20
HUMAN GENETICS ORIGINAL PAPER Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability Magdalena Bartnik & Beata Nowakowska & Katarzyna Derwińska & Barbara Wiśniowiecka-Kowalnik & Marta Kędzior & Joanna Bernaciak & Kamila Ziemkiewicz & Tomasz Gambin & Maciej Sykulski & Natalia Bezniakow & Lech Korniszewski & Anna Kutkowska-Kaźmierczak & Jakub Klapecki & Krzysztof Szczałuba & Chad A. Shaw & Tadeusz Mazurczak & Anna Gambin & Ewa Obersztyn & Ewa Bocian & Paweł Stankiewicz Received: 8 August 2013 /Revised: 17 October 2013 /Accepted: 20 October 2013 /Published online: 3 December 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract We used whole-genome exon-targeted oligonucleo- tide array comparative genomic hybridization (array CGH) in a cohort of 256 patients with developmental delay (DD)/ intellectual disability (ID) with or without dysmorphic features, additional neurodevelopmental abnormalities, and/or congeni- tal malformations. In 69 patients, we identified 84 non- polymorphic copy-number variants, among which 41 are known to be clinically relevant, including two recently de- scribed deletions, 4q21.21q21.22 and 17q24.2. Chromosomal microarray analysis revealed also 15 potentially pathogenic changes, including three rare deletions, 5q35.3, 10q21.3, and 13q12.11. Additionally, we found 28 copy-number variants of unknown clinical significance. Our results further support the notion that copy-number variants significantly contribute to the genetic etiology of DD/ID and emphasize the efficacy of the detection of novel candidate genes for neurodevelopmental disorders by whole-genome array CGH. Keywords Copy-number variation . Microdeletion . Microduplication . Chromosomal microarray analysis Introduction Developmental delay (DD)/intellectual disability (ID), char- acterized by a significant impairment of cognitive and adap- tive functions, affects 13 % of the general population (Harris 2006; Maulik et al. 2011), with the majority of affected individuals remaining without proper diagnosis (Rauch et al. 2006; Pfundt and Veltman 2012). The etiology of DD/ID is heterogeneous, with both genetic and environmental contri- bution (Grayton et al. 2012). In addition to Mendelian DD/ID, one of the most common causes are microscopically visible chromosomal aberrations and submicroscopic copy- Electronic supplementary material The online version of this article (doi:10.1007/s13353-013-0181-x) contains supplementary material, which is available to authorized users. M. Bartnik : B. Nowakowska : K. Derwińska : B. Wiśniowiecka-Kowalnik : M. Kędzior : J. Bernaciak : K. Ziemkiewicz : N. Bezniakow : A. Kutkowska-Kaźmierczak : J. Klapecki : K. Szczałuba : T. Mazurczak : E. Obersztyn : E. Bocian : P. Stankiewicz Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland T. Gambin Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland M. Sykulski Institute of Informatics, University of Warsaw, Warsaw, Poland L. Korniszewski Genetic Counseling Unit, Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw, Poland C. A. Shaw : P. Stankiewicz (*) Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm. R809, Houston, TX 77030, USA e-mail: [email protected] P. Stankiewicz e-mail: [email protected] A. Gambin Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland J Appl Genetics (2014) 55:125144 DOI 10.1007/s13353-013-0181-x

Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

  • Upload
    pawea

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

HUMAN GENETICS • ORIGINAL PAPER

Application of array comparative genomic hybridizationin 256 patients with developmental delayor intellectual disability

Magdalena Bartnik & Beata Nowakowska & Katarzyna Derwińska &

Barbara Wiśniowiecka-Kowalnik & Marta Kędzior & Joanna Bernaciak &

Kamila Ziemkiewicz & Tomasz Gambin & Maciej Sykulski & Natalia Bezniakow &

Lech Korniszewski & Anna Kutkowska-Kaźmierczak & Jakub Klapecki &Krzysztof Szczałuba & Chad A. Shaw & Tadeusz Mazurczak & Anna Gambin &

Ewa Obersztyn & Ewa Bocian & Paweł Stankiewicz

Received: 8 August 2013 /Revised: 17 October 2013 /Accepted: 20 October 2013 /Published online: 3 December 2013# The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We used whole-genome exon-targeted oligonucleo-tide array comparative genomic hybridization (array CGH) in acohort of 256 patients with developmental delay (DD)/

intellectual disability (ID) with or without dysmorphic features,additional neurodevelopmental abnormalities, and/or congeni-tal malformations. In 69 patients, we identified 84 non-polymorphic copy-number variants, among which 41 areknown to be clinically relevant, including two recently de-scribed deletions, 4q21.21q21.22 and 17q24.2. Chromosomalmicroarray analysis revealed also 15 potentially pathogenicchanges, including three rare deletions, 5q35.3, 10q21.3, and13q12.11. Additionally, we found 28 copy-number variants ofunknown clinical significance. Our results further support thenotion that copy-number variants significantly contribute to thegenetic etiology of DD/ID and emphasize the efficacy of thedetection of novel candidate genes for neurodevelopmentaldisorders by whole-genome array CGH.

Keywords Copy-number variation .Microdeletion .

Microduplication . Chromosomalmicroarray analysis

Introduction

Developmental delay (DD)/intellectual disability (ID), char-acterized by a significant impairment of cognitive and adap-tive functions, affects 1–3 % of the general population (Harris2006; Maulik et al. 2011), with the majority of affectedindividuals remaining without proper diagnosis (Rauch et al.2006; Pfundt and Veltman 2012). The etiology of DD/ID isheterogeneous, with both genetic and environmental contri-bution (Grayton et al. 2012). In addition to Mendelian DD/ID,one of the most common causes are microscopically visiblechromosomal aberrations and submicroscopic copy-

Electronic supplementary material The online version of this article(doi:10.1007/s13353-013-0181-x) contains supplementary material,which is available to authorized users.

M. Bartnik :B. Nowakowska :K. Derwińska :B. Wiśniowiecka-Kowalnik :M. Kędzior : J. Bernaciak :K. Ziemkiewicz :N. Bezniakow :A. Kutkowska-Kaźmierczak :J. Klapecki :K. Szczałuba : T. Mazurczak : E. Obersztyn :E. Bocian : P. StankiewiczDepartment of Medical Genetics, Institute of Mother and Child,Warsaw, Poland

T. GambinInstitute of Computer Science, Warsaw University of Technology,Warsaw, Poland

M. SykulskiInstitute of Informatics, University of Warsaw, Warsaw, Poland

L. KorniszewskiGenetic Counseling Unit, Institute of Physiology and Pathology ofHearing, World Hearing Center, Warsaw, Poland

C. A. Shaw : P. Stankiewicz (*)Department of Molecular and Human Genetics, Baylor College ofMedicine, One Baylor Plaza, Rm. R809, Houston, TX 77030, USAe-mail: [email protected]

P. Stankiewicze-mail: [email protected]

A. GambinMossakowski Medical Research Centre, Polish Academy ofSciences, Warsaw, Poland

J Appl Genetics (2014) 55:125–144DOI 10.1007/s13353-013-0181-x

Page 2: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

number variants (CNVs) (Morrow 2010; Regier et al. 2010).A high-resolution G-banded karyotype reveals chromosomeabnormalities in 3–5 % of patients with idiopathic DD/ID(Shevell et al. 2003), and molecular cytogenetic analyses,e.g., fluorescent in situ hybridization (FISH) in thesubtelomeric regions, provides diagnosis in an additional 3–6 % of cases (Koolen et al. 2004; Ravnan et al. 2006). In thepast few years, application of chromosomal microarray anal-ysis (CMA), including array comparative genomic hybridiza-tion (array CGH) and single-nucleotide polymorphism (SNP)arrays, has revolutionized the clinical diagnostics in patientswith idiopathic DD/ID (Cooper et al. 2011; Kaminsky et al.2011; Girirajan et al. 2012). Recently, it has been proven thatCMA should be a first-tier clinical diagnostic test for individ-uals with DD, ID, autism spectrum disorders, and dysmorphicfeatures (Miller et al. 2010; Battaglia et al. 2013). Clinicallyrelevant CNVs, ranging in size from megabases to kilobases(Rodriguez-Revenga et al. 2007), have been detected in ∼10–20 % of cases (Menten et al. 2006; Stankiewicz and Beaudet2007; Koolen et al. 2009) and have led to the identification ofseveral novel microdeletions and microduplications associat-ed with DD/ID (Slavotinek 2008; Vissers and Stankiewicz2012), e.g., involving chromosomes 1q41q42, 9q22.3,15q13.3, 15q24, 16p11.2, and 17q21.31 (Koolen et al. 2006;Redon et al. 2006; Sharp et al. 2006; Shaw-Smith et al. 2006;Ballif et al. 2007; Shaffer et al. 2007; Sharp et al. 2007, 2008).Refinement of the critical region of a known syndrome by theidentification of atypical deletion (Cooper et al. 2011) mayfacilitate the detection of a dosage-sensitive gene(s) related toID (Vissers et al. 2010); however, there are many CNVs forwhich the clinical significance may still remain unknown(Rodriguez-Revenga et al. 2007). Recently, clinical and bio-logical interpretation of those variants and their genotype–phenotype correlation enabled the generation of a humangenome morbid map (Cooper et al. 2011).

Here, we present the results of the application ofgenome-wide array CGH in a cohort of 256 patients withDD/ID, dysmorphic features, congenital malformations, oradditional neurodevelopmental abnormalities. We identified84 non-polymorphic CNVs in 69 patients, including 41clinically relevant CNVs, 15 potentially novel pathogenicgenetic loci for DD/ID, and, additionally, 28 CNVs ofunknown clinical significance, likely to be non-pathogenicchanges.

Materials and methods

Patients

We studied 256 patients with DD/ID, dysmorphic features,congenital malformations, or additional neurodevelopmentalabnormalities. Among them, 234 patients had normal GTG

banding analysis with at least 550-band resolution and 46patients had a negative fragile X testing.

We provide a detailed clinical description of five patients(Supplementary material) and discuss their genotype–pheno-type correlations. Patients 23 and 34 have de novo CNVs thatwe believe are pathogenic, and patients 45, 50, and 51 havepotentially pathogenic CNVs.

DNA isolation

Genomic DNA was extracted from peripheral blood cellsusing a Puregene DNA Blood Kit (Qiagen, Gentra Systems,Minneapolis, MN), according to the manufacturer’s protocol.The reference DNA samples were obtained from phenotypi-cally normal male and female controls.

Array CGH

Custom-designed exon-targeted clinical array CGH was per-formed using 105K V7.4 and 180K V8.0 or V8.1 microarraysdesigned in the Medical Genetics Laboratories at BaylorCollege of Medicine (BCM) (http://www.bcm.edu/geneticlabs/cma/tables.html) in cooperation with the Department ofMedicalGenetics at the Institute of Mother and Child and manufacturedby Agilent Technologies (Santa Clara, CA). V7.4 consisted of105,000 oligonucleotides having genome-wide coverage withan average resolution of 30 kb, while V8.0 and V8.1 OLIGO(180K) arrays have genome-wide coverage as well as exoncoverage for over 1,700 known or candidate disease genes withan average of 4.2 oligos per exon and intronic gaps no largerthan 10 kb (Boone et al. 2010). The microarray used in thisstudy does not contain SNP probes and it does not detect regionsof absence of heterozygosity (AOH). The results of studiesusing the updated version of this array were recently publishedby the BCM (Wiszniewska et al. 2013). Digestion, labeling, andhybridization were performed following the manufacturer’s in-structions. The BCM web-based software platform and thehomebrew IMiD-web2py software were used for chromosomalmicroarray analysis. All genomic coordinates are based on theMarch 2006 assembly of the reference genome (NCBI36/hg18).To verify the rearrangements identified by array CGH, depend-ing on CNVs size, we used GTG banding and FISH. Whenavailable, blood samples were obtained from patients’ parents,and CNV inheritance was investigated.

