.57 0.34 262 -2.82 -2.44 0.38 sulfaphenazole 526-08-9 2.06 2.72 206 -2.32 -3.37 -1.05 sulfapyridine 144-83-2 0.84 0 191 -2.7 -2.00 0.70 sulfathiozole 72-14-0 0.70 203 -2.43 -1.98 0.45 sulfisomidine 515-64-0 1.07 243 -2.24 -2.75 -0.51 sulfisoxazole 127-69-5 0.20 1.01 195 -2.91 -1.40 1.51 sulindac 38194-50-2 3.16 3.05 184 -5 -4.25 0.76 sulpiride 15676-16-1 1.11 179 -2.88 -2.15 0.73 talbutal 115-44-6 1.63 1.47 -2.02 t-amylbenzene 2049-95-8 4.50 -58 -4.15 -4.00 0.15 tenoxicam 59804-37-4 1.61 0.81 -3.88 terbacil 5902-51-2 2.41 1.91 176 -2.48 -3.42 -0.94 terbutryne 886-50-0 3.38 3.38 104 -4.00 -3.67 0.33 terfenadine 50679-08-8 6.09 5.69 -4.67 tert-amyl carbamate 590-60-3 1.06 85 -0.80 -1.16 -0.36 tert-butylbenzene 98-06-6 3.97 4.11 -58 -3.66 -3.47 0.19 testosterone 58-22-0 3.22 3.32 155 -4.07 -4.02 0.05 testosterone acetate 1045-69-8 4.16 4.16 141 -5.18 -4.82 0.36 testosterone propionate 57-85-2 4.69 118 -5.37 -5.12 0.25 tetrabromomethane 558-13-4 3.43 3.42 90 -3.14 -3.58 -0.44 tetrachloroethylene 127-18-4 3.48 3.40 -22 -2.74 -2.98 -0.24 tetrachloroguaiacol 2539-17-5 3.92 122 -4.02 -4.39 -0.37 tetrachloromethane 56-23-5 2.88 2.83 -22 -2.31 -2.38 -0.07 tetracycline 60-54-8 -0.91 -1.47 176 -3.12 -0.10 3.02 tetradecane 629-59-4 8.10 8.00 6 -7.96 -7.60 0.36 tetradecanoic acid 544-63-8 6.15 6.1 54 -5.33 -5.94 -0.61 tetrafluoromethane 75-73-0 1.11 1.18 -185 -3.68 -0.61 3.07 tetrahydrofuran 109-99-9 0.53 0.47 -108 0.49 -0.03 -0.52 tetrahydropyran 142-68-7 0.95 0.95 -45 -0.03 -0.45 -0.42 tetramethylurea 632-22-4 -0.11 0.19 -1 0.94 0.61 -0.33 tetroxoprim 53808-87-0 0.63 0.56 -2.1 thalidomide 50-35-1 0.53 0.33 -3.7 thebaine 115-37-7 1.65 -2.66 theobromine 83-67-0 -0.69 -0.72 -2.56 theophylline 58-55-9 -0.06 -0.02 272 -1.37 -1.91 -0.54 thiamphenicol 847-25-6 -0.10 -0.27 -2.15 thiamylal 77-27-0 3.03 3.23 132 -3.46 -3.60 -0.14 thioanisole 100-68-5 2.74 -15 -2.39 -2.24 0.15 thiofanox 39196-18-4 2.39 2.75 52 -1.62 -2.16 -0.54 thiopental 76-75-5 2.98 2.85 158 -3.36 -3.81 -0.45 thiophene 110-02-1 1.79 1.89 -38 -1.33 -1.29 0.04

Page 161: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

159

thiophene-3-carboxylic acid 88-13-1 1.65 1.5 139 -1.47 -2.29 -0.82 thiophenol 108-98-5 2.53 2.52 -15 -2.12 -2.03 0.09 thiopropazate 84-06-0 5.22 -4.7 thioridazine 50-52-2 6.50 5.9 73 -5.82 -6.48 -0.66 thiourea 62-56-6 -1.02 -1.02 176 0.32 0.01 -0.31 thiram 137-26-8 1.76 1.73 155 -3.9 -2.56 1.34 threonine 72-19-5 -2.43 -2.94 270 -0.09 0.48 0.57 thymol 89-83-8 3.20 3.30 48 -2.22 -2.93 -0.71 tolazamide 1156-19-0 1.34 1.45 165 -3.68 -2.24 1.44 tolbutamide 64-77-7 2.50 2.34 128 -3.39 -3.03 0.36 tolcyclamide 664-95-9 2.94 2.9 174 -4.21 -3.93 0.28 toluene 108-88-3 2.64 2.73 -95 -2.21 -2.14 0.07 tranid 15271-41-7 0.89 159 -2.08 -1.73 0.35 trans-1,2-dimethylcyclohexane 6876-23-9 4.39 -88 -4.33 -3.89 0.44 trans-1,4-dimethylcyclohexane 2207-04-7 4.39 -37 -4.47 -3.89 0.58 trans-2-heptene 14686-13-6 3.91 -109 -3.82 -3.41 0.41 trans-2-pentene 646-04-8 2.86 -140 -2.54 -2.36 0.18 trans-crotonaldehyde 123-73-9 0.52 -77 0.32 -0.02 -0.34 triadimefon 43121-43-3 3.44 2.77 82 -3.61 -3.51 0.10 triallate 2303-17-5 4.73 4.6 29 -4.88 -4.27 0.61 triamcinolone 124-94-7 0.67 1.16 260 -3.69 -2.52 1.17 triamcinolone acetonide 76-25-5 2.17 2.53 274 -4.32 -4.16 0.16 triamcinolone diacetate 67-78-7 1.86 1.92 235 -4.13 -3.46 0.67 triazolam 28911-01-5 2.25 2.42 224 -4.08 -3.74 0.34 tribromomethane 75-25-2 2.37 2.67 8 -1.91 -1.87 0.04 tributylamine 102-82-9 4.78 -70 -3.12 -4.28 -1.16 tributylphosphorotrithioate 78-48-8 4.25 <25 -5.14 -3.75 1.39 trichlorfon 52-68-6 0.68 0.51 83 -0.22 -0.76 -0.54 trichlormethiazide 133-67-5 0.85 0.56 266 -2.68 -2.76 -0.08 trichloroacetic acid 76-03-9 1.68 1.33 57 0.60 -1.50 -2.10 trichloroehylene 79-01-6 2.63 2.61 -86 -1.96 -2.13 -0.17 triclosan 3380-34-5 5.53 58 -4.46 -5.36 -0.90 tricresyl-phosphate 1330-78-5 5.95 -33 -6.01 -5.45 0.56 tricyclazole 41814-78-2 1.83 1.70 187 -2.07 -2.95 -0.88 trietazine 1912-26-1 2.79 3.34 101 -4.06 -3.05 1.01 triethyl phosphate 78-40-0 0.28 0.80 -56 0.43 0.22 -0.21 triethylamine 121-44-8 1.40 1.45 -115 -0.14 -0.90 -0.76 trifluoperazine 117-89-5 5.21 5.03 -4.52 trifluoromethylbenzene 98-08-8 3.03 3.01 -29 -2.51 -2.53 -0.02 trifluoro-o-toluic acid 433-97-6 2.14 111 -1.6 -2.50 -0.90 triflupromazine 146-54-3 6.11 5.54 <25 -5.3 -5.61 -0.31 trifluralin 1582-09-8 5.29 5.07 48 -5.68 -5.02 0.66 triforine 26644-46-2 1.68 2.02 55 -4.19 -1.48 2.71 trimethoprim 738-70-5 0.88 0.91 201 -2.86 -2.14 0.72 trimethylamine 75-50-3 0.02 0.16 -124 1.32 0.48 -0.84 tripelennamine 91-81-6 3.31 191 -2.64 -4.47 -1.83 triphenylene 217-59-4 5.66 5.49 199 -6.74 -6.90 -0.16 tripropylamine 102-69-2 2.98 2.79 -94 -2.28 -2.48 -0.20 tropicamide 1508-75-4 1.18 -1.7

Page 162: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

160

tubercidin 69-33-0 -1.47 247 -1.95 -0.25 1.70 tybamate 4268-36-4 3.09 -2.74 tyramine 51-67-2 0.77 162 -1.12 -1.64 -0.52 undecane 1120-21-4 6.51 6.54 -26 -7.59 -6.01 1.58 undecanoic acid 112-37-8 4.57 30 -3.55 -4.12 -0.57 undecylenic acid 112-38-9 4.08 3.86 25 -3.4 -3.58 -0.18 uracil 66-22-8 -1.06 -1.07 335 -1.49 -1.54 -0.05 urea 57-13-6 -1.66 -1.66 135 0.95 1.06 0.11 urethane 51-79-6 -0.18 -0.15 48 0.85 0.45 -0.40 uric acid 69-93-2 -1.46 -3.4 urocanic acid 104-98-3 0.07 227 -1.96 -1.59 0.37 ursodeoxycholic acid 128-13-2 4.51 203 -4.29 -5.79 -1.50 valeraldehyde 110-62-3 1.36 -92 -0.85 -0.86 -0.01 valproic acid 99-66-1 2.98 2.75 125 -1.86 -3.48 -1.62 vanillic acid 121-34-6 1.35 1.43 209 -2.05 -2.69 -0.64 veratrole 91-16-7 1.80 1.60 15 -1.31 -1.30 0.01 vernolate 1929-77-7 3.74 3.84 <25 -3.30 -3.24 0.06 vinbarbital 125-42-8 2.03 162 -2.43 -2.90 -0.47 vulvic acid 143-07-7 5.10 4.2 44 -4.62 -4.79 -0.17 warfarin 81-81-2 2.89 2.7 161 -4.26 -3.75 0.51 xanthine 69-89-6 -0.70 -0.73 -2.48 xipamide 14293-44-8 1.89 255 -3.79 -3.69 0.10 zidovudine 30516-87-1 0.04 0.05 -1.03 zileuton 111406-87-2 1.44 -3.37

