80
APPENDIX H-6 AIR EMISSION EFFECTS

APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

APPENDIX H-6

AIR EMISSION EFFECTS

Page 2: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- i -

TABLE OF CONTENTS

SECTION PAGE

1 AIR EMISSION EFFECTS .......................................................................................... 1 1.1 INTRODUCTION .............................................................................................................1 1.2 REVIEW OF THE EFFECTS OF ACIDIFICATION ON AQUATIC BIOTA......................1

1.2.1 Introduction ......................................................................................................1 1.2.2 Phytoplankton and Zooplankton ......................................................................1 1.2.3 Macrophytes.....................................................................................................2 1.2.4 Benthic Invertebrates .......................................................................................2 1.2.5 Fish ..................................................................................................................3 1.2.6 Amphibians ......................................................................................................4 1.2.7 Ecosystem Effects ...........................................................................................4

1.3 REVIEW OF AIR EMISSION EFFECT MONITORING IN THE OIL SANDS REGION...........................................................................................................................5

1.4 ASSESSMENT METHODS ...........................................................................................12 1.4.1 Introduction ....................................................................................................12 1.4.2 Use of Potential Acid Input.............................................................................13 1.4.3 Lake Acidification ...........................................................................................14 1.4.4 Episodic Stream Acidification.........................................................................21 1.4.5 Certainty and Prediction Confidence .............................................................22

1.5 DETAILED RESULTS FOR AQUATIC RESOURCES..................................................23 1.5.1 Acid Sensitivity of Surface Waters in the Oil Sands Region..........................23 1.5.2 Background Acid Input Rates ........................................................................33 1.5.3 Critical Loads of Acidity..................................................................................41 1.5.4 Comparison of Critical Loads and Acid Input Rates ......................................49 1.5.5 Predicted Snowmelt PH .................................................................................57

2 REFERENCES.......................................................................................................... 65

LIST OF TABLES

Table 1 Summary of the Biological Effects of Surface Water Acidification ..........................5 Table 2 Acid Sensitivity Scale for Lakes Based on Alkalinity/Acid Neutralizing

Capacity .................................................................................................................15 Table 3 Acid Sensitivity Scale for Streams Based on Alkalinity/Acid Neutralizing

Capacity .................................................................................................................21 Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380

Lakes Included in the Assessment ........................................................................24 Table 5 Summary of Alkalinity and pH Data Available for Streams and Rivers

Near the Northern Lights Project ...........................................................................32 Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid

Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment ........................................................................34

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment ...............42 Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included

in the Assessment..................................................................................................50 Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the

Assessment ...........................................................................................................58

Page 3: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- ii -

LIST OF FIGURES

Figure 1 Alkalinity of Lakes in the Stony Mountain Region (10 Lakes) .................................7 Figure 2 Alkalinity of Lakes in the Region West of Fort McMurray (8 Lakes)........................7 Figure 3 Alkalinity of Lakes in the Region Northeast of Fort McMurray (11 Lakes) ..............7 Figure 4 Alkalinity of Lakes in the Birch Mountain Region (11 Lakes) ..................................8 Figure 5 Alkalinity of Lakes in the Canadian Shield Region (5 Lakes) ..................................8 Figure 6 Alkalinity of Lakes in the Caribou Mountain Region (5 Lakes) ................................8 Figure 7 pH of Lakes in the Stony Mountain Region (10 Lakes) ...........................................9 Figure 8 pH of Lakes in the Region West of Fort McMurray (8 Lakes) .................................9 Figure 9 pH of Lakes in the Region Northeast of Fort McMurray (11 Lakes) ......................10 Figure 10 pH of Lakes in the Birch Mountain Region (11 Lakes) ..........................................10 Figure 11 pH of Lakes in the Canadian Shield Region (5 Lakes)..........................................11 Figure 12 pH of Lakes in the Caribou Mountain Region (5 Lakes)........................................11

Page 4: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 1 -

1 AIR EMISSION EFFECTS

1.1 INTRODUCTION

This appendix provides the methods used in the updated assessment of the potential effects of air emissions on aquatic ecological receptors and the detailed results of the updated assessment. Section 1.2 provides a review of the effects of air emissions on aquatic biota. Section 1.3 reviews past and present monitoring studies in the Oil Sands Region. Section 1.4 provides a description of the assessment methods. Section 1.5 provides the detailed results of the assessment of the effects of acid deposition on aquatic systems and biota.

