91
Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship Stability William R. Story Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Ocean Engineering Leigh McCue, Chair Alan Brown Wayne Neu April 29, 2009 Blacksburg, Virginia Tech Keywords: Stability, Capsize, Lyapunov, Attractor, Lorenz

Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

ApplicationofLyapunovExponentstoStrangeAttractorsandIntact&Damaged

ShipStability

WilliamR.Story

ThesissubmittedtotheFacultyoftheVirginiaPolytechnicInstituteandStateUniversityinpartialfulfillmentofthe

requirementsforthedegreeof

MasterofScienceIn

OceanEngineering

LeighMcCue,ChairAlanBrownWayneNeu

April29,2009

Blacksburg,VirginiaTech

Keywords:Stability,Capsize,Lyapunov,Attractor,Lorenz

Page 2: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

ApplicationofLyapunovExponentstoStrangeAttractorsandIntact&DamagedShipStability

WilliamR.Story

(ABSTRACT)

Thethreatofcapsizeinunpredictableseashasbeenarisktovessels,sailors,andcargosincethebeginningofaseafaringculture.Theeventisanonlinear,chaoticphenomenonthatishighlysensitivetoinitialconditionsanddifficulttorepeatedlypredict.Inextremeseastatesmostshipsdependonanoperatingenvelope,relyingontheoperator’sdetailedknowledgeofheadingsandmaneuverstoreducetheriskofcapsize.Whileinsomecasesthismitigatesthisrisk,thenonlinearnatureoftheeventprecludesanycertaintyofdynamicvesselstability.

ThisresearchpresentstheuseofLyapunovexponents,aquantitythatmeasurestherateoftrajectoryseparationinphasespace,topredictcapsizeeventsforbothintactanddamagedstabilitycases.Thealgorithmsearchesbackwardsinshipmotiontimehistoriestogatherneighboringpointsforeachinstantintime,andthencalculatestheexponenttomeasurethestretchingofnearbyorbits.Bymeasuringtheperiodsbetweenexponentmaxima,thelead‐timebetweenperiodspikeandextrememotioneventcanbecalculated.Theneighbor‐searchingalgorithmisalsousedtopredicttheseevents,andinmanycasesprovestobethesuperiormethodforprediction.

Inadditiontotheshipstabilityresearch,theLyapunovexponentsareusedinconjunctionwithbifurcationanalysistodetermineregionsofstablebehaviorinstrangeattractorswhenthesystemparametersarevaried.Theboundariesofstabilityareimportantforalgorithmvalidation,wherethesetransitionsbetweenstableandunstablebehaviormustbeaccountedfor.

Page 3: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

iii

Acknowledgements• Dr.LeighMcCue,forherguidance,support,patience,andabilitytoputupwithmycrap

foralltheseyears.

• TheAOEfaculty,particularlyAlanBrownandWayneNeu,fortheirknowledgeandsupportthroughoutmyundergraduateandgraduatecareer.

• TheOceanEngineeringClassof2007,fortheirfriendship,humor,andguidancethroughout.

• TheOfficeofNavalResearch,fortheirsupportofacademicendeavorssuchasthese.

• WanWu,forherassistanceandworkwiththebifurcationanalysisviatheAUTOprogram,andherpatiencewiththeauthor.

• ThankstoBilalAyyub,EricPatterson,andArtReedfortheirsupportoftheworkofChapter1.ThatworkwassupportedbyONRGrantN000140810695andNSFCMM1‐0747973.

• RegardingtheworkofChapter2,theauthorwishtothankDanHaydenforhisworkinreducinganddocumentingtheDTMBModel5514experimentaldata,WilliamBelknapforsharingthe5514data,andAndrzejJasionowskiforprovidingthedamagedshipdata.ThisworkhasbeensupportedbyONRGrantN000140610551.

Page 4: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

v

TableofContents(ABSTRACT) II

ACKNOWLEDGEMENTS III

TABLEOFCONTENTS V

LISTOFFIGURES VII

LISTOFTABLES IX

CHAPTERS 1

1. INTRODUCTION 11.1 LYAPUNOVEXPONENTS 11.2 WOLFALGORITHM 21.3 SANOANDSAWADAALGORITHM 31.4 VERIFICATIONANDVALIDATION 41.5 LYAPUNOVAPPLICATIONTOSHIPCAPSIZE 52. IDENTIFICATIONOFPARAMETERTRANSITIONBOUNDARIESWITHLYAPUNOVEXPONENTS 72.1 BIFURCATIONANALYSIS 72.2 TIME‐SERIESLENGTH 72.3 LORENZSYSTEM 82.4 ROSSLERSYSTEM 92.5 SMALL‐SCALEPARAMETERVARIATIONS 102.5.1 LorenzSystem 102.5.2 RosslerSystem 122.5.3 RosslerHyperchaosSystem 142.6 LARGE‐SCALEPARAMETERVARIATIONS 162.6.1 LorenzSystem 162.6.2 RosslerSystem 292.6.3 RosslerHyperchaosSystem 403. APPLICATIONOFLYAPUNOVEXPONENTSTOINTACT&DAMAGEDSHIPSTABILITYCASES 413.1 APPLICATIONOFFTLESTODYNAMICSHIPMOTION 413.2 DAMAGEDSTABILITYOFACOMMERCIALPASSENGERRO‐ROSHIP 413.2.1 PeriodMeasurement 423.2.2 NeighborMeasurement 483.3 APPLICATIONTONOTIONALHULLFORM5514CAPSIZECASES 534. APPLICATIONOFNEIGHBORSEARCHINGMETHODTOREAL­TIMESHIPMOTIONS 634.1 MOTIVATION 634.2 EXPERIMENTALSETUP 634.2.1 Data‐collection 634.2.2 Algorithm/Datamodification 644.3 REAL‐TIMENEIGHBORCOUNTINGRESULTS 66 66

Page 5: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

vi

5. CONCLUSIONS 695.1 VERIFICATIONANDVALIDATION 695.2 APPLICATIONTOSHIPCAPSIZE 695.3 FUTUREWORK 69

APPENDIXA 70

1. FIGURES 702. TABLES 75

APPENDIXB:CHOOSINGD.O.F.PARAMETERSFORBESTNEIGHBORS/FTLERESULTS 76

REFERENCES 81

1. CHAPTER1 812. CHAPTER2 82

Page 6: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

vii

ListofFiguresFIGURE1:ELONGATIONOFELLIPSEAXESASANEXPONENTIALFUNCTIONOFLYAPUNOVEXPONENTS

(ADAPTEDFROMOTTET. AL 1994) 2FIGURE2:LYAPUNOVSPECTRUMCONVERGENCEFORTHEROSSLERATTRACTOR 8FIGURE3:LORENZOSCILLATORSYSTEMFOR

σ = 10,R = 28.0,beta = 8/3 9FIGURE4:ROSSLEROSCILLATORFOR

a = 0.15,b = 0.2,c = 10 10FIGURE5:LORENZLYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALECHANGEIN

σ 11FIGURE6:LYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALEVARIATIONSINAFORWOLFSYSTEM 12FIGURE7:ROSSLERLYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALEVARIATIONSINCFORWOLF

SYSTEM 13FIGURE8:ROSSLERHYPERCHAOSLYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALECHANGESINAFOR

WOLFVARIATION 14FIGURE9:LORENZLYAPUNOVSPECTRUMFORCHANGESIN

σ FORTHEWOLFVARIATION(

σ = 16, R = 45.92, b = 4.0) 17FIGURE10:LORENZFIRSTLYAPUNOVEXPONENTCHANGEANDHOPFBIFURCATIONFORLARGE–SCALE

CHANGEIN

σ 17FIGURE11:LORENZSECONDLYAPUNOVEXPONENTCHANGEFORLARGE‐SCALECHANGESIN

σ 18FIGURE12:LORENZTHIRDLYAPUNOVEXPONENTCHANGESFORSMALL‐SCALEVARIATIONINSIGMA 19FIGURE13:LORENZFIRSTLYAPUNOVEXPONENTCHANGEANDPHASE‐SPACEFORLARGE–SCALECHANGE

IN

σ FORTHECLASSICVARIATION 20FIGURE14:LORENZCLASSICVARIATIONSTEADY‐STATEPHASE‐SPACEFOR

σ =2.0 21FIGURE15:LORENZCLASSICVARIATIONUNSTRUCTUREDPHASE‐SPACEFOR

σ =19.0 22FIGURE16:LORENZLYAPUNOVSPECTRUMCHANGESFORRINTHEWOLFVARIATION

(

σ = 16, R = 45.92, b = 4.0) 23FIGURE17:LORENZLYAPUNOVSPECTRUMCHANGESFORRINTHECLASSICVARIATION

(

σ = 10, R = 28.0, b = 8 /3) 24FIGURE18:LORENZFIRSTLYAPUNOVEXPONENTCHANGESFORLARGE‐SCALEVARIATIONSINB 25FIGURE19:LORENZSECONDLYAPUNOVEXPONENTCHANGESFORLARGE‐SCALEVARIATIONSINB 26FIGURE20:LORENZTHIRDLYAPUNOVEXPONENTCHANGESFORLARGE‐SCALEVARIATIONSINB 27FIGURE21:LORENZCLASSICALVARIATIONTRANSITIONBETWEENCHAOTICANDSTABLEBEHAVIORFOR

CHANGESINB 28FIGURE22:ROSSLERFIRSTLYAPUNOVEXPONENTCHANGESFORLARGESCALECHANGESINA 29FIGURE23:ROSSLERFIRSTLYAPUNOVEXPONENTCHANGESFORLARGESCALECHANGESINA 30FIGURE24:ROSSLERTHIRDLYAPUNOVEXPONENTCHANGESFORLARGESCALEVARIATIONSINA 31FIGURE25:ROSSLEROSCILLATORFOR

a = 0.05,b = 0.2,c = 10 32FIGURE26:ROSSLERLYAPUNOVSPECTRUMCHANGESFROMLARGE‐SCALEVARIATIONSINB 33FIGURE27:FIRSTLYAPUNOVEXPONENTCHANGESFORSMALL‐SCALEVARIATIONSINC 34FIGURE28:SECONDLYAPUNOVEXPONENTCHANGESFORSMALL‐SCALEVARIATIONSINC 35FIGURE29:THIRDLYAPUNOVEXPONENTCHANGESFORSMALL‐SCALEVARIATIONSINC 36FIGURE30:ROSSLERFIRSTLYAPUNOVEXPONENTCHANGEANDPHASE‐SPACEFORLARGE–SCALE

CHANGEINC 37FIGURE31:ROSSLEROSCILLATORPERIODICITYFOR

a = 0.2,b = 0.2,c = 4 38FIGURE32:ROSSLEROSCILLATORPERIODICITYFOR

a = 0.2,b = 0.2,c = 20 39FIGURE33:DAMAGEDSTABILITYRUN101.FROMTOPTOBOTTOM:ROLLVS.TIME,PERIODVS.TIME,FTLE

VS.TIME 42FIGURE34:DAMAGEDSTABILITYRUN101.CLOSEUPOFFTLEVALUESANDPERIODMEASUREMENT 43FIGURE35:DAMAGEDSTABILITYRUN101.FTLEANDPERIODMEASUREMENTSVS.TIME 44FIGURE36:ROLLVS.TIMEANDFTLEPERIODFORCAPSIZERUN402 46FIGURE37:MARKEDPERIODINDICATORFORLARGESTAMPLITUDEMOTION,RUN402 47FIGURE38:DAMAGEDSTABILITYRUN101ROLLVS.NUMBEROFNEIGHBORS. 48FIGURE39:DAMAGEDSTABILITYRUN101ZOOMOFNEIGHBORCOUNTING 49

Page 7: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

viii

FIGURE40:DAMAGEDCASERUN101ROLLVS.FLAG 50FIGURE41:DAMAGEDCASERUN101ROLLVS.DANGERINDICATOR 51FIGURE42:HULLFORM5514RUN216ROLLVS.NUMBEROFNEIGHBORS 54FIGURE43:HULLFORM5514RUN216ROLLVS.PERIOD 55FIGURE44:HULLFORM5514RUN216ROLLVS.ROLLVELOCITYBASINOFSTABILITYFORPERIOD

INDICATORS 56FIGURE45:HULLFORM5514RUN216ROLLVS.ROLLVELOCITYBASINOFSTABILITYFORNEIGHBORHOOD

INDICATORS 57FIGURE46:HULLFORM5514RUN327NEIGHBORHOODLOSS 58FIGURE47:HULLFORM5514RUN327ROLLVS.ROLLVELOCITYNEIGHBORHOODLOSSMARKERS 59FIGURE48:HULLFORM5514RUNS220,331,333ROLLVS.ROLLVELOCITYNEIGHBORHOODLOSSMARKERS

