16
APPENDIX

APPENDIX - Home - Springer978-1-4613-3470-5/1.pdf · CNEN-Centro Studi Nucleari Casaccia RIT/FIS C.P. 2400 00100 ROMA (Italy) - AREND F. ... 301, D Diagnostics - by holography for

  • Upload
    buidieu

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

APPENDIX

LIST OF PARTICIPANTS

- ARCIPIANI B. CNEN-Centro Studi Nucleari Casaccia RIT/FIS C.P. 2400 00100 ROMA (Italy)

- AREND F. Institut fOr Technische Physik, Kernforschungszentrum Postfach 3640 7500 KARLSRUHE (Federal Republic of Germany)

- ASHBY L. UKAEA Research Group-Culham Laboratory ABINGDON - Oxfordshire OX 14 3DB (Great Britain)

- BENECKE J. Max-Planck Institut fUr Physik und Astrophysik P.O. Box 401212 8000 MONCHEN (Federal Republic of Germany)

- BERRY L.A. ORNL - Fusion Energy Division P.O. Box Y OAK RIDGE, Tennesse 37830 - USA

- BODIN H.A. UKAEA Research Group-Culham Laboratory ABINGDON - Oxfordshire OX 14 3DB (Great Britain)

- BONNEVIER B. Royal Institute of Technology Division of Plasma Physics and Fusion Research 10044 STOCKHOLM - 70 (Sweden)

511

512

- BRANDT B. FOM - Instituut voor Plasmafysica "Rijnhuizen" Postbus 7 3430 AA NIEUWEGEIN (The Netherlands)

- BRUNELLI B. Associazione EURATOM-CNEN sulla Fusione Centro di Frascati C.P. 65 00044 - FRASCATI/Roma (Italy)

- CAO J. Southwestern Institute of Physics Leshan Sichuan P.O. Box 15 CHINA

- CARRARO G. Joint Research Centre - ISPRA 21027 ISPRAIVarese (Italy)

- CARRUTHERS R. 32 Norman Avenue ABINGDON - Oxfordshire OX 14 3DB (Great Britain)

- CHEN F.F. UCLA Center for Plasma Physics and Fusion Engineering 405 Hilgard Avenue LOS ANGELES, California 90024 - USA

- CHEN J. Academia Sinica Institute of Plasma Physics HOFEI - ANHWEI CHINA

- CHU G. Princeton University Plasma Physics Laboratory P.O. Box 451 PRINCETON, New Jersey 008544 - USA

- COPPI B. Massachusetts Institute of Technology Department of Physics CAMBRIDGE, Massachusetts 02139 - USA

- DOVE W. US Department of Energy Library GO - 42 WASHINGTON D.C. 20545 - USA

PARTICIPANTS

PARTICIPANTS

- GERHAUSER H. EURATOM - KFA Association Kernforschungsanlage Julich GmbH Institut fUr Plasmaphysik Postfach 1913 5170 - JOLICH 1 (Federal Republic of Germany)

- GRATTON F. Universidad de Buenes Aires Ciudad Universitaria Laboratorio de Fisica del Plasma Pabel16n 1 1428 - BUENOS AIRES (Argentina)

- HAINES M.G. The Blackett Laboratory Imperial College of Science and Technology Prince Consort Road South Kensington LONDON SW7 2BZ (Great Britain)

- HARTMAN C.w. Lawrence Livermore Laboratory Department of Plasma Physics P.O. Box 808 LIVERMORE, California 94550 - USA

- HEINZ W. Institut fur Technische Physik Kernforschungszentrum Postfach 3640 7500 KARLSRUHE (Federal Republic of Germany)

- JIYOSHI A. Kyoto University Plasma Physics Laboratory Gokasho, Uji KYOTO 611 (Japan)

- KLIPPEL H.TH. EURATOM Postbus N. 2 1755 ZG PETTEN (The Netherlands)