Page 163: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

161

APPENDIX B. Comparison of Predicted Solubility Using the General

Solubility Equation and the Amended Solvation Energy Relationship

Name CLOGP MLOGP MP log S„ Expt

log Sw ASER

log S„ GSE

methane 1.10 1.09 25 -0.90 -0.48 -0.60 ethane 1.75 1.81 25 -1.36 -1.04 -1.25 propane 2.28 2.36 25 -1.94 -1.60 -1.78 butane 2.81 2.89 25 -2.57 -2.16 -2.31 2-methylpropane 2.68 2.76 25 -2.55 -2.16 -2.18 pentane 3.34 3.39 25 -3.18 -2.72 -2.84 2-methylbutane 3.21 25 -3.18 -2.72 -2.71 hexane 3.87 3.90 25 -3.84 -3.29 -3.37 2-methylpentane 3.74 25 -3.74 -3.29 -3.24 3-methylpentane 3.74 25 -3.68 -3.29 -3.24 2,2-dimethylbutane 3.61 3.82 25 -3.55 -3.29 -3.11 2,3-dimethylbutane 3.61 3.42 25 -3.65 -3.29 -3.11 heptane 4.40 4.66 25 -4.53 -3.85 -3.90 2,2-dimethylpentane 4.14 25 -4.36 -3.85 -3.64 2,3-dimethylpentane 4.14 25 -4.28 -3.85 -3.64 2,4-dimethylpentane 4.14 25 -4.26 -3.85 -3.64 3,3-dimethylpentane 4.14 25 -4.23 -3.85 -3.64 2,2,3-trimethylbutane 4.01 25 -4.36 -3.85 -3.51 octane 4.93 5.18 25 -5.24 -4.41 -4.43 2-methylheptane 4.80 25 -5.08 -4.41 -4.30 3-methylheptane 4.80 25 -5.16 -4.41 -4.30 4-methyloctane 5.32 4.69 25 -6.05 -4.41 -4.82 2,2,4-triniethylpentane 4.54 25 -4.74 -4.41 -4.04 2,3,4-trimethylpentane 4.54 25 -4.80 -4.41 -4.04 nonane 5.65 5.45 25 -5.88 -4.97 -5.15 2,2,5-trimethylhexane 5.06 25 -5.05 -4.97 -4.56 decane 5.98 5.01 25 -6.98 -5.53 -5.48 undecane 6.51 6.50 25 -7.59 -6.09 -6.01 dodecane 7.04 6.10 25 -7.67 -6.66 -6.54 tetradecane 8.10 8.00 25 -7.96 -7.78 -7.60 hexadecane 9.16 25 -8.40 -8.90 -8.66 cyclopentane 2.79 3.00 25 -2.64 -2.48 -2.29 methylcyclopentane 3.31 3.37 25 -3.30 -3.00 -2.81 propylcyclopentane 4.37 25 -4.74 -4.12 -3.87 pentylcyclopentane 5.43 25 -6.08 -5.24 -4.93 cyclohexane 3.35 3.44 25 -3.10 -3.08 -2.85 methylcyclohexane 3.87 3.61 25 -3.85 -3.61 -3.37 cis-1,2-diniethylcyclohexane 4.39 25 -4.30 -4.18 -3.89 trans-1,4-diniethylcyclohexane 4.39 25 -4.47 -4.10 -3.89 ethylcyclohexane 4.40 25 -4.25 -4.16 -3.90

Page 164: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

cycloheptane 3.91 4.00 25 -3.51 -3.69 -3.41 cyclooctane 4.47 4.45 25 -4.15 -4.31 -3.97 decalin 4.79 25 -5.19 -4.98 -4.29 ethylene 1.27 1.13 25 -0.40 -0.60 -0.77 propylene 1.80 1.77 25 -1.08 -1.17 -1.30 1-butene 2.33 2.40 25 -1.94 -1.73 -1.83 2-methylpropene 2.20 2.34 25 -2.33 -1.73 -1.70 1-pentene 2.86 2.80 25 -2.68 -2.29 -2.36 cis-2-pentene 2.86 25 -2.54 -2.34 -2.36 trans-2-pentene 2.86 25 -2.54 -2.32 -2.36 2-methyl-1-butene 2.73 25 -2.73 -2.31 -2.23 3-methyl-1 -butene 2.73 25 -2.73 -2.26 -2.23 2-methyl-2-butene 2.73 2.67 25 -2.56 -2.35 -2.23 1-hexene 3.38 3.39 25 -3.23 -2.83 -2.88 2-niethyl-1-pentene 3.25 25 -3.03 -2.85 -2.75 1-heptene 3.91 3.99 25 -3.73 -3.41 -3.41 trans-2-heptene 3.91 25 -3.82 -3.44 -3.41 1-octene 4.44 4.57 25 -4.44 -3.97 -3.94 1-nonene 4.97 5.15 25 -5.05 -4.53 -4.47 1-decene 5.50 25 -5.51 -5.10 -5.00 1,3-butadiene 1.90 1.99 25 -1.87 -1.54 -1.40 2-methyl-1,3-butadiene 2.30 25 -2.03 -2.09 -1.80 2,3-diniethyl-1,3-butadiene 2.70 25 -2.40 -2.53 -2.20 1,4-pentadiene 2.37 2.47 25 -2.09 -1.99 -1.87 1,5-hexadiene 2.90 2.87 25 -2.68 -2.56 -2.40 cyclopentene 2.31 25 -2.10 -1.87 -1.81 cyclohexene 2.87 2.86 25 -2.59 -2.50 -2.37 1 -methylcyclohexene 3.39 25 -3.27 -3.07 -2.89 cycloheptene 3.43 25 -3.18 -3.07 -2.93 1,4-cyclohexadiene 2.39 2.30 25 -2.06 -2.02 -1.89 ethyne 0.39 0.37 25 0.29 -0.13 0.11 propyne 0.92 0.94 25 -0.41 -0.45 -0.42 1-butyne 1.45 1.46 25 -1.24 -1.16 -0.95 1-pentyne 1.98 1.98 25 -1.64 -1.66 -1.48 1-hexyne 2.51 2.73 25 -2.36 -2.25 -2.01 3-hexyne 2.51 25 -1.99 -2.30 -2.01 1-heptyne 3.04 3.32 25 -3.01 -2.91 -2.54 1-octyne 3.57 3.92 25 -3.66 -3.46 -3.07 1-nonyne 4.10 4.51 25 -4.24 -4.02 -3.60 dichloromethane 1.25 1.25 25 -0.63 -0.99 -0.75 trichloromethane 1.95 1.97 25 -1.17 -1.59 -1.45 tetrachloromethane 2.88 2.83 25 -2.31 -2.60 -2.38 chloroethane 1.47 1.43 25 -1.06 -1.02 -0.97 1,1-dichloroethane 1.78 1.79 25 -1.29 -1.35 -1.28 1,2-dichloroethane 1.46 1.47 25 -1.06 -1.29 -0.96 1,1,1-trichloroethane 2.48 2.49 25 -2.00 -2.18 -1.98 1,1,2-trichloroethane 2.05 2.07 25 -1.48 -1.70 -1.55 1,1,2,2-tetrachloroethane 2.64 2.62 25 -1.74 -2.21 -2.14

Page 165: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

1,1,1,2-tetrachloroethane 3.03 2.62 25 -2.18 -2.52 -2.53 pentachloroethane 3.63 3.22 25 -2.60 -3.03 -3.13 hexachloroethane 4.61 4.14 25 -3.67 -4.23 -4.11 1-chloropropane 1.99 2.04 25 -1.47 -1.57 -1.49 2-chloropropane 1.99 1.90 25 -1.41 -1.49 -1.49 1,2-dichloropropane 1.99 1.99 25 -1.60 -1.81 -1.49 1,3-dichloropropane 1.71 2.00 25 -1.62 -1.84 -1.21 1-chlorobutane 2.52 2.64 25 -2.03 -2.13 -2.02 1 -chloro-2-methy Ipropane 2.39 25 -2.00 -2.05 -1.89 2-chlorobutane 2.52 2.33 25 -1.96 -2.06 -2.02 1-chloropentane 3.05 3.11 25 -2.73 -2.69 -2.55 2-chloro-2-methylbutane 2.92 2.52 25 -2.51 -2.85 -2.42 1-chlorohexane 3.58 3.66 25 -3.12 -3.24 -3.08 1-chloroheptane 4.11 4.15 25 -4.00 -3.80 -3.61 chloroethylene 1.52 25 -1.75 -1.11 -1.02 1,1 -dichloroethylene 2.37 2.13 25 -1.64 -1.73 -1.87 cis-1,2-dichloroethylene 1.77 1.86 25 -1.30 -1.38 -1.27 trichloroethylene 2.63 2.61 25 -1.96 -2.28 -2.13 tetrachloroethylene 3.48 3.40 25 -2.54 -3.12 -2.98 hexachloro-1,3-butadiene 4.90 4.78 25 -4.92 -5.12 -4.40 bromomethane 1.08 1.19 25 -0.79 -0.82 -0.58 dibromomethane 1.53 1.88 25 -1.17 -1.56 -1.03 tribromomethane 2.37 2.67 25 -1.91 -2.47 -1.87 tetrabromomethane 3.43 3.42 90 -3.14 -3.74 -3.58 bromoethane 1.60 1.61 25 -1.09 -1.29 -1.10 1,2-dibromoethane 1.74 1.96 25 -1.68 -1.72 -1.24 l-bromopropane 2.13 2.10 25 -1.73 -1.85 -1.63 2-bromopropane 2.13 2.14 25 -1.59 -1.77 -1.63 1-bromobutane 2.66 2.75 25 -2.37 -2.40 -2.16 1 -bromo-2-methylpropane 2.53 25 -2.43 -2.40 -2.03 1 -bromopentane 3.19 3.37 25 -3.08 -2.96 -2.69 1-bromohexane 3.72 3.80 25 -3.81 -3.52 -3.22 1 -bromoheptane 4.25 4.36 25 -4.43 -4.07 -3.75 1-bromooctane 4.78 4.89 25 -5.06 -4.63 -4.28 iodomethane 1.47 1.51 25 -1.00 -1.30 -0.97 diiodomethane 2.31 2.30 25 -2.34 -2.42 -1.81 iodoethane 2.00 2.00 25 -1.60 -1.77 -1.50 1-iodopropane 2.52 2.54 25 -2.29 -2.32 -2.02 2-iodopropane 2.52 2.89 25 -2.09 -2.26 -2.02 1-iodobutane 3.05 3.08 25 -2.96 -2.88 -2.55 1 -iodoheptane 4.64 4.70 25 -4.81 -4.54 -4.14 bromochloromethane 1.39 1.41 25 -0.89 -1.32 -0.89 bromodichloromethane 2.09 2.10 25 -1.54 -1.84 -1.59 chlorodibromethane 2.23 2.24 25 -1.90 -2.12 -1.73 1 -chloro-2-bromoethane 1.60 25 -1.32 -1.69 -1.10 1,1,2-trichlorotrifluoroethane 3.29 3.16 25 -3.04 -2.62 -2.79 1,2-dichlorotetrafluoroethane 2.85 2.82 25 -2.74 -2.41 -2.35 diethyl ether 0.87 0.89 25 -0.09 -0.34 -0.37