60FIGURE49:MOOGMOTIONPLATFORM 63FIGURE50:CROSSBOWTILTSENSORMOUNTEDONMOTIONPLATFORM 64FIGURE51:DAMAGEDSTABILITYRUN101,DATARECORDEDFROMMOOGPLATFORM 66FIGURE52:ROSSLERHYPERCHAOTICATTRACTORFOR

a = 0.25,b = 3.0,c = 0.05,d = 0.5 70FIGURE53:LORENZLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINR 71FIGURE54:LORENZLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINB 71FIGURE55:ROSSLERHYPERCHAOSLYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALECHANGESINBFOR

WOLFSYSTEM 72FIGURE56:ROSSLERHYPERCHAOSLYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALECHANGESINCFOR

WOLFSYSTEM 73FIGURE57:ROSSLERHYPERCHAOSLYAPUNOVSPECTRUMCHANGESFORSMALL‐SCALECHANGESIND FOR

WOLFSYSTEM 74FIGURE58:DAMAGEDSTABILITYRUN101ROLLVSTIMEANDNON‐DIMENSIONALIZEDFTLEPERIOD

MEASUREMENT 76FIGURE59:DAMAGEDSTABILITYRUN101ROLL/ROLLVELOCITYVS.TIMEANDNON‐DIMENSIONALIZED

FTLEPERIOD 77FIGURE60:DAMAGEDSTABILITYRUN101PITCHVS.TIMEANDNON‐DIMENSIONALIZEDFTLEPERIOD 78FIGURE61:DAMAGEDSTABILITYRUN101PITCH/PITCHVELOCITYVS.TIMEANDNON‐DIMENSIONALIZED

FTLEPERIOD 79FIGURE62:DAMAGEDSTABILITYRUN101PITCH/PITCHVELOCITY&ROLL/ROLLVELOCITYVS.TIMEAND

NON‐DIMENSIONALIZEDFTLEPERIOD 80

Page 8: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

ix

ListofTablesTABLE1:STANDARDDEVIATIONSFORLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESIN

σ 11TABLE2:STANDARDDEVIATIONSFORLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINA 12TABLE3:STANDARDDEVIATIONSFORROSSLERLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINC

13TABLE4:STANDARDDEVIATIONSFORLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINA 15TABLE5:STANDARDDEVIATIONFORLORENZLYAPUNOVSPECTRUMFORLARGE‐SCALECHANGESIN

σ 17TABLE6:STANDARDDEVIATIONSFORLORENZLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINR24TABLE7:STANDARDDEVIATIONSFORLORENZLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINB27TABLE8:STANDARDDEVIATIONSFORROSSLERLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINA

31TABLE9:STANDARDDEVIATIONSFORROSSLERLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINB

33TABLE10:STANDARDDEVIATIONSFORROSSLERLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINC

39TABLE11:LEADTIMEFORPERIODCORRELATIONOFMAXIMUMROLLAMPLITUDES 45TABLE12:LEADTIMEFORNEIGHBORCORRELATIONOFMAXIMUMROLLAMPLITUDES 52TABLE13:LEADTIMEFORNEIGHBORHOODLOSSCORRELATIONOFHULLFORM5514CAPSIZECASES 61TABLE14:LEADTIMEFORREAL‐TIMENEIGHBORHOODLOSSCORRELATIONOFDAMAGEDSTABILITY

CASES 67TABLE14:STANDARDDEVIATIONSFORLORENZLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESIN

SIGMA 75TABLE15:STANDARDDEVIATIONSFORLORENZLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINB

75TABLE16:STANDARDDEVIATIONSFORROSSLERLYAPUNOVSPECTRUMFORSMALL‐SCALECHANGESINB

75TABLE17:STANDARDDEVIATIONSFORROSSLERHYPERCHAOSLYAPUNOVSPECTRUMFORSMALL‐SCALE

CHANGESINB 75TABLE18:STANDARDDEVIATIONFORROSSLERHYPERCHAOSLYAPUNOVSPECTRUMFORSMALL‐SCALE

CHANGESIND 75

Page 9: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

1

Chapters1. Introduction

1.1 LyapunovExponents

Themotionofasinglepointonanattractorcanbedefinedaschaoticifexhibitssensitivitytoinfinitesimallysmallchangesininitialconditions(Ottet. al 1994).Asimplebuttellingexampleofthisconditionwouldbetoplaceaballonahillandgiveitasmallpushinonedirection.Nomatterhowprecisethepushmaybe,theballwillalwaysfollowadifferentorbitdownthehillbecauseoftheminisculedifferencesintheforcebeingappliedandtheterrainitfollows.Theelaborateorbitstructurethatcomesasaresultofvastnumberofpossibleorbits,aswellasthe“stretching”ofminutedisplacementsoftheorbit(initialconditionsensitivity),canbemodeledwithLyapunovexponents(Ottet. al 1994).

ThestartingpointfordefiningaLyapunovexponentisaflowfield:

x = v x( ) (1)

Inadditiontothisflowfield,atrajectory x t( ) isdefined,aswellassmalldeviationsfromthattrajectory,δx .Afterformingamatrixofderivatives, Lij =

∂vi∂x j

,anequationforthe

changingnatureoftheflowcanbedefinedas:

δ x = L x t( )( )δx (2)

Therefore,forallinitialtrajectoriesandinitialdisplacementsamaximalLyapunovexponentforthesystemcanbedefinedasfollows(EckhardandYao,1993):

λ∞ = limT→∞

1Tlog

δx t( )δx 0( ) (3)

Thisexponentisnormallyassumedtoexistonanattractor,anditshouldbenotedthatforsomecasesanattractormaynotexistforthesystem.Aswasmentionedpreviously,theexponentmeasuresthestretchingofnearbyorbitsinphasespace;thisstretchingcancomeintheformanexpandingorcontractingnature,andmaybestbevisualizedbyaballofinitialconditionpoints.Becauseofthelocaldeformations,orstretching,oftheflow,theballofinitialconditionpointsink dimensionswillbecomeak­dimensionalellipsoidwhoseaxesaredeformingexponentiallyasdefinedbytheseLyapunovexponents(Wolfet al 1985).

Thenumberofexponentsforthesystemisdeterminedbythenumberofstatevariablesgoverningthesystem.Generallyforanycontinuoustime‐dependentdynamicsystemwithoutafixedpoint,therewillbeazeroexponentreflectingtheslowlychangingprincipalaxis,apositiveexponentreflectinganexpandingaxis,andanegativeexponentreflectingacontractingaxis(Wolfet al 1985).

Page 10: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

2

Figure1:ElongationofellipseaxesasanexponentialfunctionofLyapunovexponents(adaptedfromOttet. al 1994)

Thenumberofexponentsforthesystemisdeterminedbythenumberofstatevariablesgoverningthesystem.Generallyforanycontinuoustime‐dependentdynamicsystemwithoutafixedpoint,therewillbeazeroexponentreflectingtheslowlychangingprincipalaxis,apositiveexponentreflectinganexpandingaxis,andanegativeexponentreflectingacontractingaxis(Wolfet al 1985).

Afinite‐timeLyapunovexponent(FTLE)issimplytheLyapunovexponentdefinedoverashorttimeinterval,ratherthanoveraninfinitecontinuoustimeseries.Itcanbedefinedas(EckhardtandYao,1993):

λ x t( ),δx 0( )( ) = 1Tlog

δx t + T( )δx t( ) (4)

TheFTLEallowsforamoremeaningfulmeasureofreal‐timechangesoftheexpandingandcontractingnatureoftheellipticalaxes,andistheformoftheLyapunovexponentthatwillbeusedintheanalysisofthedamagedstabilitycases.TheLyapunovexponentasdefinedoveraninfinitecontinuoustimeseries,whereascapsizeisafinitetimeevent.IntheFTLEcalculationtheJacobianisbeingcalculatedlocallyateachinstantinthetimeseries,andthustheFTLEisreactingtothechangesastheyoccur.

1.2 WolfAlgorithm

OneapproachusedtocalculatetheLyapunovexponentspectrumforthisworkisthealgorithmdevelopedbyWolfet al(1985),whichdeterminestheexponentsdirectlyfromtheequationsofmotion.Wolf’smethodfollowsthelong‐termchangesalongaprincipleaxis,or“fiducialtrajectory”,inordertocalculatethelargestpositiveexponentvalues,andmaintainsspaceorientationusingaGram‐Schmidtreorthonormalizationprocedure(Wolfetal1985).

Page 11: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

3

1.3 SanoandSawadaAlgorithm

ThealgorithmdevelopedforLyapunovexponentsbySanoandSawada(1985)isusedtocalculateboththeLyapunovspectrumandFTLEvalues.TheSanoandSawadaapproachbeginswiththesamestepsaspresentedinequations1‐3,butalsodefinesalinearoperator,At :

δx t( ) = Atδx 0( ) (5)

GiventhetimeseriesmeasuredatthediscretetimeintervalΔt , x j = x t0 + j −1( )Δt( ) ,thek‐dimensionalellipsoidasdescribedabovecanbedefinedbyadisplacementvector yi ,andadisplacementvectoroveratimeintervalτ = mΔt ,givenby zi .ThedetailsofthederivationofthesevectorsarethoroughlyoutlinedinSanoandSawada(1985).Withthesevectorsdefined,theevolutionoftheellipsoidcanberepresentedby:

zi = AJ yi (6)

Wherethematrix AJ isanapproximationoftheflowmap At ,fromequation5.Usingaleast‐

error‐algorithm,whichminimizestheaverageofthesquarederrornormbetween zi andAJ y

iwithrespecttoallcomponentsofthematrix AJ (SanoandSawada,1985),theLyapunovexponentscanbefoundasfollows:

λi = limn→∞

1nτ

ln Ajeij

j=1

n

∑ (7)

Inthisequationn isthenumberofdatapoints,ande isasetoforthonormalbasisvectorsthatarerenormalizedusingtheGram‐Schmidtprocedure(SanoandSawada,1985).

Page 12: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

4

1.4 VerificationandValidation

“[I]n a meaningful though overly scrupulous sense, a ‘Code’ cannot be Validated, but only a Calculation (or range or calculations with a code) can be Validated.  However, it is clear that physical problems and their solutions present more­or­less continuum responses in their parameter spaces.  Although parameter ‘transition’ boundaries do occur, at which solution properties can change discontinuously or rapidly, these parameter transition boundaries are at least countable, and are usually few.  The determination of the parameter transition boundaries is the task of the entire professional community (experimental, theoretical, computational) working in the subject area”(Roache,1998,pp.280‐281).

ChaoticattractorsareoftenusedasanalgorithmverificationbenchmarkforthecalculationoftheLyapunovexponentspectrum.Verificationistheprocessbywhichtheresearcherdemonstratesthatthenumericalmodelimplementationandsolutionmatchesthedevelopedtheoreticalmodel;thisprocessworkshandinhandwithvalidation,whichconfirmsthatthemodelisanaccuraterepresentationofthephysicalrealityofthesystem(McCue,2008).

PreviousworkdonebyRosensteinet al(1992)investigatedLyapunovsensitivitytovariouschangesmadeintheLorenzsystem,asamethodforverifyinganewalgorithmforthecalculationofthelargestLyapunovexponent.Theworkinvestigatedtheeffectofembeddingdimension,timeserieslength,reconstructiondelay,andadditivenoiseonthespectrumofexponents,butdidnotinvestigatetheeffectofattractorparametervariationonthespectrum.

TherehasbeenlittleresearchdoneinregardtoLyapunovsensitivitytosmall‐scalechangesintheparametersofthreeandfour‐dimensionalstrangeattractorsfromtheverificationandvalidationperspective.Byinvestigatingtheeffectsoftheseparametervariationsonthecomputedattractors,thetransitionboundariesbetweenstableandunstableregionsoftheattractorcanbedetermined;thesetransitionshavebeenexploredbefore,butneverwithrespecttotheLyapunovspectrumasaV&Vtool.Theseboundariesareanimportantpieceofalgorithmvalidation,wherethesensitivitytoexperimentalerrorcanleadtoincorrectresultsifthesetransitionsarenottakenintoaccount.

TheuseofbothWolfandSano/Sawadaalgorithmsisakeypartoftheverificationandvalidationofsimulatedvs.experimentalresults.Infieldsofresearchsuchasshipmotions,datasetsarecreatedbothfromexperimentaltanktestingaswellasdirectlyfromtheequationsofmotion.Lyapunovexponentsarearobusttoolforvalidatingbothtypesofmodels;thereshouldbeexcellentagreementbetweenexponentvaluesiftheunderlyingphysicsoftheexperimentalmodelagreeswiththeexperimentaldata.

