16
7/21/2019 Applications of Stochastic Differential Equations http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 1/16 Applications of Stochastic Differential Equations (SDE)  Modelling with SDE: Ito vs. Stratonovich (6.1 & 6.2)  Parameter Estimation (6.4)  Optimal Stochastic Control (6.5)  Filtering (6.6) 1

Applications of Stochastic Differential Equations

Embed Size (px)

DESCRIPTION

Applications of Stochastic Differential Equations

Citation preview

Page 1: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 1/16

Applications of Stochastic Differential Equations (SDE)

•  Modelling with SDE: Ito vs. Stratonovich (6.1 & 6.2)

•  Parameter Estimation (6.4)

•  Optimal Stochastic Control (6.5)

• Filtering (6.6)

1

Page 2: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 2/16

Ito SDE or Stratonovich SDE? (6.1 + 6.2)

•  From a purely mathematical viewpoint both the Ito and

Stratonovich calculi are correct;

•  Ito or Stratonovich? This question can only be discussed

in the context of a particular application;

•  Ito SDE is appropriate when the continuous approximationof a discrete system is concerned (many examples in the

biological sciences);

•  Stratonovich SDE is appropriate when the idealization of asmooth real noise process is concerned (many examples in

engineering and the physical sciences).

2

Page 3: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 3/16

Idealization of smooth noise processesExample: a random differential equation

dX (n)t   = aX 

(n)t   dt + bX 

(n)t   dR

(n)t

where  R(n)t   is the piecewise differentiable linear interpolation of a

Wiener process  W t  on a partition 0 = t(n)0   < t

(n)1   < ... < t

(n)n   = T 

−50

−40

−30

−20

−10

0

10

R(n)t

Wt

δn

t1

(n)t2

(n)tn+1

(n)tn

(n)

3

Page 4: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 4/16

−→  The solution by classical calculus

X (n)t   = X t0 expa(t − t0) + b(R

(n)t   − R

(n)t0 )

When  n → ∞  and max1≤j≤n

t(n)j+1 − t

(n)j

 −→ 0

•  The noise process −→  W t

•   The solution −→  X t  = X t0 exp (a(t − t0) + b(W t − W t0));

• The random DE

 −→ a Stratonovich SDE

dX t  = aX tdt + bX t ◦ dW t

4

Page 5: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 5/16

Continuous approximation of discrete systems

•   Example 1: a random walk

X (N )k+1 = X 

(N )k   +   1√ 

N ξ k

at times  t(N )k   =   k

N ,  k  = 0, 1, ...,  N , where  ξ k  take +1 or −1

with probability   12

N →∞−→   a standard Wiener process in [0, 1]

(Central Limit Theorem);

•   Example 2: a random walk

X (N )k+1 = X 

(N )k   + aN 

(N )k

  1

N   + bN 

(N )k

  1√ N 

ξ k

5

Page 6: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 6/16

with consistency conditions such as

limn→∞

N E X (N )k+1 − X (N )

kX (N )

k   = x = limN →∞

E (aN (x)) = a(x)

limn→∞

N E 

(N )k+1 − X 

(N )k

2

(N )k   = x

 = lim

N →∞E (b2N (x)) = b2(x)

limn→∞

N E X (N )k+1 − X (N )

k3X (N )

k   = x = 0

N →∞−→   an Ito stochastic differential equation

dX t  = a(X t)dt + b(X t)dW t

6

Page 7: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 7/16

•  Example 3: a population of 2N  genes with two alleles  a  and  A.

–  Suppose that there are  i  genes of type  a  and 2N  − i  of 

type  A  at the  k-th generation;

–  The probability of  j  genes of type  a  at the  k + 1-th generation

is B(2N,   i2N );

– Further all time intervals between two successive generationsare of length   1

N 2 ;

–   Let’s define  X (N )k   =   i

2N . When  N  goes infinity, we obtain a

process which is a solution of the Ito SDE

dX t  = X t(1 − X t)dW t.

7

Page 8: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 8/16

Parameter Estimation (6.4): An example

dX t  = α · a(X t)dt + dW t

To determine a maximum likelihood estimate of  α  when the

trajectory  X (t) of a solution process over the time interval

[0, T ] is given.