1.2 REVIEW OF THE EFFECTS OF ACIDIFICATION ON AQUATIC BIOTA

1.2.1 Introduction

Industrial activities have the potential to affect aquatic ecosystems through the release of air emissions that may result in acid deposition. Emissions of oxides of nitrogen (NOX) and sulphur (SO2) are the main contributors to acid deposition. Acid deposition causes a reduction of pH in acid sensitive lakes and streams that in turn may alter other aspects of water chemistry (e.g., the solubility of aluminum). Acidification of surface waters due to air emissions and the resulting biological effects have been widely documented in both North America and Europe (Jeffries 1997; Henriksen et al. 1992).

The effects of acidification on aquatic biota can be divided into two broad classes: direct effects and indirect effects. The direct effects of acidification result largely from the toxic effects of the hydrogen ion (H+) and increased dissolved aluminum concentrations associated with a drop in pH. Indirect effects of acidification on aquatic organisms may occur through interactions with other organisms that are directly affected (e.g., reduction in the abundance of prey species or an altered balance of competition between species).

1.2.2 Phytoplankton and Zooplankton

Studies on the effects of acidification indicate that increases in acidity are accompanied by reductions in species richness (Havens 1992; Locke 1992; Almer et al. 1974; Roff and Kwiatkowski 1977; Keller and Pitblado 1984; Yan and Dillion 1984; Carter et al. 1986; MacIsaac et al. 1986). The loss of acid-sensitive phytoplankton species results in communities dominated by large-celled algae (e.g., the filamentous alga Mougeotia) and in some cases by

Page 5: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 2 -

small (non-filamentous) blue-green algae (Grahn et al. 1974; Lazarek 1983; Schindler et al. 1985; Havens and DeCosta 1987; Turner et al. 1987; Havens and Heath 1990; Webster et al. 1992; Klug and Fischer 2000). The patterns of species loss and replacement in acidic lakes result in zooplankton communities that lack large-bodied planktonic herbivores (e.g., daphnids) and are thus dominated by relatively small species (Jeffries 1997). The largest changes in the species richness and composition of phytoplankton communities usually occurs as pH drops below 5.6, but pronounced changes in community structure have been observed during the early phases of acidification as well (e.g., during a drop in pH from >8 to 6) (Yan 1979). For this reason, algae can serve as early indicators of acidification.

Reduced plankton biomass is often associated with increased acidity, but has not been consistently observed in studies of acidified lakes (NRCC 1981; Yan and Struss 1980; Confer et al. 1983; Schindler 1990; Yan and Welbourn 1990; Jeffries 1997).

1.2.3 Macrophytes

The two major effects of acidification on macrophytes include reduced species richness (Roelofs 1983; Kenttamies et al. 1985; Catling et al. 1986; Jackson and Charles 1988; Vestergaard and Sand-Jensen 2000) and changes in species composition (Grahn 1977, 1985, 1986; Halvorsen 1977; Hultberg and Grahn 1975; Morling et al. 1985; Roelofs 1983; Van Dam 1988; Arts et al. 1989). The potential physical and chemical changes in an acidified lake that could indirectly affect growth and distribution of macrophytes include altered transparency and temperature of the water column, and reduction in the decomposition of cellulose and lignin. Although increased solubility of metals could potentially affect macrophyte growth, many submergent macrophytes can accumulate metals in acidified lakes with no apparent toxicity (Lehtonen 1989).

1.2.4 Benthic Invertebrates

The most important effects of acidification on benthic invertebrate communities are changes in species richness and diversity (Haines 1981; Minns et al. 1990; Schindler 1990, 1997) resulting from elimination of acid-sensitive species, and the invasion and subsequent proliferation of acid-tolerant species (Hall and Ide 1987). Consequently, overall biomass may be affected only slightly, or not at all (Ericksson et al. 1980; Dixit and Smol 1989). Acidification typically results in a progressive reduction of species richness.