Page 13: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

5

1.5 LyapunovApplicationtoShipCapsize

Shipcapsizeisoftenachaoticphenomenonwithcapsize/non‐capsizeconditionsdemonstratinghighsensitivitytoinitialconditions.Manymathematical,statistical,andnumericalmethodshavebeenemployedtodeterminethelikelihoodofshipcapsizeinspecifiedseaconditions.However,becauseofthechaoticnatureoftheproblemitisexceedinglydifficulttoconsistentlyandrobustlypredictshipcapsizeinaseriesofrandomwaves.Additionallythereistheissueofrarity,wheredisparatetimeintervalsbetweenrollperiodandlossofstabilityleadtodifficultiesinnumericalsimulationsforcapsizecases.Theaveragetimebeforestabilityfailureisverylargecomparedtonaturalrollperiod,andthereforesetsofreconstructedwavedatamustbeverylongtocaptureallpossibledynamics,presentinganumericalchallengewhenworkingwiththecomparativelysmalltimescaleofrollperiod(Belenky2007).Recentinnovationinhulldesignhasbeenheighteningtheawarenessoftheseissues,andhaspushedfurtherinvestigationintothenatureofshipcapsize.Thisveryrealproblemiswherethemathematicalstudyofchaoticprocessesmayone‐dayallowforthereal‐timepredictionofwhetherashipisfacingimminentcapsize.

Capsizeresearchiscurrentlybeingperformedbothexperimentallyandnumericallyatgovernmentandacademicresearchinstitutionsworldwide,withpowerfulnumericaltoolsbeingdevelopedforthepurposeofanalyzingnonlinearshipmotions.TheLAMPprogramwasusedtocompletenumericaltime‐domainworkinthe1990’sbyLin andYue(1990,1993),andbeganin1988asaDARPAprojectforthesimulationofnonlinearshipmotions(Belenky2002).TheuseofthistoolhasbeencontinuedbyBelenky,Weems,andLiutet. al.(2002)tosimulatecriteriasuchaswater‐on‐deck,impactandwhipping,andwave‐loads.Thenonlinearstrip‐theorycodeFREDYNhasbeensignificantlyusedbyDeKatet. al. (2000,2001)tomakemotionpredictionsforbothintactanddamagedstability,aswellasprogressivefloodingandsloshing.

Lyapunovexponentshaveseenlimiteduseinthefieldofnavalarchitectureandshipdynamics.SomeoftheearliestworkwasdonebyPapoulias,investigatingthebehaviorofamooringsystemfortankersinathreedegree‐of‐freedommodel.TheLyapunovspectrumwasusedinthiscasetoconfirmtheonsetofchaoticbehavior,andthusinstabilityinthemodel(Papoulias,1987)EarlyworkbyFalzaranocalculatedtheLyapunovspectrumforthecapsizecaseofthefishingvesselPatti­B.Itwasconcludedthattheexponentcanserveasbothaqualitativeandquantitativemeasureofchaos,withapositivevaluebothconfirmingchaoticbehaviorandassociatinganumberwiththatexpansion(Falzarano1990).Spyrou’sworkinvestigatedLyapunovexponentsinconnectionwithlarge‐amplitudeshipmotioninquarteringwaves;rudderanglewasusedasacontrolparameter,withafocusonoscillatorybehaviorandtransitionstochaoticregions.Theexponentswereusedinconjunctionwithbifurcationanalysistodetectthetransitionboundarybetweenstableandchaoticbehaviorinacontrols‐fixedship,focusingonpositivevaluesofthefirstexponent(Spyrou1996).WorkbyMurashigeandcollaboratorsexaminedtheroleofchaoticbehaviorinafloodingbox‐bargemodelinwaves;themodelwascoupledtwo‐dimensionallywithrollandflooding.Theirresultsdeterminedthattherollresponseofafloodedvesselcanexhibitchaoticbehaviorinregularwaves,supportedbytheexistenceofapositiveLyapunovexponent(Murashige1998a;1998b;2000).Arnoldetal.correlatedmeasurementsofthepositive

Page 14: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

6

Lyapunovexponentinthespectrumtocapsizeresultsinaonedegree‐of‐freedomrollmodel.Theirresultsconcludedthatfortheirmodeltheattractordisappearsinacapsizecase,usuallywhilethefirstexponentisnegative;thissignifiesastableperiodicattractorratherthanachaoticregion.Theresearchproducedsomecapsizecasesthatweretheresultofapositiveexponent,demonstratingthatthenumericalmodelcanexistasachaoticattractorbeforecapsize(Arnold2003).

RecentworkbyMcCueet.al.hasusedLyapunovexponentsfordeterministicresearchonshipmotionsandcapsize.Theworkusedafinite‐timeformoftheexponent(FTLE)toexamineitsabilitytopredictcapsizecasesinasingledegree‐of‐freedomrollmodel.TheresearchconcludedthattheLyapunovapproachcanaccuratelypredictimpendingcapsizeinregularandrandomseas(McCue2005).FutherworkbyMcCue,Bassler,andBelknapcontinuedtheuseofFTLE’stoindicatecapsizeinexperimentaltimeseriesdatafromwavetanktestsconductedattheNavalSurfaceWarfareCenterinCarderock,MD.Thisresearchisacontinuationofthatwork,examiningthefeasibilityofFTLE’sforbothintactanddamagedstability,andtheapplicationofdifferentalgorithmstoimprovetheresponsetimeforcapsizeprediction.

Page 15: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

7

2. IdentificationofParameterTransitionBoundarieswithLyapunovExponents

2.1 Bifurcationanalysis

Thesensitivitytoparameterchangesforstrangeattractorscanbeachievedthroughanumberofmethods,themosttraditionalofwhichisbifurcationanalysis.ThedefinitionofthisanalysisasoutlinedbyCrawford(1989):

“Bifurcation theory studies these qualitative changes in the phase portrait, e.g., the appearance or disappearance of equilibria, periodic orbits, or more complicated features such as strange attractors. The methods and results of bifurcation theory are fundamental to an understanding of nonlinear dynamical systems…” 

BifurcationanalysiswasusedtofurthervalidatetheLyapunovtransitionboundariesforlarge‐scaleparameterchanges.TheAUTOprogram,originallydevelopedbyDoedel(2008),isafreewaresoftwarepackagewithbuilt‐inalgorithmsforcalculatingHopfbifurcationsfortheLorenzsystem.ThesebifurcationsoccurduringthetransitionalphasesoftheLorenzoscillator,fromstabletounstablebehavior,andareusefulinverifyingthetransitionscapturedbytheLyapunovexponentspectrum.

2.2 Time‐SeriesLength

Bothtime‐serieslengthandtime‐steparecriticalinordertoallowforthelong‐termconvergenceoftheLyapunovexponent.AbarbaneletalinvestigatedtheeffectoflocalLyapunovexponentsandtheirgovernanceofsmallperturbationsalonganorbitbasedonafinitenumberofsteps.TheirworkconcludedthatasL,thenumberofstepsalongtheorbit,growstoinfinity,variationsaboutthemeanoftheLyapunovexponentsapproacheszero(Abarbaneletal1991).FurtherworkstudyingtheeffectsoftimeserieslengthwithregardstoexponentdeviationwascompletedbyRosensteinetal;theyalsoexploredvariationsinembeddingdimension,reconstructivedelay,andadditivenoiseusingthesameLorenzsysteminvestigatedbyWolfetal.ThefindingsconcludedthatthebestresultsforLyapunovcalculationwereachievedusingalongtime‐seriesandcloselyspacedsamples;theyalsosawsimilarresultsusinglongobservationtimeandwidely‐spacedsamples(Rosensteinetal,1992).Alldatasetsinthisstudyare2000secondsinlengthwithastepsizeof0.1seconds,providingasamplesizeof20,000points.Generallyforanycontinuoustime‐dependentdynamicsystemwithoutafixedpoint,therewillbeazeroexponentreflectingtheslowlychangingprincipleaxis,apositiveexponentreflectinganexpandingaxis,andanegativeexponentreflectingacontractingaxis(Wolfetal1985).Convergenceforthepositiveandzeroexponentsoccursquicklyalongthetimeseries,whilethethirdexponent,whichisgenerallyconsideredtobethemostunstableofthethree,takesanumberofiterationstoconverge,asseeninFigure2.Bytheconclusionofthetimeseries,allthreeexponentsoscillatearoundtheirfinalvalueontheorderof0.1‐0.3%.

Page 16: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

8

Figure2:LyapunovspectrumconvergencefortheRosslerattractor

2.3 LorenzSystem

TwodifferentvariationsontheLorenzsystemwereinvestigated,eachhavingbeenpreviouslysolvedfortheLyapunovspectrausingdifferentapproaches.Thealgorithmusedforthisworkwasverifiedagainstthepublishedvalues.Thefirstsystemisbasedonafamiliarmodelthatwastheresultofastudyofconvectionintheloweratmosphere(Abarbaneletal1991).TheseparametervaluesfortheLorenzsystemwereusedbyWolfetalintheirdirectmethodalgorithm,andhavebeenusedmorerecentlyinotherapproachestodetermineLyapunovspectraforstrangeattractors.TheWolfsystemisdefinedbythefollowingparameters:

σ = 16, R = 45.92, b = 4.0TheparametersofthesecondsystemareasdefinedbyLorenzhimselfinhisoriginalworkontheattractorasfollows(Lorenz1963):

σ = 10, R = 28.0, b = 8 /3.Thissystemiswidelyconsideredtobetheclassicexampleofa

Page 17: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

9

Lorenzoscillator,asseeninFigure3.

Figure3:Lorenzoscillatorsystemfor

σ = 10,R = 28.0,beta = 8/3

2.4 RosslerSystem

ThethreedimensionalRosslerattractor,asproposedbyRosslerin1976,isathree‐dimensionalsystemthathasapositive,zero,andnegativeexponentspectrumwhenstable;twovariationsinparametervalueswerecompared,thosebyWolfet.al.(

a = 0.15, b = 0.20, c = 10.0),asseeninFigure4,andthosebySanoandSawada

(a = 0.20, b = 0.20, c = 5.7) .TheRosslerhyperchaossystem,a4‐Dhyperchaoticflowproposedin1979andseeninFigure52inAppendixA,wasalsoinvestigated;itcontainsasecondpositiveexponentreflectingtheexpandingaxisoftheextraunseendimension.Itisextremelysensitivetoparameterinputs,andthereforethereisgenerallythefollowingaretheonlyparametersusedfornumericalstudy(a=0.25,b=3.0,c=0.05,d=0.5).

Page 18: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

10

Figure4:Rossleroscillatorfor

a = 0.15,b = 0.2,c = 10

2.5 Small‐scaleParameterVariations

Thedefinitionof“small‐scale”forthisstudywereparameterperturbationsof10%oftheparametervalueineachdirection.

2.5.1 LorenzSystem

2.5.1.1

σ (small‐scale)

Parameterchangesofthisscaleshowsmallchangesintheexponentvalues,butatnopointaretheysignificantenoughtoforcethesystemintoadifferencephaseororbit.Figure5showstheLyapunovexponentspectrumchangesforbothWolfandClassicalvariations,notingthatthedifferenceinparametersbetweenthetwoaccountsfortheapparentgapinmeasurementvalue.

Page 19: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

11

Figure5:LorenzLyapunovspectrumchangesforsmall‐scalechangein

σ

ThethirdexponentshowsappreciablechangeforboththeWolfandClassicalvariations,butitslinearnatureshowsbeliesnoseriesphasechangeortransitionalperiod.Thestandarddeviationsforthe

σ caseareseeninTable1:

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.007445 0.0006189 0.9992

Sano/Sawada 0.005233 0.0009968 0.5216Table1:StandarddeviationsforLyapunovspectrumforsmall‐scalechangesin

σ

2.5.1.2 R(small‐scale)

TheR‐parameterhaslittletonoeffectonthesystemforchangesofthisdegree.AscanbeseeninFigure50andTable14ofAppendixA,theWolfvariationshowsalittlemorechangeinthethirdexponentthantheClassicvariation,thoughbothdeviationsaresmall;thoughthethirdexponenthasbeenthemosterraticofthethree,forRvariationsitremainsmoderatelyconstant.Thesecondexponentvariationisagainonthescaleofcomputationalerror,oscillatingaroundzero,andthefirstexponentincreasesinalinearlypositivedirectionforthedurationofthecalculations.

Page 20: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

12

2.5.1.3 b(small‐scale)

Allthreeexponentstrendsimilarlytochangesinsigma,withthethirdexponentdecreasinglinearly,thefirstexponentlinearlyincreasingtoasmalldegree,andthesecondoscillatingaroundzero.Thereisnoappreciabletransitionorphasechange.

2.5.2 RosslerSystem

GiventhesimilaritybetweenparametersoftheWolfandSano/Sawadasystems,andlittlenumericalchangeineithersystemforsmall‐scaleparameterchange,onlytheWolfvariationwasused.