Karyotype analysis

GTG banding analysis was performed according to the stan-dard protocol in peripheral blood lymphocytes. The meta-phases with 550-band resolution were analyzed in cases withCNVs 5 Mb or greater in size.

126 J Appl Genetics (2014) 55:125–144

Page 3: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Fluorescent in situ hybridization (FISH) analysis

Confirmatory FISH experiments were performed to verify thepresence of CNVs ranging in size from 150 kb to 5 Mb. FISHanalyses were performed by standard procedures inphytohemagglutinin-stimulated peripheral blood lymphocytesusing probes derived from bacterial artificial chromosomes.When available, blood samples were obtained from the pa-tient’s parents and the origin of the identified CNVs wasstudied using FISH with the same probes.

Results

A total of 84 non-polymorphic CNVs were found in 69 of 256patients studied. We divided the detected CNVs into threegroups. The first group contains 41 CNVs considered to beclinically relevant (i.e., pathogenic for DD/ID) (Table 1). Thisgroup includes 18 imbalances greater than 5 Mb in sizeidentified in 17 patients (not seen in standard cytogeneticstudies) and 23 submicroscopic CNVs. In three cases, twopathogenic CNVs were detected: patient 9 had an unbalancedtranslocation der(10)t(10;20)(q26.2;q13.33); patient 10 had aterminal duplication dup(11)(p15) and a terminal deletiondel(11)(q24), most likely a recombination product of apericentromeric inversion inv(11)(p15q24); and patient 12had a large 15q13.3q14 deletion in addition to the well-known recurrent microdeletion 16p13.11. We also identifiedtwo mosaic trisomies of chromosome 9 (pt 15 and pt 16) andmonosomy of chromosome 7 in a 1-year-old patient (pt 17)with DD and combined immunodeficiency. Among 23 sub-microscopic CNVs, we identified known recurrent rearrange-ments, e.g., deletions 15q11.2, 16p13.3, 17q11.2, and17q21.31 and different-sized non-recurrent CNVs, e.g., dele-tions 1p36.31p36.33, 1q43q44, 5q14.3, 6q25, and 10q24.32,as well as duplications 3p21.1 and 19p13.3. In this group, wealso identified two recently described microdeletions at chro-mosomes 4q21 and 17q24.2.

The second group consists of 15 CNVs potentially patho-genic for DD/ID (Table 2). In three cases, we identifiedrare CNVs: two de novo deletions at 13q12.11 and 5q35.3,and in one patient, a deletion at 10q21.3 and a duplication at19p13.42p13.43.

In the third group, we classified 28 deletions and duplica-tions of unknown clinical significance, some of which arelikely non-pathogenic for DD/ID (Tables 1, 2, and 3). Wefound four individuals with BP1/BP2 duplication at 15q11.2that is frequently found in the general population and consid-ered as a benign event.

Moreover, we present the cumulative data of the studiedcohort (Table 4), including patients with normal array CGHresults (Supplementary Table 1).

Discussion

To determine the phenotypic consequences of the 84 identi-fied non-polymorphic CNVs, we considered their type(deletion vs. duplication), size, gene content, inheritance pat-tern, and the available clinical or genomic database informa-tion. We classified them into three groups: 41 (16.0 %) knownwell-recognized causative for DD/ID, 15 (5.85 %) novelpotentially pathogenic, and 28 (10.9 %) variants of unknownclinical significance (Tables 1, 2, and 3). The first groupincludes CNVs responsible for the well-known diseases andsyndromes or published genomic imbalances that were con-sidered as clinically relevant for DD/ID. The second groupconsists of novel CNVs potentially causative for DD/ID andincludes changes that were not previously reported to beassociated with DD/ID but contain genes that may contributeto our patients’ phenotypes. Moreover, we compared CNVsclassified as the second group with the publically availabledatabases. The same or similar sized aberrations were notfound in the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation/), Database of ChromosomalImbalance and Phenotype in Humans Using EnsemblResources (DECIPHER, http://decipher.sanger.ac.uk), or theInternational Standards for Cytogenomic Arrays database(ISCA, https://www.iscaconsortium.org). In the third groupof variants of unknown clinical significance, we classifiedCNVs that contain genes that were not previously associatedwith DD/ID, are frequently found in the general population, orwere inherited from a healthy parent.

From the second group of potentially pathogenic CNVs,we selected for the detailed description three novel rare,probably pathogenic, deletions containing candidate genesthat may contribute to the abnormal phenotypes observed inour patients. Furthermore, in two of those cases (pt 51 andpt 45), deletions arose de novo that support their potentialpathogenicity.

A de novo ∼250-kb deletion in 13q12.11, encompassingonly two genes, PSPC1 (paraspeckle component 1; MIM612408) and ZMYM5 (zinc finger, MYM-type 5), was identi-fied in pt 51 with remarkably delayed psychomotor develop-ment, muscle hypotonia, unilateral microphtalmia with ptosis,congenital eye malformation, and facial dysmorphic features(Fig. 1a, d). Interstitial deletions of 13q12.11 are very rare(Der Kaloustian et al. 2011; Tanteles et al. 2011). Tanteles et al.(2011) described a de novo 2.9-Mb 13q12.11 deletion of 19genes, including PSPC1 and ZMYM5 , in a patient with nearnormal development and intellect but with scaphocephaly andfacial dysmorphism. PSPC1 encodes a nucleolar protein thatlocalizes to punctate subnuclear structures close to splicingspeckles, known as paraspeckles. Paraspeckles may functionin the control of gene expression via an RNA nuclear retentionmechanism. Functionally, PSPC1 was proposed to participatein the regulation of transcription (Passon et al. 2011). ZMYM5

J Appl Genetics (2014) 55:125–144 127

Page 4: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le1

CNVsclinically

relevant

forDD/ID

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Bestcandidate

genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

MIM

orcitatio

n

CNVs>5Mb

1aM

2–

1p31.3p31.1(64,387,592–

76,910,889)x1

NEGR1

12.5

Karyotype/

karyotype

denovo

Delayed

psychomotor

developm

ent,speech

delay,muscular

hypotonia;dysm

orphicfeatures:d

own-slantin

gpalpebral

fissures,epicanthicfolds,telecanthus,broadnasalb

ridge,

downturnedcornersof

themouth,“whistling”

mouth

appearance,low

-setears,and

protruding

ears

(Pettietal.

2011)

2F

8Karyotype/FISH

(22q11.2)

1q41q43(221,641,959–

241,103,255)x3

DISP1,L

BR,

LEFTY

1,

LEFTY

2,

PSE

N2,

WNT3

A

19.4

–unknow

nDelayed

psychomotor

developm

ent,mild

ID(IQ52),speech

delay,

learning

difficulties,IUGR,failuretothrive,postnatalm

icrocephaly

(−2.05

SD),heartdefect(ASD

,extraleftsuperiorvenacava),sm

all

handsandfeet;dysmorphicfeatures:hypotelorism,synophrys,flat

philtrum,prominentnose,micrognathia,lowposteriorhairline,

hypoplastic

labiaminora,andhirsutism

612530

3F

13Karyotype

2q37.2q37.3(235,388,743–

242,329,883)x1

HDAC4

6.9

Karyotype/

karyotype

denovo

Delayed

psychomotor

developm

ent,profound

ID,speechdelay

(onlysinglewords),infantile

muscularhypotonia,excessive

weightg

ain,andpostnatalo

besity;d

ysmorphicfeatures:low

posteriorhairline,broadnasaltip,highforehead,“mask”

face

nystagmus,brachydactyly,singlepalm

arcrease,and

feet

abnorm

alities

600430

4F

8Karyotype

5q14.3q15(87,135,909–

92,540,627)x1

MEF2C

,GPR98

5.4

Karyotype/

karyotype

denovo

Delayed

psychomotor

developm

entsevereID

,speechdelay,

muscularhypotonia,epilepsy,andstereotypedmovem

entsof

thelim

bs;m

ilddysm

orphicfeatures:facialasymmetry,flat

occiput,strabism

us,and

congenitalcataract;family

history:

proband’sfather’scousin:p

rofoundID

,epilepsy;

motherand

grandfather:kidney

duplication

613443

5F

5Karyotype/

subtelom

erictest/

FISH

(22q11.2)

5q35.1q35.3(171,841,772–

177,881,782)x1

NSD

16.0

–unknow

nSevereID

(IQ30),absentspeech,m

uscularhypertonia/axial

hypotonia,heartdefect(VSD

,pulmonarystenosis,P

DA),

scoliosis,13

ribs,vesicoureteralreflux,hypothyroidism

,macrocephaly,postnatalshortstature,andepilepsy;dysm

orphic

features:highpalate,m

icrognathia,prom

inentforehead,long

face,and

macrostom

ia;S

otos

syndromefeatures

117550

6M

3Karyotype

6q16.1q21(93,375,185–

108,241,524)x1

FUT9

,GPR63

14.8

FISH

/FISH

denovo

Delayed

psychomotor

developm

ent,severe

ID,speechdelay

(onlysinglewords),muscularhypotonia,postnatal

microcephaly,laryngom

alacia,umbilical/in

guinalhernia,

syndactyly

ofthe2ndand3rdfingers,fetalfingerpads,

syndactyly

ofthe3rdand4thtoes,and

constipation;

dysm

orphicfeatures:flatfacialp

rofile,up-slantingpalpebral

fissures,and

lacrim

alductatresia

(Derwińska

etal.2009)

7F

13Karyotype/

subtelom

erictest

8q21.11(74,765,817–

80,451,006)x1

ZFHX4

5.6

FISH

/FISH

denovo

Mild

ID,recurrentupperrespiratorytractinfections,and

umbilical

hernia;dysmorphicfeatures:hypertelorism,narrowpalpebral

fissures(ptosis),epicanthicfoldstelecanthus,frontalbossing

with

receding

hairline,widenasalbridgeshort,flatnose,

hypoplasiaof

nasalcartilage,specificupperlip

lineappearance,

shortphiltrum

,low

-setears,m

icrognathia,malocclusion,single

palmartransverse

crease,astigmatism,and

hyperm

etropia

614230

128 J Appl Genetics (2014) 55:125–144

Page 5: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le1

(contin

ued)

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Bestcandidate

genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

MIM

orcitatio

n

8M

18Karyotype/FraX

10p14p12.31(10,595,409–

22,213,068)x1

NEBL

11.6

Karyotype/

karyotype

denovo

SevereID

(IQ30),epilepsy,moderatedeafness,brainMRI:focal

corticaldysplasia,strabism

us,and

pre-/postnatal

microcephaly;

dysm

orphicfeatures:u

p-slantin

gpalpebral

fissures,epicanthicfolds,high

palate,m

icrognathia,short

philtrum,fulllips,andunusuald

arkskin

pigm

entatio

n

601362

9*M

17Karyotype

10q26.2q26.3(129,702,903–

134,889,739)x1

20q13.33

(61,395,731–

62,194,881)x3

*der(10)t(10;20)(q26.