- KORZHAVIN V. Kurchatov Institute of Atomic Energy 46, Ulitsa Kurchatova 123162 - MOSCOW - USSR

513

514

- KRAll N. JACOR - Del Mar 11 011 Torreyana Road P.O. Box 85154 SAN DIEGO, California 92138 - USA

- KUTHY A. Royal Institute of Technology Division of Plasma Physics and Fusion Research 10044 STOCKHOLM - 70 (Sweden)

- LEHNERT B. Royal Institute of Technology Division of Plasma Physics and Fusion Research 10044 STOCKHOLM - 70 (Sweden)

- LEOTTA G.G. Commission of the European Communities Directorate General XII - Fusion Programme 200, Rue de la loi 1049 BRUSSELS (Belgium)

- LINFORD R.K. los Alamos National laboratory Controlled Thermonuclear Research Division P.O. Box 1663 LOS ALAMOS, New Mexico 87545 - USA

- LINHART J.G. Quartier Cristol 83310 lA GARDE FREINET (France)

- MAISONNIER Ch. Commission of the European Communities Directorate General XII - Fusion Programme 200, Rue de la loi 1049 BRUSSELS (Belgium)

- MERCURIO S. 20, Piazza Vittorio Veneto 90100 PALERMO (Italy)

- MilEY G.H. University of Illinois Fusion Studies laboratory URBANA, Illinois 61801 - USA

- NAlESSO G. Centro di Studi Gas lonizzati Istituto di Elettrotecnica ed Elettronica Via Gradenigo 6fa 35100 PADOVA (Italy)

PARTICIPANTS

PARTICIPANTS

- NEWTON A.A. UKAEA Research Group-Culham Laboratory ABINGDON, Oxfordshire OX 14 3DB (Great Britain)

- NIEDERL K. Universtaet - Institut fur Theoretische und Reactor Physik Petergasse 16 8010 GRAZ (Austria)

- OBAYASHI H. Nagoya University Institute of Plasma Physics Chikusa-ku, NAGOYA 464 (Japan)

- OKABAYASHI M. Princeton University Plasma Physics Laboratory Spheromak Study Group of Princeton P.O. Box 451 PRINCETON, New Jersey 08544 - USA

- OOMENS A. FOM - Instituut voor Plasmafysica "Rijnhuizen" Postbus 7 3430 AA NIEUWEGEIN (The Netherlands)

- ORTOLAN I S. Centro Studi Gas lonizzati Istituto di Elettrotecnica ed Elettronica Via Gradenigo 6fa 35100 PADOVA (Italy)

- PEDRETTI E. CNEN-Centro Studi Nucleari Casaccia RITfFIS C.P. 2400 00100 ROMA (Italy)

- PERLADO J. Junta Energia Nuclear-Cuidad Universitaria MADRID 3 (Spain)

- PFIRSCH D. Max-Planck Institut fur Plasmaphysik 8046 GARCHING bei MONCHEN (Federal Republic Germany)

- RAGER J.P. Associazione EURATOM-CNEN sulla Fusione Centro di Frascati C.P.45 00044 FRASCATIlRoma (Italy)

515

516

- ROBOUCH B.V. Associazione EURATOM-CNEN sulla Fusione Centro di Frascati C.P.65 00044 FRASCATIIRoma (Italy)

- ROBSON A.E. Naval Research Laboratory CODE 7720 4555 - Overlook Avenue, S.w. WASHINGTON D.C. 20375 - USA

- ROSTAGNI G. Centro Studi Gas lonizzati Istituto di Elettrotecnica ed Elettronica Via Gradenigo 6/a 35100 PADOVA (Italy)

- SADAO UCHIKAWA Energy Research Laboratory Hitachi Ltd IBARAKI,316 1168 MORIYAMA-CHO, Hitachi-Shi (Japan)

- SCHEURER F. EURATOM Post bus No. 2 1755 ZG PETTEN (The Netherlands)