Despite high variability, certain broad taxonomic groups have been observed to dominate the fauna of lakes with reduced pH, including flies (Diptera),

Page 6: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 3 -

caddisflies (Trichoptera), beetles (Coleoptera), and dragonflies and damselflies (Odonata) (Schell and Kerekes 1989). Mayflies (Ephemeroptera), are generally very sensitive to shifts in pH (Jeffries 1997). Molluscs are sensitive to acidification because of their high calcium carbonate (CaCO3) requirements for shell formation (Haines 1981; Schell and Kerekes 1989). Acidification produces dominance by acid-tolerant species, increases in the abundances of large predatory insects, and a shift from grazer to shredder insect dominance (McNicol and Wayland 1992; Appleberg et al. 1993; Bendell and McNicol 1995). Losses of taxa that are important as fish food can be expected to have indirect effects on fish. Indirect effects of acidification on benthic invertebrates include food limitation and shifts in predation. In general, the benthic community becomes simpler (i.e., biodiversity is reduced due to the loss of acid sensitive species) (Jefferies 1997).

1.2.5 Fish

Both low pH and the associated increased aluminum concentration are directly toxic to fish (Exley et al. 1996). Reduced pH and elevated aluminum concentration also can cause chronic stress that results in lower body weight and smaller size, which in turn may reduce the capability of fish to compete for food and habitat (EIFAC 1996).

The mechanisms of fish population response to acidification include direct toxicity and indirect effects through alteration of the food web. Direct effects consist of reduced adult survival and recruitment failure (i.e., no young survive to become part of the adult population) (Ingersoll et al. 1990a,b; Wood et al. 1990a,b). Reduced adult survival may result from fish kills associated with episodic events (these are relatively rare) and high mortality of sensitive adult stages (e.g., after spawning). Migration of adults from acidic systems, a behavioural avoidance reaction, may also reduce adult fish abundance. The causes of recruitment failure include increased mortality of early life stages, impaired reproductive physiology and ovarian maturation, and inhibition of spawning behaviour (U.S. EPA 1986).

The direct effects of acidification typically result in a reduction of fish abundance and species richness in acidified streams and lakes (Lacorix and Townsend 1987; Tremblay and Richard 1993). Complete elimination of fish populations has been observed in lakes acidified to pH values below 5. Spatial and temporal variability in acidic conditions are important to the magnitude of effects on aquatic biota. For example, even episodic pulses of acidification can lead to significant fish mortality (Wigington et al. 1993).

Page 7: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 4 -

Because many invertebrate taxa are sensitive to acidification, detrimental effects on food webs may occur well before direct toxicity to fish becomes evident (Schindler et al. 1989; Gill 1993). Fish populations can undergo significant changes due to altered zooplankton, phytoplankton or benthic invertebrate species composition, which can cause a reduction in the abundances of preferred prey species. Changes in macrophyte abundance also can lead to a change in the population structure and abundance of certain fish species (Gunn and Keller 1990).

1.2.6 Amphibians

The aquatic life stages of amphibians may be adversely affected in acidified lakes and ponds. The most acid-sensitive phase of frog development is the aquatic embryo stage. Each life-stage after the embryo stage, including the semi-terrestrial stage, is increasingly tolerant of acidic conditions (Pierce et al. 1984).

The direct effects of acidification on amphibians begin to manifest below pH 6 (Doka et al. 1997). Surface waters with pH above 6 are considered optimal for amphibian diversity, hatching success, and tadpole survival and development. Exposure to pH values below 6 may result in reduced hatching success (Dale et al. 1985; Gascon and Planas 1986), larval mortality (Tome and Pough 1982; Pierce 1985; Leftwich and Lilly 1992), decreased growth and development rates (Freda and Dunson 1985, 1986; Gascon and Planas 1986), and behavioural changes (Freda and Taylor 1992).

1.2.7 Ecosystem Effects

Sensitivity to acidification varies from species to species within each group of organisms and according to several factors, including existing water quality, the exposed life stage, and the manner in which species interactions (e.g., competition) are altered within a particular ecosystem (Sullivan 2000).

As lakes and streams become more acidic, the abundance and species richness of aquatic plants and animals generally declines, although abundance of a few acid-tolerant organisms may increase (Table 1). The overall result is that the aquatic food web becomes simpler, (i.e., biodiversity is reduced due to the loss of acid-sensitive species). In general, the diversity of aquatic ecosystems begins to decline at pH 6 (RMCC 1990), although loss of highly acid-sensitive species may occur as pH drops below 6.5.