Page 166: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

164

dipropyl ether diisopropyl ether dibutyl ether methyl propyl ether methyl butyl ether methyl tert-butyl ether ethyl propyl ether propyl isopropyl ether ethyl vinyl ether dimethoxymethane 1.1-diethoxyethane 1.2-diethoxyethane 1.2-propylene oxide tetrahydrofuran 2-methyltetrahydrofuran tetrahydropyran propionaldehyde butyraldehyde valeraldehyde caproaldehyde

2-ethylbutanol 2-ethylhexanol trans-crotonaldehyde 2-ethyl-2-hexanol 2-butanone 2-pentanone 3-pentanone 3-methyl-2-butanone 2-hexanone 3-hexanone 3-methyl-2-pentanone 4-methyl-2-pentanone 3.3-dimethyl-2-butanone 2-heptanone 4-heptanone 2.4-dimethyl-3-pentanone 2-octanone 2-nonanone 5-nonanone 2-decanone cyclohexanone carvone camphor menthone methyl formate ethyl formate propyl formate isopropyl formate

1.93 2.03 25 -1.10 -1.43 -1.43

1.49 1.52 25 -1.10 -1.64 -0.99

2.91 3.22 25 -1.85 -2.54 -2.41

0.87 1.21 25 -0.39 -0.44 -0.37

1.40 1.66 25 -0.99 -0.95 -0.90

1.05 0.94 25 -0.24 -0.23 -0.55

1.40 25 -0.66 -0.86 -0.90

1.71 25 -1.34 -1.44 -1.21

1.01 1.04 25 -0.85 -0.39 -0.51

-0.43 0.18 25 0.48 0.79 0.93

0.93 0.84 25 -0.43 0.59 -0.43

0.93 0.66 25 -0.77 0.15 -0.43

0.25 0.13 25 -0.59 0.70 0.25

0.53 0.47 25 0.49 0.18 -0.03

1.04 25 0.11 -0.15 -0.54

0.95 0.95 25 -0.03 -0.37 -0.45

0.30 0.59 25 0.58 0.55 0.20

0.83 0.88 25 -0.01 0.00 -0.33

1.36 25 -0.85 -0.54 -0.86

1.89 1.78 25 -1.30 -1.09 -1.39

1.75 25 -1.52 -1.10 -1.25

2.81 25 -2.13 -2.24 -2.31

0.52 25 0.32 0.29 -0.02

2.59 25 -2.46 -2.04 -2.09

0.32 0.29 25 0.52 0.31 0.18

0.85 0.91 25 -0.19 -0.24 -0.35

0.85 0.82 25 -0.28 -0.27 -0.35

0.85 0.84 25 -0.12 -0.26 -0.35

1.38 1.38 25 -0.80 -0.80 -0.88

1.38 25 -0.83 -0.81 -0.88

1.38 25 -0.67 -0.80 -0.88

1.25 1.31 25 -0.74 -0.80 -0.75

1.25 1.20 25 -0.72 -0.82 -0.75

1.91 1.98 25 -1.45 -1.35 -1.41

1.91 2.04 25 -1.30 -1.35 -1.41

1.91 1.86 25 -1.30 -1.36 -1.41

2.44 2.37 25 -2.05 -1.89 -1.94

2.97 3.14 25 -2.58 -2.47 -2.47

2.97 2,88 25 -2.58 -2.47 -2.47

3.49 3,73 25 -3.30 -3.02 -2.99

0.86 0.81 25 -0.60 -0.28 -0.36

2.01 25 -2.06 -2.70 -1.51

2.18 2,38 177 -1.96 -2.15 -3.20

2.83 25 -2.35 -2.63 -2.33

-0.26 0.03 25 0.58 0.61 0.76

0.26 25 0.15 0.08 0.24

0.79 0.83 25 -0.49 -0.50 -0.29

0.57 25 -0.63 -0.39 -0.07

Page 167: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

165

butyl acetate 1.77 1.78 25 -1.37 -1.05 -1.27

isobutyl formate 1.19 25 -1.01 -0.96 -0.69

isopentyl formate 1.72 25 -1.52 -1.52 -1.22

methyl acetate 0.18 0.18 25 0.46 0.36 0.32

ethyl acetate 0.71 0.73 25 -0.04 -0.18 -0.21

propyl acetate 1.24 1.24 25 -0.72 -0.74 -0.74

isopropyl acetate 1.24 1.22 25 -0.55 -0.64 -0.74

isobutyl acetate 1.64 1.76 25 -1.21 -1.20 -1.14

pentyl acetate 2.30 2.29 25 -1.89 -1.84 -1.80

isopentyl acetate 2.17 2.25 25 -1.92 -1.76 -1.67

methyl propionate 0.71 0.82 25 -0.14 -0.22 -0.21

ethyl propionate 1.24 1.21 25 -0.66 -0.75 -0.74

methyl butyrate 1.24 1.29 25 -0.82 -0.76 -0.74

ethyl butyrate 1.77 1.71 25 -1.28 -1.30 -1.27

propyl butyrate 2.30 2.15 25 -1.92 -1.86 -1.80

methyl pentanoate 1.77 1.96 25 -1.36 -1.32 -1.27

ethyl pentanoate 2.30 25 -1.75 -1.84 -1.80

propyl propanoate 1.77 25 -1.34 -1.30 -1.27

pentyl propanoate 2.83 2.67 25 -2.25 -2.42 -2.33

methyl hexanoate 2.30 2.42 25 -1.87 -1.85 -1.80

ethyl hexanoate 2.83 25 -2.35 -2.39 -2.33

ethyl heptanoate 3.36 25 -2.74 -2.94 -2.86

methyl octanoate 3.36 25 -3.17 -2.96 -2.86

ethyl octanoate 3.88 25 -3.39 -3.50 -3.38

methyl nonanoate 3.88 3.87 25 -3.38 -3.52 -3.38

ethyl nonanoate 4.41 25 -3.80 -4.06 -3.91

methyl decanoate 4.41 4.41 25 -4.69 -4.07 -3.91

ethyl decanoate 4.94 25 -4.10 -4.61 -4.44

methyl acrylate 0.80 0.80 25 -0.22 -0.25 -0.30

glyceryl triacetate 0.67 0.25 25 -0.60 0.73 -0.17

malonic acid diethyl ester 1.13 0.96 25 -0.82 -0.53 -0.63

acetonitrile -0.39 -0.34 25 0,26 0.80 0.89

propionitrile 0.13 0.16 25 0.28 0.42 0.37

acrylonitrile 0.29 0.25 25 0,15 0.35 0.21

ethylamine -0.13 -0.13 25 2,06 1.20 0.63

propylamine 0.39 0.47 25 1,52 0.65 0.11

butylamine 0.92 0.97 25 0,96 0.09 -0.42

pentylamine 1.45 1.49 25 0.27 -0.46 -0.95

hexylamine 1.98 2.06 25 -0,25 -1.01 -1.48

heptylamine 2.51 2.57 25 -0,90 -1.57 -2.01

octylamine 3.04 3.09 25 -1.46 -2.12 -2.54

diethylamine 0.54 0.58 25 1.03 0.43 -0.04

dipropylamine 1.60 1.67 25 -0.46 -0.67 -1.10

dibutylamine 2.66 2.83 25 -1,44 -1.77 -2.16

trimethylamine 0.02 0.16 25 1.32 0.86 0.48

triethylamine 1.40 1.45 25 -0.14 -0.32 -0.90

tripropylamine 2.98 2.79 25 -2.28 -1.85 -2.48

nitromethane -0.28 -0.35 25 0.26 0.63 0.78

Page 168: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

166

nitroethane 0.25 0.18 25 -0.22 0.15 0.25 1-nitropropane 0.77 0.87 25 -0.80 -0.49 -0.27 2-nitropropane 0.55 0.80 25 -0.62 -0.40 -0.05 chloropicrin 1.60 2.09 25 -2.00 -2.07 -1.10 acetamide -1.11 -1.09 81 1.58 1.86 1.05 N,N-dimethylacetamide -0.80 -0.77 25 1.11 1.34 1.30 urea -1.66 -1.66 132 0.96 2.32 1.09 o-ethyl carbamate -0.18 -0.15 25 0.85 0.79 0.68 acetic acid -0.19 -0.17 25 2.00 1.18 0.69 hexanoic acid 1.92 1.92 25 -1.06 -0.99 -1.42 decanoic acid 4.04 4.09 31 -3.44 -3.19 -3.60 methacrylic acid 0.66 0.93 25 0.00 0.05 -0.16 chloroacetic acid -0.08 0.22 61 1.81 0.87 0.22 trichloroacetic acid 1.68 1.33 57 0.60 -0.01 -1.50 methanol -0.76 -0.77 25 1.56 1.59 1.26 ethanol -0.24 -0.31 25 1.10 1.04 0.74 1-propane] 0.29 0.25 25 0.62 0.49 0.21 2-propanol 0.07 0.05 25 0.43 0.70 0.43 1-butanol 0.82 0.88 25 0.00 -0.06 -0.32 2-methylpropan-1 -ol 0.69 0.76 25 0.10 -0.07 -0.19 butan-2-ol 0.60 0.61 25 0.47 -0.07 -0.10 1-pentanol 1.35 1.56 25 -0.60 -0.62 -0.85 2-pentanol 1.13 1.19 25 -0.29 -0.41 -0.63 3-pentanol 1.13 1.21 25 -0.24 -0.43 -0.63 2-methylbutanol 1.22 1.29 25 -0.47 -0.64 -0.72 3-methylbutan-l-ol 1.22 1.16 25 -0.51 -0.61 -0.72 2-methylbutan-2-ol 1.00 0.89 25 0.15 -0.33 -0.50 3-methyl-2-butanol 1.00 1.28 25 -0.18 -0.43 -0.50 2,2-dimethylpropanol 1.09 1.31 53 -0.40 -0.51 -0.87 1-hexanol 1.88 2.03 25 -1.24 -1.17 -1.38 2-hexanol 1.66 1.76 25 -0.89 -0.96 -1.16 3-hexanol 1.66 1.65 25 -0.80 -0.98 -1.16 2-methylpentanol 1.75 25 -1.11 -1.19 -1.25 3-methyl-2-pentanol 1.53 25 -0.72 -1.19 -1.03 4-methylpentanol 1.75 25 -1.14 -1.18 -1.25 2-methyl-2-pentanol 1.53 25 -0.49 -0.87 -1.03 3-methyl-2-pentanol 1.53 25 -0.71 -0.97 -1.03 4-methyl-2-pentanol 1.53 25 -0.80 -0.97 -1.03 2-methyl-3-pentanol 1.53 25 -0.70 -1.01 -1.03 3-methyl-3-pentanol 1.53 25 -0.36 -0.91 -1.03 2-ethyl-1 -butanol 1.75 25 -1.17 -1.21 -1.25 2,2-dimethyl-1 -butanol 1.62 25 -1.04 -1.23 -1.12 3,3-dimethyl-1 -butanol 1.62 25 -0.50 -1.19 -1.12 3,3-dimethy 1 -2-butanol 1.40 1.47 25 -0.62 -1.02 -0.90 1 -heptanol 2.41 2.72 25 -1.81 -1.73 -1.91 2-heptanol 2.19 2.31 25 -1.55 -1.53 -1.69 3-heptanol 2.19 2.24 25 -1.47 -1.52 -1.69 4-heptanol 2.19 2.22 25 -1.40 -1.52 -1.69