- SCHLOTER A. Max-Planck Institut fur Plasmaphysik 8046 GARCHING bei MONCHEN (Federal Republic Germany)

- SCHMITTER K.H. Max-Planck Institut fur Plasmaphysik 8046 GARCHING bei MONCHEN (Federal Republic Germany)

- SPEARS w.R. UKAEA Research Group-Culham Laboratory ABINGDON, Oxfordshire OX 14 3DB (Great Britain)

- SRINIVASAN M. Bhabha Atomic Research Centre Neutron Physics Division TROMBAY - BOMBAY 400 085 (India)

- STOREY L.R. Centre de Recherches en Physique de l'Environnement Terrestre et Planetaire, Avenue de la Recherche Scientifique, La Source 645045 ORLEANS (France)

PARTICIPANTS

PARTICIPANTS

- SUDAN R.N. Laboratory of Plasma Studies Cornell University Upson Hall ITHACA, New York 14853 - USA

- TACZANOWSKI S. Institute of Physics and Nuclear Techniques 30, AI. Mickiewicza 30059 CRACOW (Poland)

- TOMITA M. Fusion Power Engineering Section Mitsubishi Industry TOKYO 5-1 MAUNOUCHI 2 CHOME CHIYODA-KU (Japan)

- VLASENKOV V. International Atomic Energy Agency (IAEA) Wagramerstrasse 5, P.O. Box 100 1400 VIENNA (Austria)

- VLASES G. University of Washington SEATTLE, Washington 98195 - USA

- WAHLBERG C. University Institute of Physics and Technology P.O. Box 534 75121 UPPSALA 1 (Sweden)

517

SUBJECT INDEX

A

Activation and contamination - tr~ium, 58,

Advanced fusion fuels, XII, 361, 397-415, 417, - by deuterium-based reactions, XII, 361-365,

- catalized-D reaction, 398-400, 403-406, - D-3He reaction, 398-406,

- D-T reaction, in comparison with, 398, 399, 401,404,406,

- by proton-based reactions, XII, 361-365, 398-403 - P - 6Li reaction, 399, 401, 402, - P - 7Li reaction, 399, 400-402, - P - "8 reaction, 399-403,

- neutron-free, 69, 401, - power densities for, 400, - synchrotron radiation lowering by Surmac for,

351,

ALCATOR scaling, XI,

Alpha particles - behaviour in PF, 186-188, - confinement, conditions imposed by, IX, - energy conversion in Linus, 260, - energy extraction through first wall, 51,

ASDEl( Tokamak, 52,

Aspect ratio - Tokamak, VII,

ASTRON device, 311, 317, 444, 454, 503, - E-Iayer, 321,

519

B

Balance-of-plant (BOP) - in fusion reactor for, 23, 25, 30, - blanket/first wall maintainability, 23, - construction of reactor building, 25, - energy conversion technologies, 25, - heat transport, 23,

Blanket - for D-T reactor, 59, 63, - for D - 3He reactor, aluminum, 407, - in Plasma Focus reactor, 200,

Bechtel National Corporation, 17, - fusion reactor cost estimation, 31,32, - fusion reactor plant design, conceptual, 17, 24,

II-value - for power density breakeven, 63, 64, - engineering, 98, - for EXTRAP, 137, - limits in Multipoles, 343, 345, -limits in Spheromak, 102-105,

Boostrap - for EXTRAP, 137,

Breeding reactor - Cusp-Ended Theta-Pinch produced neutron

for, 301-309, - PF produced neutron for, 199,

520

C

CANDOR reference device - ignition in, 434, - objectives for, 418, - parameters of, 428, 431,

Cold plasma mantle, 51, - basic principles of, 51, - for EXTRAP, 145, -INTRAP stabilization by, 391, 392, - method for impurity control by, 52,