2;q13.33)

SYCE1

CHRNA4,

KCNQ2

5.1

0.8

FISH

/FISH

mat

mat

ModerateID

,epilepsy,stereotypiclim

bsmovem

ents,poorsuck

intheneonatalperiod,and

muscularhypotonia;dysm

orphic

features:u

p-slantin

gpalpebralfissures,hypotelorism

,low

posteriorhairline,bulbousnasaltip,broad,shortneck

fetal

fingerpads,narrowed

upperp

artofthe

thorax,strabismus,and

hyperm

etropia

609625

613720

10F

7Karyotype/

microdeletiontest/

FISH

(22q11.2)

11p15.5p15.2(186,855–

14,246,023)x3

11q24.3q25(128,498,532–

134,382,529)x1

KCNQ1,H

19,

CDKN1C

B3G

AT1

14.0

5.8

Karyotype/

karyotype

notm

at

notm

at

Profound

ID,speechdelay(onlysinglewords),epilepsy,neonatal

absent

suck/feeding

difficulties,postnatalshortstatureand

grow

thfailure,m

uscularhypotonia,andcardiacdefect(A

SD,

pulm

onaryhypertension,and

tricuspidvalveinsufficiency);

dysm

orphicfeatures:h

ighpalate,prognathism

,macrostom

ia,

wide-spaced

teeth,midface

hypoplasia,deep-seteyes,straight

eyebrows,andclubbedfingers

130650

147791

11F

1Karyotype

12q14.1q21.1(56,803,356–

70,388,372)x1

LEMD3

13.5

Karyotype/

karyotype

denovo

Delayed

psychomotor

developm

ent,moderateID

,speechdelay,

stereotypichand

movem

ents,IUGR,and

postnatalsevere

grow

thretardation,hypotonia,cleftp

alate,unilateralcleftlip

,hypertrophiccardiomyopathy,corpus

callosum

hypoplasia,

ectopic,sm

allleftkidneyvesicoureteralreflux,anisocoria,and

choroidald

efect;dysm

orphicfeatures:h

ypertelorism

,micrognathia,synophrys,choroidcoloboma,malform

edauricles,low

-setears,protrudingtongue,and

sacraldimple,

family

history:mother:epilepsy,father:ankylosingspondylitis

166700

12F

12Karyotype/

subtelom

erictest/

FISH

(22q11.2)

15q13.3q14

(29,516,211–

37,530,981)x1

16p13.11

(15,429,214–

17,711,867)x1

CHRNA7

NDE1,MYH

11,

ABC

C1,

ABC

C6

8.0

2.2

Karyotype/

Karyotype

–/FISH

denovo

denovo

Delayed

psychomotor

developm

ent,mild

ID,speechdelay,cleft

palate,brachydactyly,heartdefect(pulmonaryvalvestenosis),

andvesicoureteralreflux;d

ysmorphicfeatures:h

ypotelorism

andmicrognathia;family

history:distantrelatives:caseof

cleft

palate,analatresia,and

historyof

2xmiscarriages

612001

(de

Koveletal.

2010)

13M

3Karyotype

18q22.1q23

(61,400,117–

76,103,255)x1

TSHZ1

14.7

Karyotype/

karyotype

denovo

Delayed

psychomotor

developm

ent,moderateID

,absentspeech,

hearingloss,autismspectrum

behavior,recurrentvomiting

and

muscularhypertonia,alternatingmuscularhypotoniain

the

neonatal/in

fantile

period,cryptorchidism,hypospadias,

omphalocele,strabism

us,m

yopia,andastig

matism;

dysm

orphicfeatures:highpalate,telecanthus,epicanthicfolds,

singlepalm

arcreases,andcafe-au-laitspots

601808

14F

3Karyotype/

subtelom

erictest

Xq22.1q22.3(100,704,966–

105,957,618)x1

PLP

15.2

Karyotype/

karyotype

denovo

Delayed

psychomotor

developm

ent,absent

speech,m

uscular

hypotonia,andbehavioralabnorm

alities

(autoaggression,

stereotypies

oflim

bmovem

ents);dysm

orphicfeatures:

hypertelorism,deeplyseteyes,shortp

hiltrum

,pectus

excavatum,and

abnorm

alderm

atoglyphics

312080

J Appl Genetics (2014) 55:125–144 129

Page 6: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le1

(contin

ued)

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Bestcandidate

genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

MIM

orcitatio

n

15F

6Karyotype/

subtelom

erictest/

FISH

(22q11.2)

9p24.3q34.3(1–

140,273,252)x2∼3

–140.2

Karyotype/–

unknow

nDelayed

psychomotor

developm

ent,profound

ID,absentspeech,

pleasant

personality,IUGR,feeding

difficulties/poor

weight

gain,m

uscularhypotonia,postnatalshortstatureand

underw

eight,heartd

efect(ASD

II),jointslaxity,

atlantooccipitaljoint

congenitalanomaly,duplicated

pyelocalycealsystem,and

brainarachnoidalcyst;dysm

orphic

features:b

rachycephaly,asymmetricface,asymmetry

ofthe

palpebralfissuresmicrognathia,dysplasticauricles,and

short,

webbing

neck

(Patiletal.

2012)

16F

1Karyotype/

methylatio

ntest

9p24.3q34.3(1–

140,273,252)x2∼3

–140.2

Karyotype/–

unknow

nDelayed

psycho

motor

developm

ent,severe

ID,absent

suck,

feedingprob

lems,

recurrentvo

miting,

PierreRob

insequ

ence,gastroesop

hageal

reflux

disease,

constipation

,po

stnatalshortstatureandgrow

thfailure,

muscular

hypo

tonia,

mixed

hearingloss,brainMRI:

subcortical

atroph

yin

theoccipitallobes,

heartdefect

(aortic

coarctationCoA

),cong

enital

hipdislocation,

talipes

calcaneovalgus,andop

ticdisc

hypo

plasia;dy

smorph

icfeatures:microstom

ia,“m

ask”

face,shortneck,high

forehead,strabism

us,partialsoft

palate

cleft,

microgn

athia,

andop

ticdisc

colobo

ma,

nystagmus

(Patiletal.

2012)

17M

1Karyotype

7p22.3q36.3(1–

158,821,424)x1

–158.8

–unknow

nDelayed

psychomotor

developm

ent,lack

ofsuck,feeding

problems,failu

reto

thrive,m

uscularhypotonia,and

hypospadias;mild

dysm

orphicfeatures:b

road

nasalb

ridge,

severe

congenitalimmunodeficiencysyndromewith

immunoglobulin

levelsdeficiency

(Cordoba

etal.

2012)

CNVs<5Mb

18M

5Karyotype

1p36.33p36.31(823,964–

5,474,922)x1

GABRD,SKI

4.6

FISH

/FISH

denovo

Delayed

psycho

motor

developm

ent,speech

delay

(mod

eratehearingloss),

postnatalmicroceph

aly(−4.60

SD),

postnatalshortstature(−2.71

SD),

muscular

hypo

tonia,

febrileseizures,Dandy

–Walkersynd

rome,

agenesis

ofcorpus

callosum

,heartdefect:VSD,

duod

enal

atresia,

bilateralingu

inal

hernia,sm

allhand

sandfeet,hy

pothyroidism

,andny

stagmus;dy

smorph

icfeatures:hy

potelorism

,flat

facial

profile,

deep-set

eyes,

smallpalpebralfissures,dy

splastic

auricles,broadnasal

tip,

anteverted

nares,

long

,flat

philtrum

,microstom

ia,

narrow

lips,andstraight

eyebrows

607872

19b

M12

Karyotype/FISH

(15q11.2)

1p22.3p22.2(86,154,613–

90,493,799)x3

GTF

2B4.3

FISH

/FISH

pat

ModerateID

,delayed

speech

developm

ent(only

singlewords),

poor

suck

andfeedingdifficultiesin

neonatal/in

fancyperiod,

muscularhypotonia,andabnorm

albrainMRI(cerebellar

agenesis,arachnoidalcyst);dysm

orphicfeatures:

hypertelorism,dow

n-slantingpalpebralfissures,broadnasal

bridge,bulbous

nasaltip,highforehead,taperingfingers,and

brachydactylyof

the2ndto

5thtoes

130 J Appl Genetics (2014) 55:125–144

Page 7: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le1

(contin

ued)

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Bestcandidate

genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

MIM

orcitatio

n

20M

7–

1q21.1(145,085,612–

145,845,306)x1

GJA

50.75

FISH

/FISH

denovo

Delayed

psychomotor

developm

ent,absentspeech,profoundID

,muscularhypotonia,no

availabilityto

walking,postnatal

microcephaly(−5.82

SD),shortstature

(−4.43

SD)

underw

eight(−2

.77SD

),cryptorchidism

,and

microcytic

hypochromicanem

ia;d

ysmorphicfeatures:telecanthus,

epicanthicfolds,midface

hypoplasia,low

-setears,posteriorly

rotatedears,flatn

asalbridge,m

acrostom

ia,tentedupperlip

,evertedlower

lip,neonatalfeeding

difficulties,poor

suck,

“coarse“face,openmouth,hypersalivation,molecular

confirmationof

clinicaldiagnosisof

ATRXsyndrome,family

history:

youngerbrotheralso

affected

with

ATRXsyndrome

butw

ithoutd

el1q21.1

612474

21F

1Karyotype/

subtelom

erictest

1q43q44(239,823,807–

243,139,508)x1

AKT3

3.3

FISH

/FISH

denovo

Delayed

psychomotor

developm

entp

rofoundID

,absentspeech

(inarticulatesounds),poorsuck,failuretothrive

intheneonatal

andinfancyperiod,m

uscularhypotonia,postnatal

microcephaly(−5.25

SD),epilepsy,abnorm

albrainMRI:

frontallobeatrophyandcorpus

callo

sum

hypoplasia,heart

defect(V

SD),andbrachydactyly(2nd

toes);dysm

orphic

features:h

ypertelorism

,low

-setears,flatn

asalbridge,

preauricular

tags

(leftear),narrow

palpebralfissures,

prom

inentsupraorbitalridge,and

thickgums

612337

22M

13Karyotype/FraX

3p21.1(51,730,109–

54,128,641)x3

TNNC1

2.4

FISH

/aCGH

denovo

Profound

ID,autism

spectrum

symptom

s,absent

speech,

behavioralabnorm

alities,(hyperactivity,stereotyped

movem

ents),andepilepsy;

family

history:

onecase

ofnon-

syndromicmild

IDin

father’sgranduncle

23F

8Karyotype/FISH

(15q11.2)

4q21.21q21.22(81,145,736–

84,268,969)x1

PRKG2,

RASG

EF1B

3.1

FISH

/FISH

denovo

Supplementary

material

613509

24M

2Karyotype

5q14.3(88,121,748–

88,232,276)x1

MEF2C

0.11

FISH

/FISH

denovo

Delayed

psychomotor

developm

ent,speech

delay(onlysingle

words),epilepsy,autism-likehyperactivity

behavior,m

uscular

hypotoniaandmirrorupperlim

bsmovem

entsin

theinfancy;

dysm

orphicfeatures:“coarse”facialappearance,high

forehead,frontalbossing,epicanthicfolds,low-setears,broad

nasalb

ridge,open

mouth,and

receding

hairlinein

parietal

regions

(Now

akow

ska

etal.2010)

25M

7Karyotype/

subtelom

erictest/

FraX

5q14.3q15(89,690,573–

94,582,832)x1

GPR98

4.8

FISH

/FISH

denovo

Delayed

psychomotor

developm

ent,mild

ID(IQ68),speech

delay,muscularhypertonia,epilepsy;

dysm

orphicfeatures:

protruding

ears,frontalbossing

613443

26c

M5

Karyotype/

subtelom

erictest

6q25.1q25.3(152,487,219–

157,341,421)x1

ARID

1B4.8

FISH

/aCGH

denovo

Delayed

psychomotor

developm

ent,severeID,absentspeech,

inarticulate,singlesounds,heartdefect:PFO

,and

hypothyroidism

;dysm

orphicfeatures:trigonocephaly,thick

eyebrows,long

eyelashes,epicanthicfoldsantevertednares,prom

inentalaenasi,

long,flatphiltrum

,thinupperlip,openmouthappearance,

protruding

tongue,protruding

ears,pectusexcavatum,square

distalfingertips,abnorm

alpalmarcrease,leftcryptorchidism,left

inguinalhernia,hypertrichosis,and

fairskin

612863

J Appl Genetics (2014) 55:125–144 131

Page 8: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le1

(contin

ued)

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Bestcandidate

genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

MIM

orcitatio

n

27M

17–

10q24.32

(103,852,046–

104,127,504)x1

PITX3

0.27

PCR

notm

atMild

ID(IQ65),speech

developm

entdelay,significant

behavior

abnorm

alities

(abnormalinterpersonalrelations,

aggressiveness,hyperactivity),self-destructivebehavior

(onychotillom

ania,trichotillom

ania,polyembolokoilamania),,

sleepdisturbances,seizuresepisode(abnormalEEG),

recurrentrespiratory

tractinfectio

ns(until4yearsof

age),and

idiopathicthrombocytopenia(atthe

ageof

10years);

dysm

orphicfeatures:long“coarse”

face,highforehead,open

mouth,synophrys,short,broad

nose,thick,everted

lower

lip,

largeearlobule,thickened

helix

,brachydactyly

type

A3,

hyperextensibleinterphalangealjoints,clinodactyly

oftheIV

andVfingers,walking

ontheexternalbordersof

bothfeet,pes

planus,fam

ilyhistory:

father:learningdifficulties,proband’s

sister:m

ildID

(she

hasadevelopm

entally

delayedson)