Page 169: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

2-methyl-2-hexanol 3-methyl-3-hexanol 3-ethyl-3-pentanol 2,2-dimethylpentanol 2,4-dimethyl-2-pentanol

2,4-dimethyl-3-pentanol 1-octanol 2-octanol 3-octanol 2-methyl-2-heptanol 3-methyl-3-heptanol 2-ethyl-l-hexanol 1 -nonanol 2-nonanol 1-decanol 2-undecanol 1-dodecanol 1-tetradecanol 1-pentadecanol 1-hexadecanol 1-octadecanol cyclohexanol cycloheptanol cyclooctanol 4-pentene-l-ol 1 -hexene-3-ol 2-butoxyethanol ethanethiol butanethiol dimethyl sulfide diethyl sulfide di-n-propyl sulfide diisopropl sulfide dimethyl disulfide diethyl disulfide thiourea

triethyl phosphate benzene toluene ethylbenzene o-xylene m-xylene p-xylene propylbenzene isopropylbenzene 1.2.3-trimethylbenzene 1.2.4-trimethylbenzene 1.3.5-trimethylbenzene

2.06 25 2.06 25 2.06 25 2.15 25 1.93 25 1.93 25 2.94 3.00 25 2.72 2.90 25 2.72 25 2.59 25 2.59 25 2.81 25 3.47 3.67 25 3.25 25 4.00 4.57 25 4.31 25 5.06 5.13 25 6.11 6.36 40 6.64 46 7.17 56 7.70 61 1.27 1.23 25 1.83 25 2.38 25 0.87 25 1.38 25 0,84 0.83 25 1.17 25 2.23 2.28 25 0.84 1.05 25 1.90 1.95 25 2.96 25 2.52 2.84 25 1.74 1.77 25 2.80 25 -1.02 -1.02 176 0.28 0.80 25 2.14 2.13 25 2.64 2.73 25 3.17 3.15 25 3.09 3.12 25 3.14 3.20 25 3.14 3.15 25 3.70 3.72 25 3.57 3.66 25 3.54 3.59 25 3.59 3.63 25 3.64 3.58 25

-1.08 1.42 -1.56 -0.98 1.46 -1.56 -0.85 -1.50 -1.56 -1.52 -1.79 -1.65 -0.92 -1.45 -1.43 -1.22 -1.59 -1.43 -2.39 -2.28 -2.44 -2.09 -2.06 -2.22 -1.98 -2.08 -2.22 -1.72 -1.99 -2.09 -1.60 -2.01 -2.09 -2.11 -2.32 -2.31 -3.01 -2.84 -2.97 -2.74 -2.63 -2.75 -3.63 -3.40 -3.50 -2.94 -3.75 -3.81 -4.80 -4.50 -4.56 -5.84 -5.61 -5.76 -6.35 -6.17 -6.35 -7.00 -6.73 -6.98 -8.40 -7.84 -7.56 -0.44 -0.64 -0,77 -0.88 -1.22 -1.33 -1.29 -1.83

00 00 1

-0.15 -0.28 -0.37 -0.59 -0.88 -0.88 -0.42 -0.24 -0.34 -0.60 -0.80 -0.67 -2.18 -1.91 -1.73 -0.45 -0.57 -0.34 -1.34 -1.54 -1.40 -2.58 -2.65 -2.46 -2.24 -2.45 -2.02 -1.44 -1.51 -1.24 -2.42 -2.58 -2.30 0.32 1.14 0.01 0.43 0.23 0.22 -1.64 -1.96 -1.64 -2.21 -2.51 -2.14 -2.77 -3.05 -2.67 -2.80 -3.02 -2.59 -2.82 -3.01 -2.64 -2.77 -3.00 -2.64 -3.37 -3.61 -3.20 -3.27 -3.57 -3.07 -3.20 -3.48 -3.04 -3.31 -3.47 -3.09 -3.40 -3.47 -3.14

Page 170: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

168

2-ethyltoluene 3.62 3.53 25 -3.21 -3.52 -3.12 4-ethyltoluene 3.67 25 -3.11 -3.50 -3.17 butyltoluene 4.68 25 -4.06 -4.16 -4.18 isobutyltoluene 4.55 25 -4.12 -4.17 -4.05 tert-butylbenzene 3.97 4.11 25 -3.66 -4.07 -3.47 1,2-diethylbenzene 4.15 3.72 25 -3.28 -4.10 -3.65 1,4-diethylbenzene 4.20 25 -3.75 -4.08 -3.70 1,2,4,5-tetramethylbenzene 4.04 4.00 80 -4.59 -4.06 -4.09 2-isopropyltoluene 4.02 25 -3.76 -4.04 -3.52 4-isopropyltoluene 4.07 4.10 25 -3.77 -4.01 -3.57 pentylbenzene 4.76 4.90 25 -4.64 -4.71 -4.26 tert-pentylbenzene 4.50 25 -4.15 -4.71 -4.00 pentamethylbenzene 4.49 4.56 50 -4.00 -4.60 -4.24 hexylbenzene 5.29 5.52 25 -5.21 -5.28 -4.79 hexamethylbenzene 4.99 4.61 164 -5.23 -4.92 -5.88

styrene 2.87 2.95 25 -2.82 -2.96 -2.37 diphenylmethane 4.21 4.14 26 -4.08 -4.35 -3.72 bibenzyl 4.59 4.79 52 -4.62 -4.91 -4.36 biphenyl 4.03 4.01 70 -4.35 -4.26 -3.98 4-methylbiphenyl 4.53 4.63 45 -4.62 -4.83 -4.23 naphthalene 3.32 3.30 80 -3.60 -3.60 -3.37 1 -methylnaphthalene 3.81 3.87 25 -3.70 -4.16 -3.31 2-niethylnaphthalene 3.81 3.86 35 -3.77 -4.12 -3.41 1,3-dimethylnaphthalene 4.31 4.42 25 -4.29 -4.77 -3.81 1,4-dimethylnaphthalene 4.31 4.37 25 -4.14 -4.79 -3.81 1,5-dimethylnaphthalene 4.31 4.38 82 -4.68 -4.79 -4.38 2,3-dimethylnaphthalene 4.26 4.40 103 -4.72 -4.79 -4.54 2,6-dimethylnaphthalene 4.31 4.31 109 -4.89 -4.72 -4.65 1 -ethylnaphthalene 4.34 4.39 25 -4.17 -4.78 -3.84 2-ethylnaphthalene 4.34 4.38 25 -4.29 -4.73 -3.84 1,2,3,4-tetrahydronaphthaiene 3.71 3.49 25 -4.37 -3.83 -3.21 indan 3.15 3.18 25 -3.04 -3.31 -2.65 acenaphthene 3.77 3.92 95 -4.63 -4.37 -3.97 acenaphthylene 3.62 90 -3.96 -4.11 -3.77 fluorene 4.07 4.18 116 -5.00 -4.61 -4.48 1-methylfluorene 4.57 4.97 87 -5.22 -5.17 -4.69 anthracene 4.49 4.45 216 -6.35 -5.36 -5.90 2-methylanthracene 4.99 205 -6.96 -5.83 -6.29 9-methylanthracene 4.99 5.07 79 -5.89 -5.87 -5.03 9,10-dimethylanthracene 5.49 5.69 183 -6.57 -6.35 -6.57 phenanthrene 4.49 4.47 100 -5.26 -5.12 -4.74 1 -methylphenanthrene 4.99 5.08 123 -5.85 -5.71 -5.47 2-methylphenanthrene 4.99 4.86 57 -5.84 -5.71 -4.81 fluoranthene 4.95 5.16 110 -6.00 -5.98 -5.30 benzo [a] fluorene 5.25 5.68 187 -6.68 -6.79 -6.37 benzo[b]fluorene 5.25 5.77 212 -8.04 -6.77 -6.62 pyrene 4.95 4.88 150 -6.18 -6.12 -5.70 7,12-dimethylbenz [a] anthracene 6.66 5.80 122 -7.02 -8.13 -7.13

Page 171: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

naphthacene 5.66 5.90 357 -8.60 -7.07 -8.48 chrysene 5.66 5.81 255 -8.06 -6.93 -7.46 5 -methylchrysene 6.16 117 -6.59 -7.49 -6.58 6-methylchrysene 6.16 160 -6.57 -7.49 -7.01 5,6-diniethy Ichry sene 6.61 128 -7.01 -8.06 -7.14 triphenylene 5.66 5.49 199 -6.73 -6.67 -6.90 perylene 6.12 5.82 278 -8.80 -7.40 -8.15 benzo [b] fluoranthene 6.12 167 -8.23 -7.38 -7.04 benzo [jlfluoranthene 6.12 165 -8.00 -7.52 -7.02 benzo [k]fluoranthene 6.12 6.11 216 -8.49 -7.60 -7.53 cholanthrene 6.12 173 -7.85 -7.45 -7.10 3-methylcholanthrene 6.62 6.42 179 -7.92 -8.04 -7.66 benzo[a]pyrene 6.12 6.13 179 -8.70 -7.83 -7.16 benzo[e]pyrene 6.12 6.44 178 -7.80 -7.92 -7.15 benzo[ghi]perylene 6.58 6.63 278 -9.02 -8.51 -8.61 picene 6.84 7.11 366 -7.87 -8.80 -9.75 fluorobenzene 2.28 2.27 25 -1.80 -2.02 -1.78 1,3-difluorobenzene 2.43 25 -2.00 -2.15 -1.93 1,4-difluorobenzene 2.43 25 -1.97 -1.98 -1.93 benzyl trifluoride 3.03 3.01 25 -2.51 -2.50 -2.53 chlorobenzene 2.86 2.89 25 -2.38 -2.75 -2.36 1,2-dichlorobenzene 3.45 3.43 25 -3.05 -3.42 -2.95 1,3-dichlorobenzene 3.57 3.53 25 -3.04 -3.52 -3.07 1,4-dichlorobenzene 3.57 3.44 54 -3.27 -3.48 -3.36 1,2,3-trichlorobenzene 4.04 4.14 25 -4.00 -4.17 -3.54 1,2,4-trichlorobenzene 4.16 4.05 25 -3.59 -4.16 -3.66 1,3,5-trichlorobenzene 4.28 4.19 63 -4.48 -4.22 -4.16 1,2,3,4-tetrachlorobenzene 4.63 4.64 46 -4.57 -4.77 -4.34 1,2,3,5-tetrachlorobenzene 4.75 4.66 54 -4.63 -4.80 -4.54 1,2,4,5-tetrachlorobenzene 4.75 4.60 139 -5.56 -4.79 -5.39 pentachlorobenzene 5.35 5.18 50 -5.65 -5.37 -5.10 hexachlorobenzene 6.06 5.73 227 -7.68 -6.00 -7.58 2-chlorotoluene 3.35 3.42 25 -3.52 -3.36 -2.85 4-chlorotoluene 3.35 3.33 25 -3.08 -3.31 -2.85 benzyl chloride 2.70 25 -2.39 -2.18 -2.20 1 -chloronaphthalene 4.03 4.10 25 -3.93 -4.36 -3.53 2-chloronaphthalene 4.03 4.14 60 -4.14 -4.36 -3.88 2-chlorobiphenyl 4.49 4.53 32 -4.54 -4.99 -4.06 3-chlorobiphenyl 4.49 25 -4.88 -4.96 -3.99 bromobenzene 3.01 2.99 25 -2.55 -2.98 -2.51 1,2-dibromobenzene 3.67 3.64 25 -3.50 -4.02 -3.17 1,3-dibromobenzene 3.87 3.75 25 -3.54 -4.06 -3.37 1,4-dibromobenzene 3.87 3.79 87 -4.07 -4.06 -3.99 1,3,5-tribromobenzene 4.73 4.51 121 -5.60 -5.13 -5.19 1,2,4,5-tetrabromobenzene 5.19 5.13 182 -6.98 -5.88 -6.26 2-broniotoluene 3.50 25 -2.23 -3.59 -3.00 4-broniotoluene 3.50 29 -3.19 -3.53 -3.04 1 -bromonaphthalene 4.18 25 -4.35 -4.69 -3.68

