4
Maryland Technology Development Corporation Federal Laboratory Partnership Program Presents Johns Hopkins University Applied Physics Laboratory Technology Partnering Showcase Thursday, September 4, 2003 Applications for New Communications Technology: Innovation and Imagination

Applications for New Communications … for New Communications Technology: Innovation and ... Applications for New Communications Technology: Innovation and ... From the Capital Beltway

Embed Size (px)

Citation preview

Maryland Technology Development CorporationFederal Laboratory Partnership Program Presents

Johns Hopkins University Applied Physics LaboratoryTechnology Partnering Showcase

Thursday, September 4, 2003

Applications for New Communications Technology:Innovation and Imagination

Maryland Technology Development Corporation (TEDCO)Technology Partnering Showcase

Applications for New CommunicationsTechnology: Innovation and ImaginationA Johns Hopkins University Applied Physics LaboratoryTechnology Partnering Showcase

Thursday, September 4, 20038:00 a.m.–1:00 p.m.Johns Hopkins University Applied Physics LaboratoryKossiakoff Conference and Education Center • 11100 Johns Hopkins Road • Laurel, MD 20723www.jhualp.edu/ott

$40 per person

Directions: From the Capital Beltway (I-495), take U.S. Rt. 29 north (Colesville Rd.) for 10 miles. Follow the signs for theturn onto Johns Hopkins Rd. Go .6 mile on Johns Hopkins Road. Turn right onto Pond Road. The Kossiakoff center isthe first building on your left, parking is on the right - follow signs.

From points north: Take I-95 South to the Columbia exit (MD Rt. 32 West) and go 2.5 miles. Merge onto U.S. Rt. 29South toward Washington. Follow the signs for the turn onto Johns Hopkins Rd. Go .6 mile on Johns Hopkins Road.Turn right onto Pond Road. The Kossiakoff center is the first building on your left, parking is on the right - follow signs.

Register at www.mdhitech.org by August 28, 2003.

For Registration information, contact Angie Bergeron [email protected] or 240-453-6267.

For Program information, contact Linda Saffer [email protected] or 410-715-4175.

Important Registration Note:Due to restrictions on the transfer of some of the technologies thatwill be showcased, attendance is limited to U.S. citizens and lawfulpermanent residents of the U.S. Attendees are required to provide theirsocial security number when registering online. Pre-registration and agovernment-issued photo identification are required upon admittance.

CosponsorsAmerican Society of Mechanical Engineers International

Dingman Center for Entrepreneurship, University of Maryland, College Park

Federal Laboratory Consortium

Greater Baltimore Technology Council

Howard County Economic Development Authority

Institute of Electrical and Electronics Engineers

Maryland Department of Business and Economic Development

Maryland Small Business Development Center, Howard County Office

Maryland Technology Extension Service

NeoTech Incubator

S.M.A.R.T.

Technology Commercialization Center

Technology Council of Maryland

University of Maryland, Baltimore County

Opening RemarksWayne Swann, Director, Office of Technology Transfer,The Johns Hopkins University Applied Physics Laboratory

Phillip Singerman, Executive Director, Maryland TEDCO

SESSION I: PRESENTATIONS & POSTER SESSIONSWireless INtrusion Detection (WIND) System, Muaddi

• Uses physical layer information to enhance network security for802.11b WLANs

• Detects unauthorized users by adding transmitter identification andlocation capability

• Versatile design integrates into enterprise security architecture

X-Band Solid State Power Amplifier, Cheng & Wallis • Scalable X-band power amplifier from 11 to 15 watts provides a

wide range of implementation options• Lightweight—only 1200 grams• Space-flight qualified design will be integrated on NASA’s

MESSENGER spacecraft scheduled for launch in May 2004

Optical Terabits Per Second Satellite Network Concepts,Duncan, et al.

• Provides wireless (via satellite) bandwidth channels up to terabitsper second rates

• Makes use of beam-to-beam pointing for large number of users andunprecedented pointing accuracies

Ka-Band Digital Phase Shift MMIC, Penn• Broadband phase shifter (28-38 GHz) with 4 bits of phase shift

resolution• Working prototype ensures that production units will be quick to

market• Offers low insertion loss for a compact GaAs IC

System and Method of Distributing Information and EnergyUsing Fiber Optic and Optical Wireless Networks,Duncan & Krill

• Provides fiber-wireless compatibility at higher speeds thancompeting technology

• Has gigabit-to-terabit data transport speeds• Uses standard 1550 nm fiber-optic technology• Utilizes fiber-optical pathways to deliver heating, cooling, and

lighting in buildings• Uses same fiber-optical pathways to deliver in-building broadband

communications• Greatly reduces building construction costs

Wireless Intra-Satellite Communications Project,Darrin, Boone, et al.