While increased acidity is seldom directly lethal to large-bodied aquatic organisms, there are important indirect effects such as alteration in the food

Page 8: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 5 -

webs, reduced biodiversity, and changes in productivity. Table 1 provides a general summary of the effects of acidification on aquatic ecosystems.

Table 1 Summary of the Biological Effects of Surface Water Acidification pH

Decrease General Biological Effects(a)

6.5 to 6.0

• small decrease in species richness of phytoplankton, zooplankton and benthic invertebrate communities resulting from the loss of a few highly acid-sensitive species, but no measurable change in total community abundance or production

• some adverse effects (decreased reproductive success) may occur for highly acid-sensitive fish species

6.0 to 5.5

• loss of sensitive species of minnows and dace; in some waters decreased reproductive success of important sport fish species

• visual accumulations of filamentous green algae in the littoral zone of many lakes and in some streams • distinct decrease in species richness and change in species composition of phytoplankton, zooplankton

and benthic invertebrate communities, although little if any change in total community biomass or production

• loss of a number of common invertebrate species from zooplankton and benthic communities (many species of snails, clams, mayflies and amphipods, and some crayfish)

• reduced hatching success of amphibians

5.5 to 5.0

• loss of several important sport fish species, as well as additional non-game species • further increase in the extent and abundance of filamentous green algae in lake littoral areas and streams • continued shift in the species composition and decline in species richness of phytoplankton, zooplankton

and benthic invertebrate communities; decrease in the total abundance and biomass of benthic invertebrate and zooplankton may occur in some waters

• loss of several additional invertebrate species common in oligotrophic waters, all snails, most species of clams, and many species of mayflies, stoneflies and other benthic invertebrates

• reduced hatching success of amphibians • inhibition of nitrification

5.0 to 4.5

• loss of most fish species, including most important sport fish species; few fish species able to survive and reproduce below pH 4.5

• measurable decline in whole-system rates of decomposition of some forms of organic matter, potentially resulting in decreased rates of nutrient cycling

• substantial decrease in the number of species of zooplankton and benthic invertebrates and further decline in the species richness of the phytoplankton and periphyton communities; measurable decrease in the total community biomass of zooplankton and benthic invertebrates in most waters

• further loss of zooplankton species and benthic invertebrate species (all clams and many insects and crustaceans)

• reproductive failure and larval mortality of acid-sensitive species of amphibians (a) Source: modified from Baker et al. (1990).

1.3 REVIEW OF AIR EMISSION EFFECT MONITORING IN THE OIL SANDS REGION

Acid-sensitive lakes in the Oil Sands Region have been sampled as part of environmental impact assessments and monitoring programs for oil sands developments, and also by the Regional Aquatics Monitoring Program (RAMP), which includes annual sampling of 50 acid-sensitive lakes (RAMP 2005).

Statistical trend analysis was performed for individual lakes in the 2005 RAMP Report (RAMP 2006). Trend analysis using the Mann-Kendal test was preformed on all parameters related to the effects of acid inputs on aquatic

Page 9: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 6 -

resources. The analysis found that although base cation concentrations decreased significantly in some of the lakes, there was no significant change or trend in corresponding parameters including sulphate, nitrate and pH. Therefore, there is no evidence of acidification in the lakes monitored by RAMP.

To provide an overview of RAMP results available between 1999 and 2005, the 50 RAMP lakes were grouped by region, and relevant data were plotted using box and whisker plots to qualitatively show trends in alkalinity (Figures 1 to 6) and pH (Figures 7 to 12). Median and percentile values were calculated assuming a log-normal distribution for alkalinity and a normal distribution for pH. The plots of alkalinity and pH indicate little change between 1999 and 2005, consistent with the 2005 RAMP trend analysis.