Page 172: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

2-bromonaphthalene 4.18 54 -4.40 -4.62 -3.97 iodobenzene 3.27 3.25 25 -3.01 -3.42 -2.77 1-iodonaphthalene 4.44 25 -4.55 -5.16 -3.94

o-fluorobromobenzene 3.15 25 -2.70 -3.29 -2.65 m-fluorobromobenzene 3.15 25 -2.67 -3.25 -2.65 o-chlorobromobenzene 3.44 25 -3.19 -3.90 -2.94 m-chlorobromobenzene 3.72 25 -3.21 -3.92 -3.22 p-chlorobromobenzene 3.72 67 -3.63 -3.88 -3.64 o-chloroiodobenzene 3.98 25 -3.54 -4.43 -3.48 m-chloroiodobenzene 3.98 55 -3.55 -4.42 -3.78 p-chloroiodobenzene 3.98 53 -4.03 -4.42 -3.76 p-bromoiodobenzene 4.13 90 -4.56 -4.64 -4.28 anisole 2.06 2.11 37 -1.85 -2.04 -1.68 2-chloroanisole 2.75 2.68 25 -2.46 -2.92 -2.25 3-chloroanisole 2.91 2.98 25 -2.78 -2.90 -2.41 4-chloroanisole 2.91 2.78 25 -2.78 -2.78 -2.41 diphenyl ether 4.24 4.21 28 -3.96 -4.58 -3.77 benzaldehyde 1.50 1.47 25 -1.19 -1.36 -1.00 p-methoxybenzaldehyde 1.78 1.76 25 -1.49 -1.53 -1.28 acetophenone 1.58 1.58 25 -1.28 -1.53 -1.08 benzophenone 3.18 3.18 49 -3.12 -3.56 -2.92 anthraquinone 2.62 3.39 284 -5.19 -3.73 -4.71 methyl benzoate 2.11 2.12 25 -1.85 -1.89 -1.61 ethyl benzoate 2.64 2.64 25 -2.32 -2.41 -2.14 dimethyl phthalate 1.56 1.56 25 -1.66 -1.32 -1.06 diethyl phthalate 2.62 2.47 25 -2.35 -2.31 -2.12 di(2-ethylhexyl)phthalate 8.71 7.45 25 -6.96 -8.94 -8.21 benzonitrile 1.57 1.56 25 -1.00 -1.45 -1.07 phthalonitrile 1.01 0.99 140 -2.38 -1.10 -1.66 aniline 0.91 0.90 25 -0.41 -1.01 -0.41 o-toluidine 1.36 1.32 25 -2.21 -1.50 -0.86

m-methylaniline 1.36 1.32 25 -0.85 -1.46 -0.86 p-methylaniline 1.41 1.39 43 -1.21 -1.44 -1.09 o-chloroaniline 1.96 1.90 25 -1.52 -1.96 -1.46 m-chloroaniline 1.96 1.88 25 -1.37 -1.82 -1.46 p-choroaniline 1.96 1.88 73 -1.66 -1.77 -1.94 o-nitroaniline 1.92 1.85 72 -1.96 -1.75 -1.89 m-nitroaniline 1.38 1.37 114 -2.19 -1.44 -1.77 p-nitroaniline 1.38 1.39 146 -2.37 -1.23 -2.09 ethyl-p-aminobenzoate 2.03 1.86 89 -2.10 -2.03 -2.17 risocaine 2.55 2.43 75 -2.45 -2.60 -2.55 butamben 3.08 2.87 58 -3.08 -3.17 -2.91 N-methylaniline 1.64 1.66 25 -1.28 -1.61 -1.14 N-ethylaniline 2.17 2.16 25 -1.70 -2.21 -1.67 N,N-dimethylaniline 2.34 2.31 25 -1.92 -2.46 -1.84 N,N-diethylaniline 3.23 3.31 25 -3.03 -3.59 -2.73 1-naphthylamine 2.09 2.25 49 -1.92 -2.45 -1.83 p,p'-biphenyldiamine 1.58 1.34 128 -2.70 -2.74 -2.11

Page 173: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

171

benzylamine 1.09 1.09 25 -1.54 -0.43 -0.59 procaine 2.54 2.14 61 -1.78 -2.23 -2.40 diphenylamine 3.62 3.50 52 -3.50 -3.63 -3.39 azobenzene 3.85 3.82 69 -2.75 -4.28 -3.79 nitrobenzene 1.88 1.85 25 -1.80 -1.87 -1.38 o-nitrotoluene 2.30 2.30 25 -2.33 -2.42 -1.80 m-nitrotoluene 2.38 2.42 25 -2.44 -2.57 -1.88 p-nitrotoluene 2.38 2.37 55 -2.49 -2.43 -2.18 o-chloronitrobenzene 2.40 2.52 34 -2.55 -2.61 -1.99 m-chloronitrobenzene 2.60 2.47 43 -2.77 -2.59 -2.28 p-chloronitrobenzene 2.60 2.39 84 -2.92 -2.75 -2.69 o-nitroanisole 1.82 1.73 25 -1.96 -2.16 -1.32 p-nitroanisole 2.10 2.03 54 -2.41 -2.11 -1.89 1,2-dinitrobenzene 1.63 1.69 118 -3.10 -1.98 -2.06 1,3-dinitrobenzene 1.63 1.49 90 -2.29 -1.66 -1.78 1,4-dinitrobenzene 1.63 1.47 173 -3.39 -1.66 -2.61 2,4-dinitrotoluene 2.05 1.98 69 -2.82 -2.22 -1.99 2,6-dinitrotoIuene 2.05 2.10 65 -3.00 -2.30 -1.95 2,4,6-trinitrotoluene 1.71 1.60 81 -3.22 -2.12 -1.77 1,3,5-trinitrobenzene 1.37 1.18 123 -2.89 -1.55 -1.85 1 -nitronaphthalene 3.06 3.19 59 -3.54 -3.72 -2.90 2,3-dichloronitrobenzene 3.11 3.05 61 -3.48 -3.37 -2.97 3,4-dichIoronitrobenzene 3.19 3.12 41 -3.20 -3.44 -2.85 benzamide 0.65 0.64 128 -0.96 -0.40 -1.18 acetanilide 1.16 1.16 114 -1.33 -0.89 -1.55 p-fluoroacetanilide 1.56 1.47 153 -1.78 -1.11 -2.34 p-chloroacetanil ide 2.13 2.12 178 -2.84 -1.81 -3.16 p-bromoacetanilide 2.28 2.29 165 -3.08 -2.09 -3.18 4-nitroacetanilide 1.46 1.66 215 -2.69 -1.83 -2.86 phenacetin 1.77 1.58 135 -2.35 -1.74 -2.37 lidocain 1.95 2.26 68 -1.71 -2.41 -1.88 benzoic acid 1.88 1.87 122 -1.55 -1.06 -2.35 o-toluic acid 2.38 2.40 105 -2.06 -1.74 -2.68 m-toluic acid 2.38 2.37 112 -2.14 -1.66 -2.75 p-toluic acid 2.38 2.27 182 -2.60 -1.61 -3.45 o-ch!orobenzoic acid 2.10 2.05 142 -1.89 -1.52 -2.77 m-chlorobenzoic acid 2.70 2.68 158 -2.59 -1.77 -3.53 p-chlorobenzoic acid 2.70 2.65 243 -3.31 -1.85 -4.38 2-bromobenzoic acid 2.20 2.20 149 -2.28 -1.74 -2.94 4-bromobenzoic acid 2.85 2.86 246 -3.54 -2.16 -4.56 m-nitrobenzoic acid 1.84 1.83 142 -1.68 -1.53 -2.51 p-nitrobenzoic acid 1.84 1.89 242 -2.80 -1.55 -3.51 o-aminobenzoic acid 1.21 1.21 145 -1.52 -1.02 -1.91 aspirin 1.02 1.19 135 -1.72 -1.13 -1.62 phenylacetic acid 1.41 1.41 77 -0.89 -1.09 -1.43 ibuprofen 3.68 3.50 76 -3.76 -3.93 -3.69 naproxen 2.82 3.34 153 -4.20 -3.89 -3.60 phenol 1.47 1.47 41 0.00 -0.73 -1.13

