18
Contact: NICT, Japan Email: APT/ITU Conformance and Interoperability Event 2015 7 – 8 September 2015, Bangkok, Thailand Document C&I-3/INP-14 07 September 2015 NICT, Japan WAVEFORM TRANSFER FOR SEAMLESS NETWORK SHOWCASING

APT/ITU Conformance and Interoperability Event 2015 NICT, Japan Email: APT/ITU Conformance and Interoperability Event 2015 7 – 8 September 2015, Bangkok, Thailand Document C&I-3/INP-14

  • Upload
    lythuy

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Contact: NICT, Japan

Email:

APT/ITU Conformance and Interoperability Event 2015

7 – 8 September 2015, Bangkok, Thailand

Document C&I-3/INP-14 07 September 2015

NICT, Japan

WAVEFORM TRANSFER FOR SEAMLESS NETWORK SHOWCASING

1

Waveform transfer for seamless access communication systems

Tetsuya KAWANISHI

National Institute of Information and Communications Technology

Tokyo, Japan

This study was conducted as part of research projects “supported by the Japanese Government funding for “R&D to Expand Radio Frequency Resources” from the Ministry of Internal Affairs and Communications.

Outline

• Radio-over-fiber (RoF) for waveform transfer

• Concept of seamless links using RoF

• Possible applications– High resolution radars for FOD detection

– High speed wireless links of high-speed trains

• Field trial of FOD rader at CU Saraburi

C&I-3/INP-14

Page 1 of 17

2

Basic concept of Radio-on-fiber (RoF) system

RF signal is transmitted via optical fiber from central to antenna

RF signalsource

Electro-optic conversion

Photodetector

Central unit (CU) Remote antenna unit (RAU)/ Base station (BS)

Lightwave Modulated by RF signal

Optical fiber

Merit: Low loss connection, simple base station

RF signal RF signal

Recent Trends on RoF

• Application to 5G mobile fronthaul/backhaul

– Digital and/or analog

• High‐speed transmission at millimeter‐wave/terahertz wave

– Protection/temporal link in resilient network

C&I-3/INP-14

Page 2 of 17

3

Recent Trend of the session on OFC

MWP has a good presence in the communication conference

Bitrate and power consumption of wireless data transmitters

MBit/s nJ/Bit

Zigbee (TYP) 0.25 580

Bluetooth3.0+EDR (Planex) 2.1 170 Product BT-Micro3E2X

802.11b (TYP) 11 180

802.11b/g (iodata) 54 26 Product WN-G54/CB3L

UWBDice 10 3.2 R&D

802.11b/g/n (iodata) 300 4.3 Product WN-G300U

802.11b GainSpan (Alps) 11 36 Sample UGFZ1

WirelessHD SiBeam (Panasonic) 4000 2.5 Product TU-WH1

Optical transceiver 10GbE(SEI) 20000 0.05 Product SPP5000

T. Kawanishi, A. Kanno, T. Kuri and N. Yamamoto, "Transparent wave-form transfer for resilient and low-latency links," IEEE Photonics SocietyNewsletter, 28 (2014) 4

C&I-3/INP-14

Page 3 of 17

4

0.1 1 10 100 1000 10000

0.1

1

10

100

802.11b(GainSpan)

UWB WirelessHD802.11n

802.11g

Bluetooth

Po

we

r co

nsu

mp

tion

[nJ/

bit]

Bitrate [Mbps]

10GbE

Zigbee802.11b

y=248x-0.613

THz

Bitrate and power consumption of wireless data transmitters

T. Kawanishi, A. Kanno, T. Kuri and N. Yamamoto, "Transparent wave-form transfer for resilient and low-latency links," IEEE Photonics SocietyNewsletter, 28 (2014) 4

RoF for Next Mobile Services

TuB: RoF for Mobile Communication Systems will be held tomorrow.

4G(LTE/LTE‐A) mobile fronthaul technology such as CPRI, OBSAI and ORI is based on digitized RoF.

For Next‐Gen. 5G?, we have to discuss in the MWP.

From G.‐K. Chang, et el., IEEE ICC'13 WS Optical‐Wireless

C&I-3/INP-14

Page 4 of 17

5

Wideband wireless and high-speed transmission

Combination of optical digital links and radio transmitters

APT REPORT ON WIRED AND WIRELESS SEAMLESS CONNECTIONS USING MILLIMETER-WAVE RADIO ON FIBER TECHNOLOGY FOR RESILIENT ACCESS NETWORKS

C&I-3/INP-14

Page 5 of 17

6

RoF

O/E

OpticalRo

F E

/O

Ser

.

DS

P

Data

Digital coherent optical transmission

De

s.

DS

P

E/O

RoF Tx.Optical Tx.