(Derwińska

etal.2012)

28F

7Karyotype/

subtelom

erictest/

BACaC

GH

15q11.2(20,393,584–

20,638,134)x1

CYF

IP1,N

IPA2,

NIPA1

0.24

FISH

/FISH

pat

Profound

ID,absentspeech,andepilepsy;

dysm

orphicfeatures:

prom

inentsupraorbitalridges,sm

ooth,longphiltrum,

prom

inentn

ose,andclinodactyly

ofthe5thfingers;family

history:

father:h

ealthy

(Burnside

etal.2011)

29F

11Karyotype

16p13.3(49,978–

1,676,053)x1

HBA2,H

BA1

1.6

FISH

/FISH

denovo

ModerateID

,speechdelay,abnorm

albrainMRI:enlarged

cisterna

magna,parietalcorticalatrophy,multip

lenevi,

freckles,and

capillary

hemangiom

aon

thescalp;

mild

dysm

orphicfeatures:facialsym

metry

andabnorm

alphiltrum

141750

30d

F6

Karyotype

16p11.2(29,586,068–

30,036,185)x1

KCTD

130.45

FISH

/aCGH

pat

Delayed

psychomotor

developm

ent,speech

delay,andmoderate

ID;fam

ilyhistory:

mother:moderateID

,father:mild

ID611913

31F

4Karyotype

17q11.2(26,133,859–

27,245,792)x1

NF1

1.1

FISH

/FISH

denovo

Delayed

psychomotor

developm

ent,moderateID

,speechdelay,

hoarse

voice,muscularhypotonia,brainMRI:agenesisof

corpus

callo

sum,bow

edtibiawith

pseudarthrosis,fetalfinger

pads,edemaof

hands,dark

skin

pigm

entatio

n,multip

lecafe-

au-laitspotsandfreckles;d

ysmorphicfeatures:

dolichocephaly,coarse

face,telecanthus,epicanthicfolds,

hypertelorism,m

acrostom

ia,prominentu

pper

lip/everted

lower

lip,broad

nose,and

thickhelices

strabism

us,clin

ical

diagnosisof

NF1

613675

32F

33Karyotype/

subtelom

erictest/

BACaC

GH

17q12(32,224,021–

33,288,139)x3

HNF1B

1.1

FISH

/–unknow

nModerateID,pre-andpostnatalm

icrocephaly,lengthasym

metry

oflim

bs:lefttibialand

foothypoplasia;dysmorphicfeatures:

round,distinctiveface,shortpalpebralfissures,up-slanting

palpebralfissures,andmicrognathia;family

history:twosisters

andonebrother:mild

ID,father:mild

ID,brotherof

proband’s

fatherandhisson:mild

ID,proband’sgrandfather:mild

IDand

twocasesof

preterm

birth(babiesdied

soon

afterbirth)

614526

33M

10Karyotype/

subtelom

erictest/

FraX

17q21.31

(41,153,459–

41,494,390)x1

KANSL

10.34

FISH

/FISH

denovo

Delayed

psychomotor

developm

ent,moderateID,and

feeding

problemsintheneonatal/infancyperiod;dysm

orphicfeatures:

frontalbossing,longface,abnormalphiltrum,m

alform

edauricles,

low-setears,and

broadnasalbridge,fam

ilyhistory:paternaluncle:

case

ofnewborn

death(congenitalabnormalities)

610443

132 J Appl Genetics (2014) 55:125–144

Page 9: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le1

(contin

ued)

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Bestcandidate

genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

MIM

orcitatio

n

34F

1Karyotype/

subtelom

erictest/

microdeletiontest

17q24.2(62,016,186–

63,909,858)x1

PRKCA

1.9

FISH

/FISH

denovo

Supplementary

material

(Vergultetal.

2012)

35M

11Karyotype

19p13.3(1,083,903–

3,636,080)x3

STK11

2.5

FISH

/aCGH

denovo

ModerateID

,feeding

problems,poor

weightg

ain,IU

GRand

postnatalm

icrocephalyandshortstature;dysmorphicfeatures:

up-slantingpalpebralfissures,hypertelorism,longnose,short

philtrum,m

icrognathia,astig

matism,and

camptodactyly

(Scollo

netal.

2012)

36e

M4

Karyotype/

subtelom

erictest

Xp22.31

(6,876,449–

8,057,511)x0

STS,V

CX

1.18

FISH

/FISH

mat

Delayed

psychomotor

developm

ent,severe

ID,absentspeech,

muscularhypotonia,postnatalm

icrocephaly(−4.41

SD),

clinodactyly

ofthe5thfinger,inabilityto

walkunsupported,

epilepsy,andsymptom

sof

mild

ichthyosis;fam

ilyhistory:

mother:healthy,maternalfather:ichthyosis(normal

intellectuald

evelopment),twomaternalsisters:carriersof

deletionXp22.31

308100

37F

11Karyotype

Xp22.12

(20,096,103–

21,653,164)x1

RPS6KA3

1.5

MLPA

/MLPA

notm

atDelayed

psychomotor

developm

ent,moderateID

,speechdelay,

behavioralabnorm

alities

(autoaggression,hyperactivity

),failu

reto

thrive,joint

laxity,kyphoscoliosis,and

brachydactyly;

dysm

orphicfeatures:d

own-slantin

gpalpebral

fissures,hypertelorism

,macrostom

ia,low

andwidenasal

bridge;C

offin–Low

rysyndromesymptom

s

303600

38M

3Karyotype/

subtelom

erictest

Xp11.22

(54,085,532–

54,130,083)x0

PHF8

0.044

–/aC

GH

mat

Delayed

psychomotor

developm

ent,speech

delay,hearingloss,

IUGR,neonatalfeeding

difficulties:poor

suck,axial

hypotonia,lim

bshypertonia,postnatalmicrocephaly(−2.77

SD),clinodactyly

of3rdand4thfingers,andcryptorchidism

;dysm

orphicfeatures:acrocephaly,highforehead,

hypotelorism

,up-slantingpalpebralfissures,long,deep

philtrum,telecanthus,low

-setears,broad

nasalb

ridge,and

bulbousnasaltip;fam

ilyhistory:

casesof

mild/m

oderate/

severe

IDin

therelatives

300263

DD,developmentaldelay;ID,intellectualdisability;S

D,standarddeviation;IQ

,intellig

ence

quotient;A

SD,atrialseptaldefect;VSD

,ventricularseptaldefect;P

DA,patentductusarteriosus;P

FO,patent

foramen

ovale;IU

GR,intrauterinegrow

threstriction;

MRI,magnetic

resonanceim

aging;

EEG,electroencephalography;

mat,m

aternal;pat,paternal

aPatient

1hasan

additio

nal0

.250-M

bduplicationat15q11.2[15q11.2

(20,393,584–20,642,621)x3]

bPatient

19hasan

additio

nal1

.2-M

bduplicationatXp22.31

inheritedfrom

thenorm

almother[X

p22.31

(6,876,449–8,075,153)x2mat]

cPatient

26hasan

additio

nal0

.07-MbduplicationatXp22.33

[Xp22.33

(508,271–579,292)x2]

dPatient

30hasan

additio

nal0

.85-Mbduplicationat6q25.3[6q25.3(157,243,724–158,094,366)x3dn]

ePatient

36hasan

additio

nal0

.14-Mbduplicationat17q25.3inheritedfrom

thenorm

almother[17q25.3(78,458,509–78,599,991)x3mat]

J Appl Genetics (2014) 55:125–144 133

Page 10: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le2

CNVspotentially

pathogenicforDD/ID

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

39F

15Karyotype/s

ubtelomeric

test

2p21

(45,248,256–

45,793,855)x3

2q37.2q37.3

(236,606,748–

238,019,834)x3

SRBD1,P

RKCE

AGAP1,G

BX2,A

SB18

,IQCA1,

CXCR7,C

OPS8

,COL6

A3

0.54

1.4

–/aC

GH

–/aC

GH

pat

mat

Profound

ID,absentspeech,neonatalfeeding

problems:postnatalfailure

tothrive,m

uscular

hypotonia,epilepsy,abnorm

albrainMRI:frontal

corticalatrophy,EEG:h

ypsarrhythmia,postnatal

microcephaly(−3.84

SD),andscoliosis;dysm

orphic

features:d

olichocephaly,long

face,w

ide-spaced

teeth,hypoplastic

nails,and

cafe-au-laitspots

40M

9Karyotype/FISH

(22q11.2)

2q11.2q12.1(100,896,293–

104,521,737)x3

NPA

S2,R

PL3

1,T

BC1D

8,C

2orf29

,SN

ORD89

,RNF149,C

REG2,

RFX8,M

AP4K

4,IL1

R2,IL1

R1,

IL1R

L2,IL1

RL1

,IL1

8R1,

IL18RAP,SLC

9A4,SLC

9A2,

MFSD

9,T

MEM182,L

OC150568

3.6

– /–

unknow

nBorderlineintellectuald

evelopment,autistic-like

spectrum

symptom

s:Aspergersyndrome,

hyperactivity,cleftof

softpalate:infancy

feeding

difficulties,andhorseshoekidney;d

ysmorphic

features:u

p-slantin

gpalpebralfissures,high

palate,

hypertelorism

dysplasticears,protrudingears,

preauriculardimples,and

broadandflatnasalbridge

41F

7Karyotype

3q26.1q26.2(169,023,234–

169,652,178)x3

SERPINI1,G

OLIM

40.62

–/–

unknow

nProfound

ID,absentspeech,behavior

abnorm

alities

(aggression,hyperactivity

),severe

postnatalfailure

tothrive;d

ysmorphicfeatures:d

own-slantin

gpalpebralfissures,hypertelorism,low

forehead,and

hirsutism

42F

11Karyotype

3q26.31(176,602,337–

177,202,589)x1

NAALADL2

0.6

FISH/FISH

pat

Mild

ID,bilateralopticnerveatrophy,unilateralanirid

ia,

secondaryglaucoma,unilateralcataract,nystagmus.

absentseptum

pellucidum,and

pesplanus;

dysm

orphicfeatures:prominentforehead,taperin

gfin

gers,and

brachydactyly

43F

3Karyotype/FISH

(7q11.23)

4p13p12(44,346,805–

45,850,451)x3

YIPF7,G

UF1,G

NPDA2,G

ABRG1

1.5

FISH/FISH

mat

Delayed

psychomotor

developm

ent,speech

delay

(onlysinglewords),neonatalfeedingproblems,

poor

weightg

ain,gastroesophagealreflux

disease,

recurrentu

rinary

infections,relativepostnatal

macrocephalypostnatalshortstature(−6.64

SD),

andpostnatalu

nderweight(−3

.71SD

);dysm

orphic

features:long,deep

philtrum,coarseface;exotropia,

barrel-shapedchest,accessoryspleen,fetalfinger

pads,and

molecular

confirmationof

mutationin

the

BRAFgene;clin

icaldiagnosisof

CFC

syndrome

44a

F5

Karyotype

5q23.1

(115,661,713–

117,144,119)x3

SEMA6A

1.4

–/–

unknow

nSevere

ID,absentspeech,epilepsy,andstereotyped

movem

ents;d

ysmorphicfeatures:long,sm

ooth

philtrum,low

nasalb

ridge,bulbousnasaltip,and

prom

inentalaenasi

45F

17Subtelomerictest

5q35.3

(176,820,265–

177,542,421)x1

DBN1,P

DLIM7,D

OK3,D

DX41

,FA

M193B

,TMED9,B

4GALT7,

LOC202181

,FAM153A

,LO

C728554

,PROP1,FAM153C

,N4B

P3,R

MND5B

,NHP2

0.72

FISH/FISH

denovo

Supplementary

material

134 J Appl Genetics (2014) 55:125–144

Page 11: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Tab

le2

(contin

ued)