Page 10: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 7 -

Figure 1 Alkalinity of Lakes in the Stony Mountain Region (10 Lakes)

0

10

20

30

40

50

60

1999 2000 2001 2002 2003 2004 2005

Alk

alin

ity (m

g/L)

5thPercentileMinimum

Median

Mean

Maximum

95thPercentile

Figure 2 Alkalinity of Lakes in the Region West of Fort McMurray (8 Lakes)

0

5

10

15

20

25

30

1999 2000 2001 2002 2003 2004 2005

Alk

alin

ity (m

g/L)

5thPercentile

Minimum

Median

Mean

Maximum

95thPercentile

Figure 3 Alkalinity of Lakes in the Region Northeast of Fort McMurray (11 Lakes)

0

10

20

30

40

1999 2000 2001 2002 2003 2004 2005

Alk

alin

ity (m

g/L)

5thPercentile

Minimum

Median

Mean

Maximum

95thPercentile

Page 11: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 8 -

Figure 4 Alkalinity of Lakes in the Birch Mountain Region (11 Lakes)

0

10

20

30

40

50

60

1999 2000 2001 2002 2003 2004 2005

Alk

alin

ity (m

g/L)

5thPercentile

Minimum

Mean

Median

Maximum

95thPercentile

Figure 5 Alkalinity of Lakes in the Canadian Shield Region (5 Lakes)

0

10

20

30

40

50

60

1999 2000 2001 2002 2003 2004 2005

Alk

alin

ity (m

g/L)

5thPercentile

Minimum

Median

Mean

Maximum

95thPercentile

Figure 6 Alkalinity of Lakes in the Caribou Mountain Region (5 Lakes)

0

50

100

150

200

250

1999 2000 2001 2002 2003 2004 2005

Alk

alin

ity (m

g/L)

5thPercentile

Minimum

Median

Mean

Maximum

95thPercentile

Note: Data are not available for 1999-2001.

Page 12: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 9 -

Figure 7 pH of Lakes in the Stony Mountain Region (10 Lakes)

3

3.54

4.5

55.5

6

6.5

77.5

8

1999 2000 2001 2002 2003 2004 2005

pH

5thPercentile

Minimum

Mean

Maximum

95thPercentile

Figure 8 pH of Lakes in the Region West of Fort McMurray (8 Lakes)

3

4

5

6

7

8

9

1999 2000 2001 2002 2003 2004 2005

pH

5thPercentile

Minimum

Mean

Maximum

95thPercentile

Page 13: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 10 -

Figure 9 pH of Lakes in the Region Northeast of Fort McMurray (11 Lakes)

4

5

6

7

8

9

10

1999 2000 2001 2002 2003 2004 2005

pH

5thPercentile

Minimum

Mean

Maximum

95thPercentile

Figure 10 pH of Lakes in the Birch Mountain Region (11 Lakes)

3

4

5

6

7

8

9

1999 2000 2001 2002 2003 2004 2005

pH

5thPercentile

Minimum

Mean

Maximum

95thPercentile

Page 14: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 11 -

Figure 11 pH of Lakes in the Canadian Shield Region (5 Lakes)

6

6.5

7

7.5

8

1999 2000 2001 2002 2003 2004 2005

pH

5thPercentile

Minimum

Mean

Maximum

95thPercentile

Figure 12 pH of Lakes in the Caribou Mountain Region (5 Lakes)

5

5.5

6

6.5

7

7.5

1999 2000 2001 2002 2003 2004 2005

pH

5thPercentile

Maximum

Mean

max

95thPercentile

Page 15: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 12 -

The Paleolimnology Task Group of the NOx/SOx Management Working Group (NSMWG) is performing detailed core sampling and analysis of selected lakes in the Oil Sands Region to provide information on how lake chemistry has changed in the past hundred years (or more) and to assess the possible factors that affect the pH of the water.

A three-year paleolimnology project has recently been completed provides information on changes over time in water chemistry in eight lakes throughout the region (Hazewinkel 2006). The results of the study suggest that “although the rate of acid deposition associated with bitumen extraction and processing has increased substantially over the past thirty years, there is so far no indication that this has caused acidification of any of the study lakes” (Hazewinkel 2006).

1.4 ASSESSMENT METHODS

1.4.1 Introduction

This assessment is focused on the effects of air emissions from the Northern Lights Mining and Extraction Project (the Project) and other regional developments on water quality and aquatic biota in the air quality modelling domain. Effects considered in this section include potential changes to the chemistry and biota of lakes, ponds and streams. For the purposes of this assessment, lakes and ponds are both referred to as “lakes”. Wetlands are not included in the assessment.