Compact Torus (CT), X, 73, 222, 252, - configuration of, 75, - as reactor gun

- coaxial, 79, - Beta II, 82, 452,

- as fusion reactor, 73-93, - based on FRC, 76, 82, 85, 463, - based on Particle Ring, 76, 82, 86-91, - based on Spheromak, 77, 83, 463, - high-B confinement, 412, - hybrid inertial confinement, 254,

Conductivity Integral VI, - for D-T, VI, - for U02, VI,

Confinement - approaches to

- unconventional, 7, - high-B, 412, - inertial, 233,

Contamination and activation - by tritium, 58,

Cost - of total fusion power plant, 32,

CES Cusp-Ended Solenoid, 222, - reactor design for, 227,

- parameters of, 225, - Theta-Pinch, 301-309,

- for subcritical chain reactor, 301,

D

Diagnostics - by holography for Plasma Focus, 165, - by NEP for Plasma Focus, 168, - by TOF for Plasma Focus, 168,

Divertor - bundle, 51, - multipole, 51, - poloidal field, 52,

SUBJECT INDEX

E

Economic aspects - of fusion reactor, 26-29, 40, - of Tokamak reactor, VII, IX,

- nuclear island cost, IX, 48,

EBMM Electron-Beam-Heated Multiple Mirror Reactor, 227,

EBS Electron-Beam-Heated Solenoid, XI, 25, - as alternate conceptual reactor, 18, 19, 222,

225, - cost of 26, 32,

Electron Ring, XI,

Elmo Bumpy Torus (EBT), 25, - as alternate conceptual reactor, 18, 20,

Energy pay back time, 11, 12, - definition of, 11, 64, - evolution for NUWMAC, IX,

Energy recovery time, 10, 12,

Energy producer - fission reactor as, 12,

- hardware for, 11, 13, - fusion reactor as, 10, 30,

- hardware for, 11,

Engineering aspects, 35, - for alternative fusion schemes, 35, 48, - of large Plasma Focus, 179-183, - plasma parameters derived from, 40, - for Tokamak, 5, 29,

Environmental impact - of fusion power plant, 48, 50, 398,

EPRI Electric Power Research Institute, 17,

ETA BETA II device, 492,

Exhaust, fuel, 51,

EXTRAP External Ring Trap, 135,137, - definition of, 135, 136, - equilibrium theory for, 139,

- in linear geometry, 139, - in toroidal geometry, 140,

- as reactor - parameter ranges for, 138,139, - potentialities of, 136, 138,

- stabilization properties 01, 142, 149,

SUBJECT INDEX

F

Fast Liner, 25, - as alternate conceptual reactor, 18, 20, 25,

463,465,

Feasibility - of fusion power plant

- economic, 8, 38, 49, - influence from configuration and complexity,

50, - physical, 8, 29, 38, 39, - technical, 8, 23, 48,

FRC Field-Reversed Configuration, 75, 76, 135, 405,445-44~463,472-476, - Fixed-Ring FRC Reactor, 76, - Moving-Ring, Field-Reversed - Mirror Reactor,

81,82,

Filippov geometry - for Plasma Focus, 158-160,

Fission reactor - difference between Tokamak reactor and,

V, VII,IX, - Plasma Focus application in,199,

Focus, Plasma, see Plasma Focus

Fuel supply - of fusion power plant, 48-49,

- for D-T reactor, 56, 57, - methods used, 57,

Fuel, advanced, fusion, see advanced fusion fuel

Fusion/Fission hybrid, 7, - LHS design parameters for, 225, -linear systems, application in, 213, - Plasma Focus, application in, 183, 188, 199,

200, - power density for, 69,

Fusion reactor - alternate concept studies for, 17, 18, 23, 29,

69, 486, 507, - BLASCON, 506, - CANDOR, 418, 428, 431, 434, - Compact Torus, 73-93, 441-461, 463,

