appendix.10.pdf

Embed Size (px)

Citation preview

  • 8/14/2019 appendix.10.pdf

    1/10

  • 8/14/2019 appendix.10.pdf

    2/10

  • 8/14/2019 appendix.10.pdf

    3/10

    LsinhEA

    2ee

    EA

    e

    e*

    e1

    eEA2

    eee1

    EA)0(Fk

    LL

    L

    L

    L2

    L

    LL

    L212

    LcothEALsinh

    LcoshEA

    ee

    eeEA

    e1

    1eEA

    1ee1

    EA

    eeeee1

    EAk)L(F

    LL

    LL

    L2

    L2

    L

    L2

    LLLL

    L222

    12

    LL

    LLL

    LL2L

    L221

    k

    )Lsinh(

    EA

    eeeee

    EA

    eee1e1

    EA

    )L(Fk

    Then the stiffness Matrix will be:

    LcothEA)Lsinh(

    EA)Lsinh(

    EALcothEA

    k ..(A-1)

    Eq. (A-1) represent the soil-structure interaction effects and the contribution of the pile and

    surrounding soil resistance to Axial load on pile, for a simple bar, the stiffness matrix is :

  • 8/14/2019 appendix.10.pdf

    4/10

    L

    EA

    L

    EAL

    EA

    L

    EA

    k ..(A-1-1)

    Both of equations (A-1), (A-1-1) are symmetric matrix but they differ in presenting of soil-

    structure interaction parameter (). If approaches zero, Eq. (A-1) gives Eq. (A-1-1).

    A-2: Torsional resistance:

    dxP.k)x(dT)x(T)x(T:0Mo =0

    0dxP.kdx

    )x(dT

    We have from strength of material approach:

    GJ

    )x(Tdd

    dx

    dGJ)x(T

    2

    2)(

    dx

    dGJ

    dx

    xdT .(4-8)

    0P.kdx

    dGJ

    2

    2

    ..(4-9)

    GJ

    Pk (4-10) where: P=2R3 ,R: radius of Pile.

    xx eBeA)x( ..(4-11)

    A-2-1: Applying Boundary Conditions:

    Boundary conditions of the problem is that for a finite length of pile L,

    at x=0, (0)= 1, at x=L, (L)= 2

    1= BA AB 1 ..(A-12-a)

    LL2 eBeA

    T(x) +dT (x).k

    T(x)dxx

    Fig. (A-2): Torsional Bar in Soil

    Media.

  • 8/14/2019 appendix.10.pdf

    5/10

  • 8/14/2019 appendix.10.pdf

    6/10

    )x(y.kdx

    y(x)dn2

    2

    ..(4-3-4)

    AndEI

    )x(y.k)

    dx

    M(x)d(

    EI

    d

    dx

    y(x)d n2

    2

    4

    4

    0EI

    )x(y.k

    dx

    y(x)dn

    4

    4

    (A-3-5)

    This is the D.E. for the flexure problem in the case of one parameter beam on elastic

    foundation.

    The shear and bending moments become:-

    V=3

    3

    dx

    ydEI- (A-3-6)

    2

    2

    dx

    yd-EIM (A-3-7)

    The general solution of a free field (homogeneous form of a problem)(Eq.(A-3-5)) will be

    in the form of exact solution as.

    )]xL

    sinh().xL

    [sin(C)]xL

    cosh().xL

    [sin(C

    )]xL

    sinh().xL

    [cos(C)]xL

    cosh().xL

    [cos(C)x(y

    43

    21

    ( A-3-8)

    where: 4 n

    I.E.4

    D.kL D: Diameter of Pile (or Width of beam).

    )]}xL

    sinh().xL

    cos()xL

    cosh().xL

    [sin(C

    )]xL

    cosh().xL

    cos()xL

    sinh().xL

    [sin(C

    )]xL

    sinh().xL

    sin()xL

    cosh().xL

    [cos(C

    )]xL

    cosh().xL

    sin()xL

    sinh().xL

    [cos(C{Ldx

    )x(dy

    4

    3

    2

    1

    . (A-3-9)

  • 8/14/2019 appendix.10.pdf

    7/10

    )]}xL

    cosh().xL

    [cos(C)]xL

    sinh().xL

    [cos(C

    )]xL

    cosh().xL

    [sin(C)]xL

    sinh().xL

    [sin(C{L

    .2

    dx

    )x(dy

    43

    212

    2

    2

    2

    ( A-3-10)