High-speed and precise lightwave control and detection (Vector E/O and O/E)

Optical Rx.

Data

High-performance digital signal processing (DSP) at Tx. and / or Rx.

Combination of DSP and vector lightwave control can generate high‐frequency broadband wireless signals.

Expansion of optical connection by high-speed wireless based on Radio-

over-Fiber

RoF

O/E

OpticalRo

F E

/O

Ser

.

DS

P

Data

De

s.

DS

P

E/O

RoF

E/O

Optical

High-speed millimeter-wave radio

Ro

F E

/O

De

s.

DS

P

Data Ser

.

DS

P

O/E

Optical Tx.

Optical Rx.

Media conv.RAU

Media conv.RAU

C&I-3/INP-14

Page 6 of 17

7

Seamless optical/radio link

RF signal over fiber

Wideband IF signal over fiber

APT REPORT ON WIRED AND WIRELESS SEAMLESS CONNECTIONS USING MILLIMETER-WAVE RADIO ON FIBER TECHNOLOGY FOR RESILIENT ACCESS NETWORKS

Spectral efficiency in optical domain can be large. IF can be zero. (M2D.3)

Concept of wired and wireless seamless transmission for resilient network

Agile deployment capability for• Protection link against fiber being cut at disaster• Temporal link to temporary station at disaster recovery• “Last mile” solution until optical fiber deployment

×

High-speed radio (> 10 Gbps)

Optical fiber

Temporary station

Radio Access Unit(RAU)

(> 100 Gbps)

C&I-3/INP-14

Page 7 of 17

8

MIMO: to Enhance Total CapacityConventional

RAU

Optical Tx O/E

DS

P

Digital DP sig.

Des

.

Rad

io F

E

Digitalradio Rx

High power consumptionLarge latency

Coherent MIMO RoF system

• “Radio-friendly” optical signal by RoF Tx• Polarization diversity O/E derivers MIMO radio signal directly.

RoF Tx

Optical digi.-coh.-

basedradio RxP

ol.-

div.

O

/E

DP-RoF signalR

adio

FE

A. Kanno, Opt. Express, 20, 29395 (2012).

Coherent two-tone generation: See a. Kanno, IPC11, TuJ4 (2011)

Optical‐PDM/RF‐MIMO transmission setup

Pol.-diversity OE convertersOptical DP-QPSK-detector-based digital coherent Rx.

A. Kanno, ECOC2012, We.3.B.2 (2012).

C&I-3/INP-14

Page 8 of 17

9

Observed BERs (74.4 Gb/s in 20 Gbaud)A. Kanno, Opt. Express, 20, 29395 (2012).

High‐speed 60‐GHz Trans.

M. Weiss et al., MWP 2009, Valencia, Spain, 2009, (post deadline paper)

C.‐T. Lin et al., OFC2014, M3D.1 (2014).

5 years

MWP plays a role as advanced technology testbed of future wireless communication.

27 Gbit/sat 60 GHz

84 Gbit/sby 2x2 MIMOat 60 GHz

C&I-3/INP-14

Page 9 of 17

10

Millimeter‐wave Trans at >60 GHz

• W‐band, 120 GHz, 220 GHz,…

100‐Gb/s capability at W‐band 400‐Gb/s demonstration at W‐band

J. Yu et al., ECOC2014, We3.6.6D. Zibar et al., MWP/APMP2011

100‐Gb/s demo at 220 GHz

4 yrs.

4x4 MIMO 28Gbd 16‐QAMSingle‐channel OFDM

S. Koenig et al., Nature Photonics 7, 977 (2013)

Doubled freq.

Highly-precise Optical Clock Signal Gen.

Electrode A

Signal + Bias

Bias

Bias

Optical

input

Optical

output

Electrode B

Electrode C

MZa

MZb

Pure two‐tone source

1549.6 1549.8 1550.0 1550.2 1550.4

-80

-70

-60

-50

-40

-30

-20

-10Desiredcomponents

49.0dB

Op

tica

l po

we

r [d

Bm

]

Wavelength [nm]

46.6dB

T. Kawanishi et al., CLEO/QELS 2008, CFA1

High‐ER modulatorDistribution of stable LO signal (31‐120 GHz) over fibers

OE conversion OE conversion OE conversion OE conversion

ALMA: Atacama Large Millimeter/sub-millimeter Array

The site is at height of 5000m above sea level. The longest baseline is 14km and the resolution is 0.001 arcsecwhich is better than the Hubble space telescope. Receiving frequency: 31-950 GHz.

ALMA Photonic LO System by NAOJ, NICT

C&I-3/INP-14

Page 10 of 17

11

High-Speed Photodiodes• Zero-biased ultra-high-speed photodiodes beyond 110

GHz.