- ASTRON, 311, 317, 444, 454, 503, - Field Reversed configuration as, 75,

405, 445-447, 463, 472, 495, 507, - Particle Ring as, 76, 78, 86-91,

311-329,457, - Spheromak as, 76, 83, 95, 445, 450,

451, 463, 467, - Elmo Bumpy Torus, 18, 20, 25, - ETA BETA II, 496, - EXTRAP, 135-155, - KATHARSOR, 418, - HBTX-1A, 496, - INTRAP, 379-396,

Fusion reactor (continued)

- Linear systems, 211-231, - Cusp-Ended Solenoid, 227, 302, - Electron Beam-Heated Multiple

Mirrors, 227, - Electron Beam-Heated Solenoid,18,

19,25, - Laser-Heated Solenoid, 18, 21, 25, -224,225, - Laser-Induced Z-Pinch, 281, 291, - Linear Theta-Pinch, 18, 21, 25, - Reversed-Field-Pinch, 18, 22, 25,

444,496, - Tandem Mirror, XII, - TRACT, 225, 228, 489, 496,

- Multipole, 333, 337, 361, 489,

521

- design for D-'He reaction, 369, 371, 373, - Plasma Focus, 157-170, 194, - power plant cost, 31-33, - power plant drawing of, 24, 28, - SAFFIRE, 405, 406, - Shock-Heated Annulus, 18, 23, 25, - ZT - 40, 496,

- BOP in, 23, 30, - cold plasma mantle for, 51, - conceptual power plant of, 24, - conductivity of magnetized plasma of, VI, - comparison with PWR, V, VII·, 60, 67, 397, 408, - cost of, 32, - divertor for

- bundle, 51, - multipole, 51,

- exhaust from, 50, 51, - environmental impact produced by, 48, 49, 398, - feasibility of

- economic, 8, 38, 49, 398, - physical, 8, 29, 38, 39, 502, - technical, 8, 23, 48, 502,

- fuel supply, 48, 49, - for D-T, 56, 57, - for deuterium-based, 397, 403, - for proton-based, 397, 400,

- heating methods - by NI, 57, 59, -ohmic (OH), 418, - pellet injection, 57, -by RF, 57,

- ignition in, 29, - impurity control in, 50, 51, -INTOR,8, - maintenance, 66, - Next Step, 8, - operating properties of, 48, 49, - pay back time, energy for, IX, 65,

-definition of,11, 64, - Plasma Focus application in,183, - poloidal field system, 55,

- with divertor, 54, 56, - relevant parameters for, 7, - suitability criteria for, 48, 49, - superconducting magnet system for, 53, - target parameters for, 44, - technology hardware, 29-30, - Tokamak potential of, 10, 29, see a/so Tokamak

fusion reactor

522

G

Gun, reactor - Beta II, 82, 452, - coaxial for CT reactor, 79, 82, - by Columbia-group approach, 112, - by Livermore-group approach, 112, - by Marshall approach, 111, - by Maryland-group approach, 112, - by Princeton-group approach, 112,

H

HBTX-1A device, 492,

Hardware, high technology - for fusion devices, 29,

Heating methods - adiabatic compression, 214, - for linear Systems, 211-231, - for ignition, 58, 59, - by injection of partially ionized light ions,

374, - into Multipole - Surmac device, 374, 376,

- Laser, 25, 223, 281-294, -NI,57-59, -OH,418, - RF, 57-59, - pellet injection, 57,

Heating strategy - with advanced fusion fuels

- in CANDOR device, 418-435, - in KATHARSOR device, 418,

Hoops, levitated superconducting, XII,

Hot ice programme, 244,

Ignition, 29, - experiments with advanced fusion fuels,

397,417-437,

Implosion experiments - in Theta-Pinch geometry, 242, - in Z-Pinch geometry, 242,

Impurity - control, 51, - production by heating, 57,

IC Inertial Confinement, 233-245, 247-255,

SUBJECT INDEX

Instabilities - Raileigh Taylor

- in PF, 161,

International Atomic Energy Agency (IAEA) - CULHAM -1974 Fusion Reactor Workshop, 9, - ERICE -1981 Technical Committee, V,