The sensitivity of surface waters to acid deposition can be evaluated based on the alkalinity or acid neutralizing capacity (ANC) of natural lake water. These two terms are used interchangeably to refer to the capacity of water to neutralize strong inorganic acids (Wetzel 2001). The term “alkalinity” is typically used when referring to acid neutralizing capacity estimated by titration, whereas “ANC” refers to determination by calculation. Alkalinity is often expressed in units of mg/L as CaCO3, assuming that alkalinity results only from calcium carbonate and bicarbonate, which may or may not be applicable to a given lake. Therefore, the clearest expression of alkalinity is in terms of µeq/L or meq/L For comparative purposes, the alkalinity of 1 mg/L CaCO3 = 20 µeq/L, or 50 mg/L CaCO3 = 1 meq/L.

Section 1.4.2 describes the use of potential acid input in this assessment. Section 1.4.3 describes in detail the methods used to assess the potential for lake acidification. Section 1.4.3.1 includes description of the characteristics of acid-sensitive lakes, and serves as background information for understanding acid sensitivity in the Oil Sands Region.

Page 16: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 13 -

The methods used to calculate critical loads are provided in Section 1.4.3.2. The assessment approach for lakes was based on application of critical loads according to the Steady-State Water Chemistry (SSWC) model (Henriksen and Posch 2001). Adjustments were made to the critical load calculation to account for the effects or organic acids on the ANC of lakes, as per RAMP (2005). Section 1.4.3.3 provides the methods used to estimate acid inputs under background conditions and for each assessment case.

The potential for episodic acidification of streams (i.e., spring acid pulses) was evaluated using a weight-of-evidence approach that included qualitative and quantitative methods that take into account the following:

• changes in SO2 and NOX emission rates in the region plus the predicted contribution of the Northern Lights Project;

• changes in snowmelt pH in the region plus the predicted contribution of the Northern Lights Project;

• the degree of acid sensitivity estimated from stream water chemistry, watershed characteristics and climate; and

• the results of an analysis of the data collected by Alberta Environment (AENV) during monitoring of spring acid pulses in the Oil Sands Region (WRS 2002).

Details regarding how these factors affect stream sensitivity to acidification, as well as the approach used to estimate the pH of snowmelt, are provided in Section 1.4.4.

1.4.2 Use of Potential Acid Input

Potential Acid Input (PAI) has historically been defined in oil sands assessments as the sum of SO2 and NOx deposition minus base cation deposition (keq/ha/yr) as estimated by air dispersion modelling. This calculation represents potential acid inputs entering the terrestrial ecosystem from all sources but does not take into account retention of deposited N in terrestrial ecosystems and is therefore refered to as “gross PAI”. Nitrogen absorbed in terrestrial ecosystems does not contribute to the acidification of soils or surface waters. This assessment uses a more refined approach to the estimation of PAI for aquatic resources, by incorporating the retention of N by terrestrial ecosystems.

The air emissions effects assessment for lakes is based on “lake net PAI”, which takes into account uptake of N in terrestrial ecosytems. The calculation of lake net PAI includes all SO2 deposition, all NOx deposition above 10 kg N/ha/yr and 25% of NOx deposition below the first 10 kg N/ha/yr. The representation of N

Page 17: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 14 -

retention was recommended by the NOx/SOx Management Working Group (NSMWG 2006) based on the conclusions of a recent report that estimated that the forest ecosystems in the Athabasca Oil Sands Region can absorb N deposition of 8 to 24 kg N/ha/yr for 100 years (Callesen and Gundersen 2005). Inclusion of 25% of the deposited nitrogen under 10 kg N/ha/yr was recommended to address uncertainty.

Background SO2, NOx and base cation deposition were estimated based on results of the AENV RELAD model (Cheng 2001; Volume 3, Section 1.3). Background lake net PAI was calibrated using actual concentrations of sulphate and nitrate concentrations in lakes rather than using background deposition rates. The incremental increase in SO2 and NOx above background for each assessment case was estimated using air dispersion modelling as described in Section 2. The neutralizing effect of base cation deposition was not included in lake net PAI calculation because base cation inputs from all sources are already accounted for in the critical load calculation (Section 1.4.3.2).

The predicted pH of snowmelt was used as a component of the assessment of changes in episodic acidification of streams. The historical definition of PAI, referred to as “gross PAI”, was used in the calculation of snowmelt pH, to provide a conservative estimate of pH prior to infiltration to soils. Gross PAI does not include nitrogen uptake in terrestrial ecosystems, but does include the neutralizing effect of base cation deposition.