‐10

‐8

‐6

‐4

‐2

0

2

4

0 20 40 60 80 100 120

Relative gain (dB)

Frequency (GHz)

‐50

‐40

‐30

‐20

‐10

0

‐5

‐4

‐3

‐2

‐1

0

0 20 40 60 80 100 120

S21, S11 (dB)

Frequency (GHz)Package photo with 1mm connector

Fabricated unitraveling-carrer photodiode Frequency response of photodiodes3dB Bandwidth > 110 GHz with bias=0

S-parameter measurement of packaged PD

HITACHI, NICT, ENRI, RTRI 2015. All rights reserved.

Frequency Response Analyzer

Frequency Response Analyzer

RF Signal Generator Control PC

RF Power Meter

PD under Test

Optical Power Meter

Two-tone lightwaveas a standard Signal

Output PureRF signal

Frequency range:

0.1〜40GHz

Measurement time:< 2 sec Accuracy: <0.1dB

K. Inagaki, et al., IEICE Electronics Express, Vol. 9, 220 (2012)

APT Report on Characteristics and Requirements of Optical and Electric Components for Millimeter-wave Radio on Fiber systems ASTAP/REPT 3

C&I-3/INP-14

Page 11 of 17

12

High-Capacity MMW-RoF Backhaul for Railways

WDM-RoF NetworkWSS-based WDM routing

Central officeSignal generation and location detection

Adaptive routing for signal delivery to suitable sites.

Activate radio head

High-speed signal transport and adaptive routing with tracking the location of the trains.

1–10-Gb/s signal transport to high-speed trains

Millimeter-wave high-capacity radio (>1 Gb/s)

• Radio-over-Fiber (RoF)-based signal transport

• High-speed O/E and E/O devices• Flexible/high-speed WSS

This study was conducted as part of the research project “R&D of high-precision imaging technology using 90 GHz band linear cells,” supported by the Japanese Government funding for “R&D to Expand Radio Frequency Resources” from the Ministry of Internal Affairs and Communications.

R&D of high-precision imaging technology using 90 GHz band linear cells

C&I-3/INP-14

Page 12 of 17

13

Millimeter wave radarRadio-over-Fiber

Foreign Object Debris (FOD)

Alert

W-band FM-CW radar with many small RAUs. => Low-cost semiconductor amplifiers can be used.FM signal is distributed using RoF. => RF signal sources and signal processors can be shared with RAUs.

FOD Detection using Millimeter-wave RoFfor Airport Runways

※This research was conducted as part of the project entitled “Research and development of high-precision imaging technology using 90 GHz band linear cells,” with funding from “Research and Development to Expand Radio Frequency Resources” supported by the Ministry of Internal Affairs and Communications, Japan.

MIC-PJ※

25

• Low operation cost

• Low radio-wave emission

• Scalability: • High-performance systems for busy airports

• Low-cost systems for local airports

• Agile scan capability

Configuration of RoF-based Radar System

• Downlink (from CO to RAU): Analog-RoF

• Uplink (from RAU to CO): Digitized RoF or conventional 10GbE

RoF signalgenerator

PD HPA

Diode(or Mix)

LNAADCFFT/DSPfor imaging

E/O

Leak (~ -20dB)

Heterodyne

Optical fiber

Antenna

Reflected (<-40dBm)

C&I-3/INP-14

Page 13 of 17

14

HITACHI, NICT, ENRI, RTRI 2015. All rights reserved.

CU,NiCT,ENRI and Hitachi Ltd.

2015 July @Churalonkong University Saraburi Campus

FOD Experiment @CU Saraburi

HITACHI, NICT, ENRI, RTRI 2015. All rights reserved.

Site overview

C&I-3/INP-14

Page 14 of 17

15

HITACHI, NICT, ENRI, RTRI 2015. All rights reserved.

Range Resolution

29

8cm

Imaging by using two radar units130m(+5dBsm)

C&I-3/INP-14

Page 15 of 17

16

Preliminary data from two radar units

130m133m 127m

1m

-1m

-3m

130m x sin 0.8deg = 1.8mRange resolution 1.8cmAngular resolution 0.8deg

Preliminary data from two radar units

130m x sin 0.8deg = 1.8mRange resolution 1.8cmAngular resolution 0.8deg

1.2mGeometric mean of two images

C&I-3/INP-14

Page 16 of 17

17

Issues

• Interfaces between RoF and digital networks

• RoF network archtechture

• Control of cells and networks

• Requirements on RoF links

• Measurement techniques for RoF components– APT Report on Characteristics and Requirements of Optical and

Electric Components for Millimeter-wave Radio on Fiber systems ASTAP/REPT 3

C&I-3/INP-14

Page 17 of 17