4
1 APS Magnetic Powder Scattering Intensities Magnetic structure factor theory Magnetic scattering factor Magnetic “extinctions” & magnetic structure R.B. Von Dreele, IPNS/APS Magnetic structure factor (& nuclear one, too) Some basic assumptions: 1. Neutron beam – unpolarized 2. Polycrystalline sample – ideal random orientations (no texture) 3. Elastic scattering only – ignore inelastic magnetic scattering Simplification! Simplification! Intensities = coherent nuclear scattering +coherent magnetic scattering (i.e. no cross terms) ( ) { } ( ) { } 2 2 2 2 exp 2 exp ! ! " # + " # = m m m n n i p i b F r h q r h h Nuclear structure factor Magnetic structure factor All atoms Magnetic ions only dσ = b 2 +2bpλ . q+p 2 q 2 Missing ave = 0 (λ = unit vector in neutron spin direction) Structure factor – powders & no polarization – p’s&q’s? (after Bacon, 1975) ( ) m m N m m m m f S c m e p ! " # $ % & = ( ) = 2 2 K K å å q h h 0.54x10 -12 cm – similar to b n e – electron charge γ – neutron magnetic moment m N – neutron mass c – speed of light ε h – unit vector || h – diffraction vector K m – unit vector || magnetic moment on atom m q small for h || K & large for h K S – magnetic moment (Bohr magnetons) f – 1-electron magnetic form factor Θ Θ ε K q α |q|=sin α

APS Some basic assumptions: 1.Neutron beam – unpolarized ... · APS Magnetic Powder Scattering Intensities Magnetic structure factor theory Magnetic scattering factor Magnetic “extinctions”

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: APS Some basic assumptions: 1.Neutron beam – unpolarized ... · APS Magnetic Powder Scattering Intensities Magnetic structure factor theory Magnetic scattering factor Magnetic “extinctions”

1

APS

Magnetic Powder Scattering IntensitiesMagnetic structure factor theory

Magnetic scattering factor

Magnetic “extinctions” & magnetic structure

R.B. Von Dreele, IPNS/APS

Magnetic structure factor (& nuclear one, too)

Some basic assumptions:1. Neutron beam – unpolarized2. Polycrystalline sample – ideal random

orientations (no texture)3. Elastic scattering only – ignore inelastic

magnetic scatteringSimplification!

Simplification!

Intensities =coherent nuclear scattering +coherent magnetic scattering(i.e. no cross terms)

( ){ } ( ){ }22

22exp2exp !! "#+"#=

m

mm

n

n ipibF rhqrhh

Nuclear structure factor Magnetic structure factor

All atoms Magnetic ions only

dσ = b2+2bpλ.q+p2q2

Missingave = 0 (λ = unit vector in neutron spin direction)

Structure factor – powders & no polarization – p’s&q’s?(after Bacon, 1975)

( )

mmN

m

mmm

fScm

ep !"

#$%

& '=

()=

2

2

KKååq hh

0.54x10-12cm – similar to bne – electron chargeγ – neutron magnetic momentmN – neutron massc – speed of light

εh – unit vector || h – diffraction vectorKm – unit vector || magnetic moment on atom m∴ q small for h || K & large for h ⊥ K

S – magnetic moment (Bohr magnetons)f – 1-electron magnetic form factor

Θ

Θ

ε

Kq

α

|q|=sin α

Page 2: APS Some basic assumptions: 1.Neutron beam – unpolarized ... · APS Magnetic Powder Scattering Intensities Magnetic structure factor theory Magnetic scattering factor Magnetic “extinctions”

2

Magnetic form factor - fm

2

24

1

2

24

1

2

2

sinsin'exp''1

2sinexp

!"

#$

%&'

()*

+,-

.!

"/+))

*

+,,-

./+)

*

+,-

.!

"/+= 00

== i

ii

i

iim

BAC

g

BACf

In GSAS:1. Tabulated by user2. Form factor coefficients <j0> and <j2> (higher

terms ignored)

Landé g factor = 2 for 1st row transition elements:quenched orbital contribution

In general fm 0 for sinΘ/λ > 0.5; d<1.0

Fourier transform of unpaired e- density: valence e-; outer shell

Sharp fall off with Q (small d, etc.)

Magnetic form factors – from valence shell electrons

Fe+2;g=2 Fe+2;g=1.5

Orbital contribution quenched not quenched (v. slightly(typical 1st row) fatter)

momentmagneticJJg

JJ

LLSSJJg

)1(

)1(2

)1()1()1(1

+=µ

+

+!++++=

Fe+2; d6: S=2, L=2, J=4g=1.5; µJ=6.7, µS=4.9(µobs=5.2 in FeCl2)

Magnetic structures

FerromagneticNo extra reflections

AntiferromagneticExtra reflections

am=an

am=2an

Magnetic symmetry – spins & moments?

How do magnetic moments/spins transform via symmetry operations?Operation is on spin (not moment) – physical objectAntioperation – spin reversal (“time reversal”)Example; mirror – “black” antimirror – “red”

Result depends on orientation & position

NB: momentmust be in “red”mirror

NB: momentmust beperpendicular to“black” plane

Page 3: APS Some basic assumptions: 1.Neutron beam – unpolarized ... · APS Magnetic Powder Scattering Intensities Magnetic structure factor theory Magnetic scattering factor Magnetic “extinctions”

3

Rotations & antirotations

2-fold – “black” anti 2-fold – “red”

NB: switch “black” to “red” is NOT ferro to antiferro!!

Notedifference formoment on 2-fold axis

Extinctions – moment direction

Possible antiferromagnets (assume orthorhombic?):

|q|=sin α

a

b

2c

Pm’mmPmm’m Pm’m’m’ P112’/m

(Note ¼ shift along z – to get atoms with moments in right placeswrt symm operations)

Mx My MxyMz

Magnetic extinctions

Pmmm – no extinctionsPm’mm – h00 all absentPmm’m – 0k0 all absentPm’m’m’ – h00, 0k0, & 00l all absentP112’/m – no extinctionsBUT, MOMENT DIRECTION MATTERS! (remember q)(similar to extinctions for atoms in special positions)

NB: these rules are for magnetic atom in generalposition with moment pointed in a general MxMyMzdirection.

Magnetic extinctions, cont.

Pm’mm0 0 10 1 11 0 11 1 10 0 30 2 10 1 31 0 31 2 11 1 3

Pmm’m0 0 1 0 1 1 1 0 1 1 1 1 0 0 3 0 2 1 0 1 3 1 0 3 1 2 1 1 1 3

Pm’m’m’ - - - 0 1 11 0 11 1 1 - - -0 2 10 1 31 0 31 2 11 1 3

P112’/m0 0 10 1 11 0 1

1 1 1, -1 1 10 0 30 2 10 1 31 0 3

1 2 1, -1 2 11 1 3, -1 1 3

1st 10 nonzero magnetic reflections for antiferromagnetic cases

different

Page 4: APS Some basic assumptions: 1.Neutron beam – unpolarized ... · APS Magnetic Powder Scattering Intensities Magnetic structure factor theory Magnetic scattering factor Magnetic “extinctions”

4

Different powder patterns – all CW neutron (ILL d1a)distinguish by intensities – only magnetic part

Pmm’m Pm’mm

Pm’m’m’ P112’/m

(different)

So how choose magnetic symmetry/structure?

Trial & error!! (A.J. Wills – SARAh)In GSAS – use tools1. SPCGROUP2. EXPEDT – magnetic operator (“black”/”red”)3. VRSTPLOT – draw result; shows moment directions4. Calculate pattern – check with observed data!

See tutorial….