Page 174: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

2-methylphenol 1.97 1.95 31 -0.62 -1.44 -1.53 3-methylphenol 1.97 1.96 25 -0.68 -1.26 -1.47 p-cresol 1.97 1.94 33 -0.73 -1.33 -1.55 2,4-dimethylphenol 2.47 2.30 28 -1.19 -1.82 -2.00 2,6-dimethylphenol 2.47 2.36 49 -1.29 -1.96 -2.21 3,4-dimethy Iphenol 2.42 2.23 63 -1.38 -1.73 -2.30 3,5-diinethylphenol 2.47 2.35 64 -1.40 -1.80 -2.36 2,4,6-trimethylphenol 2.97 71 -2.05 -2.39 -2.93 p-tert-butylphenol 3.30 3.31 98 -2.41 -2.77 -3.53 thymol 3.20 3.30 48 -2.22 -2.81 -2.93 p-phenylphenol 3.36 3.20 167 -3.48 -3.18 -4.28 2-chlorophenol 2.15 2.15 25 -1.06 -1.56 -1.65 3-chlorophenol 2.48 2.50 34 -0.70 -1.37 -2.07 4-chlorophenol 2.48 2.39 43 -0.70 -1.30 -2.16 4-bromophenol 2.63 2.59 66 -1.09 -1.60 -2.54 2,3-dichlorophenol 2.84 2.84 59 -1.30 -2.22 -2.68 2,4-dichlorophenol 2.96 3.06 45 -1.55 -2.25 -2.66 2,6-dichlorophenol 2.63 2.75 67 -1.79 -2.22 -2.55 3,4-dichlorophenol 3.17 3.33 67 -1.25 -1.81 -3.09 3,5-dichlorophenol 3.29 3.52 68 -1.34 -1.83 -3.22 2,3,4-trichlorophenol 3.58 79 -2.67 -2.57 -3.62 2,3,5-trichlorophenol 3.58 57 -2.67 -2.60 -3.40 2,3,6-trichlorophenol 3.37 3.77 56 -2.64 -2.71 -3.18 2,4,5-trichlorophenol 3.58 3.72 68 -2.21 -2.64 -3.51 2,4,6-trichlorophenol 3.37 3.69 70 -2.34 -2.67 -3.32 2,3,4,5-tetrachlorophenol 4.30 4.21 116 -3.15 -3.26 -4.71 2,3,4,6-tetrachlorophenol 4.09 4.12 70 -3.10 -3.49 -4.04 2,3,5,6-tetrachlorophenol 4.09 3.88 114 -3.37 -3.39 -4.48 pentachlorophenol 4.68 5.12 174 -4.28 -3.48 -5.67 o-methoxyphenol 1.32 1.32 28 -1.96 -1.21 -0.85 p-hydroxybenzaldehyde 1.44 1.35 25 -0.96 -0.67 -0.94 o-aminophenol 0.62 0.62 175 -0.72 -0.47 -1.62 p-aminophenol 0.25 0.04 189 -0.80 -0.13 -1.39 o-nitrophenol 1.85 1.79 44 -1.74 -1.86 -1.54 m-nitrophenol 1.85 2.00 97 -1.01 -1.04 -2.07 p-nitrophenol 1.85 1.91 113 -0.74 -0.85 -2.23 salicylic acid 2.19 2.26 159 -1.82 -1.48 -3.03 p-hydroxybenzoic acid 1.56 1.58 217 -1.41 -1.07 -2.98 1,2-benzenediol 0.88 0.88 104 0.62 -0.42 -1.17 1,3-benzenediol 0.81 0.80 110 0.81 -0.27 -1.16 1,4-benzenediol 0.81 0.59 170 -0.17 -0.32 -1.76 methylparaben 1.98 1.96 128 -1.83 -1.48 -2.51 ethyl-p-hydroxybenzoate 2.51 2.47 117 -2.35 -2.02 -2.93 o-hydroxybenzamide 1.28 1.28 140 -1.82 -1.11 -1.93 p-hydroxyacetanilide 0.49 0.51 169 -1.03 -1.02 -1.43 1-naphthol 2.65 2.84 96 -2.22 -2.64 -2.86 2-naphthol 2.65 2.70 121 -2.28 -2.54 -3.11 phenylmethanol 1.10 1.10 25 -0.40 -0.79 -0.60

Page 175: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

173

1-phenylethanol 1.41 1.42 25 -0.92 -1.06 -0.91 2-phenoxyethanol 1.19 1.16 25 -0.70 -0.88 -0.69 ephedrine 0.89 0.93 38 -0.47 -0.78 -0.52 thiophenol 2.53 2.52 25 -2.12 -2.55 -2.03 phenylthiourea 0.75 0.73 154 -1.77 -1.02 -1.54 p-toluenesulfonamide 0.80 0.82 139 -1.74 -1.06 -1.44 furane 1.32 1.34 25 -0.82 -1.03 -0.82 furfural 0.67 0.41 25 -0.10 -0.15 -0.17 dibenzofurane 4.09 4.12 83 -4.60 -4.47 -4.17 pyridine 0.64 0.65 25 0.76 0.04 -0.14 2,3-dimethylpyridine 1.59 25 0.38 -0.74 -1.09 2,4-dimethylpyridine 1.64 25 0.38 -0.68 -1.14 2,6-dimethylpyridine 1.64 1.68 25 0.45 -0.70 -1.14 3,4-dimethy Ipyridine 1.59 25 0.36 -0.69 -1.09 3,5-dimethylpyridine 1.64 1.78 25 0.38 -0.81 -1.14 2-ethyl pyridine 1.67 1.69 25 0.51 -0.87 -1.17 4-ethyl pyridine 1.67 1.65 25 0.83 -0.90 -1.17 cocaine 2.57 2.30 98 -2.25 -2.17 -2.80 atropine 1.32 1.83 116 -2.12 -2.53 -1.73 quinoline 2.03 2.03 25 -1.30 -1.88 -1.53 isoquinoline 1.82 2.08 26 -1.45 -1.80 -1.33 carbazole 3.52 3.48 247 -5.27 -3.87 -5.24 antipyrene 0.20 0.23 109 0.72 0.44 -0.54 morpholine -0.41 -0.86 25 1.97 1.62 0.91 theophylline -0.06 -0.02 272 -1.39 -0.21 -1.91 caffeine -0.06 -0.07 235 -0.88 0.45 -1.54 morphine 0.59 0.76 254 -3.28 -2.38 -2.38 codeine 0.98 1.14 155 -1.52 -2.28 -1.78 thiophene 1.79 1.89 25 -1.33 -1.65 -1.29 imipramine 5.04 4.44 174 -4.19 -4.15 -6.03 progesterone 3.77 3.87 131 -4.42 -4.02 -4.33 testosterone 3.22 3.32 155 -4.02 -4.08 -4.02 deoxycorticosterone 3.25 2.88 136 -3.45 -3.98 -3.86 hydroxyprogesterone-17a 3.15 3.17 276 -3.82 -4.24 -5.16 corticosterone 2.32 1.94 181 -3.24 -4.04 -3.38 cortisone 1.30 1.47 222 -3.11 -3.29 -2.77 hydrocortisone 1.70 1.61 213 -3.09 -4.93 -3.08 17a-methyltestosterone 3.74 3.36 162 -4.00 -4.34 -4.61 prednisolone 1.38 1.62 240 -3.18 -5.20 -3.03 hydrocortisone 21-acetate 2.23 2.19 223 -4.88 -4.69 -3.71 estrone 3.38 3.13 255 -3.96 -4.07 -5.18 estradiol 3.78 3.86 173 -5.03 -4.39 -4.76 dexamethasone 1.75 2.01 262 -3.59 -5.35 -3.62 5,5-dimethylbarbituric acid -0.40 -0.44 278 -1.74 0.20 -1.63 5-methyl-5-ethylbarbituric acid 0.13 0.08 212 -1.23 -0.36 -1.50 barbital 0.66 0.65 190 -2.40 -0.96 -1.81 5-ethyl-5-isopropylbarbituric acid 1.05 1.10 203 -2.15 -1.49 -2.33 butabarbital 1.58 1.65 166 -2.39 -1.97 -2.49

Page 176: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

174

pentobarbital 2.11 2.10 129 -2.39 -2.54 -2.65 5-ethyl-5-(3-methylbutyI)barbitaI 2.11 2.07 156 -2.66 -2.54 -2.92 5,5-diisopropylbarbital 1.45 1.56 228 -2.77 -2.00 -2.98 5-allyl-5-methylbarbital 0.17 0.36 166 -1.16 -0.68 -1.08 5-allyl-5-ethylbarbital 0.70 0.87 160 -1.61 -1.24 -1.55 5-allyl-5-isopropylbarbitaI 1.37 1.37 143 -1.71 -1.70 -2.05 secobarbital 2.16 1.97 132 -2.36 -2.82 -2.73 5,5-diallylbarbital 0.75 1.15 174 -2.08 -1.73 -1.74 5-(3-methyl-2-butenyl)-5-ethylbarbital 1.63 1.73 155 -2.25 -2.34 -2.43 5-(3-methyl-2-butenyl)-5-isoprbarbital 2.23 2.23 131 -2.59 -2.87 -2.80 5-ethyl-5-phenylbarbital 1.37 1.47 174 -2.32 -2.88 -2.36 5-allyl-5-phenylbarbital 1.41 1.69 133 -2.37 -3.28 -1.99 cyclobutyl-5-spirobarbituric acid -0.57 -0.27 256 -1.66 -0.12 -1.24 cyclopentyl-5-spirobarbituric acid -0.01 0.24 270 -2.35 -0.73 -1.94 cyclohexyl-5-spirobarbituric acid 0.55 0.91 289 -3.06 -1.33 -2.69 cycloheptyl-5-spirobarbituric acid 1.11 1.36 266 -3.17 -1.94 -3.02 cyclooctyl-5-spirobarbituric acid 1.67 1.79 228 -2.98 -2.56 -3.20 amitrole -0.53 -0.87 159 0.52 0.86 -0.31 carbaryl 2.38 2.36 142 -3.22 -2.74 -3.05 carbofuran 2.47 1.63 152 -2.80 -1.77 -3.24 chlorfenac 3.43 3.20 161 -3.08 -3.10 -4.29 coumatetralyl 4.83 180 -2.84 -4.77 -5.88 2,4-DB 3.42 3.53 117 -3.73 -3.60 -3.84 DDT 6.76 6.91 109 -7.15 -7.46 -7.10 desmedipham 3.40 3.39 120 -4.63 -5.10 -3.85 dichlorophen 4.89 178 -3.95 -4.58 -5.92 dichlorprop 3.26 3.43 118 -2.83 -3.35 -3.69 diuron 2.68 2.68 159 -3.05 -2.98 -3.52 DNOC 2.29 2.13 86 -1.46 -2.40 -2.40 etofenprox 7.36 7.05 37 -8.60 -7.84 -6.98 fenoxycarb 4.46 4.30 54 -4.70 -4.82 -4.25 fenuron 0.98 0.98 133 -1.60 -1.64 -1.56 fluometuron 2.39 2.42 163 -3.43 -2.11 -3.27 isoprocarb 2.29 2.31 93 -2.86 -2.21 -2.47 isoproturon 2.40 2.50 158 -3.54 -3.00 -3.23 linuron 3.00 3.20 93 -3.59 -3.39 -3.18 methyldymron 3.24 3.01 60 -3.35 -3.74 -3.09 metolcarb 1.71 1.70 76 -1.80 -1.57 -1.72 metoxuron 1.78 1.64 125 -2.56 -2.18 -2.28 monolinuron 2.31 2.30 80 -2.57 -2.36 -2.36 propoxur 1.65 1.52 91 -2.05 -1.62 -1.81 warfarin 2.89 2.70 161 -4.26 -4.07 -3.75 XMC 2.21 2.23 99 -2.58 -2.08 -2.45 cyclopropyl-5-spirobarbituric acid -1.13 -0.53 325 -1.89 0.36 -1.37 uracil -1.06 -1.07 335 -1.49 1.19 -1.54 chlorpheniramine 3.15 3.17 25 -0.24 -3.06 -2.65 fentanyl 3.62 3.89 83 -1.13 -4.22 -3.70 adenine -0.29 -0.09 363 -2.43 0.19 -2.59

Page 177: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

175

APPENDIX C. Predicted Solubility for Test Set 1.