INTOR International Tokamak Reactor, 8,

INTRAP, Internal Ring Trap, 379-396, - reactor potentialities of, 380-382,

IREX experiment, 323,

Island, nuclear, 48, 50, 397, - cost for IX, - pay back time for Reference Reactor, 65, - power per unit weight, 60,

L

Laser Induced Z-Pinch, 281-294,

LHS Laser Heated SolenOid, 25, 223, - as alternate conceptual reactor, 18, 21, 222,

- parameters of, 225,

Light Water Reactor (LWR), 33, - fusion reactor block costs, comparison

with,33,

Linear Systems, X, 211, - as alternate conceptual reactors, 18, 21, 25,

- Cusp-Ended Solenoid (CES), 222, - E-Beam Heated Multiple Mirror (EBMM)

222, - Laser Heated Solenoid (LHS), 18, 25, 225, - Triggered Reconnection Adiabatically

Compressed Toroid (TRACT), 222, 489, - with respect to confinement techniques,

category of, 213, - end plugging techniques, schematic of, 212,

219, - cusp end plugs, 220, - material end plugs, 218, 219, - multiple mirrors, 221, - radial confinement, 217, - re-entrant end plugs, 220, - self mirroring, 218, - simple mirror, 222,

- with respect to heating mechanisms, category of,213, - adiabatic compression, 214, - preheating shock waves of, 214, - Laser, 215-216, -REB,216, - RF, 216,

- Theta-Pinch - Field Reversed, 222, - Linear, 18,

SUBJECT INDEX

Liner - cumulating, 295, - definition of, 193, - implosion in Linus, 275, 276, - plasma (PL), 235, 248, - snow-plough (SP), 249, - solid (SL), 248, - Z-Pinch, 235, 295-299,

Liner systems - Fast Liner, 18, 25, 463, 465, 477,

- as alternate conceptual reactor, 18, 20, - Linus, 18, 22, 25, 257-::179, - MAFIN, 241, 242, - MIRAPI, 237, 240, 241, - Z-Pinch, 251,281,295, 297, 463, 466,

-liquid lithium imploding (see also Linus), XI,

Linus, X, 25, 257-279 - as alternate conceptual reactor, 18, 22, 260,

274, - scaling laws and design, 271, 273,

- liner implosion in, 275, - plasma behaviour in, 265, 267,

Liquid Metal Breeder Reactor (LMFBR), 10, 31,40, - fusion reactor design technology, comparison

with,31,

Los Alamos Scientific Laboratory, 18, - Fast Liner, 18, 20, 25, - Linear Theta-Pinch, 18, 21, 25, - Reversed-Field-Pinch, 18, 22, 25,

L TP, Linear Theta-Pinch, 18, 21, 25,

M

MAFIN Magnetic Field Intensification, 241, 242,

MARK devices - compressional Z-pinch, 291, -laser - initiated gas - embedded Z-pinch, 291, - reactor considerations for, 293,

Magnetic Field Generation, Megagauss, 241,

Maintenance aspects, fusion reactor, 35, 37,

MG device - runaway plasma sheath regime in, 195,

MHO modes - for Spheromak configuration, 105,

Massachusetts Institute of Technology (Min, 18, - Elmo Bumpy Torus, 18, 20, 25,

Mathematical Sciences Northwest, 18, - Laser-Heated Solenoid 18,21,25,

Mather geometry - for Plasma Focus, 158-160,

523

MIRAPI Minimum Radius Pinch, 237, 240, 241, - schematic view of, 239,

Mirror - comparison with

- Spheromak, 96, 99, 100, - Reverse Pinch, 100, - Tokamak, 100,

- non-adiabatic end stopper, 26,

Multipole, X, 333 - confining properties of, XII, 337, - divertor, 51,

- Surmac advanced-fuel reactor, 356, - engineering for, 361 -lowering level of synchrotron radiation by, XII,