2.5.2.1 a (small‐scale)

TheRosslersystemshowednoobviousphasechangesortransitionboundariesfora:

Figure6:Lyapunovspectrumchangesforsmall‐scalevariationsinaforWolfsystem

System Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.01860 0.001806 0.03411

Table2:StandarddeviationsforLyapunovspectrumforsmall‐scalechangesina 

Page 21: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

13

Allthreeexponentdeviationsarerelativelyuniform,withnoincreasingordecreasingtrendsamongthem.Allthreeexponentsfluctuatealongthelengthoftheparameterchange,andthesystemisstablethroughout,withnotransitions.

2.5.2.2 b (small‐scale)

Changesinb haveevenlessofanaffectonthesystem,ascanbeseeninFigure51andTable16ofAppendixA.

2.5.2.3 c(small‐scale)

Changesinparameterc reflectthoseseenintheLorenzsystem:

Figure7:RosslerLyapunovspectrumchangesforsmall‐scalevariationsincforWolfsystem

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.005389 0.0002207 0.3316

Table3:StandarddeviationsforRosslerLyapunovspectrumforsmall‐scalechangesinc 

Thefirsttwoexponentsshowverylittledeviationalongthelengthofchangesinc. Thethirdexponentshowsaslightlynegativelinearchange,butnothingsignificantenoughtobeconsideredtransitionbehavior.

Page 22: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

14

2.5.3 RosslerHyperchaosSystem

2.5.3.1 a(small‐scale)

TheinitialsystemparametergivenbyWolfwasa=0.25,andchangeswereattemptedfor10%ofthisvalueineachdirection.However,forearlyvaluesa=0.225‐0.23,thesystemwouldnotconvergetoastablefourthexponent.Theconvergencebeganata=0.2325andcontinuedthrougha=0.2575.AfterthispointtheODEsolverfailedtocomputeforallfurthertimeiterations.Figure8showsthevariationsalonga thatwouldconvergetoastablefourthexponent:

Figure8:RosslerHyperchaosLyapunovspectrumchangesforsmall‐scalechangesinaforWolfvariation

Whencomparingallthreeattractorsystems,theRosslerHyperchaossystemisthemostreactiveofallthreewhenmakingsmall‐scalevariations,atleastinregardstothefourthexponent.Thisexponentisextremelysensitivetoparameterchange,andisthedrivingforcebehindtheconvergencefailurefortheattractor.Thestandarddeviationsbelietheerraticnatureofthenegativeexponent:

Page 23: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

15

Variation Exponent1

σ Exponent2

σ Exponent3

σ Exponent4

σ Wolf 0.006431 0.003710 0.0006582 13.41

Table4:StandarddeviationsforLyapunovspectrumforsmall‐scalechangesina 

Thedeviationsinthefirstthreeexponentsareonthesamescaleassimilarmeasurementsfortheothertwoattractorsystems.Giventhisresult,itdoesnotappearthatthesystemisundergoinganymajorphasechangeortransitionperiod.Thenegativeexponentisclassicallythemostunstableofthethree,andthusallthreeexponentsmustbetakenintoaccountwhenconsideringwhetherthesystemiscrossingatransitionboundary.

2.5.3.2 b(small‐scale)

Thoughthenegativeexponentshowsslightlyoscillatorybehavior,theotherthreeexponentsremainconstant,similartothecaseforchangesina. Therefore,thereappeartobenoapparenttransitionboundaries;thedataforbcanbefoundinAppendixA,Figure52andTable17.

2.5.3.3 c (small‐scale)

Thechangesinparameterc mirrorthoseina;insteadofapositivelytrendingerraticnegativeexponent,ittrendsrapidlynegative.Aswiththeotherparameters,thereislittletonochangeinthefirstthreeexponents,andthereforenoreasontosuspectaphasechangeinthesystem.SeeFigure53andTable18inAppendixAforthevisualsanddeviations.

2.5.3.4 d(small‐scale)

Unliketheothertwoattractors,theRosslerHyperchaossystemhasafourthdimension,andthereforeafourthparametertovary.Thechangesinparameterd causeoscillationsinthefourthexponentsimilartochangesintheb parameter,aswellasanincreasingtrendsimilartochangesintheaparameter;theexponentfailedtoconvergeforanyvalueofdhigherthan0.545.Thefirstthreeexponentsareagainprimarilyuniformthroughouttheirlength,sonotransitionboundarieswereobserved.SeeAppendixAforfurtherdata.

Page 24: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

16

2.6 Large‐ScaleParameterVariations

Theparameterperturbationsonthelargescalewereontheorderof101oftheoriginalparametervalue,withapproximately20differentparametervaluesforeachsystem.Forexample,theRosslerattractor’soriginalWolfparameterswerea=0.15,b=0.2,c=10.0.Theaparameterwasvariedfrom0.5‐0.35inastepsizeof0.5,withextrapointsnearthe0.35mark;thiswasduetotheinstabilityoftheattractorbeyondavalueofa=0.38,atwhichpointtheMATLABODEsolverfails.Theothertwoparametersareheldconstantwhiletheaparameterisbeingvaried.Similarly,a andcareheldconstantwhilebisvariedfrom0.05‐1.0,anda andbareheldconstantwhilecisvariedfrom1‐20.ThiswiderangeforeachparametervalueallowedforthequalificationofanysignificantchangesinLyapunovexponentsolutionduetoincreasingchaosintheattractor,thusdeterminingtheparametertransitionboundaries.

2.6.1 LorenzSystem

2.6.1.1

σ (large‐scale)

The

σ valuewasthemostsignificantdriverforchangesintheLyapunovspectraoftheLorenzoscillator,particularlyinthethirdexponent;asmentionedearlier,thisexponentistheleaststableofthethree,andthereforetheonemostpronetochangesinthesystem.Figure9showsthespectrumprogressioninallthreeexponentsforchangesin

σ fortheWolfvariation:

Page 25: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

17

Figure9:LorenzLyapunovspectrumforchangesin

σ fortheWolfVariation(

σ = 16, R = 45.92, b = 4.0)

Theclassicalsystembehavesinaverysimilarmanner,withlarge‐scalechangesinsigmapromptingarapiddecreaseinthevalueofthethirdexponent.Thestandarddeviationsforthethreeexponentsshowthatthepositiveexponent(1)isaffectedmorethanthezeroexponent(2)forallthreesystems,withthenegative(3)exponentvaryingbyamuchlargerfactor,asseeninTable5:

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.5444 0.1002 6.612Classic 0.7171 0.3538 6.577

Table5:StandarddeviationforLorenzLyapunovspectrumforlarge‐scalechangesin

σ

ThefirstandsecondexponentsshowqualitativelysimilarparametertransitionboundariesinbothLyapunovspectrumandbifurcationanalysis,asseeninFigures10and11:

Figure10:LorenzfirstLyapunovexponentchangeandHopfbifurcationforlarge–scalechangein

σ

Page 26: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

18

Figure11:LorenzsecondLyapunovExponentchangeforlarge‐scalechangesin

σ

Bothexponentsshowarapidincreaseforearlysigmachanges,transitioningtoarelativeplateauofstabilitywithlittletonosignificantchange,andfinallyadecreaseatincreasingvaluesofsigma;theinitialvaluesforbothvariationsrestinthestableareaoftheparameterrange.Theresultsindicatethataparametertransitionboundarydoesexistatbothlowandhighendsofthesigmaspectrum,withhighinstabilityinLyapunovvaluesforsmallvaluesofsigma.TheHopfbifurcationsmarktheboundariesinmostcases,thoughforthefirstexponentitoccursearlierthantheLyapunovtransitionindicates.

Page 27: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

19

Thethirdexponentshowsalineardecreaseas

σ increases:

Figure12:LorenzthirdLyapunovexponentchangesforsmall‐scalevariationinSigma

Thereisonlyaslighttransitionaryperiodforthethirdexponent,withbothvariationsstabilizingforthemiddlerangeofsigmavalues;theClassicvariationappearstotransitionagainattheendofthesigmarange.Againthebifurcationsindicatethetransitionperiods,thoughmoresubtlethanthoseindicatedbythefirstandsecondexponents.

Page 28: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

20

Figure13:LorenzfirstLyapunovexponentchangeandphase‐spaceforlarge–scalechangein

σ fortheClassicvariation

TheLorenzphasespacetransitionsthroughthreedistinctformsasthe

σ parameterischangedintheClassicalvariation.Thefirstphase,seeninFigure14,isaunitcycle;inthisregionof

σ theequationsofmotionhaveasteadystatesolution.

Page 29: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

21

Figure14:LorenzClassicvariationsteady‐statephase‐spacefor

σ =2.0

Afterthetransitiontochaoticbehavior,theoscillatorphasespacelookslikeFigure2,withtwodistinctlobesandclassicattractorbehavior.Afterthesecondtransitionthephasespacereturnstoastablefixed‐pointattractor,andtheorbitsallconvergetoonepoint,asseeninFigure15:

Page 30: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

22

Figure15:LorenzClassicvariationunstructuredphase‐spacefor

σ =19.0

Page 31: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

23

2.6.1.2 RVariation

ChangesintheRparameteraffectthesystemfarlesssignificantlythanthoseofsigma,bothinoverallLyapunovvariationandinrecognitionofclearparameterboundarytransitionswithbifurcationanalysis.ThechangeinRforbothvariationscanbeseeninFigures16and17:

Figure16:LorenzLyapunovspectrumchangesforRintheWolfVariation(

σ = 16, R = 45.92, b = 4.0)

Page 32: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

24

Figure17:LorenzLyapunovspectrumchangesforRintheClassicVariation(

σ = 10, R = 28.0, b = 8 /3)

AsseeninthepreviousfiguresandTable6,thereislittlechangeamongsttheexponentscomparedtothosechangesmadewithSigmavariations.

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.1319 0.0005465 0.1322Classic 0.1227 0.0002564 0.1231

Table6:StandarddeviationsforLorenzLyapunovSpectrumforsmall‐scalechangesinR

Thoughthereisaslightlinearincreaseforthepositiveexponent(1)inbothcases,andconverselyamorepronouncedlineardecreaseforthenegativeexponent(3),therearenocleartransitionsinphasespace.

Page 33: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

25

2.6.1.3 b(large‐scale)

Forvariationsinthebparameter,theClassicvariationshowedsignificantdifferencesinbothparametertransitionandoverallexponentbehavior.Thethreeexponentvariationfiguresandstandarddeviationtablearedetailedbelow:

Figure18:LorenzfirstLyapunovexponentchangesforlarge‐scalevariationsinb 

Page 34: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

26

Figure19:LorenzsecondLyapunovexponentchangesforlarge‐scalevariationsinb 

Page 35: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

27

Figure20:LorenzthirdLyapunovexponentchangesforlarge‐scalevariationsinb 

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.2104 0.0003961 1.572Classic 0.5659 0.1569 0.6625

Table7:StandarddeviationsforLorenzLyapunovspectrumforsmall‐scalechangesinb 

TheClassicvariationshowssignificantdeviationsinallthreeexponentsthroughtherangeofbetavalues,quicklytrendingnegativeasthebetavalueincreases.ThoughthehigherbetavaluesforthisvariationareonthesamescaleastheWolfvariation,thecombinationofhighbetavalueswiththeothertwoparameterscausesthesystemtobecomeunstable,ascanbeseeninFigure18.Forthefirsttwoexponentsthereisanotabletransitionboundaryatb=3,wheretheLyapunovexponentvaluesrapidlytrendbelowzero.TheWolfvariationshowsnoneoftheseboundaries,andremainsstablethroughouttherangeofparametervalues.TheClassicvariationbifurcationsitsintheLyapunovtransitionzoneforallthreeexponents,whiletheWolfbifurcationslightlyprecedesthetransition.

