18
Application of a conceptual distributed Application of a conceptual distributed dynamic vegetation model to a semi-arid basin, SE of Spain basin, SE of Spain By: M Pasquato C Medici and F Francés M. Pasquato , C. Medici and F. Francés Universidad Politécnica de Valencia - Spain Research Institute of Water and Environmental Engineering http://lluvia.dihma.upv.es E G i Ui European Geosciences Union General Assembly 2011

Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Application of a conceptual distributedApplication of a conceptual distributed dynamic vegetation model to a semi-arid

basin, SE of Spainbasin, SE of SpainBy:

M Pasquato C Medici and F FrancésM. Pasquato, C. Medici and F. Francés

Universidad Politécnica de Valencia - SpainResearch Institute of Water and Environmental Engineering

http://lluvia.dihma.upv.es

E G i U iEuropean Geosciences UnionGeneral Assembly 2011

Page 2: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Research frameworkResearch framework

Dynamic vegetation modelling in semi-arid climate

Dynamic modelling because there is a dynamicDynamic modelling because there is a dynamic interaction between soil, vegetation and atmosphere. At least 1 vegetation related variable is a state variablevariable.

Semiarid regions receive precipitation (≈ 200 – 400 ) b l t ti l t i ti (Kömm p.a.) below potential evapotranspiration (Köppen

climate classification) water is the limiting factor

EGU 2011 2

Page 3: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

IntroductionIntroduction

InsolationInsolation

Controls ET and consequently soil moisture

Depends on:

Solar radiation: Latitude time (hour/month)- Solar radiation: Latitude, time (hour/month)

- DEM: slope, orientation and topographic shadows (north/south slopes)(north/south slopes)

NDVINumerical indicator of surface “greenness” calculated using remote sensing measurements

EGU 2011 3

g g

Page 4: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Model: TETIS-VEGModel: TETIS-VEG

TETIS (Francés et al J of Hydrol 2007) : conceptual distributed hydrol modelTETIS (Francés et al., J. of Hydrol., 2007) : conceptual distributed hydrol. modelHORAS (Quevedo and Francés, HESS, 2009): conceptual dynamic natural vegetation model for arid and semiarid zones

State variables:TETIS

HORAS6 for rainfall-runoff modelR: relative leaf biomass for vegetation model

Parameters:8 for rainfall-runoff model6 for vegetation model

4EGU 2011

Page 5: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Vegetation state variableVegetation state variable

The state variable R is equivalent to FAO cropThe state variable R is equivalent to FAO crop coefficient (Allen et al., 1998) but not fixed in time

)(θfRETPT ⋅⋅= If water and energy are available)(θfRETPT gy

f(θ)

θwp : soil moisture at wilting pointθ*: critical soil moistureθfc: soil moisture at field capacity

Model is based on the hypothesis:θwp θ* θfc

θ

fc p y

Model is based on the hypothesis:insolation transpiration soil moisture biomass

N ti f db k

EGU 2011 5

Negative feedback

Page 6: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Dynamic vegetation equationsDynamic vegetation equations

R ranges between 0 and 1R ranges between 0 and 1R=1 when vegetation transpiration is at its potential

Original eq. Parameter DescriptionRatio between maximum net

α [d-1]Ratio between maximum net

assimilation carbon and potential leaf biomass

Tmx [mm d-1] Maximum transpiration rate

Logistic-type eq.c [-] Shape exponent

knat [d-1] Seasonal leaf shedding

kws [d-1]Leaf shedding due to water

stressws stress

q [-] Nonlinearity effect exponent

a [-] Logistic equation exponent

EGU 2011 6

Page 7: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Study site: Valdeinfierno catchment (Spain)Study site: Valdeinfierno catchment (Spain)

Catchment area: 440 km2

Semi-arid climate ETP = 1180 mm P = 330 mm

Intermittent stream

Natural cover 60%:

Coniferous forest (Pines) 32.7%

Shrubland 9 1%Shrubland 9.1%

Mixed forest/shrubland 18.2%

7EGU 2011

Page 8: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

NDVI vs insolation correlationNDVI vs. insolation correlation

8 years of MODIS NDVI images (250m, 16days) were analyzed

A negative and statistically significant (p<0.025) spatialA negative and statistically significant (p 0.025) spatial correlation was found between NDVI and insolation for coniferous forest zones

Shrublands and mixed forest/shrubland zones did not show the same behaviour (G ál Hid l t l 1996)

EGU 2011 8

show the same behaviour (González-Hidalgo et al., 1996)