Pt

Sex

Age

(years)

Previous

negativ

egenetic

tests

aCGHresults

(hg18)

Genes

Size

(Mb)

Verification/

parental

studies

Inheritance

Clin

icalfeatures

46M

15Karyotype/FraX

7p22.1

(4,813,509–

4,971,674)x1

7q21.11(81,426,300–

81,452,221)x1

RADIL,PAPOLB,M

MD2

CACNA2D

10.15

0.025

–/–

–/–

unknow

n

unknow

n

Mild

IDandAspergersyndromesymptom

s;mild

dysm

orphicfeatures:coarseface,protruding

ears,

brachydactyly,prom

inentinterphalangealjoints,m

ildinterdigitalw

ebbing,halluxvalgus,and

scrotum

anom

aly

47b

M5

Karyotype/FraX

7p22.1

(5,501,609–

5,802,469)x3

FBXL1

8,M

IR589,A

CTB,

FSC

N1,R

NF216

0.3

–/aC

GH

denovo

Delayed

psychomotor

developm

ent,severeID,absent

speech,behavioralabnormalities

(aggression,

hyperactivity),andjointlaxity;dysmorphicfeatures:

dolichocephaly,shalloworbits,bluesclerae,

antevertednares,long,flatphiltrum

,protru

ding

ears,

andclub

foot

48M

10Karyotype/

subtelom

eric

test/BAC

aCGH

7q35q36.1(146,565,422–

148,102,720)x3

CNTNAP2,M

IR548F

4,C

7orf33

,CUL1

1.5

FISH/FISH

mat

Profound

ID,absentspeech,muscularhypertonia,

infantile

feedingdifficulties,congenital

microcephaly,postnatalm

icrocephaly(−7.22

SD),

postnatalfailure

tothrive,epilepsy,andabnorm

albrainMRI(corpuscallo

sum

hypoplasia);mild

dysm

orphicfeatures:astigmatism,opticdisc

hypoplasia,and

micropenis

49F

12Karyotype

8q22.1

(97,401,668–

98,506,950)x3

PTD

SS1,SDC2,P

GCP,T

SPYL5

1.1

–/–

unknow

nDelayed

psychomotordevelopm

ent,delayedspeech,m

ildID

(learning

difficulties),behavioralabnormalities

(hyperactivity,aggression),peripheralneuropathy,

cardiacabnorm

alities

(mitralvalveregurgitation),

unilateralhearingloss,nasalvoice,prem

aturesexual

maturation,astigmatism,hypermetropia,pescavus

deform

ity,dry

skin,patchyhypopigm

entedand

hyperpigmentedlesions;dysm

orphicfeatures:

plagiocephaly,facialsymmetry,low

-setears,narrow

palpebralfissures,andbulbousnose

50c

M17

Karyotype/

subtelom

eric

test/BAC

aCGH

10q21.3(68,965,664–

70,334,377)x1

CTNNA3,D

NAJC

12,S

IRT1,

HERC4,M

YPN,A

TOH7,

PBLD,H

NRNPH3,R

UFY2,

DNA2,S

LC25A16

,TET1,

CCAR1,SNORD98

,STOX1,

DDX50

1.36

FISH/FISH

notm

atSu

pplementary

material

51M

3Karyotype

13q12.11

(19,168,788–

19,420,048)x1

PSP

C1,Z

MYM5

0.25

FISH/FISH

denovo

Supplementary

material

DD,developmentald

elay;ID,intellectuald

isability;S

D,standarddeviation;

MRI,magnetic

resonanceim

aging;

EEG,electroencephalography;

mat,m

aternal;pat,paternal

Boldfaceindicatesthebestcandidategenes

aPatient

44hasan

additio

nal0

.18-Mbdeletio

nat4p16.3[4p16.3(175,365–358,881)x1mat]inheritedfrom

thenorm

almother

bPatient

47hasan

additio

nal0.2-Mbduplicationat

2p25.3

and0.25-M

bduplicationat

15q11.2,

both

inheritedfrom

thenorm

almother[2p25.3(56,097–261,916)x3

mat,15q11.2(20,393,584–

20,642,621)x3mat]

cPatient

50hadan

additio

nal0

.4-M

bduplicationat19q13.42q13.43

[19q13.42q13.43(61,141,677–61,543,411)x3]

J Appl Genetics (2014) 55:125–144 135

Page 12: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Table 3 CNVs of unknown clinical significance (likely non-pathogenic) for DD/ID

Pt Sex Age(years)

Previousnegativegenetic tests

aCGH results (hg 18) Size(Mb)

Verification/parentalstudies

Inheritance Clinical features

52 M 14 Karyotype 1q21.1 (144,124,745–144,452,014)x3

0.327 –/– unknown Moderate ID, speech delay, articulation defects,learning difficulties, and EEG abnormalities;dysmorphic features: hypertelorism, largeears, protruding ears, deep philtrum, highforehead, ptosis, prognathism, feetabnormalities, partial cutaneous syndactyly offingers 2 and 3, and obesity since earlychildhood

53 F 7 Karyotype 5q14.2 (82,442,763–82,552,656)x1

0.109 FISH/FISH mat Moderate ID and behavioral abnormalities;dysmorphic features: high forehead, bilateralepicanthus, dysplastic, prominent and low-setears with up-lift ear lobule, broad nasal bridge,thick helix, upturned nasal tip, anteverted nares,prognathism, strabismus deep set eyes, andclinodactyly of Vth digits

54 M 7 Karyotype 7p15.3 (23,684,650–23,791,776)x1

0.107 FISH/FISH pat Delayed psychomotor development,moderate ID, speech delay, hyperactivity,and learning difficulties; dysmorphicfeatures: up-slanting palpebral fissures,high palate, cleft soft palate, strabismus,neonatal feeding difficulties, and scoliosis;suspicion of Raynaud’s phenomenon

55a M 7 Karyotype/FISH(15q11.2)

9p24.3 (1,699,690–3,026,335)x3

1.326 FISH/aCGH

pat Mildly delayed motor development, moderateID, significant delay in speech development,behavioral abnormalities with aggression,irritability, and short attention span, musclehypotonia, extreme obesity, hypogenitalism,and ectropion of lower eyelids

56 M 1 Karyotype/methylationtest

11p15.4 (4,428,038–4,810,618)x1

0.382 FISH/FISH pat Delayed psychomotor development, muscularhypotonia, epilepsy, postnatal short stature(−3.87 SD), postnatal underweight(−4.83 SD), Pierre Robin sequence,neonatal feeding difficulties, absent suck,neonatal recurrent vomiting; dysmorphicfeatures: high forehead, down-slantingpalpebral fissures, hypertelorism, low-setears, broad nasal bridge, strabismus, andclub feet; family history: father: healthy

57 F 11 FISH (22q11.2)/BAC aCGH

12p13.33 (1,738,901–2,063,559)x3

0.324 FISH/aCGH

de novo Delayed psychomotor development, severeID, postnatal short stature, cardiacabnormalities (ASD, VSD, PDA), severesensorineural deafness hypothyroidism;dysmorphic features: facial asymmetry,hypotelorism, ptosis, long, hooked nose,cleft palate, micrognathia, neck webbing,radioulnar synostosis, myopia, accessoryspleen, family history: 1× stillbirth withoutcongenital malformations, 1× miscarriage(first trimester of gestation)

58 M 2 Karyotype 12q21.1 (70,966,697–71,222,382)x1

0.255 FISH/FISH pat Delayed psychomotor development, absentspeech (inarticulate, single sounds), in theneonatal/infantile period of life: limbshypertonia/axial hypotonia, seizures,pre-/postnatal microcephaly: (−5.65 SD),epilepsy, brain MRI: suspicion of septo-opticdysplasia, polymicrogyria, schizencephaly,and subependymal heterotopy; dysmorphicfeatures: down-slanting palpebral fissures,

136 J Appl Genetics (2014) 55:125–144

Page 13: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

Table 3 (continued)

Pt Sex Age(years)

Previousnegativegenetic tests

aCGH results (hg 18) Size(Mb)

Verification/parentalstudies

Inheritance Clinical features

hypotelorism, EEG abnormalities,genitourinary abnormalities: extrarenal pelvis(left kidney) and optic disc hypoplasia

59 M 8 Karyotype/subtelomerictest

13q32.1q32.2(96,900,637–97,686,612)x3

0.785 FISH/aCGH

mat Delayed psychomotor development, profoundID, absent speech, neonatal and infantilefeeding problems, muscular limbs hypertonia,seizures, drug-resistant epilepsy, pre- andpostnatal microcephaly, stereotypedmovements; dysmorphic featuresbrachycephaly, micrognathia, protruding ears,open mouth appearance, full cheeks,abnormal brain MRI: temporal corticalatrophy (right), scoliosis, cryptorchidism,nystagmus, hematologic abnormalities, andunexplained transient highly elevatedleukocytosis (30,000/ml); family history:proband’s sister: very similar clinicalsymptoms suggestive for unexplainedencephalopathy with drug-resistant epilepsy

60 M 15 Karyotype 15q11.2 (19,924,765–20,642,621)x3

0.717 –/– unknown Delayed psychomotor development, profoundID, absent speech, stereotyped movements,neonatal/infantile feeding difficulties,poor suck, poor weight gain, postnatalfailure to thrive, pectus excavatum,chondro-osseous exostoses on thelower limbs, strabismus, and secondaryosteoporosis (hypercalciuria)

61 M 10 Karyotype 15q11.2 (20,006,102–20,642,621)x3

0.636 –/– unknown Delayed psychomotor development, moderateID, speech delay, articulation defect, learningdifficulties, vertebral and rib anomalies, shortneck, postnatal short stature (relatively shortlower limbs), postnatal underweight, heartdefect (ASD, VSD), and strabismus; familyhistory: 1× miscarriage in the mothers’gestational history; features of Jarcho–Levin-like syndrome

62 M 6 Subtelomerictest

15q21.3 (54,693,214–54,832,701)x1

0.139 FISH/FISH mat Delayed psychomotor development, moderateID, neonatal/infantile feeding difficulties,joints laxity, pectus excavatus, strabismus,and heart defect (VSD); dysmorphicfeatures: Kabuki-like makeup syndrome,ectropion of eyelids, wide palpebral fissures,epicanthic folds, prominent ears, flatphiltrum, and fetal finger pads

63 F 14 Karyotype/FraX 16q23.1 (77,445,915–78,190,209)x3

0.744 –/aCGH not mat Mild/moderate ID, mild dysmorphic features,hypertelorism, high forehead transversepalmar crease, and low posterior hairline

64 F 6 Karyotype/BACaCGH/methylationtest

22q11.21q11.22(20,269,922–21,393,710)x3

1.123 –/– unknown Severe ID, absent speech, stereotypedmovements, breath holding, postnatalmicrocephaly, inability to walkindependently, rash of upper limbs;dysmorphic features, short philtrum, upliftearlobes, thick and sparse eyebrows, flatfacial profile, protruding tongue, exotropia,and gum hypertrophy; family history: 1×miscarriage; clinical diagnosis of Rettsyndrome, molecular confirmation ofMECP2 mutation

J Appl Genetics (2014) 55:125–144 137

Page 14: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

belongs to the zinc finger MYM-type family and probably hasmolecular functions, such as metal ion binding or zinc ionbinding (Pastorcic and Das 2007). Although the phenotype–genotype correlation remains unclear and one smaller deletion

within this region was reported in the control group (DGV;nsv455826) (Itsara et al. 2009), we propose that the identifiedde novo 13q12.11 deletion could contribute to the clinicalfeatures observed in our patient.