Forvalidationinterestthesmallrangeofpermissibleb valuesfortheClassicvariationshouldbenoted.Asthetransitionoccurs,theLorenzsystemquicklyunravelsfromclassicchaoticbehaviortothestablefixed‐pointconvergencestructureseeninFigure15.Thefollowingfigureshowsthesystemastransitionsbetweenthetwophases:

Page 36: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

28

Figure21:LorenzClassicalvariationtransitionbetweenchaoticandstablebehaviorforchangesinb 

Page 37: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

29

2.6.2 RosslerSystem

2.6.2.1 a (large‐scale)

LiketheLorenzsystem,theRosslerattractorisathree‐dimensionalsystemthatcanbreakdownfromitstypicalstructurewhenparameterchangesbecometoopronounced.ItshouldbenotedthatAUTOhaddifficultycalculatingthebifurcationpointsforthissystem.Thismayhavebeenduetotheneedforanegativeaparametertofindthesteadystatesolution,fromwhichthechaoticbifurcationsmaybecalculated.ChangesinLyapunovspectrafromvariationina canbeseeninFigures22‐24:

Figure22:RosslerfirstLyapunovexponentchangesforlargescalechangesina 

Page 38: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

30

Figure23:RosslerfirstLyapunovexponentchangesforlargescalechangesina 

Page 39: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

31

Figure24:RosslerthirdLyapunovexponentchangesforlargescalevariationsina

SimilarlytotheLorenzsystem,changesinthefirstparameteraremostevidentinthethirdexponent.Itshowsthehighestlevelofvariationamongthethree,asseeninthestandarddeviationvalues:

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.09301 0.03894 0.7853

Sano/Sawada 0.0798 0.09224 0.4550Table8:StandarddeviationsforRosslerLyapunovspectrumforsmall‐scalechangesin

OnesignificantchangefromtheLorenzoscillatoristhemovementofthethirdexponent:ratherthantrendinglinearlynegative,ithasapositivetrendasaincreasesforbothsystems.Also,forsmallvaluesofa, thesystembeginstoconvergetoafixedpoint,atwhichpointallexponentsarenegative.Asaincreasesto0.1,theLyapunovdistributionis(0,‐,‐),signifyingaunitcycleofperiod1;after0.1thedistributionreturnstoafamiliar(+,0,‐),astandardstrangeattractor.Figure25showstheattractoratana valueof0.05,whereitconvergingfromafixedpointtoaunitcycle.

Thesecondandthirdexponentsshowclearparametertransitionboundaries,thoughtherangeofexponentstabilityismirrored.Thesecondexponentstabilizesasa increases,levelingofftoastablevaluearounda=0.2,whilethethirdismoderatelystableatlowvalues,

Page 40: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

32

onlytoincreaseafterthe0.2mark.Thefirstexponentistheleastdefinedofthethree,withnoapparenttransitionareasatanypointintherangeofparametervalues.

Figure25:Rossleroscillatorfor

a = 0.05,b = 0.2,c = 10

2.6.2.2 b (large‐scale)

VariationsinbfortheRosslersystemwereatorbelowtheorderofaccuracyfortheLyapunovalgorithm.AsseeninFigure26,thevaluesforallthreeexponentswererelativelystableacrosstheentirerangeofchangesinb:

Page 41: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

33

Figure26:RosslerLyapunovspectrumchangesfromlarge‐scalevariationsinb 

Theoscillationsseeninthethreeexponentswereonalevelsmallenoughtobeontheorderofaccuracy,andthereforethebparametershowsreasonablestabilityhasnoapparenttransitionboundariesatanypointinthemeasuredrangeofvalues:

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.02961 0.009072 0.03233

Sano/Sawada 0.02859 0.02681 0.06090Table9:StandarddeviationsforRosslerLyapunovspectrumforsmall‐scalechangesin

b

Page 42: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

34

2.6.2.3 c(large‐scale)

Forthisparameter,thesystemevolvedsimilartothatoftheLorenzoscillator.Thethirdexponentunderwentafamiliarlineardecreaseasc increased,thefirstexponentstayedpositiveforalmosttheentirespectrum,andthesecondexponentoscillatedaround0formostoftheduration,seeninFigure27:

Figure27:FirstLyapunovexponentchangesforsmall‐scalevariationsinc 

Page 43: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

35

 

Figure28:SecondLyapunovexponentchangesforsmall‐scalevariationsinc 

Page 44: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

36

 

Figure29:ThirdLyapunovexponentchangesforsmall‐scalevariationsinc 

Thefirstexponentshowsoscillatorybehavior,withnoapparenttransitionboundaries;itappearsthattheexponentslightlystabilizesbetweenc=10andc=15,butthenbeginstooscillateagain.Thesecondexponentshowsmoredelineatedbehavior,withparametertransitionboundariesatbothlowandhighendsofthespectrumofc values.Therearenoapparenttransitionsforthethirdexponent,whichshowslinearbehaviorthroughoutitslength.

Notably,bothvariationsundergobriefperiodsofperiodicitythroughouttheextentofparametervariation,returningtoachaoticstateaninstantlater.Figure30showsthephasespacebehaviorfordifferingexponentvalues:

Page 45: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

37

Figure30:RosslerfirstLyapunovexponentchangeandphase‐spaceforlarge–scalechangeinc 

Forsmallvaluesofc, thesystemexhibitsperiodicity.Figure31wasrunfor500seconds,withan0.001stepsizeforthetimeinterval:

Page 46: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

38

Figure31:Rossleroscillatorperiodicityfor

a = 0.2,b = 0.2,c = 4

ComparethepreviousfiguretoFigure32,whichruninthesamemannerforac valueof20:

Page 47: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

39

Figure32:Rossleroscillatorperiodicityfor

a = 0.2,b = 0.2,c = 20

Forthiscasetheattractorexhibitschaoticbehavior,anddoessoformostvaluesofc. ItisapparentthattheresultsofFigure32arenotaresultofthenumberoforbits,butrathertheirpaththroughphasespace.

ThestandarddeviationsforchangesinthisparameterappearverysimilartotheLorenzcase,withsmallchangesinthefirsttwoexponentsfollowingbysignificantchangesinthethird:

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.0387 0.1457 5.948

Sano/Sawada 0.04787 0.04840 5.863Table10:StandarddeviationsforRosslerLyapunovspectrumforsmall‐scalechanges

inc 

 

 

 

 

Page 48: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

40

2.6.3 RosslerHyperchaosSystem

Thehyperchaossystemisextremelysensitivetoparameterinputs,andassuchisimpossibletochangeonalargescaleliketheothertwosystems.Asseeninsection2,thereisaverysmallrangeforwhichthesystemcanbesolvedviaanODEsolverinMATLAB.Itappearsthatthesystemhasnotransitionboundaries,andonlyexistsforaverysmallrangeofparametervalues.

Page 49: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

41

3. ApplicationofLyapunovExponentstoIntact&DamagedShipStabilityCases

3.1 ApplicationofFTLEstoDynamicShipMotion

TheLyapunovExponentapproachwasusedfortwodifferentscenarios:damagedstabilitydataforacommercialpassengerRo‐Roshipmodel,andtheintactstabilityofnotionaldestroyerDTMBhullmodel5514.Bothanalysesuserollandpitchdatathathasbeennormalizedwithrespecttothemeanandstandarddeviation;theroll‐velocityandpitchvelocitywasthencalculatedbasedonthesenormalizedvalues.

3.2 DamagedStabilityofaCommercialPassengerRo‐RoShip

ThedataforthedamagedstabilityanalysiswasprovidedbyDr.AndrzejJasionowskioftheShipStabilityResearchCenteroftheUniversitiesofStrathclydeandGlasgow(Jansionowski,2001).ThemodeltestswereperformedattheDennyTankattheUniversityofStrathcyldeona1:40scalemodelofapassengerRo‐Rovehicle(Jansionowsky,2001).

Forthisdataset,FTLEtimehistorieswerecalculatedalongwiththeperiodbetweenneighboringFTLEmaxima,andbothplottedvs.timeasshowninFigures1and2.Theperiodcalculationswereemployedinanattempttoprovideinstantaneousqualitativeandquantitativemethodsfordeterminingthetimeforadvancewarningofextremeshipmotions.Theperiodmeasurementsaremadeusingareversedifferencemethod,inordertosimulatereal‐timedatacollection.Thismethodsearchesbackwardsinthetimeseriestofindneighboringpointstopopulatethedisplacementvectors yi and zi ;thebackwardsapproximationwasusedtomorecloselyapproximatearealisticon‐boardscenariowheretheonlyavailabledatawouldbeloggedtime‐historiesforpreviousshipmotions.

Page 50: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

42

3.2.1 PeriodMeasurement

Figure33showsthefullrangeofroll,period,andFTLEdatathatwascalculatedforDamagedStabilityRun101:

 

Figure33:DamagedStabilityRun101.Fromtoptobottom:Rollvs.Time,Periodvs.Time,FTLEvs.Time

ThefourLyapunovexponentsmeasuredforthissystemwere

λ1 = 0.4882, λ2 = −0.08540, λ3 = −0.6922, λ4 = −2.854 ,qualitativelyidentifyingthesystemwithoneexpandingaxisandtwocontractingaxesintheballofinitialconditionpoints;thesecondexponentistheslowlychangingprincipalaxis,andwouldlikelytrendtoazerovalueinaninfinitetimeseries.Ingeneralapositiveexponentreflectsachaoticalsystem,azeroexponentidentifiesastableorbit,andanegativeexponentcharacterizesaperiodicorbit;however,theexistenceofanypositiveexponentidentifiesitasachaotic,ratherthanstableorperiodic.

Inthisanalysis,themeasuredperiodvalueistheΔt betweenneighboringFTLEmaxima,calculatedwithabackwardsapproximation;thisdeltavalueisindicatedbytheredarrowinFigure34:

Page 51: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

43

Figure34:DamagedStabilityRun101.CloseupofFTLEvaluesandperiodmeasurement

ThoughitappearsfromthescaleofFigure33thatthereisaperiodmeasurementateverytimestep,periodmeasurementsonlyoccurateachmaxima;thegreaterthespacingbetweenmaximapoint,thegreatertheperiod.TheperiodmeasurementoftheFTLE’siscloselylinkedtothedrop‐outpointsintheFTLEmeasurements;thesedrop‐outsoccurwherethecodecannotfindenoughneighboringpointstofillthe yi and zi vectors,andthealgorithmautomaticallyappliesanarbitrarilyhighvaluetotheFTLE,asseeninFigure35:

Page 52: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

44

Figure35:DamagedStabilityRun101.FTLEandPeriodmeasurementsvs.Time

Figure35makesitapparentthatthelargestperiodmeasurementsaredirectlytiedtolackofneighbors,ratherthanany“stretching”oftheFTLEvalues;thoughdirectlymeasuringthenumberofneighborsprovedtobeabettersolution,theperiodmeasurementsprovidesimplevisualcuesforextrememotion,andwereadequateadvanceindicatorsforlargerollamplitudes,asillustratedinTable11.Themaximumrollamplitudesforeachtimeserieswererecorded,alongwiththetimeatthatpointandthetimeoftheprecedingperiodspike.

Page 53: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

45

RunID Max.RollAmplitude(Degrees)

TimeofMax.Roll(Seconds)

TimeofPeriodMax.(Seconds)

Lead‐Time

Run101 ‐10.368 575.44 542.97 32.47

Run101 ‐15.983 1083.19 1022.67 60.52

Run102 ‐13.98 1144.13 1112.50 31.63

Run366 ‐11.613 1050.93 1055.14 ‐4.21

Run398 ‐18.296 715.87 685.51 30.36

Run399 ‐16.49 1122.41 1108.92 13.49

Run400* ‐29.345 1993.9 1959.95 33.95

Run400* ‐29.345 1993.9 2001.70 ‐7.80

Run401 ‐12.52 502.4 436.48 65.92

Run402 ‐17.46 500.5 436.91 63.59

Table11:Leadtimeforperiodcorrelationofmaximumrollamplitudes

Thepredictiveresultsshowagreatdealofvariation;theaveragelead‐timeis31.99seconds,thestandarddeviation26.26seconds,andthevariance689.6,withtheaveragebeingslightlyskewedtowardsthelargervalues.However,therearesomecaseswheretheperiodspikesarenotpredictiveatall;theyaremerelyreactingtothelargemotionsaftertheyoccur,asrepresentedbythenegativevaluesinthetable.Someofthisinconclusivelyisduethevariationsinneighborvectorsfordifferentrollseries;theneighborvectorscanvarygreatlybasedontheprecedingshipmotion.Forexample,ifaseriesofdataundergoeslargeamplitudemotionstwiceduringitsduration,thenthesecondmotionwillfindmoreneighboringpointstopopulatethevectorsandonlyaveryextremerollorpitchmotionwillcausealossinthenumberofneighboringpoints.Inashipboardapplication,thecodecouldpotentiallyhaveavastnumberofdatapointstosortthroughtofindneighboringpoints.Withalargedatabaseofdataathand,onlysignificanteventswouldcontainrollvalueswhereveryfewneighborscouldbefound,e.g.irregularlarge‐amplitudeshipmotions.Anothercauseofthesenegativevaluesisthetime‐delayinperiodcalculation,wherealossofneighborstakesanumberoftime‐stepsbeforeitisreflectedintheperiodspike,ascanbeseeninthemajorperiodspikesofFigure35.