Name MPCO CLOGP MIogP lOgSvv logSw logS„ logS„ Expt GSE AOUAFAC GClogP

2,2',4,5,5'-PCB 77 6.97 6.85 -6.77 -6.99 -7.21 -7.51 benzocaine 89 1.92 1.86 -2.32 -2.06 -2.16 -2.56 acetylsalicylicacid 135 1.02 1.19 -1.61 -1.62 -1.36 -1.07 theophylline 272 -0.06 -0.02 -1.37 -1.91 -2.77 -1.13 antipyrine 111 0.20 0.23 0.39 -0.56 -1.34 -0.11 atrazine 175 2.50 2.61 -3.55 -3.50 -2.86 -3.49 phenobarbital 176 1.37 1.47 -2.34 -2.38 -2.24 -2.67 diuron 159 2.68 2.68 -3.76 -3.52 -3.55 -3.57 nitrofurantoin 272 -0.47 -0.47 -3.38 -1.50 -2.98 -2.58 phenytoin 295 2.08 2.26 -3.99 -4.28 -4.72 -3.13 diazepam 125 3.16 2.99 -3.76 -3.66 -3.97 -4.00 testosterone 155 3.22 3.32 -4.07 -4.02 -4.84 -4.07 lindane 113 3.75 3.72 -4.60 -4.13 -5.57 -3.85 parathion <25 3.47 3.83 -4.29 -2.97 -4.08 -3.88 diazinon 120 3.50 3.30 -3.76 -3.95 -4.77 -4.05 phenolphthalein 264 2.63 -2.90 -4.52 -4.95 -2.54 malathion <25 2.70 2.38 -3.36 -2.20 -2.41 -2.87 chlorpyriphos 43 4.49 4.82 -5.67 -4.17 -5.10 -5.07 prostaglandin e2 67 2.01 2.82 -2.47 -1.93 -3.38 -3.39 p,p'-DDT 109 6.76 6.91 -8.08 -7.10 -6.77 -6.77 chlordane <25 5.80 6.00 -5.35 -5.30 -6.40 -7.05

Page 178: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

176

APPENDIX D. Predicted Solubility for Test Set 2.

Name MPCO CLOGP MlogP logS« logS„ logS„ logS«, Expt GSE AQUAFAC GClogP

aminopyrine 108 0.57 1.00 -0.36 -0.90 -1.77 -0.65 ephedrine 38 0.89 0.93 -0.47 -0.52 -0.55 -0.66 caffeine 235 -0.06 -0.07 -0.88 -1.54 -1.88 -0.85 paracetamol 169 0.49 0.51 -0.99 -1.43 -1.48 -0.37 metronidazole 160 -0.46 -0.02 -1.22 -0.39 -1.53 -0.10 dl-coniine -18 2.51 -1.50 -2.01 -1.17 -2.02 procaine 61 2.54 2.14 -1.78 -2.40 -1.99 -2.61 methylparaben 128 1.98 1.96 -1.83 -2.51 -1.80 -1.85 cyclobarbital 171 1.87 1.77 -2.02 -2.83 -2.92 -3.58 atropine 116 1.32 1.83 -2.20 -1.73 -2.45 -1.24 cocaine 98 2.57 2.30 -2.25 -2.80 -2.26 -2.69 phenacetin 135 1.77 1.58 -2.35 -2.37 -2.66 -1.76 barbital 190 0.66 0.65 -2.40 -1.81 -1.72 -1.89 tripelennamine 191 3.31 -2.64 -4.47 -3.52 -2.68 pipemedic acid 253 -2.73 -2.98 0.95 -1.43 -0.04 chlorfenac 161 3.43 3.20 -3.08 -4.29 -3.84 -4.17 prednisolone 240 1.38 1.62 -3.18 -3.03 -3.68 -3.42 nalidixic acid 227 1.32 1.59 -3.37 -2.84 -3.30 -3.07 doxepin 120 4.09 -3.40 -4.54 -4.62 -3.57 lorazepam 167 2.36 2.39 -3.60 -3.28 -4.24 -3.84 dibucaine 64 5.34 4.40 -3.70 -5.23 -4.47 -5.98 ibuprofen 76 3.68 3.50 -3.76 -3.69 -3.12 -3.68 nitrazipam 224 2.31 2.13 -3.80 -3.80 -4.51 -3.85 mebandazole 289 3.06 2.83 -3.88 -5.20 -4.55 -5.16 oxazepam 205 2.29 2.24 -3.95 -3.59 -3.98 -3.65 prasterone 150 3.07 3.23 -4.06 -3.82 -4.66 -4.00 triazolam 224 2.25 2.42 -4.08 -3.74 -6.03 -3.88 hydrastine 132 2.08 -4.11 -2.65 -2.96 -3.32 imipramine 174 5.04 4.44 -4.19 -6.03 -4.77 -4.65 naproxen 153 2.82 3.34 -4.20 -3.60 -3.85 -3.66 warfarin 161 2.89 2.70 -4.26 -3.75 -3.62 -3.36 indomethacine 159 4.18 4.27 -4.62 -5.02 -4.94 -6.10 norethindrone 203 2.78 2.97 -4.63 -4.06 -4.96 -4.16 sulindac 184 3.16 3.05 -5.00 -4.25 -6.21 -4.79 estradiol 220 3.78 3.86 -5.03 -5.23 -4.73 -4.00 chlorpromazine 57 5.80 5.35 -5.10 -5.62 -4.23 -4.88 thioridazine 73 6.50 5.90 -5.82 -6.48 -6.07 -5.75 fluotrimazole 164 5.15 -8.40 -6.04 -6.64 -4.88

Page 179: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

177

APPENDIX E. Predicted Solubility for Test Set 3.

Name CLOGP MlogP lOgSvv logS„ Error Expt GClogP Pred-Obs

1,3,5-trichlorobenzene 4.28 4.19 -4.44 -4.00 0.44 4-aminobenzoic acid 0.98 0.83 -1.37 -1.60 -0.23 4-hydroxypteridine -0.20 -1.47 -0.89 0.58 5 -methyl-5 -ethylbarbiturate 0.13 0.08 -1.16 -1.41 -0.25 6-aminopteridine -0.83 -2.34 -1.08 1.26 6-methoxypteridine 0.09 -1.14 -1.34 -0.20 7-butyltheophylline 1.53 -1.81 -2.29 -0.48 7-chlorpteridine -0.14 -0.88 -1.14 -0.26 7-dimethylaminopteridine 0.07 -0.02 -1.55 -1.53 7-methy Ipteridine -0.36 -0.85 -0.76 0.09 acetazolamide -1.25 -0.26 -2.49 -1.08 1.41 adenosine -2.27 -1.05 -1.73 -0.84 0.89 atrazine 2.50 2.61 -3.49 -3.49 0.00 baclofen -0.62 -0.96 -1.70 -0.73 0.97 benzanthr acene (benzo [a] anthracene) 5.66 5.54 -7.21 -6.69 0.52 busulfan -0.59 -0.52 -2.27 0.25 2.52 clofazimine 6.69 7.48 -5.80 -9.22 -3.42 cortisone 1.30 1.47 -3.27 -3.56 -0.29 cyclohexane-spirobarbiturate 1.11 1.36 -3.17 -2.61 0.56 diatrizoic acid 0.65 -2.79 -2.26 0.53 disopyramide 2.58 2.71 -1.70 -2.18 -0.48 ethyl-4-aminobenzoate (benzocaine) 1.92 1.86 -2.62 -2.56 0.06 fenchlorphos 4.96 5.07 -4.10 -5.33 -1.23 flurbiprofen 3.75 4.16 -3.74 -4.64 -0.90 glafenine 3.04 -4.57 -5.59 -1.02 glutethimide 1.99 1.90 -2.34 -2.50 -0.16 guanine -1.28 -0.96 -3.58 -1.29 2.29 heptabarbital 2.43 2.03 -3.00 -4.09 -1.09 hydrochlorothiazide -0.40 -0.07 -2.69 -2.15 0.54 indapamide 2.94 -3.79 -5.44 -1.65 indoprofen 2.74 2.77 -4.82 -3.42 1.40 isocarboxazid 0.97 1.49 -2.46 -2.18 0.28 i-dopa -2.82 -2.74 -1.82 1.67 3.49 lidocaine 1.95 2.26 -1.77 -1.30 0.47 linuron 3.00 3.20 -3.52 -4.01 -0.49 mefenamic acid 4.94 5.12 -3.77 -5.78 -2.01 meprobamate 0.91 0.70 -1.81 -1.70 0.11 methyprylon 1.78 0.78 -0.38 -2.16 -1.78 minocycline 0.19 -0.94 -3.41 -2.47 mitomycin c -2.55 -0.40 -2.56 -1.55 1.01 nalidixic acid 1.32 1.59 -3.37 -3.07 0.30 nicotinic acid 0.80 -0.85 -0.98 -0.13 nitrofurantoin -0.47 -0.47 -3.48 -2.58 0.90 propylparaben 3.04 3.04 -2.56 -2.81 -0.25 propylthiouracil -0.33 -2.19 -1.85 0.34

Page 180: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

178

salicylic acid 2.19 2.26 -1.80 -1.99 -0.19 strychnine 1.66 1.93 -3.33 -2.76 0.57

sulfamethoxazole 0.55 0.89 -2.71 -2.35 0.36

talbutal 1.63 1.47 -2.02 -2.72 -0.70

tenoxicam 1.61 0.81 -3.88 -3.99 -0.11 terfenadine 6.09 5.69 -4.67 -5.34 -0.67

tetroxoprim 0.63 0.56 -2.10 -2.71 -0.61

theobromine -0.69 -0.72 -2.56 -1.29 1.27

Page 181: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

179

REFERENCES

Abraham MH, Chadha HS, Whiting GS, et al. 1994. Hydrogen-bonding 32: An analysis of water-octanol and water-alkane partitioning and the delta-log-p parameter of Seiler. J Pharm Sci 83 (8): 1085-1100.