351-354,

N

Naval Research Laboratory (HRL), 18, - Linus 18,22,25,

NEP nuclear emulsion plates, 168,

Neutral injection heating (NI), 57,

Neutron - corona in PF, 176, - production in Cusp-Ended Theta-Pinch,

301-309, - production in PF, 162, 166, 168, 171,

- mechanisms of, 173-175, - scaling of, 197, 199, 206,

- wall loading for Linus, 277,

Next Step, 8,

NUWMAK IX, 4, - energy pay back time for, IX, - neutron wall loading of, 61,

o

Operating-properties - of fusion power plant, 48-49,

P

Pay back time, energy, IX, 10, 11, 64, - definition of, 11, 64, 65, - for PWR, 65, - for Tokamak fusion reactor, 65,

524

Particle Ring, 76, 78, 86-91, 311-329, - in ASTRON device, 311, 317, 321, - as unconventional approach to fusion reactor,

311,317,

Pellet injection, 57,

Physics International, 18 - Electron-Seam-Heated Solenoid, 18, 19, 25, - Shock-Heated Annulus, 18, 23, 25,

Plasma - conductivity of magnetized, VI, -IC of very-high-density, 247, - liner, 235, 248, - in Linus device, 265, - mantle, cold, 51, - parameters derived from engineering

constraint, 40, - power density

- for D-T reactor, 59, - relaxation in PF, 177,

Plasma Focus (PF), 157-192, - alpha particle behaviour, 186, - blanket, 200, - breakeven for, 188, - difference with Z-pinch, 160, 193, - engineering of large, 179-183, - extrapolation at high energy, 158, - Filippov geometry, 158, 193, 194, - FLORA device, 196, - Frascati 1 MJ facility, 159, - general properties of, 160-162, - LV device, 194, - LV-2 device, 196, - Mather geometry, 159, 193, - neutron production in, 162, 166, 168, 171,193, - as nuclear test facility, 190, - parameters of, 203, 205, - how PF works, 158, - scaling laws of, 185, - theoretical models for, 201, - as intense X-ray source, 193,

Power density - breakeven, 63, - electric, 59,

- for NUWMAK, 60, - for STARFIRE, 60,

- plasma, 59, - of Tokamak reactor, 59,

Power plant, fusion - capital cost of total, 32, - environmental impact, 48, 50, 398, - feasibility

- economic, 8, 38, 49, - physical, 8, 29, 38, 39, - technical, 8, 23, 48,

- fuel supply, 48, - operating properties, 48, 49, - suitability criteria for, 48, 49,

SUBJECT INDEX

Pressurized water reactor (PWR) - comparison with Tokamak reactor, 60, 67, 397,

- NUWMAK, 61, - STARFIRE, 61,

- energy pay back time for, 65, - neutron wall loading for, 60, 61,

R

Radio frequency (RF) heating, 57,

Raileigh Taylor (RT) instabilities - in Plasma Focus, 161,

RECE - Christa device, 456, 458, - Field Reversed (FR) rings using relativistic

electron beams in, 456,

Reference Reactor, 65, - nuclear island pay back time of, 65,

Reversed-Field Pinch, 25, - as alternate conceptual reactor, 18, 22, - comparison with

- Mirror, 100, - Spheromak, 96, 99, 100, - Tokamak, 100,

Remote handling, 58,

Ring - for D - 3He Tandem Mirror, floating, XII, 367, - frisby-type moving, 84, - Multipole superconducting, 365,

ROUND TABLE ON UNCONVENTIONAL APPROACHES TO FUSION, 485,

- rating schemes for, 486, 507,

Runaway plasma sheath - regime in MG device, 195,

S

Scaling - ALCATOR, see ALCATOR scaling -laws for linear systems, 214, 222, -laws for Plasma Focus, 185, 187,