Accuratelydeterminingwhichperiodspikeisaflagforthelargeamplituderollisthemostsignificantchallengeoftheperiodmeasurementtechniques.Onatypicalrun,eachlarge‐amplituderollmotioncancreatemultiplelargespikesinFTLEperiod.Run402isagoodexampleofthedifficultyinherentinusingtheperiod‐measurementmethodasapredictorforthemostextrememotions:

Page 54: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

46

Figure36:Rollvs.TimeandFTLEperiodforCapsizeRun402

Thefigureaboveisqualitativelysimilartotheperiod‐measurementresultsformostoftheanalyzeddatasets;periodspikeswereseenearlyinallruns,asaresultoftheinitiallackofdatafromwhichtopullneighboringpoint.Examinationoftherolltimeseriesmakesitapparentthatmanyoftheperiodspikesareeitherreactingtoorslightlypredictinglargelocalvariationsinroll.Whiletheselocalvariationsareimportant,thisstudyismostconcernedwithpredictingtheextremevariations,andthereforethedatainTable11wascompiledwiththelargestrollvalueinmind;forthecaseofRun402,thelargestamplitudeoccurs500secondsintotherun,andthefirstmajorprecedingperiodspikeat436seconds,asseenbelow:

Page 55: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

47

Figure37:Markedperiodindicatorforlargestamplitudemotion,Run402

Itisapparentthatsomeoftheperiodspikesarereactingtotheshipmotions,butdifficulttoascertaintheirpredictivenature.Thespikeat243secondscouldbeanindicatorforthelarge‐amplitudemotionstocome,oritcouldbereactingtothequickrolloscillationatthatpointinthetimeseries.Theperiodmarkersprovedtobeinconclusivepredictorscomparedtosimilarpredictionsmadebycalculatingthenumberofneighbors,giventhetime‐delayinherentinareverse‐approximationmethod.Ultimately,neighborhoodmeasurementsprovetobeasuperiorpredictivemethod.

Page 56: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

48

3.2.2 NeighborMeasurement

Whiletheperiodmeasurementsdoanadequatejobofpredictingtheextremerollmotions,Figure35showsthatthelargeperiodspikesarereactingtothelossofFTLEneighbors,whichisinturnreactingtotheupcominglargemotionamplitudes.Thisobservationledtoamodificationofthealgorithmthatsolvesonlyforneighboringdatapoints,ratherthantheactualFTLEvaluesthemselves.Thethresholdforthenumberofneighborswassetat50;ifmorethan50neighboringpointsarefoundtofillthe yi and zi vectors,thenthecodecontinuestoiterate.Belowthisvaluetheneighboringpointsarecountedandgraphedinrelationtotherollmotions.Thefollowingfigurepresentsatypicalrunwiththecountingofneighborvalues:

Figure38:DamagedStabilityRun101Rollvs.NumberofNeighbors.

Page 57: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

49

Figure39:DamagedStabilityRun101zoomofneighborcounting

Figure39givesabetterillustrationofwhatisoccurringastheneighborsarebeingcounted.Thebluedatalineistherollamplitude,thegreendatalinethenumberofneighbors.Thedropinneighborcountcontributesdirectlytothespikesinmeasuredperiodvalues;inthepreviousalgorithmacompletelossofneighbors(numberofneighborsdecreasesto0)causestheFTLEvaluesdropouttoasetvalueof‐500,andtheperiodamplitudeincreasesduetotheselargegapsbetweenFTLEmaxima.Figures38and39showwhytheneighborcountisultimatelymoreusefulthantheperiodmeasurements.Theredoesnotneedtobeacompletelossofneighborsforwarningflagstogoupregardinglackofneighboringpoints.Inthecaseabove,anyvaluethatisfallingbelowaneighborcountof50canbeseenasawarningflagwithrespecttolargeamplitudemotions.Whereasthetimeofmaxperiodforthisrunwasflaggedat1022.67seconds,thedropofneighborhoodcountbelow50neighborsoccursat1016.56seconds.Whilethisisnotahugeincreaseinlead‐time,9secondscanbeasignificantamountoftimeinregardstosplit‐seconddecision‐makingbyacaptainorcrew,andanyincreaseinwarningtimewillbetotheiradvantage.

AsseeninFigure38,lossofneighborsoccurserraticallyacrosstheentiretimeseries.Determiningwhichneighborhoodlosstomarkastheindicatorforaparticularmaximumamplitudeissomewhatofaqualitativedecision;thealgorithmmusttakeperiodsofstablebehaviorwheretherearenodrop‐outsintoaccount.Inanattempttoquantifythis

Page 58: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

50

neighborhoodlossandfindacomputationalsolutionthatwouldn’trequireavisualinspectionofthedata,asummationwasusedtoflaga“danger”marker.Foreverystepintimewherethenumberofneighborsfellbelow50,thevariable“flag”wasincreasedby1;therefore,themorestepsintimethatwereprogressingwithalackofneighbors,thesteepertheslopeoftheflagvariable,asseeninFigure40:

Figure40:DamagedCaseRun101Rollvs.Flag

Theflagvariable,increasinginvalueacrosstheentiretimeseries,experiencesdrasticincreasesinslopewherethereisalackofneighboringpoints,asaresponsetoincreasingshipmotionamplitudes.Whentheslopereachesacertainsteepness,asseeninFigure38justpastthe1000secondmark,a“danger”markerisflaggedasasignofincreasedamplitudemotion.Thedangermarkersprovideamoreconcreteloss‐of‐neighborindicator,andcanbeseenwithregardstorollmotioninFigure41:

Page 59: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

51

Figure41:DamagedCaseRun101Rollvs.Dangerindicator

Table12replicatestheresultsofTable11,usingthedangerindicatorratherthantheFTLEperiodasthemetricforlead‐time:

Page 60: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

52

RunID Max.RollAmplitude(Normalized)

TimeofMax.Roll(Seconds)

TimeofDangerFlag(Seconds)

Lead‐Time

Run101 ‐1.7587 575.44 539.80 35.64

Run101 ‐15.983 1083.19 1016.56 66.63

Run102 ‐13.98 1144.13 1110.39 33.74

Run366 ‐11.613 1050.93 1039.54 11.39

Run398 ‐18.296 715.87 671.82 44.05

Run399 ‐11.085 330.40 321.78 8.62

Run399 ‐16.49 1122.41 1103.50 18.91

Run400* ‐29.345 1993.90 1899.01 94.89

Run401 ‐12.52 502.40 340.12 101.99

Run402 ‐16.46 453.60 431.42 36.52

*CapsizeCase

Table12:Leadtimeforneighborcorrelationofmaximumrollamplitudes

Theaveragelead‐timefortheneighborhood‐loss“danger‐flag”methodis45.24seconds,a13.25secondimprovementovertheperiodmeasurementmethod.Thestandarddeviationandvariancebothincrease,to32.70secondsand1069.0respectively.However,moreimportantly,the“danger”spikesareamoreconcretequantitativeindicatorthantheperiodmeasurementmethod.Multiplelossesofneighborsisstillahurdle;liketheperiodspikes,insomerunsitcanbedifficulttodeterminewhich“danger”spikeisreactingtowhichlargeamplitudemotion,thoughtheclustersofspikestendtosignifyalargeramplituderollevent.Theflagsummationapproachremovesmuchoftheambiguityandsubjectivityoftheperiodandsimpleneighborcountingmethods,buttherearestillcaseswheremultiple“danger”spikesoccurbeforealargeamplitudeevent,andwhichonetodesignateasthetruewarningspikerequiresadecisiononpartofresearcher.Forfutureshipboardapplications,thealgorithmwouldneedtodeterminewhentosignalawarningwithoutanyhumaninput.

Page 61: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

53

3.3 ApplicationtoNotionalHullform5514CapsizeCases

Theperiodandneighborhoodmethodswereappliedtothe5514hullformdatainasimilarmannertothedamagedstabilitycase.Unlikethedamagedstabilitydata,allofthe5514runsthatwereanalyzedwerecapsizeruns.Inordertoprovideafull‐setofdatafortheneighbor‐findingprocess,all37differentrunswereanalyzedforneighborpoints,ratherthanattemptingtodrawneighborsfromthelimitedsetofdatacontainedinonecapsizerun.Thistechniqueprovidedanexcellentexampleofhowthisprocesscouldbeusedinreal‐worldapplications,wheretherewouldbemanyhoursofshiprollingdatatousefortheneighborsearchingprocess.

PreviousapproachesbyMcCueet al.exploredtheFTLEandLyapunovexponentvaluesexclusively,andusedroll/roll‐velocityandpitch/pitch‐velocityastheirstate‐spacevariables(McCueet al. 2006).Thisresearchfurtherstheirwork,withchangesinneighborcountingmethodsandapplicationofnewwarningalgorithms.

Aswiththedamagedstabilitycases,neighborhoodmeasurementswerebetterpredictorsforcapsizethanperiodindicators.Forthecapsizerunstheneighborhoodsizedroppedprecipitouslynearthebeginningoftherun;forthisstudyathresholdoffiftyneighboringpointswasused.Figure42illustratesatypicallossofneighborsforaHullform5514run,wheretheneighborhoodsizefallsbelowfiftyastheinstabilitiesapproach:

Page 62: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

54

Figure42:Hullform5514Run216Rollvs.NumberofNeighbors

Page 63: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

55

Figure43:Hullform5514Run216Rollvs.Period

Thecontrastbetweenthesetwofiguresreinforcesthestrengthoftheneighborhoodcountingcodeversustheperiodindicators.ForthecaseofRun216,thedropinnumberofneighborsprecedestheleadperiodspikeby5.5seconds,alead‐timeadvantagethatcarriedthroughallofthe5514capsizeruns.

Forrun216,thecapsizeeventoccursat11.88seconds,thefirstperiodspikeat9.75seconds,andthefirstdropofneighborhoodsizeat2.17seconds.Theperiodspikeresultsinalead‐timeof2.13seconds,andtheneighborhoodlossaleadof9.71seconds.Whileatfirstglancea2to9secondwarningappearstobeatrivialamountoftime,itisworthnotingthatboththefirstperiodspikeandlossofneighborsoccursintherealmofstabilityfortheship,asseeninFigures44and45:

Page 64: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

56

Figure44:Hullform5514Run216Rollvs.RollVelocitybasinofstabilityforperiodindicators

Page 65: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

57

Figure45:Hullform5514Run216Rollvs.RollVelocitybasinofstabilityforneighborhoodindicators

Theperiodmeasurementmethodforrun216hasthreemarkers,eachofwhichrepresentsasignificantperiodspikeinthetimeseries;notethatthelasttwomarkersinFigure43arenotgoodindicators,giventhattheshiphasalreadycapsizedbasedontherolltime‐history.Eachbasinofstabilityfortheneighborcountingmethodhastwohighlightedmarkers:themostoptimisticindicator,andaconservativealternative.Inthecaseoftheneighborhoodcountingmethod,bothmarkerssitwellinsidethebasin.Fortheperiodindicators,thefirstperiodspikesitswithinthebasin,butthesecondtwooccuraftercapsize,andwelloutsidethebasinofstability.Giventheseresults,theproceedingdiscussionwillonlyinvolvetheneighborhoodcountingmethod.Whiletheperiodindicatorsareaninterestingstudy,neighborhoodcountingconsistentlyprovidesalongerlead‐timeindicatorforcapsizecases.Figures46and47detailthelossinnumberofneighborsforrun327,another5514capsizecase:

Page 66: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

58

Figure46:Hullform5514Run327Neighborhoodloss

Page 67: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

59

Figure47:Hullform5514Run327Rollvs.RollVelocityneighborhoodlossmarkers

Againboththeoptimisticandconservativemarkerpointsliewellwithinthebasinofstabilityforthecapsizerun.Theleadtimeforthesepointswere4.91and4.12seconds,respectively,andareanumberofiterationsfromthepointwheretheshipdeviatesfromstablebehavior.Figure46isanexcellentexampleoftheconservativeandoptimisticmarkerpoints;thefirstlossofneighborsrecoversquickly,butthesecondconsistentlyfallsbelowthetwentyneighborthreshold.Figure48showsthecapsizecaserollvs.rollvelocitydatafortheotherthreecapsizeruns:

Page 68: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

60

Figure48:Hullform5514Runs220,331,333Rollvs.RollVelocityNeighborhoodlossmarkers

Page 69: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

61

Eachoftheothercasesshowneighborlossesoccurringwellwithintherealmofstabilityforthecapsizecase,oftenmanycyclesbeforetheshipfallsoutsideofthatstabilitybasin.ForthecaseofRun333itappearsthatthemarkersitsoutsideofthebasinofstability,butmuchcloserexaminationrevealsittobeananomalythatreturnstothebasinfornumerouscycles.Forthesecasestheactualleadtimegivenbythelossofneighborsislessthanwhatwasseenforthedamagedstability,butisstillofconsequence:

RunID TimeofCapsize(s) TimeofNeighborLoss(s) LeadTime(s)

Run216(Marker1) 11.88 2.17 9.71

Run216(Marker2) 11.88 4.17 7.71

Run220(Marker1) 35.63 2.04 33.59

Run220(Marker2) 35.63 5.79 29.84

Run327(Marker1) 9.29 4.38 4.91

Run327(Marker2) 9.29 5.17 4.12

Run329(Marker1) 57.21 10.58 46.63

Run329(Marker2) 57.21 30.08 27.13

Run331(Marker1) 32.71 5.88 26.83

Run331(Marker2) 32.71 23.08 9.63

Run333(Marker1) 53.46 7.42 46.04

Run333(Marker2) 53.46 35.13 18.33

Table13:LeadtimeforneighborhoodlosscorrelationofHullform5514capsizecases

Usingtheoptimistic“marker1”cases,theaveragelead‐timetocapsizeis27.95seconds;themoreconservative“marker2”scenarioshowsa12‐seconddrop,with16.13secondslead‐time.Thoughnotasgoodasthedamagedstabilityresults,itshouldbenotedthattheHullform5514timeseriesweremuchshorter,withasmallerpooloftimehistorytodrawneighborsfrom.Whilethesetimesmaynotseemlikealargeenoughtimeforanyshipcaptaintoreact,18‐24secondsenoughtimetomakeonemaneuver,oracoursecorrectionthatmightmeanthedifferencebetweenalargeamplitudeeventandacapsizeevent.