Table 3 (continued)

Pt Sex Age(years)

Previousnegativegenetic tests

aCGH results (hg 18) Size(Mb)

Verification/parentalstudies

Inheritance Clinical features

65 M 11 Karyotype/subtelomerictest

Xp22.33 (263,265–690,981)x3

0.427 –/– unknown Mild ID, speech delay, Postnatal microcephaly,abnormal brain MRI: arachnoid cyst andcerebellar vermis hypoplasia, EEGabnormalities, heart defect: tetralogy ofFallot (TOF), unilateral inguinal hernia, andvesicoureteral reflux; dysmorphic features:hypertelorism, telecanthus, short philtrum,downturned corners of the mouth, and thinlips

66 F 4 – Xp22 (502,226–1,744,236)x3

1.242 –/– unknown Delayed psychomotor development, severeID, speech delay (only single words), andautistic spectrum behavior; dysmorphicfeatures: almond-shaped eyes, shortphiltrum, downturned corners of themouth, prominent nasal tip, and proximalplacement of the thumbs; family history:1× miscarriage in the mother

67 F 18 Karyotype/subtelomerictest/FraX/FISH(1p36)

Xq27.3 (142,571,903–142,766,693)x3

0.194 –/aCGH not mat Profound ID and absent speech (only singlewords); dysmorphic features: deep-set eyes,straight supraorbital ridges, postnatalmicrocephaly, behavior abnormalities:aggression, autoaggression, stereotypedmovements, obesity, and small hands andfeet; family history: mother: mild ID

68 F 2 Karyotype/subtelomerictest/HR-CGH

Xq28 (151,572,279–151,788,528)x3

0.216 –/aCGH pat Delayed psychomotor development, speechdelay (only single words), relative postnatalmicrocephaly (−2.05 SD), feedingdifficulties, absent suck, distalarthrogryposis, (dimples over theinterphalangeal joints), and prematurethelarche; dysmorphic features: up-slantingpalpebral fissures, long philtrum,downturned corners of the mouth, metopicridge, and strabismus

69 M 15 Karyotype/subtelomerictest/FraX

Xq28 (152,641,149–152,697,974)x3

0.056 –/– unknown Profound ID, absent speech, behavioralabnormalities (hyperactivity, aggression),autism spectrum symptoms, muscularhypotonia, microcephaly, epilepsy,brachydactyly, alopecia areata, thin skinwith hyperpigmentation in the perioral andperiorbital regions; family history: stillbirthnewborn from the mothers’ first pregnancydied after birth (IUGR without congenitalmalformations) and 2× miscarriages at thefirst trimester of the mother’s pregnancies

DD, developmental delay; ID, intellectual disability; SD, standard deviation; ASD, atrial septal defect; VSD, ventricular septal defect; PDA, patentductus arteriosus; IUGR, intrauterine growth restriction; MRI, magnetic resonance imaging; EEG, electroencephalography; mat, maternal; pat, paternal

The total number of CNVs of unknown clinical significance includes CNVs in Table 3 and the additional changes listed under Tables 1, 2, and 3a Patient 55 with a karyotype 46,XY,t(2;11)(q21;q23) has an additional 0.754-Mb deletion at 2q22.11 inherited from the normal mother [2q22.1(138,045,798–138,799,860)x1 mat]

138 J Appl Genetics (2014) 55:125–144

Page 15: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

In a girl (pt 45) with an atypical autism spectrum disorderand moderate mental impairment with absent expressivespeech development, we detected a de novo ∼720-kb deletionat 5q35.3 that partially overlaps a common-sized ∼1.9-Mbrecurrent deletion found in patients with Sotos syndrome(MIM 117550) but leaves the dosage-sensitive NSD1 gene(set domain protein 1; MIM 606681) intact (Fig. 1b, e). Rauchet al. (2003) described a novel 5q35.3 subtelomeric deletiondistally adjacent to the Sotos common deletion region, andcharacterized by pronounced muscular hypotonia, postnatalshort stature, and bell-shaped thorax with pectus carinatum.The deletion identified in our patient harbors 15 genes, includ-ingDBN1 , B4GALT7 , PROP1 , andNHP2 .DBN1 (drebrin E;MIM 126660) is a cytoplasmic actin-binding protein thoughtto play a role in neuronal growth and dendritic spine formation.It is a member of the drebrin family of proteins that aredevelopmentally regulated in the brain. Shim and Lubec(2002) and Dun and Chilton (2010) suggested that a decreasedamount of drebrin may lead to loss of spine plasticity andimpaired dendritic arborization, which may underlie cognitivedysfunction. PROP1 (paired-like homeodomain transcriptionfactor; MIM 601538) has both DNA-binding and transcrip-tional activation ability. Its expression leads to ontogenesis ofpituitary gonadotropes, as well as somatotropes, lactotropes,and caudomedial thyrotropes. Heterozygous mutations inPROP1 have been reported in patients with pituitary hormonedeficiency-2 (CPHD2;MIM262600). Homozygousmutationsof B4GALT7 (galactosyltransferase I; MIM 604327) have

been described in patients with the progeroid form of Ehlers–Danlos syndrome (MIM 130070) characterized by an agedappearance, DD, short stature, craniofacial disproportion, gen-eralized osteopenia, defective wound healing, hypermobilejoints, hypotonic muscles, and loose but elastic skin(Okajima et al. 1999). Lastly, homozygous or compound het-erozygous mutations in the NHP2 gene (nucleolar proteinfamily A, member 2; MIM 606470) have been found inindividuals with autosomal recessive dyskeratosis congenita-2 (DKCB2; MIM 613987). Given that the 5q35.3 deletion inour patient arose de novo and the fact that the deleted genes areassociated with neurodevelopmental disorders and play a rolein neuronal processes, we suggest that the identified CNV ispotentially pathogenic for the described clinical features.

In patient 50 with short stature, moderate ID, and his-tory of Hirschsprung disease and congenital heart defect,we found a rare ∼1.4-Mb deletion in 10q21.3 encompassing16 genes (Fig. 1c, f) and a small ∼400-kb duplication in19q13.42q13.43. Deletions in 10q21.3 have never been re-ported in patients with DD/ID, thus, it is challenging to assessits clinical pathogenicity. However, the size and gene-richcontent suggest that the 10q21.3 deletion could be pathogenic.Analysis of the maternal sample revealed normal result; un-fortunately, the paternal sample was unavailable. Five genes,including SIRT1 (sirtuin 1; MIM 604479), DNA2 (DNAreplication helicase 2; MIM 601810), TET1 (Tet oncogenefamily, member 1; MIM 607790), CCAR1 (cell divisioncycle and apoptosis regulator 1; MIM 612569), and DDX50

Table 4 Summary of the studied cohort of 256 patients with DD/ID

Patients with Total number(256)

Number of patientswith CNVs (69)

Reported CNVs Number of patientswith two CNVs

Pathogenic(41)

Potentiallypathogenic (15)

Variants of unknownsignificance (28)

DD (age 1–6 years) 74 17 (22.9 %) 12 (16.2 %) 2 4 1

Mild ID 32 11 (34.3 %) 6 (18.7 %) 5 2 2

Age <12 years 22 7 4 3 1 –

Age 13–18 years 8 4 2 2 1 –

Age >18 years 2 – – – – –

Moderate ID 57 18 (31.5 %) 11 (19.2 %) 2 10 5

Age <12 years 35 13 8 – 8 –

Age 13–18 years 20 4 2 2 2 –

Age >18 years 2 1 1 – – –

Severe ID 32 10 (31.2 %) 5 (15.6 %) 2 8 4

Age <12 years 25 9 4 2 8 –

Age 13–18 years 7 1 1 – – –

Age >18 years – – – – – –

Profound ID 61 13 (21.3 %) 7 (11.4 %) 4 4 2

Age <12 years 35 7 5 2 1 –

Age 13–18 years 19 6 2 2 3 –

Age >18 years 7 – – – – –

J Appl Genetics (2014) 55:125–144 139

Page 16: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

(dead/h box 50; MIM 610373) represent dosage-sensitivegenes (Huang et al. 2010); however, to date, no phenotypeassociated with haploinsufficiency of any of these genes hasbeen reported. In addition, SLC25A16 (solute carrier family25, member 16; MIM 139080) encodes a protein that islocalized in the inner membrane and facilitates the rapidtransport and exchange of molecules between the cytosoland the mitochondrial matrix space. This gene was proposedto play a role in Graves disease (MIM 275000). Of note, otherSLC family genes, SLC9A9 (MIM 608396), SLC6A4 (MIM182138), and SLC25A12 (MIM 603667), are causative forautism. Other genes mapping in the deleted region, includingDNAJC12 (MIM 606060), HERC4 (MIM 609248), PBLD(MIM 612189), HNRNPH3 (MIM 602324), RUFY2 (MIM610328), STOX1 (MIM 609397), and CTNNA3 (MIM607667), have been linked to late-onset Alzheimer’s disease(AD6; MIM 605526). CTNNA3 , encoding the alpha-3 caten-in and likely responsible for the formation of stretch-resistant

cell–cell adhesion complexes (Weiss et al. 2009), has beenassociated with late-onset Alzheimer’s disease in females(Miyashita et al. 2007). Bradley et al. (2010) suggested that,if CTNNA3 is involved in Alzheimer’s disease, it is notthrough a loss-of-function mechanism. Moreover, we suggestthat CTNNA3 and/or MYPN (myopalladin, MIM 608517),deleted 10q21 region, can be responsible for the congenitalheart defect observed in our patient. CTNNA3 has beenconsidered as a candidate for the form of dilated cardiomy-opathy linked to 10q21q23 (CMD1C; 601493) because of itshigh expression in the heart. MYPN is a component of thesarcomere that tethers nebulette in cardiac muscle to alpha-actinin andmay play signaling roles in targeting and orientingnebulin to the Z line during sarcomere assembly. Theassociated ∼400-kb duplication in 19q13.42q13.43 harborsseven genes (NLRP8 ; MIM 609659, NLRP5 ; MIM 609658,ZNF787 , ZNF444 ; MIM 607874, GALP ; MIM 611178,ZSCAN5B , and ZSCAN5A ), none of which represent a

Fig. 1 Results of array CGH analyses: a patient 51, showing a de novo∼250-kb deletion in 13q12.11; b patient 45, demonstrating a de novo∼720-kb deletion at 5q35.3; and c patient 50, showing a rare ∼1.4-Mbdeletion in 10q21.3. The red dots denote the deleted region. Gene content

in the deleted region on: d chromosome 13q12.11; e chromosome 5q35.3(compared with the critical region of the Sotos syndrome and 5q35.3subtelomeric deletion syndrome); and f chromosome 10q21.3 (UCSCgenome browser, http://genome.ucsc.edu/)

140 J Appl Genetics (2014) 55:125–144

Page 17: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

dosage-sensitive gene. Therefore, we classified this duplica-tion as a variant of unknown clinical significance.

Among our 41 CNVs known as being pathogenic for DD/ID, we elected to discuss two deletions, 4q21 and 17q24.2,which have been described recently as responsible formicrodeletion syndromes associated with DD/ID. Moreover,in those patients (pt 23 and pt 34), previously performedgenetic tests were negative (Table 1), which demonstratesthe usefulness of array CGH as a great tool for identifyingthe etiology of idiopathic DD/ID.

A de novo ∼3.1-Mb deletion at 4q21.21q21.22 identified inpatient 23 overlaps CNVs reported in the literature (Haradaet al. 2002; Friedman et al. 2006; Bonnet et al. 2010; Lipskaet al. 2011). Bonnet et al. (2010) defined a 1.37-Mb criticalregion containing five genes, PRKG2 (MIM 601591),RASGEF1B (MIM 614532), HNRNPD (MIM 601324),HNRPDL (MIM 607137), and ENOPH1 , and proposed thatPRKG2 and RASGEF1B are the best candidate genes respon-sible for the 4q21 deletion syndrome (MIM 613509) charac-terized by severe ID, lack of speech, hypotonia, significantgrowth restriction, and distinctive facial features. Our patientenables a better delineation of a novel 4q21 microdeletionsyndrome and further supports the proposed contribution ofhaploinsufficiency of PRKG2 and RASGEF1B .