    )]}xL

    cosh().xL

    sin()xL

    sinh().xL

    [cos(C

    )]xL

    sinh().xL

    sin()xL

    cosh().xL

    [cos(C

    )]xL

    cosh().xL

    cos()xL

    sinh().xL

    [sin(C

    )]xL

    sinh().xL

    cos()xL

    cosh().xL

    [sin(C{L

    .2

    dx

    )x(dy

    4

    3

    2

    13

    3

    3

    3

    ...(A-3-11)

    Now, to find the integration constants in terms of nodal normal displacements and nodal

    rotations at each node for a finite length (L) as: -

    At x=0 y0=y(0)=C1and )CC(Ldx

    )0(dy320

    At x=L hs.s.Chc.sChs.cChc.cCy(L)y 4321L And:

    )]hs.chc.s(C)hc.chs.s(C)hs.shc.c(C)hc.shs.c(C[Ldx

    )L(dy4321L

    Or in matrix form: -

    L

    q(x)M+dM

    V(x)M(x)

    V+dVKn.y(x)

    Fig. (A-3): Beam on Elastic

    Foundation.

  • 8/14/2019 appendix.10.pdf

    8/10

    4

    3

    2

    1

    L

    L

    0

    0

    C

    C

    C

    C

    ]hs.chc.s[

    L

    ]hc.chs.s[

    L

    ]hs.shc.c[

    L

    ]hc.shs.c[

    L

    hs.shc.shs.chc.c

    0LL

    0

    0001

    y

    y

    ..(A-3-12)

    i.e. {yi}=[V]{ai}

    or {ai}=[V]-1{yi}

    where [yi] : Is the nodal displacement vector, [V]: The square matrix in Eq. (A-3-12), {ai}:

    Vector of integration constants.

    Now, to find the nodal loads depend on exact function (eq. (A-3-8)) as:-

    V (x)=3

    3 )(dEI-

    dx

    xy

    = )}sh.cch.s(C)ch.csh.s(C)ch.csh.s(C)sh.cch.s(C{)L(EI.2 4321

    3

    and M(x)=2

    2

    dx

    )x(ydEI-

    = )}ch.c(C)sh.c(C)ch.s(C)sh.s(C{L

    EI2 43212

    2

    At: x=0 )C(CL

    2EIV(0)V 323

    3

    0

    and 42

    2

    0 CLEI2)0(MM

    At: x = L

    VL = V (L)

    )}hs.chc.s(C)hc.chs.s(C)hc.chs.s(C)hs.chc.s(C{L

    EI2 43213

    3

    ML = M (L)

  • 8/14/2019 appendix.10.pdf

    9/10

    }hc.cChs.cChc.sChs.sC{L

    EI2 43212

    2

    In the matrix form: -

    4

    3

    2

    1

    2

    2

    L

    L

    0

    0

    C

    C

    C

    C

    hc.chs.chc.shs.s

    )hs.chc.s(L

    )hc.chs.s(L

    )hc.chs.s(L

    )hs.chc.s(L

    1000

    0LL

    0

    LEI2

    M

    V

    M

    V

    ...(A-3-13)

    i.e. {Fi}=[G]{ai}

    where: {Fi}: vector of nodal loads.

    [G]: Is the square matrix in Eq. (A-13-3) then:

    {Fi}=[G][V]-1{ai} ..(A-3-14)

    The stiffness coefficients in two dimensional beam on elastic foundation in local

    coordinate system may be expressed by taking the nodal displacement vector {ai} as unity, then the

    stiffness matrix may be expressed as :-

    [k]=[G][V]-1

    which is yield [6,17]:

    1526

    5364

    2615

    6453

    TTTT

    TTTT

    TTTT

    TTTT

    k (A-3)

  • 8/14/2019 appendix.10.pdf

    10/10

    where: T1=))(sin)((sinhL

    ))cos()sin()sinh()(cosh(EI222

    =LEI4 at =0.00

    T2=))(sin)((sinhL

    ))cos()sinh()sin()(cosh(EI222

    =

    L

    EI2 at =0.00

    T3=))(sin)((sinhL

    ))cosh()sinh()sin()(cos(EI4223

    3

    =

    3L

    EI12 at =0.00

    T4=

    ))(sin)((sinhL

    ))cos()sinh()sin()(cosh(EI4223

    3

    =

    3

    L

    EI12 at =0.00

    T5=))(sin)((sinhL

    ))cos()(sin)((sinhEI2222

    222

    =

    2L

    EI6 at =0.00

    T6=))(sin)((sinhL

    ))sin().(sinh(EI4222

    2

    =

    2L

    EI6 at =0.00

    Finally, to get the three dimensional element stiffness matrix for a pile [Eqs. (A-1), (A-2), (A-3)]

    will be superimposed to get the stiffness matrix in 3-D. case as shown in Eq. (4-13).