The“flag”summationmethodwasalsotestedfortheDDG51data;inthiscaseeachrunwasanalyzedforthemaximumflagvalueobtained,andnormalizedwiththetimelengthfortherun.Theaverageresultforthisnormalizedvalueonacapsizerunwas12.12flags/second,whereastheaveragenormalizedvalueforanon‐capsizerunwas5.68flags/second.Thismakesitapparentthatthecapsizerunsarefindingsignificantlylessneighborsthanthenon‐capsizeruns,whichtranslatestomoredangerflagsgoingupinthealgorithm.The

Page 70: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

62

normalizedcapsizevaluesrangedfrom5.22flag/sto21.27flag/s;thehigherthevalue,themoreoftenthenumberofneighborsisfallingbelowthe50‐neighborthreshold.Thenon‐capsizecaseshadanumberofanomalousruns,withlargenormalizedvalues‐manyoftheserunscameextremelyclosetocapsize,butregainedstabilityatthelastinstant.Thevaluesforthenon‐capsizerunstypicallyrangedfrom0.42flag/sto5.04flag/s,withmostofthevalueslyinginthe0.5‐1.0range.Theanomalousrunsrangedinvaluefrom6.23flag/sto23.40flag/s,whichwaslargeenoughtomarkitasacapsizerun.Whenanalyzingthenon‐capsizeruns,7ofthe31caseswereanomalous,andflaggedmistakenlyasacapsizerun.

Page 71: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

63

4. ApplicationofNeighborSearchingMethodtoReal‐timeShipMotions

4.1 Motivation

Thenextstepinapplicationofthepredictiveneighbormethodwastoapplythealgorithminareal‐timesetting,withadataacquisitionsysteminplacetomeasurerollandpitch,withtheneighborsbeingcountedateachinstantintime.Theobjectivewastorecordtherollandpitchvaluesforthedamagedshipdatainreal‐time,andreplicatetheneighborcountingmethodasseeninFigures38and39.Motivationforthisistoeventuallyimplementasimilarsystemonnavalorfishingvessels,withneighborsbeingcountedinanattempttopredictlarge‐amplitudemotionsatsea.

4.2 ExperimentalSetup

4.2.1 Data‐collection

Thedatafromthedamagedshipcasewasreplicatedonthemotionplatform(MOOG6DOF2000E)locatedintheVirginiaTechCAVE(AutomaticVirtualEnvironment).TheMOOGisa6D.O.F.hydraulicmotionplatform,withfreedomof20degreesinbothrollandpitch.TheplatformcanbeseeninFigure49:

Figure49:MOOGmotionplatform

TheMOOGiscontrolledbyanSGI/IRIXsystem,withapositionvectorwrittentoaDTKsharedmemorysegment.Thepitchandrollvaluesforthedamagedshipwerefedtothe

Page 72: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

64

platform,andwerethenreadtoaDellLatitudeD610laptopviaaCrossbowCXTILT02ECtiltsensor,asseeninFigure50:

Figure50:Crossbowtiltsensormountedonmotionplatform

Thetiltsensorisaccuratetowithin0.2degrees,withdigitaloutputviaaRS‐232serialinterface.ThedatafromtheserialportwasfeddirectlyintotheneighborcountingalgorithminMatlab,whichrecordedtherollandpitchvaluesinadditiontothenumberofneighbors.

4.2.2 Algorithm/Datamodification

Therollandpitchvelocitieswerecalculatedusingabackwardsapproximationfromtherollandpitchvalues,similarlytotheneighborcountingmethodsusedinsection3.Unlikethemeasurementsofthatsection,therewasnonormalizingofrollandpitchvalues;thenormalizationsforthatsectionwereperformedusingmeanandstandarddeviations,andtheobjectiveforthissectionweretoobtainneighbormeasurementsinreal‐timewithoutanysortofstandardizing.Futureworkcouldincludesomesortofmethodtonormalizevaluesinreal‐timebasedonpreviouslycollecteddata,buttheresultsofthisstudyweresatisfactorywithoutit.Additionally,furtherworkcouldbedoneinthefollowingareas:

• Normalizevaluesinreal‐time.Ameanandstandarddeviationwouldhavetobecalculatedforeachship,basedonlargesetsofpreviouslycollecteddata;thesewouldbeusedtoperformastandardnormalizationofthedata.

Page 73: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

65

• Optimizethealgorithmforlongdatasets,knowingthatitwillneedtoperformcalculationsfordays,weeks,orevenmonthsatsea.Notonlywilldatabuffersneedtoberoutinelycleared,butthedataneedstobedatabasedfortheneighborsearches.

• Databaseswouldneedtobesearchedforneighborsefficientlyenoughtoreactinreal‐time,asignificanttaskwhendealingwithtensofthousandsofdatapoints.

• Ahardwaresystemwithsimplewarnings,a“black‐box”sotospeak,wouldneedtobedevelopedforshipoperators.Captainscouldnotbeexpectedtoreadcomplicatedoutputsinacriticalsituation‐thewarningsystemwouldneedtobesimplebuteffective.

Thealgorithmusedinsection3couldnotbeimplementeddirectlyforreal‐timeneighborcalculations.Withthedatabeingcollectedontheorderofonevalueper0.03seconds,anumberofefficiencyandstorageproblemsarise.Withtheoldalgorithmthecomputerhadtosearchthroughtheentirehistoryofdatavaluesateachinstantintimetofindneighbors;whilethereisnoissuewiththiswhenoperatingonaprescribedsetofdata,alaptoplikeonethatwouldeventuallybeusedonashipboardapplicationisnotcomputationallyquickenoughtoperformasearchofallpreviouspointsonthetimescaledescribedabove.

Instead,thealgorithmwasmodifiedtoonlysearchthetime‐historyforneighborswhenanewareaofphasespacewasentered.Thenewalgorithmonlycountsneighborsforarollvaluethathasnotbeenencounteredbefore;iftherollvaluehasbeenloggedinthehistory,itdefaultstotheneighborvaluepreviouslyrecorded.Thisreducedan80,000+steptimeseriestoonly800‐1000actualneighborsearches,greatlyincreasingtheefficiencyofthealgorithm.

However,evenwiththealgorithmrunningmoreefficientlythanbefore,memorylimitationsbecameanissue.Withmultiplematricesover100,000pointsinsize,thealgorithmbegantofailafterabout80,000stepsintothetimeseries.Therefore,theresultsseeninthefollowingsectionwillbemissingtheveryendofeachtimeseries.Luckily,allofthelarge‐amplitudemotionsineveryrunoccurearlierthanthiscutoffpoint,sothedatacanbecompareddirectly.

Page 74: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

66

4.3 Real‐timeNeighborCountingResults

Aside‐effectoftheefficientalgorithmwasthatonlysignificantneighborlosseswererecorded.Forexample,compareFigure38insection3tothefollowingfigure:

Figure51:DamagedStabilityRun101,datarecordedfromMOOGplatform

AsseeninFigure51,themodifiedalgorithmismuchmoreefficientatrecordinglossesofneighborsthanbefore,whilestillcapturingthemajorneighborlossesthatoccuratsignificantmotioneventsinthetime‐series.Theseneighbordropoutsfunctionthesamewayassection3.2.2,justinreal‐time;thoughatfirstglanceitappearsthatthedropoutsarepurelyreactive,furtherexaminationoftimeseriesmakesitapparentthattheyareidentifyingsignificantchangesinshipbehavior,notjustlargeamplitudemotions.Thetwobeginningneighborlossessignifyanewregionsofunstablebehaviorfortheship,andthenumbersreflectthesefuturemotions.

Page 75: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

67

Knowingthatthedataqualitativelysatisfactorytotheresultsofsection3,thenextstepwastocomparelead‐timestothatofTables11and12.Itshouldbenotedthatthewarning‐flagmethodwasattempted,butabandonedwhennumerousrunsproducedgarbagedata.Thisisaresultofthecomputerattemptingtoiteratenestedfor‐loopsevery0.03seconds,atwhichpointitfailedtoevenrecordthecorrectrollandpitchvalues.Therefore,thelead‐timerepresentseverymajorlossofneighbors,whereawarningflagwouldhavecertainlyoccurredinthepreviousalgorithm;aconservativeestimatewasusedineverycase,andevenatthatthereal‐timemethodproducedsomestartlingresults,asseeninTable14:

RunID Max.RollAmplitude(Degrees)

TimeofMax.Roll(Seconds)

TimeofNeighborDropout(Seconds)

Lead‐Time

Run101 ‐10.368 575.44 514.11 61.33

Run101 ‐15.983 1083.19 1009.79 73.40

Run102 ‐13.98 1144.13 1102.91 41.22

Run366 ‐11.613 1050.93 975.48 75.45

Run398 ‐18.296 715.87 642.36 73.51

Run399 ‐16.49 1122.41 1008.83 113.58

Run400* ‐29.345 1993.90 1924.80 69.10

Run401 ‐12.52 502.40 412.11 90.29

Run402 ‐17.46 500.50 435.20 65.30

Table14:Leadtimeforreal‐timeneighborhoodlosscorrelationofDamagedStabilitycases

Forthereal‐timecasestheaveragelead‐timeis73.69seconds,withastandarddeviationof19.90secondsandavarianceof396.1;thelattertwovaluesarelowerforthiscasethanineitheroftheotherpreviousmethodsoutlinedforTables11and12.Thoughthisresultwasinitiallysurprising,thechangesmadetothealgorithmandmethodinwhichthedataiscollectedpointtothesignificantimprovementsinlead‐timevalues.Thedataisbeingcollectedataratemuchhigherthantheoriginaltime‐series,andthusthealgorithmiscollectingneighborsatamuchhigherrate.This,combinedwiththechangesoutlinedearlier,

Page 76: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

68

allowthealgorithmtoreactmorequicklytotheshipenteringapreviouslyunseenareaofphasespace.Itisapromisingsetofresultsforfutureapplications.

Page 77: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

69

5. Conclusions

5.1 VerificationandValidation

Chaoticattractorscanbeextremelysensitivetoinputsbynature.TheLorenzandRosslersystems,boththree‐dimensionalchaoticattractors,canundergoverylargechangesinparameterswithoutlosingtheirstandingasastrangeattractor.Forcertaincombinationsofparametervaluesbothsystemshavethepotentialtoshiftfromattractorstofixedpoints,ortoshowvaryinglevelsofperiodicity.

Thesefactorsbecomeimportantinvalidatingcodeforbothnumericalandexperimentalresearch.Whilebifurcationanalysisisausefultoolfordeterminingregionsofchaoticbehaviorfromanumericalapproach,itislimitedinitsapplicationtoexperimentaltimeseries.TheLyapunovexponentprovestobeaveryrobusttoolinthisregard;multiplemethodsofcalculatingtheexponentexist,bothfornumericalandexperimentaldata.ThisresearchhasshownthattheLyapunovapproachaccuratelycaptureschangesinphasespaceforchaoticbehavior,andcandosowithsimilaraccuracytoothermethodslikebifurcationanalysis.Bycomparingexponentspectrums,theresearchercaneffectivelyvalidatetheunderlyingphysicsofthedevelopedtheoreticalmodel,makingtheLyapunovapproachaveryimportantpieceoftheverificationandvalidationframework.