Shock - Heated Annulus, 25, - as alternate conceptual reactor, 18, 23,

SUBJECT INDEX

Spheromak, x, 83, 95, - comparison with

- Mirror, 100, - Reverse Pinch, 100, 311, - Tokamak, 96, 99, 100,

- definition of, 96, 311, - flux conserver in, 468, 469, - plasma formation, 111, -as reactor

- maintenance advantages, 130, - parameters, 129,

S-1 SPHEROMAK, 123,455, -Iow-~ approach for, 120, - machine parameters, 121, - plasma parameters, 119, 122, - plasma transport for, 121, - reactor parameters, 129, 131,

STARFIRE - energy pay back time, 12, - energy recovery time for, 12, - hardware comparison with PWR, 11, - hardware content for, 11, - neutron wall loading of, 61, - size comparison: fission/fusion, 12,

Stoppers, end, 26, - for linear systems, 26,

Suitability criteria - of fusion power plant, 48, 49,

Superconducting magnet - cost of, 53, -levitated, for reactor, 354, 365-372, -toroidal

- cooling system of, 54, - material choice for, 54, - problems in, 53, 54, - target data for, 53,

Superfluld helium II - for magnet cooling, 53, 54,

Support - INTRAP magnetically shielded, 355,

379-396, 491, 492, 494, - experiments on, 392, - theory on, 382-391,

Surmac - definition of, 333, - synchrotron radiation lowering for advanced

fuels by, 351, 358, 359, - comparison with Tokamak, 352,

Synchrotron radiation - Surmac produced magnetic field, lowering

level of, XII, 351, 358, 359, 490, - comparison with Tokamak, 352,

Tandem Mirror, D..3He - flooting ring for, XII,

T

- shielding studies for, XII,

Technology - BOP, 23, 30, - for fusion reactor,S, 29, 35, - hardware, 29, - for Tokamak fusion reactor, IX,S, 29,

TOF, neutron time of flight, 168,

Tokamak - comparison with

- Spheromak, 96, 99, 100, - Reverse Pinch, 100, - Mirror, 100,

- fusion reactor

525

- advanced fuels for, 397-415, 417-437,507, - alternative to, VI, 3-13, - ~-values required for, 64, - comparison with PWR, V, 60, 62, 63, 65,

67, 397, 408, - conductivity X of magnetized plasma of, VI, - cost of, VII, IX, 66, - difference between fission and, VII, - energy pay back time for, 64-66, - feasibility of, IX, 48, - heating prgramme for, 59, - ignition in, 59, - as an imperfect frame of reference?, V, 47, - international efforts expended on the

programme for, VII, - materials for, 66, - natural aspect ratio, VIII, - operational aspect of, IX, - potential of, 10, - power density, net electric, 59, 50, - power produced by fuel element for,

VI,VIII, - technology for,S, 29,

- high-field, XIII, 412, - synchrotron radiation lowering for advanced

fuels - comparison with Surmac, 352, 358, 359,

490,

TRACT 'n'lggered Reconnection Adiabatically Compressed TorOid, 222, 226, 228, 489, - reactor design parameters of, 225,

U

UWMAK-I - reduction in size of, 4,

526 SUBJECT INDEX

W z

Wall, first Z-Pinch - cooling under heavy X-rays, XII, - beam-initiated gas-embedded, 293, - extraction of a-particle energy through, 51, - difference with Plasma Focus, 160, 193, - lifetime criterion, 30, - fusion reactor based on focused, 251, -liquid lithium wall, 257-279, 504, - laser-initiated gas-embedded, 293, - loading, 4, 42-44, 59, 397, - liner, 235, 295-299,

- neutron for NUWMAK, 60, 61, - tamped, 237, - neutron for STARFIRE, 61, - snow-plough stage of, 249, 250, 252, - for neutron-free fuel cycles, 69, - neutron for Linus, 277, ZT-40, 492,

- moving, 27, (see a/so Linus), - replacement of, 59,