• Infrared wireless data bus provides efficient and reliable datatransfer that is far superior to current methodologies

• Provides methods to reduce satellite integration and test time by asmuch as 20%

• A direct replacement and interface for standard military andavionics busses in compliance with MIL-STD-1553

Sub-Band Encoding in the Presence of Pulse Stretching,Krill, et al.

• Uses sub-band modulation for successful reception of signalsthrough clouds and precipitation that would otherwise precludereception

• Achieves data rates in the gigabits per second range• Provides mechanism to cope with pulse stretching in propagating

an optical communications beam through aerosol-laden media

Success Story -- Blake Henke, North Star Scienceand Technology, LLC

The Johns Hopkins Applied Physics Laboratory has a long historyof developing successful communications solutions.

Don’t miss this opportunity to plug into the Lab’s latest innovations.

The Johns Hopkins University Applied Physics Laboratory (APL), a research and development division of the Johns Hopkins University,supports the Department of Defense, NASA and other government agencies through innovative applied research, technical development,and problem solving. Established in 1942 and located on 360 acres in Laurel, Maryland, APL employs approximately 3,350 engineers,scientists, and supporting staff in a broad range of disciplines.

APL’s projects run from basic research to full-scale operational testing, through all phases of project life cycles—from long-termsystems development and evaluation to developing quick-reaction missions and rapid prototypes for specific needs.

Learn how you can partner with APL at the APL Technology Partnering Showcase.

Technology TransferPresentationsKristin Gray, Assistant Director of Technology Transfer,The Johns Hopkins University Applied Physics LaboratorySteven Fritz, Director, Technology Transfer, Maryland TEDCO

SESSION II: PRESENTATIONS & POSTER SESSIONSUses of Permutations to Achieve Ultra High-SpeedCommunications, Gauthier & Barrios

• Facilitates high-speed data clocking• Improves data throughput and reduces bus size• Provides the possibility for creating multiplexers with greater

addressing capability• Potential uses for secure and covert communications

Method for Adaptable, Distributed and SynchronizedSignal Observation, Merheb, et al.

• Provides rapid assessment of sub-licensed frequency spectrum• Trades time resolutions, frequency resolutions and instantaneous

bandwidth• Scans frequency spectrum faster than current methods• Synchronizes multiple units via GPS, ensuring all units start and

stop at the same time

Emergent Control of Cooperative Systems, Scheidt, et al.• Generates unpiloted vehicle movement and actions using an adaptation

of existing new findings in the study of emergent behavior• Provides for increased autonomy, robustness and survivability in

cooperative systems• Provides cooperation through a novel ad hoc networking technique

that works without routers and switches, requires fewer and shortertransmissions per message and remains effective in noisy conditions

Mechanical Mixer/filter for Radio Frequency ApplicationsOsiander, Higbie, Darrin, et al.

• Provides a narrowband down converter proven up to 19 GHz• Replaces “bulky” SAW filters• Reduces the number of IF steps needed• Input sensitivity compares to LNA• Has capability to be extended to array—multiple frequency

selection, scanning, spectrum analyzer

Information and Control Architecture for CooperativeAutonomous Unmanned Aerial Vehicles (UAV),Bamberger, Gilreath, et al.

• Architecture for enabling information superiority with UAVs• Uses a family of tasks as a foundation for performing UAV control,

simplifying the task of adding on new capabilities and features• Applies to military operations involving reconnaissance, surveilance

and target acquisition or civilian operations such as monitoringenvironmental surveys

• Can be used as the basis for an autonomous airborne WLAN(wireless local-area network) which repositions the UAVs withoutthe need for human intervention and optimizes the quality of service

Quantum Computing, Franson, Pittman, et al.• Expected to perform calculations that are not possible using

conventional computers• Demonstrates the required quantum logic gates using single

photons as the qubits• Source of single photons and a quantum memory also being

developed

ADDITIONAL POSTER SESSIONS:Cable-to-House Wideband Wireless Link Relay, Suter, et al.

• Efficient, low-cost method provides broadband wireless capabilityfor the home

• Considerably lowers cost of operational maintenance over currentcable methods

• Achieves data rates in the gigabits per second range

Networked Vehicle Security, Krill• Monitors vehicle alarms with a novel and value-added approach• Networks alarm to provide real-time owner notification of vehicle

tampering• Mechanical device with unique sensor alarms makes it difficult to

tamper or disengage

Schedule of Events

8:00–9:00 a.m. Continental Breakfast and Networking

9:00–9:30 a.m. Opening Remarks

9:30–10:10 a.m. Session I: Presentations &Poster Sessions

10:10–10:20 a.m. Success Story

10:20–10:30 a.m. Break

10:30–10:40 a.m. Technology Transfer Program at The Johns Hopkins University Applied Physics Laboratory

10:40–10:50 a.m. TEDCO Funding Opportunities

10:50–11:30 a.m. Session II: Presentations &Poster Sessions

11:30 a.m.–1:00 p.m. Lunch, Additional Poster Sessions,and Networking