5.2 ApplicationtoShipCapsize

ThedatapresentedshowsthattheLyapunov/neighborcountingmethodprovestobeavalidwaytopredictcapsizeandlargeamplitudemotionsforagiventimeseriesofexperimentaldata.Thedamagedshipdatashowsthatthealgorithmsproveusefulforlarge‐motionanalysis,butitappearsthatthemethodismuchmoreusefulforcapsizecasesliketheonespresentedbythe5514data.Whilethelead‐timesgivenbythemethodsmaynotbeonascaleofminutes,butratherseconds,itmayoftenbethecasethatifashipcaptainknowsacapsizeeventisabouttooccur,asingledrasticcoursecorrectionormaneuvercouldbeundertaken.

5.3 FutureWork

WhiletheapplicationofLyapunovExponentstoshipcapsizeinanumericalandcontrolledexperimentalenvironmentisagoodstart,thereisstillmuchworktobedoneinordertoprovideausefulandreliabletoolinthefieldtoassistshipcaptainsinextremeseastates.RealisticallytheLyapunovmethodisbutoneapproachbeingtakeninregardstopredictingcapsizeorlarge‐amplitudemotions,andcanbeviewedasanothertoolinthenonlineardynamicanalysistoolbox.Thenextstepforthisresearchistoimplementasystemonatestvesselatsea,andbeingtoacquiresetsofnumericaldatafromwhichtodrawneighbors.Thispresentsafewnumericalproblems,includingdatastorageandalgorithmefficiency.Thetaskofpredictingnonlinearshipdynamicsisacomplicatedone,buthopefullyworksuchasthisinacademicandcommercialinstitutionsaroundtheworldwilleventuallyleadtosaferenvironmentsforbothpassengersandcrewatsea.

Page 78: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

70

AppendixA1. Figures

Figure52:Rosslerhyperchaoticattractorfor

a = 0.25,b = 3.0,c = 0.05,d = 0.5

Page 79: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

71

Figure53:LorenzLyapunovspectrumforsmall‐scalechangesinR

Figure54:LorenzLyapunovspectrumforsmall‐scalechangesinb

Page 80: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

72

Figure55:RosslerHyperchaosLyapunovspectrumchangesforsmall‐scalechangesinbforWolfsystem

Page 81: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

73

Figure56:RosslerHyperchaosLyapunovspectrumchangesforsmall‐scalechangesincforWolfsystem

Page 82: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

74

Figure57:RosslerHyperchaosLyapunovspectrumchangesforsmall‐scalechangesind forWolfsystem

Page 83: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

75

2. Tables

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.03228 0.0003941 0.2804Classic 0.04187 0.001866 0.04219

Table14:StandarddeviationsforLorenzLyapunovspectrumforsmall‐scalechangesinsigma

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.01722 0.0009249 0.1817Classic 0.03228 0.0093941 0.2804

Table15:StandarddeviationsforLorenzLyapunovspectrumforsmall‐scalechangesinb 

Variation Exponent1

σ Exponent2

σ Exponent3

σ Wolf 0.003200 0.0005432 0.005284

Table16:StandarddeviationsforRosslerLyapunovspectrumforsmall‐scalechangesinb 

Variation Exponent1

σ Exponent2

σ Exponent3

σ Exponent4

σ Wolf 0.004902 0.002564 0.000474 1.380

Table17:StandarddeviationsforRosslerHyperchaosLyapunovspectrumforsmall‐scalechangesinb 

Variation Exponent1

σ Exponent2

σ Exponent3

σ Exponent4

σ Wolf 0.005657 0.003972 0.0007657 3.77

Table18:StandarddeviationforRosslerHyperchaosLyapunovspectrumforsmall‐scalechangesind 

Page 84: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

76

AppendixB:ChoosingD.O.F.ParametersforbestNeighbors/FTLEresults

TheauthorconductedaparametersearchintotheinfluenceofchosenDOFforcalculatingtheFTLEvalues.Themostpronouncedshipmovementwasinroll,andsubsequentlyitprovedtobethemostrobustdegree‐of‐freedomforgeneratingFTLEvalues;furtherrunsdeterminedthatincludingroll‐velocityvs.rollprovidedevenbetterpredictiveresultsthanmeasuringthevaluesbasedonrollalone.ThetwofiguresbelowshowtheFTLEmeasurementsforthesamedatarun,thefirstonlygeneratingfortherolldegree‐of‐freedombyitself,andthesecondforrollvs.rollvelocity.

Figure58:DamagedStabilityRun101RollvsTimeandnon‐dimensionalizedFTLEperiodmeasurement

Page 85: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

77

Figure59:DamagedStabilityRun101Roll/RollVelocityvs.Timeandnon‐dimensionalizedFTLEperiod

Thegraphsabovebothshowthesamerolltimeseries,butwithdifferentembeddedparameters.Thetopsetofdatainblueistherollamplitude,whilethebottomsetofdataingreenistheperiodmeasurementoftheFTLEpointsthatwerecomputedforthetimeseries;eachseriesisrepresentedbyitsowny‐axis.Figure12showstheperiodmeasurementsforRollvs.Time,withoutrollvelocitybeingembeddedinthesolutionfortheFTLE’s,whileFigure13showsthesameperiodmeasurementwhenrollvelocityisembedded.Figure13showsamuchbettercorrelationbetweenlargerollmotionsandmarkedincreasesinperiodmeasurementintheFTLEvaluesascomparedtotheerraticismofthedataintheonestate‐spacevariablecaseseeninFigure12.

FTLEandperiodvalueswerealsocalculatedforpitchandpitchvelocity.Figure14showstheperiodcalcuationsforapurepitchcase:

Page 86: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

78

Figure60:DamagedStabilityRun101Pitchvs.Timeandnon‐dimensionalizedFTLEperiod

Thefigureshowstheerraticnatureofthepitchmeasurementsforthedata;thepitchmotionsshownoneoftheextrememotionsoftherolldata,andthusisnotasrobustforpredictinglargeamplitudemotions.Thecalculationofperiodvaluesforpitch‐pitchvelocitywasverysimilarinregardstoperiodmeasurement:

Page 87: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

79

Figure61:DamagedStabilityRun101Pitch/PitchVelocityvs.Timeandnon‐dimensionalizedFTLEperiod

Thepitch/pitchvelocitycaseseeninFigure15isjustaninconclusiveanindicatorasthesinglevariablepitchcase.Othercombinationsofthesedegreesoffreedomwereexplored,includingintegratingthefourDOFcaseofroll,roll‐velocity,pitch,andpitch‐velocity,asseeninFigure16:

Page 88: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

80

Figure62:DamagedStabilityRun101Pitch/PitchVelocity&Roll/RollVelocityvs.Timeandnon‐dimensionalizedFTLEperiod

Otherdegreesoffreedomwereconsidered,butafterscrutinyitappearedthatthe2D.O.F.caseofpitchandroll,extendedtofourstate‐spacevariableswiththeroll/pitchvelocitycalculations,wasmorethansufficienttocapturethemajorchangesinphase‐space.

Page 89: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

81

References1. Chapter1Abarbanel,H.D.I.,Brown,R.,&Kennel,M.B.1991.Variation of Lyapunov Exponents on a Strange Attractor. JournalofNonlinearScience,1,175‐199.Crawford,JohnDavid.Introduction to Bifurcation Theory.ReviewsofModernPhysics,63(4),1991Doedel,E.J.AUTO:A program for the automatic bifurcation analysis of autonomous systems. Cong.Num.30,1981,265‐284.Eckhardt,Burno&Yao,Demin.1993.Local Lyapunov exponents in chaotic systems. PhysicaD,65,100‐108.Lorenz,E.N.1963.Deterministic Nonperiodic Flow. J.Atmos.Sci.,20,130.O.E.Rössler.1976.An equation for continuous chaos,PhysicsLettersA,57(5),397‐398.

O.E.Rössler. 1979. An equation for hyperchaos,PhysicsLettersA,71,155‐157.

Ott,Edward,Sauer,Tim,&Yorke,JamesA.Coping with Chaos. NewYork:JohnWiley&Sons,1994.Roache, P.J. 1998. Verification  and  Validation  in  Computational  Science  and  Engineering,HermosaPublishers,Albuquerque,NewMexico.Rosenstein,MichaelT.,Collins,JamesJ.,&DeLuca,CarloJ.1993. A practical method for calculating largest Lyapunov exponents from small data sets. PhysicaD,65,117‐134.Sano,M,&Sawada,Y.1985.Measurement of Lyapunov Spectrum from a Chaotic Time Series. PhysicalReviewLetters,55(10).Shimada,Ippei,&Nagashima,Tomomasa.1979.A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems. ProgressofTheoreticalPhysics,61,1605‐1616.Wolf,A.,Wwit,J.,Swinney,H.,&Vastano,J.1985.Determining Lyaupnov exponents from a time series. PhysicaD,16,285‐317.

Page 90: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

82

2. Chapter2Arnold,L.,Chueshov,I.,&Ochs,G.2003.Stability and capsizing of ships in random sea­ a survey. Tech.rept.464.UniversitatBremenInsitutfurDynamicsheSysteme.Belenky,V.L.,LiutD,Weems,K.M.andShin,Y.S.2002.Nonlinear Ship Roll Simulation with Water­on­Deck.Proc.Ofthe6thInternationalStabilityWorkshop, WebbInstitute,N.Y.,U.S.A.Belenky,V.L.,Weems,K.M.,Liut,DandShin,Y.S.2002.Nonlinear Roll with Water on Deck: Numerical Approach.Proc.Ofthe8thInternationalStabilityWorkshop, WebbInstitute,N.Y.,U.S.A.Belenky,Vadim,deKat,JanOtto,andUmeda,Naoya.2007.On Performance­Based Criteria for Intact Stability. 10thInternationalSymposiumonPracticalDesignofShipsandOtherFloatingStructures.

Eckhardt,Burno&Yao,Demin.1993.Local Lyapunov exponents in chaotic systems. PhysicaD,65,100‐108.DeKat,J.O.andPauling,J.R.2001. Prediction of extreme motions and capsizing of ships and offshore vehicles. Proceedingsofthe20thOMAEConference.RioDeJanerio.DeKat,J.O.,PetersA.J.2002.Model experiments and simulation of a damage frigate.IMAMCongress,Rethymnon,Cretes. Jansionowski,Andrej.2001.Time Based Survival Criteria of Passenger Ro­Ro Vehicles, Phase II, Draught Final Report.ShipStabilityResearchCentre,UniversityofStrathcylde.Lin,W.M.,andYue,D.K.P.,1990.“NumericalSolutionsforLarge‐AmplitudeShipMotionsintheTime‐Domain,”Proceedings of the Eighteenth Symposium of Naval Hydrodynamics. TheUniversityofMichigan,U.S.A.Lin,W.M.,andYue,D.K.P.,1993.“Time‐domainAnalysisforFloatingBodiesinMild‐SlopeWavesofLargeAmplitude,”Proceedings of the Eighth International Workshop on Water Waves and Floating Bodies. Newfoundland,Canada.McCue,Leigh,Bassler,Chris,andBelknap,William.2006. Real­Time Identification of Behavior Leading to Capsize.In:9thInternationalConferenceontheStabilityofShipsandOceanVehicles.McCue,LeighS.,&Troesch,ArminW.2004.Use of Lyapunov Exponents to Predict Chaotic Vessel Motions.In:9thInternationalConferenceontheStabilityofShipsandOceanVehicles.

Page 91: Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship ... · 2020-01-20 · vessel stability. This research presents the use of Lyapunov exponents, a quantity

83

Murashige,Sunao,&Aihara,Kazuyuki.1998a.Coexistence of periodic roll motion and chaotic one in a forced flooded ship.InternationalJournalofBifurcationandChaos,8(3),619‐626.Murashige,Sunao,&Aihara,Kazuyuki.1998b.Experimental study on chaotic motion of a flooded ship in waves.ProceedingsoftheRoyalSocietyofLondonA,454,2573‐2553.Murashige,S.,Yamada,T.,&Aihara,K.2000.Nonlinear analyses of roll motion of a flooded ship in waves. PhilosophicalTransactionsoftheRoyalSocietyofLondonA,358,No.1771.1793‐1812.Ott,Edward,Sauer,Tim,&Yorke,JamesA.1994.Coping with Chaos. NewYork:JohnWiley&Sons.Papoulias,FotisAndrea.1987.Dynamic analysis of mooring systems.Ph.D.thesis,DepartmentofNavalArchitectureandMarineEngineering,UniversityofMichigan,AnnArbor,MI.Sano,M,&Sawada,Y.1985.Measurement of Lyapunov Spectrum from a Chaotic Time Series. PhysicalReviewLetters,55(10).Spyrou,K.J.1995.Homoclinic connections and period doublings of a ship advancing in quartering waves.AmericanInstituteofPhysics.  Wolf,Alan,Swift,Jack,Swinney,Harry,&Vastano,John.1985.Determining Lyapunov exponents from a time series. PhysicaD,16,285–317.