•   the likelihood ratio

L(α, T ) = exp+1

2 α2    T 0

α2(X t)dt − α   T 0

α(X t)dX t–   the Euler scheme:

X i+1 = X i + αa(X i)∆ + ∆W i

for  i  = 0, 1, ...,  N  - 1 where ∆ =   T N ;

–   ∆W 0, ..., ∆W N −1  are i.i.d. and ∆W i ∼ N (0; ∆)   ∀i

–  ∆X 0, ..., ∆X N −1  are i.i.d. and ∆X i ∼ N (0; ∆)   ∀i

8

Page 9: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 9/16

–  the Radon-Nikodyn derivation of the process  X t  w.r.t.   W t

P (∆X 0, ..., ∆X N −1)

P (∆W 0, ..., ∆W N −1)

N →∞−→   L(α, T )

• the maximum likelihood estimator

α̂(T ) =

 T 0   a(X t)dt T 0   a2(X t)dt

If  E  T 0  a2(X 

t)dt <

 ∞, the SDE above has a stationary

solution with density ¯ p −→

α̂(T ) − α =  T 

0   a(X t)dW t

 T 0  a2(X 

t)dt

·  1/T 

1/T T →∞−→   0

  a2(x)¯ p(x)dx  = 0

the Central Limit Theorem  T →∞−→

T 1/2(α̂(T )

−α)

 ∼ N 0,

  1

  a2(x)¯ p(x)dx9

Page 10: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 10/16

Optimal Stochastic Control

•   problem formulation

–   state  X  ∈ d:

dX t  = a(t, X t, u)dt + b(t, X t, u)dW t

–   control parameter  u ∈ k:

∗   u = u(t, X t) (Markov feedback control)∗   u = u(t, ω) (open-loop control)

–  the cost functional for Markov feedback controls

J (s, x; u) = E K (τ, X τ ) +    τ s

F (t, X t, u)dtX s  = xwhere  K   and  F  are given functions and  τ   is a specified

Markov time

10

Page 11: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 11/16

•  the Hamilton-Jacobi-Bellman (HJB) equation

The minimum cost functional

H (s, x) = minu(·) J (s,x,u(·))

The HJB equation

minu∈k{F (s,x,u) + LuH (s, x)} = 0

with the final time condition H (T, x) = K (T, x)

where  τ  = T   and

Lu  =  ∂ 

∂s +

di=1

ai(s,x,u)  ∂ 

∂xi+

 1

2

di,j=1

Di,j(s,x,u)  ∂ 2

∂xi∂xj

with  D = bb

11

Page 12: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 12/16

•  the linear-quadratic regulator problem–   K (T, X T ) = X T  RX T   ( R ∈

d×d, symmetric and positive 

semi-definite)

–   F (t, X t, u) = X 

t  C (t)X 

t + uG(t)u  ( C   ∈

d×d, symmetric and 

positive semi-definite,  G ∈ k×k, symmetric and positive definite)

–   a(t, X t, u) = A(t)X t + M (t)u  ( A ∈ d×d

M   ∈ d×k)

–   b(t, X t, u) = σ(t)  ( σ   ∈ d×m)

→  a guess solution

H (s, x) = xS (s)x + a(s)

with the final time condition

S (T ) = R   and   a(T ) = 0;

→ the left side of HJB

12

Page 13: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 13/16

x

(s)x + a

(s) + x

C (s)x + u

G(s)u

+(A(s)x + M (s)u)(S (s)x + S (s)x) +ij

(σσ)ijS ij

→  the minimizer of the left side of HJB

u = −G−1(s)M S (s)x

→  0 = a

(s) + tr(σσ

S )   =0

 +

xS (s) + A(s)S  + SA(s)

−SM (s)G(s)−1M (s)S 

 −C (s)   

=0   a Riccati type equationx

•  when situations of partial information occur, linear stochastic

control = linear filtering + deterministic control

13

Page 14: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 14/16

Filtering•   linear filtering

dX t  = AX tdt + BdW t

dY t  = HX tdt + ΓdW ∗t

−→  the Kalman-Bucy filter

The estimate  X̂ t  = E (X t|Y t) satisfies the SDE

d X̂ t  =

A − SH (ΓΓ)−1H 

 X̂ tdt + SH (ΓΓ)−1dY t

where the error covariance  S (t) satisfies the matrix Riccati

equation

dS 

dt  = AS  + SA + BB − SH (ΓΓ)−1HS 

14

Page 15: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 15/16

• non-linear filtering

the Fokker-Planck equation in operator form

∂p

∂t

  =

 L∗ p

and the observation process

dY t  = h(X t)dt + dW ∗t

−→the conditional probability densities of  X t  given Y tare given by

¯ p(t, x) =

  Qt(x)  Qt(x)dx

where the unnormalized densities  Qt(x) satisfy

the Wong-Zakai equation

dQt(x) = LQt(x)dt + h(x)Qt(x)dY t

15

Page 16: Applications of Stochastic Differential Equations

7/21/2019 Applications of Stochastic Differential Equations

http://slidepdf.com/reader/full/applications-of-stochastic-differential-equations 16/16

Further Reading: Venkatarama Krishnan, Nonlinear Filtering and

Smoothing – An Introduction to Martingales, Stochastic Integrals

and Estimation, Dover 2005.

16