We also identified a de novo ∼1.9-Mb deletion at 17q24.2(pt 34), harboring the smallest region of overlap of fourdeletions recently reported byVergult et al. (2012). The sharedclinical features include ID, speech delay, truncal obesity, andsimilar facial gestalt. The ∼713-kb critical region contains fivegenes, including PRKCA (MIM 176960), a cluster of threeCACNG genes encoding the gamma subunit of a voltage-dependent calcium channel, CACNG5 (MIM 606405),CACNG4 (MIM 606404), CACNG1 (MIM 114209), andHELZ (MIM 606699). The PRKCA gene encodes theserine- and threonine-specific protein kinase C alpha thatplays an important role in many different cellular processesand is the most important candidate gene for many of theobserved clinical features. Investigations ofmore patients with17q24.2 deletions would strengthen the genotype–phenotypecorrelation in this newly reported microdeletion syndrome.

Moreover, in two patients (pt 15 and pt 16) with normalstandard cytogenetic results, we detected chromosomal aneu-ploidy in the form of a mosaic trisomy 9 using array CGH.In both cases, chromosomal mosaicism was confirmed byretrospective GTG banding analysis that revealed low-levelmosaicism for trisomy 9 of 12.5 % and 8 %, respectively.Additionally, in patient 17 with DD and combined immuno-deficiency and normal karyotype, we found a monoso-my of chromosome 7 in his peripheral blood leukocytes.Chromosome 7 monosomy and 7q deletion have been fre-quently found in patients with myelodysplastic syndrome(MDS). MDSs are a heterogeneous group of stem cell disor-ders characterized by ineffective hematopoiesis, dysplastic

changes in bone marrow and peripheral blood, and the riskof transformation to acute myeloid leukemia (AML) (Cordobaet al. 2012). We suggest that the identified aberration isresponsible for the phenotypic abnormalities observed in ourpatient.

Additionally, our analyses of the DD/ID cohort revealedpatients with more than one clinically relevant CNVs. Apartfrom patients 9, 10, and 12 with two pathogenic CNVs, weidentified two patients (pt 39 and pt 46) with two rare poten-tially pathogenic changes. A complex clinical presentation inthose patients supports a second-hit model, in which thecompound effect of multiple CNVs, including those of un-known pathogenic significance, contributes to the phenotypicheterogeneity (Girirajan et al. 2012).

These results further demonstrate that array CGH, in addi-tion to the identification of CNVs and chromosomal aneu-ploidies, also enables the detection and estimation of theirlow-level mosaicism that may remain undetected by conven-tional cytogenetic methods (Cheung et al. 2007). Furthermore,our results support the usefulness of array CGH in the identi-fication of the aneuploidy of cells under-represented in theT-cell population missed by routine chromosome analysis.However, apart from balanced aberrations (e.g., transloca-tions, inversions), array CGH without SNP oligonucleotidescannot detect uniparental disomy.

In summary, we found that 69 of 256 patients with DD/IDcarry one or more CNVs, in 38 cases responsible for theobserved clinical features and in 13 patients potentially path-ogenic for DD/ID. Our results further confirm the usefulnessof array CGH in the detection of pathogenic CNVs in patientswith idiopathic neurodevelopmental disorders.

Acknowledgments We are grateful to the patients and their families forparticipating in this study. We thank Drs. B.R. Brinkley, A.L. Beaudet,and J.R. Lupski for facilitating the collaboration between the Institute ofMother and Child and Baylor College of Medicine. The work wassupported by grant R13-0005-04/2008 from the Polish Ministry of Sci-ence and Higher Education. M.B. is supported by the START fellowshipfrom the Foundation for Polish Science.

Open AccessThis article is distributed under the terms of the CreativeCommons Attribution License which permits any use, distribution, andreproduction in any medium, provided the original author(s) and thesource are credited.

References

Ballif BC, Hornor SA, Jenkins E, Madan-Khetarpal S, Surti U, JacksonKE, Asamoah A, Brock PL, Gowans GC, Conway RL, Graham JMJr, Medne L, Zackai EH, Shaikh TH, Geoghegan J, Selzer RR, EisPS, Bejjani BA, Shaffer LG (2007) Discovery of a previouslyunrecognized microdeletion syndrome of 16p11.2-p12.2. NatGenet 39:1071–1073

Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A,Filippi T, Carey JC (2013) Confirmation of chromosomal

J Appl Genetics (2014) 55:125–144 141

Page 18: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

microarray as a first-tier clinical diagnostic test for individuals withdevelopmental delay, intellectual disability, autism spectrum disor-ders and dysmorphic features. Eur J Paediatr Neurol (in press)

Bonnet C, Andrieux J, Béri-Dexheimer M, Leheup B, Boute O,Manouvrier S, Delobel B, Copin H, Receveur A, Mathieu M,Thiriez G, Le Caignec C, David A, de Blois MC, Malan V,Philippe A, Cormier-Daire V, Colleaux L, Flori E, Dollfus H,Pelletier V, Thauvin-Robinet C, Masurel-Paulet A, Faivre L,Tardieu M, Bahi-Buisson N, Callier P, Mugneret F, Edery P,Jonveaux P, Sanlaville D (2010) Microdeletion at chromosome4q21 defines a new emerging syndrome with marked growth re-striction, mental retardation and absent or severely delayed speech. JMed Genet 47:377–384

Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN,Kang SH, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D,Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai AC, BowersJA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T,Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B,Lalani SR, Probst FJ, BiW, Beaudet AL, Patel A, Lupski JR, CheungSW, Stankiewicz P (2010) Detection of clinically relevant exoniccopy-number changes by array CGH. Hum Mutat 31:1326–1342

Bradley WE, Raelson JV, Dubois DY, Godin E, Fournier H, Privé C,Allard R, Pinchuk V, Lapalme M, Paulussen RJ, Belouchi A (2010)Hotspots of large rare deletions in the human genome. PLoS One 5:e9401

Burnside RD, Pasion R, Mikhail FM, Carroll AJ, Robin NH, Youngs EL,Gadi IK, Keitges E, Jaswaney VL, Papenhausen PR, Potluri VR,Risheg H, Rush B, Smith JL, Schwartz S, Tepperberg JH, Butler MG(2011) Microdeletion/microduplication of proximal 15q11.2 betweenBP1 and BP2: a susceptibility region for neurological dysfunctionincluding developmental and language delay. HumGenet 130:517–528

Cheung SW, Shaw CA, Scott DA, Patel A, Sahoo T, Bacino CA, PursleyA, Li J, Erickson R, Gropman AL, Miller DT, Seashore MR,Summers AM, Stankiewicz P, Chinault AC, Lupski JR, BeaudetAL, Sutton VR (2007) Microarray-based CGH detects chromosom-al mosaicism not revealed by conventional cytogenetics. Am J MedGenet A 143A:1679–1686

Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C,Williams C, Stalker H, Hamid R, Hannig V, Abdel-Hamid H,Bader P, McCracken E, Niyazov D, Leppig K, Thiese H, HummelM, Alexander N, Gorski J, Kussmann J, Shashi V, Johnson K,Rehder C, Ballif BC, Shaffer LG, Eichler EE (2011) A copy numbervariation morbidity map of developmental delay. Nat Genet 43:838–846

Cordoba I, González-Porras JR, Nomdedeu B, Luño E, de Paz R, Such E,Tormo M, Vallespi T, Collado R, Xicoy B, Andreu R, Muñoz JA,Solé F, Cervera J, del Cañizo C; SpanishMyelodysplastic SyndromeRegistry (2012) Better prognosis for patients with del(7q) than forpatients with monosomy 7 in myelodysplastic syndrome. Cancer118:127–133

deKovel CG, Trucks H, Helbig I,Mefford HC, Baker C, Leu C, Kluck C,MuhleH, von Spiczak S, Ostertag P, Obermeier T, Kleefuss-Lie AA,Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, RosenowF, Brilstra EH, Trenité DK, Swinkels ME,Weber YG, Unterberger I,Zimprich F, Urak L, FeuchtM, Fuchs K,Møller RS, Hjalgrim H, DeJonghe P, Suls A, Rückert IM, Wichmann HE, Franke A, SchreiberS, Nürnberg P, Elger CE, Lerche H, Stephani U, Koeleman BP,Lindhout D, Eichler EE, Sander T (2010) Recurrent microdeletionsat 15q11.2 and 16p13.11 predispose to idiopathic generalized epi-lepsies. Brain 133:23–32

Der Kaloustian VM, Russell L, Aradhya S, Richard G, Rosenblatt B,Melançon S (2011) A de novo 2.1-Mb deletion of 13q12.11 in achild with developmental delay and minor dysmorphic features. AmJ Med Genet A 155A:2538–2542

Derwińska K, Bernaciak J, Wiśniowiecka-Kowalnik B, Obersztyn E,Bocian E, Stankiewicz P (2009) Autistic features with speech delay

in a girl with an approximately 1.5-Mb deletion in 6q16.1, includingGPR63 and FUT9 . Clin Genet 75:199–202

Derwińska K, Mierzewska H, Goszczańska A, Szczepanik E, Xia Z,Kuśmierska K, Tryfon J, Kutkowska-Kaźmierczak A, Bocian E,Mazurczak T, Obersztyn E, Stankiewicz P (2012) Clinical improve-ment of the aggressive neurobehavioral phenotype in a patient with adeletion of PITX3 and the absence of L-DOPA in the cerebrospinalfluid. Am J Med Genet B Neuropsychiatr Genet 159B:236–242

Dun XP, Chilton JK (2010) Control of cell shape and plasticity duringdevelopment and disease by the actin-binding protein Drebrin.Histol Histopathol 25:533–540

Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, Armstrong L,Asano J, Bailey DK, Barber S, Birch P, Brown-John M, Cao M,Chan S, Charest DL, Farnoud N, Fernandes N, Flibotte S, Go A,Gibson WT, Holt RA, Jones SJ, Kennedy GC, Krzywinski M,Langlois S, Li HI, McGillivray BC, Nayar T, Pugh TJ, Rajcan-Separovic E, Schein JE, Schnerch A, Siddiqui A, Van Allen MI,Wilson G, Yong SL, Zahir F, Eydoux P, Marra MA (2006)Oligonucleotide microarray analysis of genomic imbalance in chil-dren with mental retardation. Am J Hum Genet 79:500–513

Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A,Filipink RA,McConnell JS, Angle B, MeschinoWS, Nezarati MM,Asamoah A, Jackson KE, Gowans GC, Martin JA, Carmany EP,Stockton DW, Schnur RE, Penney LS, Martin DM, Raskin S,Leppig K, Thiese H, Smith R, Aberg E, Niyazov DM, EscobarLF, El-Khechen D, Johnson KD, Lebel RR, Siefkas K, Ball S,Shur N, McGuire M, Brasington CK, Spence JE, Martin LS,Clericuzio C, Ballif BC, Shaffer LG, Eichler EE (2012)Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med 367:1321–1331

Grayton HM, Fernandes C, Rujescu D, Collier DA (2012) Copy numbervariations in neurodevelopmental disorders. Prog Neurobiol 99:81–91

Harada N, Nagai T, Shimokawa O, Niikawa N, Matsumoto N (2002) A4q21-q22 deletion in a girl with severe growth retardation. ClinGenet 61:226–228

Harris JC (2006) Intellectual disability: understanding its development,causes, classification, evaluation, and treatment. Oxford UniversityPress, Oxford

Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising andpredicting haploinsufficiency in the human genome. PLoS Genet 6:e1001154

Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM,Myers RM, Ridker PM, Chasman DI,Mefford H, Ying P, NickersonDA, Eichler EE (2009) Population analysis of large copy numbervariants and hotspots of human genetic disease. Am J Hum Genet84:148–161