Page 9: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

NDVI vs insolation correlationNDVI vs. insolation correlation

Insolation vs. NDVI Kendall spatial correlation

-0 05

0Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

Significance limit

-0.15

-0.1

0.05coniferous forest

-0.25

-0.2

We are going to concentrate on pine forest zones

EGU 2011 9

Page 10: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

ObjectivesObjectives

Explain the behaviour shown by pine cover (negative correlation between insolation and NDVI))

Compare the logistic type equation with the non-logistic type oneg yp

EGU 2011 10

Page 11: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

MethodologyMethodology

MODIS NDVI images were used to calibrate and testMODIS NDVI images were used to calibrate and testthe vegetation models

NDVI measures the “greennes” R measures theNDVI measures the greennes , R measures the transpiration capability respect to potential one

Calibration to maximize NDVI vs R correlation

Surface was divided into 4 classes, based on received

Calibration to maximize NDVI vs. R correlation

insolation

1st class ≈ north slope; ... ; 4th class ≈ south slopep ; ; p

Conceptual model: cannot reproduce with precision phenomena at cell scale

EGU 2011 11

phenomena at cell scale

Page 12: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Non-logistic eq : time correlationNon-logistic eq.: time correlation

R vs. NDVI Pearson time correlation of the 4 classesR vs. NDVI Pearson time correlation of the 4 classesCalibration: 0.31; 0.41; 0.46; 0.48Validation: 0.20; 0.29; 0.30; 0.26

Delay in R evolution with respect to NDVI

0 9

1

0 6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.2

0.3

Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09R1 R2 R3 R4NDVI1 NDVI2 NDVI3 NDVI4

calibrationvalidation

EGU 2011 12

NDVI1 NDVI2 NDVI3 NDVI4

Page 13: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Non-logistic eq : spatial correlationNon-logistic eq.: spatial correlation

Considering the 4 classes as 4 cells and analyzingConsidering the 4 classes as 4 cells and analyzing the R vs. NDVI spatial correlation:

Average correlation 0.95Separation between the 4 curves is very similar for R and NDVI

1

1.1

Spatial correlation

0.6

0.7

0.8

0.9

0.5Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09

EGU 2011 13

Page 14: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Logistic-type eq : time correlationLogistic-type eq.: time correlation

R vs. NDVI Pearson time correlation of the 4 classesR vs. NDVI Pearson time correlation of the 4 classesCalibration: 0.51; 0.56; 0.59; 0.56Validation: 0.40; 0.49; 0.52; 0.48

0 9

1

Lower delay and only in 2004 and 2005

0 6

0.7

0.8

0.9

0 3

0.4

0.5

0.6

0.2

0.3

Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09R1 R2 R3 R4NDVI1 NDVI2 NDVI3 NDVI4

calibrationvalidation

EGU 2011 14

NDVI1 NDVI2 NDVI3 NDVI4

Page 15: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Logistic-type eq : spatial correlationLogistic-type eq.: spatial correlation

Considering the 4 classes as 4 cells and analyzingConsidering the 4 classes as 4 cells and analyzing the R vs. NDVI spatial correlation:

Average correlation 0.93 Separation between the 4 R curves tends to disappear particularly in rising limbs

1

1.1

Spatial correlation

0 6

0.7

0.8

0.9

1

0.5

0.6

Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07 Sep-08 Sep-09

EGU 2011 15

Page 16: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

ConclusionsConclusions

Both equations show a satisfactory reproduction of q y pNDVI dynamic

N l i ti tiNon-logistic equation:good representation of spatial vegetation variabilityh d l f R l ti ith t t NDVIshows a delay of R evolution with respect to NDVI;

that may be explainable if transpiration were shown to present the same delayp y

Logistic-type equation:lower delay shown => better time variability reproductionworse representation of spatial vegetation variability

EGU 2011 16

worse representation of spatial vegetation variability

Page 17: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Future research linesFuture research lines

Considering that:gNDVI and R are not the same variableR measures actual transpiration with respect to potential oneE 1 h d l f R ith t t NDVIEq.1 shows a delay of R with respect to NDVI

Analysis of real ET (satellite) is needed to understand if this delay is physically explainable or not.

Further sites will be analyzed to determine which equationFurther sites will be analyzed to determine which equation represents better vegetation dynamics.

EGU 2011 17

Page 18: Application of a conceptual distributedApplication of a ...lluvia.dihma.upv.es/ES/publi/congres/025_EGU2011_Marta.pdf · NDVI1 NDVI2 NDVI3 NDVI4 validation calibration EGU 2011 14

Thank you for your attentionThank you for your attention