Abraham MH and Le J. 1999. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J Pharm Sci 88(9): 868-880.

Allen FH, Barnard JM, Cook APF, and Hall SR. 1995. The Molecular Information File (MIF): Core Specifications of a New Standard Format for Chemical Data. J Chem Inf Comput Sci 35: 412-427.

Barnard JM. 1990. Draft Specification for Revised Version of the Standard Molecular Data (SMD) Format. J Chem Inf Comput Sci 30: 81-96.

Bebak H, Buse C, Donner WT, et al. 1989. The Standard Molecular Data Format (SMD Format) as an Integration Tool in Computer Chemistry. J Chem Inf Comput Sci 29: 1-5.

Boethling RS, Campbell SE, Lynch DG, and LaVeck GD. 1988. Validation of CHEMEST, an on-line system for the estimation of chemical properties. Ecotoxicol Environ 5'a/15(l): 21-30.

Chen XQ, Cho SJ, Li Y, et al. 2002. Prediction of aqueous solubility of organic compounds using a quantitative structure-property relationship. J Pharm Sci 91 (8): 1838-1852.

CRC Handbook of Chemistry and Physics (71th ed.) 1991. CRC Press, Boca Raton, Florida.

Dannenfelser RM, Yalkowsky SH. 1999. Predicting the total entropy of melting: Application to pharmaceuticals and environmentally relevant compounds. J Pharm Sci 88 (7): 722-724.

Dearden JC. 1991 The QSAR prediction of melting point, a property of environmental relevance. Sci Total Environ 109-110: 59-68.

Grant DGW and Higuchi T. 1990. Solubility Behaviour of Organic Compounds. John Wiley & Sons, New York.

Page 182: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

180

Hall LH and Kier LB. 1995. Electrotopological state indexes for atom types - a novel combination of electronic, topological, and valence state information. J Chem InfComput Sci 35 (6): 1039-1045.

Hansch C, Quninlan JE, and Lawrence GL. 1968. The linear free-energy relationship between partition coefficient and the aqueous solubility of organic liquids. J Org Chem 33: 347-350.

Hildebrand JH and Scott RL. 1950. Solubility of nonelectrolytes. Reinhold, New York.

Hildebrand JH and Scott RL. 1962. Regular solutions. Prentice Hall, Englewood Cliffs, NJ.

Huuskonen J. 2000. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem InfComput Sci 40: 773-777.

Huuskonen J, Rantanen J, Livingstone D. 2000. Prediction of aqueous solubility for a diverse set of organic compounds based on atom-type electrotopological state indices Eur J Med Chem 35 (12): 1081-1088.

Huuskonen J. 2001. Estimation of aqueous solubility in drug design. Comb Chem High T Scr4(3): 311-316.

Huyskens PL and Siegel GG. 1988. Fundamental questions about entropy. Bull Soc Chim Belg 97: 809-830.

Huyskens PL. 1992. Mobile and static molecular disorder in liquids. J Mol Struct 274: 223-246.

Irmann F. 1965. Eine einfache korrelation zwischen wasserloslichkeit und struktur von kohlenwasserstoffen und halogenkohlenwasserstoffen. Chemie Ingenieur Technik 37 (8): 789.

Jain N and Yalkowsky SH. 2001. Estimation of the aqueous solubility L Application to organic nonelectrolytes. J Pharm Sci 90 (2): 234-252.

Joback KG. 1984. A unified approach to physical property estimation using multivariate statistical techniques. Ph.D. Thesis, Massachusetts Institute of Technology, Boston.

Jorgensen WL and Duffy EM. 2000. Prediction of drug solubility from Monte Carlo simulations. Bioorganic <& Medicinal Chemistry Letters 10: 1155-1158.

Jorgensen WL and Duffy EM. 2002. Prediction of drug solubility from structure Adv Drug Deliver Rev 54 (3): 355-366.

Page 183: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

181

Kamlet MJ and Taft RW. 1981. Linear solvation energy relationships .17. Some further correlations with the solvatochromic parameters. Pol J Chem 55 (6): 1337-1350.

Kamlet MJ, Doherty RM, Abraham MH, et al. 1987. Linear solvation energy relationships 41: Important differences between aqueous solubility relationships for aliphatic and aromatic solutes. J Phys Chem 91 (7): 1996-2004.

Katritzky AR, Wang Y, Sild S, and Tamm T. 1998. QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients. J Chem Inf Comput Sci 38: 720-725.

Klopman G, Wang S, and Balthasar DM. 1992. Estimation of aqueous solubility of organic-molecules by the group contribution approach - application to the study of biodegradation. J Chem InfComp Sci 32 (5): 474-482.

Klopman G and Zhu H. 2001. Estimation of the aqueous solubility of organic molecules by the group contribution approach. J Chem Inf Comput Sci 41: 439-445.

Kuhne R, Ebert RU, Kleint F, et al. 1995. Group-contribution methods to estimate water solubility of organic-chemicals. Chemosphere 30 (11): 2061-2077.

Krzyzaniak JF, Myrdal PB, Simamora P, and Yalkowsky SH. 1995. Boiling point and melting point prediction for non-hydrogen bonding compounds. Ind Eng Chem Res 34:2531-2535.

Lee YC, Myrdal PB, Yalkowsky SH. 1996. Aqueous functional grow activity coefficients (AQUAFAC) 4: Applications to complex organic compounds. Chemosphere 33 (11): 2129-2144.

Lipinski CA, Lombardo F, Dominy BW, et al. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev 46 (1-3): 3-26.

Mackay D. 2000. Solubility in Water, in: Handbook of Property Estimation Methods for Chemicals. CRC Press, Boca Raton, Florida.

Marrero J, Gani R. 2002.Group-contribution-based estimation of octanol/water partition coefficient and aqueous solubility. Ind Eng Chem Res 41 (25): 6623-6633.

The Merck Index (12''^ ed.). 1996. Merck & Co, Rahway, NJ.

Page 184: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

182

Meylan WM, Howard PH, and Boethling RS. 1996. Improved method of estimating water solubility from octanol/water partition coefficient. Environ Toxicol Chem 15(2): 100-106.

Mitchell BE and Jurs PC. 1998. Prediction of aqueous solubility of organic compounds from molecular structure. J Chem InfComput Sci 38:489-496.

Myrdal PB, Ward GH, Dannenfelser RM, Mishra D and Yalkowsky SH. 1992. AQUAFAC 1: Aqueous functional-group activity-coefficients; application to hydrocarbons. Chemosphere 24 (8): 1047-1061.

Myrdal PB, Ward GH, Simamora P, and Yalkowsky SH. 1993. AQUAFAC: Aqueous functional group activity coefficients. SAR QSAR Environ Res 1: 55-61.

Myrdal PB, Manka AM, Yalkowsky SH. 1995. AQUAFAC 3: Aqueous functional group activity coefficients; application to the estimation of aqueous solubility. Chemosphere 30 (9): 1619-1637.

Peterson DL and Yalkowsky SH. 2001. Comparison of two methods for predicting aqueous solubility. J Chem Inf Comput Sci 41 (6): 1531-1534.

Pinsuwan S, Myrdal PB, Lee YC, et al. 1997. AQUAFAC 5: Aqueous functional group activity coefficients; Application to alcohols and acids. Chemosphere 35 (11): 2503-2513.

Platts JA, Butina D, Abraham MH, and Hersey A. 1999. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J Chem Inf Comput Sci 39 (5): 835-845.

Ran Y and Yalkowsky SH. 2001. Prediction of drug solubility by the General Solubility Equation (GSE). J Chem Inf Comput Sci 41: 354-357.

Ruelle P, Kesselring UW. 1997a. Prediction of the aqueous solubility of proton-acceptor oxygen-containing compounds by the mobile order solubility model. J Chem Soc, Faraday Trans 93 (11): 2049-2052.

Ruelle P, Kesselring UW. 1997b. Aqueous solubility prediction of environmentally important chemicals from the mobile order thermodynamics. Chemosphere 34 (2): 275-298.

Sanghvi T, Jain N, Yang G, and Yalkowsky SH. 2003. Estimation of aqueous solubility by the General Solubility Equation (GSE) the easy way. QSAR & Comb Sci 22 (2): 258-262.

Page 185: AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDSarizona.openrepository.com/arizona/bitstream/10150/298795/1/azu_td... · AQUEOUS SOLUBILITY PREDICTION OF ORGANIC COMPOUNDS by Gang

183

Simamora P and Yalkowsky SH. 1994. Group contribution methods for predicting the melting points and boiling points of aromatic compounds. Ind Eng Chem Res 33: 1405-1409.

Taft RW, Abboud JLM, Kamlet MJ, et al. 1985a. Linear solvation energy relations. J Solution Chem 14 (3): 153-186.

Taft RW, Abraham MH, Doherty RM, et al. 1985b. The molecular-properties governing solubilities of organic nonelectrolytes in water. Nature 313 (6001): 384-386.

Tetko IV, Tanchuk VY, Kasheva TN, and Villa EP. 2001. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inf Comput Sci 41 (6): 1488-1493.

Valvani SC, Yalkowsky SH, and Roseman TJ. 1981. Solubility and partitioning 4: Aqueous solubility and octanol-water partition-coefficients of liquid non-electrolytes. J Pharm Sci 70 (5): 502-507 1981

Wakita K, Yoshimoto M, Miyamoto S, and Watanabe H. 1986. A method for calculation of the aqueous solubility of organic compounds by using new fragment solubility constants. Chem Pharm Bull 34 (11): 4663-4681.

Yalkowsky SH, Sinkula AA, and Valvani SC. 1980. Physical chemical properties of drugs. New York: Marcel Dekker, Inc.

Yalkowsky SH and Valvani SC. 1980. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci 69(8): 912-922.

Yalkowksy SH. 1981. Solubility and partitioning 5: Dependence of solubility on melting-point. J Pharm Sci 70 (8): 971-973.

Yalkowsky SH and Banerjee S. 1992. Aqueous solubility, in: Methods of estimation for organic compounds. Marcel Dekker, New York.

Yalkowsky SH and Pinal R. 1993. Estimation of the aqueous solubility of complex organic molecules. Chemosphere 26(1): 1239-1261.

Zhao LW and Yalkowsky SH. 1999. A combined group contribution and molecular geometry approach for predicting melting points of aliphatic compounds. Ind Eng Chem Res 3S (9): 3581-3584.