Kaminsky EB, Kaul V, Paschall J, Church DM, Bunke B, Kunig D,Moreno-De-Luca D, Moreno-De-Luca A, Mulle JG, Warren ST,Richard G, Compton JG, Fuller AE, Gliem TJ, Huang S,Collinson MN, Beal SJ, Ackley T, Pickering DL, Golden DM,Aston E, Whitby H, Shetty S, Rossi MR, Rudd MK, South ST,Brothman AR, Sanger WG, Iyer RK, Crolla JA, Thorland EC,Aradhya S, Ledbetter DH, Martin CL (2011) An evidence-basedapproach to establish the functional and clinical significance of copynumber variants in intellectual and developmental disabilities. GenetMed 13:777–784

Koolen DA, Nillesen WM, Versteeg MH, Merkx GF, Knoers NV, KetsM, Vermeer S, van Ravenswaaij CM, de Kovel CG, Brunner HG,Smeets D, de Vries BB, Sistermans EA (2004) Screening forsubtelomeric rearrangements in 210 patients with unexplained men-tal retardation using multiplex ligation dependent probe amplifica-tion (MLPA). J Med Genet 41:892–899

Koolen DA, Vissers LE, Pfundt R, de Leeuw N, Knight SJ, Regan R,Kooy RF, Reyniers E, Romano C, Fichera M, Schinzel A, BaumerA, Anderlid BM, Schoumans J, Knoers NV, van Kessel AG,Sistermans EA, Veltman JA, Brunner HG, de Vries BB (2006) A

142 J Appl Genetics (2014) 55:125–144

Page 19: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

new chromosome 17q21.31 microdeletion syndrome associatedwith a common inversion polymorphism. Nat Genet 38:999–1001

Koolen DA, Pfundt R, de Leeuw N, Hehir-Kwa JY, Nillesen WM, NeefsI, Scheltinga I, Sistermans E, Smeets D, Brunner HG, van KesselAG, Veltman JA, de Vries BB (2009) Genomic microarrays inmental retardation: a practical workflow for diagnostic applications.Hum Mutat 30:283–292

Lipska BS, Brzeskwiniewicz M, Wierzba J, Morzuchi L, Piotrowski A,Limon J (2011) 8.6Mb interstitial deletion of chromosome4q13.3q21.23 in a boy with cognitive impairment, short stature,hearing loss, skeletal abnormalities and facial dysmorphism. GenetCouns 22:353–363

Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S (2011)Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 32:419–436

Menten B, Maas N, Thienpont B, Buysse K, Vandesompele J, Melotte C,de Ravel T, Van Vooren S, Balikova I, Backx L, Janssens S, DePaepe A, De Moor B, Moreau Y, Marynen P, Fryns JP, Mortier G,Devriendt K, Speleman F, Vermeesch JR (2006) Emerging patternsof cryptic chromosomal imbalance in patients with idiopathic mentalretardation and multiple congenital anomalies: a new series of 140patients and review of published reports. J Med Genet 43:625–633

Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, CarterNP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA,Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, KokK, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, SchererSW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC,Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, LedbetterDH (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental dis-abilities or congenital anomalies. Am J Hum Genet 86:749–764

Miyashita A, Arai H, Asada T, Imagawa M, Matsubara E, Shoji M,Higuchi S, Urakami K, Kakita A, Takahashi H, Toyabe S,Akazawa K, Kanazawa I, Ihara Y, Kuwano R; Japanese GeneticStudy Consortium for Alzeheimer’s Disease (2007) Genetic associ-ation of CTNNA3 with late-onset Alzheimer’s disease in females.Hum Mol Genet 16:2854–2869

Morrow EM (2010) Genomic copy number variation in disorders ofcognitive development. J Am Acad Child Adolesc Psychiatry 49:1091–1104

Nowakowska BA, Obersztyn E, Szymańska K, Bekiesińska-FigatowskaM, Xia Z, Ricks CB, Bocian E, Stockton DW, Szczałuba K, NawaraM, Patel A, Scott DA, Cheung SW, Bohan TP, Stankiewicz P (2010)Severe mental retardation, seizures, and hypotonia due to deletionsofMEF2C . Am J Med Genet B Neuropsychiatr Genet 153B:1042–1051

Okajima T, Fukumoto S, Furukawa K, Urano T (1999) Molecular basisfor the progeroid variant of Ehlers–Danlos syndrome. Identificationand characterization of two mutations in galactosyltransferase Igene. J Biol Chem 274:28841–28844

Passon DM, Lee M, Fox AH, Bond CS (2011) Crystallization of aparaspeckle protein PSPC1-NONO heterodimer. Acta CrystallogrSect F Struct Biol Cryst Commun 67:1231–1234

PastorcicM, Das HK (2007) Analysis of transcriptional modulation of thepresenilin 1 gene promoter by ZNF237 , a candidate binding partnerof the Ets transcription factor ERM. Brain Res 1128:21–32

Patil SJ, Ponnala R, Shah S, Dalal A (2012) Mosaic trisomy 9 presentingwith congenital heart disease, facial dysmorphism and pigmentaryskin lesions: intricate issues of genetic counseling. Indian J Pediatr79:806–809

Petti M, Samanich J, Pan Q, Huang CK, Reinmund J, Farooqi S, MorrowB, Babcock M (2011) Molecular characterization of an interstitialdeletion of 1p31.3 in a patient with obesity and psychiatric illnessand a review of the literature. Am J Med Genet A 155A:825–832

Pfundt R, Veltman JA (2012) Structural genomic variation in intellectualdisability. Methods Mol Biol 838:77–95

Rauch A, Beese M, Mayatepek E, Dörr HG, Wenzel D, Reis A,Trautmann U (2003) A novel 5q35.3 subtelomeric deletion syn-drome. Am J Med Genet A 121A:1–8

Rauch A, Hoyer J, Guth S, Zweier C, Kraus C, Becker C, Zenker M,Hüffmeier U, Thiel C, Rüschendorf F, Nürnberg P, Reis A,Trautmann U (2006) Diagnostic yield of various genetic approachesin patients with unexplained developmental delay or mental retar-dation. Am J Med Genet A 140:2063–2074

Ravnan JB, Tepperberg JH, Papenhausen P, Lamb AN, Hedrick J, EashD, Ledbetter DH, Martin CL (2006) Subtelomere FISH analysis of11 688 cases: an evaluation of the frequency and pattern ofsubtelomere rearrangements in individuals with developmental dis-abilities. J Med Genet 43:478–489

Redon R, Baujat G, Sanlaville D, Le Merrer M, Vekemans M, MunnichA, Carter NP, Cormier-Daire V, Colleaux L (2006) Interstitial9q22.3 microdeletion: clinical and molecular characterisation of anewly recognised overgrowth syndrome. Eur J Hum Genet 14:759–767

Regier DA, Friedman JM, Marra CA (2010) Value for money? Arraygenomic hybridization for diagnostic testing for genetic causes ofintellectual disability. Am J Hum Genet 86:765–772

Rodriguez-Revenga L, Mila M, Rosenberg C, Lamb A, Lee C (2007)Structural variation in the human genome: the impact of copynumber variants on clinical diagnosis. Genet Med 9:600–606

Scollon S, McWalter K, Abe K, King J, Kimata K, Slavin TP (2012)Haploinsufficiency of STK11 and neighboring genes cause a con-tiguous gene syndrome including Peutz–Jeghers phenotype. Am JMed Genet A 158A:2959–2962

Shaffer LG, Theisen A, Bejjani BA, Ballif BC, Aylsworth AS, Lim C,McDonaldM, Ellison JW, Kostiner D, Saitta S, Shaikh T (2007) Thediscovery of microdeletion syndromes in the post-genomic era:review of the methodology and characterization of a new 1q41q42microdeletion syndrome. Genet Med 9:607–616

Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, Stewart H,Price SM, Blair E, Hennekam RC, Fitzpatrick CA, Segraves R,Richmond TA, Guiver C, Albertson DG, Pinkel D, Eis PS,Schwartz S, Knight SJ, Eichler EE (2006) Discovery of previouslyunidentified genomic disorders from the duplication architecture ofthe human genome. Nat Genet 38:1038–1042

Sharp AJ, Selzer RR, Veltman JA, Gimelli S, Gimelli G, Striano P,Coppola A, Regan R, Price SM, Knoers NV, Eis PS, Brunner HG,Hennekam RC, Knight SJ, de Vries BB, Zuffardi O, Eichler EE(2007) Characterization of a recurrent 15q24 microdeletion syn-drome. Hum Mol Genet 16:567–572

Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE,Schroer RJ, Novara F, De Gregori M, Ciccone R, BroomerA, Casuga I, Wang Y, Xiao C, Barbacioru C, Gimelli G,Bernardina BD, Torniero C, Giorda R, Regan R, Murday V,Mansour S, Fichera M, Castiglia L, Failla P, Ventura M,Jiang Z, Cooper GM, Knight SJ, Romano C, Zuffardi O,Chen C, Schwartz CE, Eichler EE (2008) A recurrent15q13.3 microdeletion syndrome associated with mental re-tardation and seizures. Nat Genet 40:322–328

Shaw-Smith C, Pittman AM,Willatt L, Martin H, Rickman L, Gribble S,Curley R, Cumming S, Dunn C, Kalaitzopoulos D, Porter K,Prigmore E, Krepischi-Santos AC, Varela MC, Koiffmann CP,Lees AJ, Rosenberg C, Firth HV, de Silva R, Carter NP (2006)Microdeletion encompassing MAPT at chromosome 17q21.3 isassociated with developmental delay and learning disability. NatGenet 38:1032–1037

Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, MajnemerA, Noetzel M, Sheth RD; Quality Standards Subcommittee of theAmerican Academy of Neurology; Practice Committee of the ChildNeurology Society (2003) Practice parameter: evaluation of thechild with global developmental delay: report of the QualityStandards Subcommittee of the American Academy of Neurology

J Appl Genetics (2014) 55:125–144 143

Page 20: Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability

and The Practice Committee of the Child Neurology Society.Neurology 60:367–380

Shim KS, Lubec G (2002) Drebrin, a dendritic spine protein, is manifolddecreased in brains of patients with Alzheimer’s disease and Downsyndrome. Neurosci Lett 324:209–212

Slavotinek AM (2008) Novel microdeletion syndromes detected by chro-mosome microarrays. Hum Genet 124:1–17

Stankiewicz P, Beaudet AL (2007) Use of array CGH in theevaluation of dysmorphology, malformations, developmentaldelay, and idiopathic mental retardation. Curr Opin GenetDev 17:182–192

Tanteles GA, Dixit A, Smith N,Martin K, Suri M (2011) Mild phenotypein a patient with a de-novo 2.9-Mb interstitial deletion at 13q12.11.Clin Dysmorphol 20:61–65

Vergult S, Dauber A, Delle Chiaie B, Van Oudenhove E, Simon M,Rihani A, Loeys B, Hirschhorn J, Pfotenhauer J, Phillips JA 3rd,Mohammed S, Ogilvie C, Crolla J, Mortier G, Menten B (2012)17q24.2 microdeletions: a new syndromal entity with intellectual

disability, truncal obesity, mood swings and hallucinations. Eur JHum Genet 20:534–539

Vissers LE, Stankiewicz P (2012) Microdeletion and microduplicationsyndromes. Methods Mol Biol 838:29–75

Vissers LE, de Vries BB, Veltman JA (2010) Genomic microarrays inmental retardation: from copy number variation to gene, from re-search to diagnosis. J Med Genet 47:289–297

Weiss LA, Arking DE; Gene Discovery Project of Johns Hopkins & theAutism Consortium, Daly MJ, Chakravarti A (2009) A genome-wide linkage and association scan reveals novel loci for autism.Nature 461:802–808

Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, PursleyAN, Lalani S, Hixson P, Gambin T, Tsai CH, Bock HG,Descartes M, Probst FJ, Scaglia F, Beaudet AL, Lupski JR,Eng C, Wai Cheung S, Bacino C, Patel A (2013) Combinedarray CGH plus SNP genome analyses in a single assay foroptimized clinical testing. Eur J Hum Genet. doi:10.1038/ejhg.2013.77

144 J Appl Genetics (2014) 55:125–144