1.4.3 Lake Acidification

1.4.3.1 Characteristics of Acid-Sensitive Lakes

Acid-sensitive lakes are situated in areas where soils have little or no capacity to reduce the acidity of atmospheric deposition. Soil chemistry (particle size, texture, pH, and cation-exchange-capacity), depth, drainage, vegetation cover and type, bedrock geology, and topographic relief are factors that determine the sensitivity of a lake drainage basin to acid deposition (Lucas and Cowell 1984; Holowaychuk and Fessenden 1987; Sullivan 2000). Surface waters that are highly sensitive to acid deposition and at risk of acidification typically have the following characteristics (Sullivan 2000):

• they are dilute, with low concentrations of all major ions (i.e., specific conductance is less than 25 µS/cm);

• alkalinity/ANC values are low (i.e., less than 10 mg/L as CaCO3 or less than 200 µeq/L);

Page 18: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 15 -

• base cation concentrations are low (i.e., in relatively pristine areas, the combined concentration of calcium, magnesium, potassium and sodium in sensitive waters is generally less than 50 to 100 µeq/L);

• organic acid concentrations are low (i.e., DOC concentration is generally less than 3 to 5 mg/L);

• the pH is low (i.e., less than 6.5); and

• physical characteristics are as follows:

− elevation is moderate to high;

− lakes are located in areas of high relief;

− lakes are subject to severe, short-term changes in hydrology;

− there is minimal contact between drainage waters and soils or geologic material that may contribute weathering products to solution; and

− sensitive lakes may have small drainage basins that derive much of their hydrologic input as direct precipitation to the lake surface.

Saffran and Trew (1996) presented a scale of lake sensitivity to acidification based on alkalinity (Table 2), and developed a lake-sensitivity map for Alberta using available data for 1,156 lakes in the province.

Table 2 Acid Sensitivity Scale for Lakes Based on Alkalinity/Acid Neutralizing Capacity

Alkalinity/ANC Acid Sensitivity [mg/L as CaCO3] [µeq/L]

High 0 to 10 0 to 200 Moderate >10 to 20 >200 to 400 Low >20 to 40 >400 to 800 Least >40 >800

Source: Saffran and Trew (1996).

1.4.3.2 Use of Critical Loads

Critical loads of acidity can be used to evaluate the likelihood of lake acidification (CASA 1996; Henriksen et al. 1992; Kamari et al. 1992a, 1992b; Posch et al. 1992; Rihm 1995; RMCC 1990; WHO 1994). The critical load defined in general terms is “a quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur according to present knowledge” (Nilsson and Grennfelt 1988). For evaluating the effects of acid deposition, the critical load can be thought of as an estimate of the amount of acidic deposition

Page 19: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 16 -

below which no significant harmful effects occur to a specified component of a lake’s ecosystem (e.g., a valued fish species) (Sullivan 2000).

The calculation of critical loads is based on a dose-response relationship between ANC and aquatic organisms considered important to the ecosystem. Many studies have shown that the effects of acidification on aquatic organisms are better correlated with ANC than with pH (as reviewed by Sullivan 2000) because pH measurements are sensitive to CO2 effects (Stumm and Morgan 1981; Sullivan 2000).

Calculation of Critical Loads Without Consideration of Organic Acids

The formula used to calculate critical load from Henriksen et al. (1992) is provided below:

CL = ([BC*]0 – [ANClim]) x Q

where,

CL = critical load of acidity (keq H+/ha/yr);

[BC*]0 = pre-industrial non-marine base cation concentration (keq/L), assumed to correspond to the current values in Alberta lakes, because they are considered unaffected by acidification at the present;

[ANClim] = critical value for acid neutralizing capacity (75 µeq/L = 7.5 × 10-

8 keq/L) based on the generally accepted pH effects threshold of 6, as recommended by CEMA (2004); and

Q = mean annual runoff to the lake (L/ha/yr).

While Henriksen and Posch (2001) and Henriksen et al. (2002) converted the present-day base cation flux (i.e., the [BC*]0 term in the critical load equation) to a pre-acidification flux for European and Ontario lakes, the procedure applied here assumes that the current conditions represent the pre-industrial conditions. Anthropogenic lake acidification has not been observed in Alberta, based on a review of AENV monitoring data of Schindler (1996) and more recent data collected by the Acid Sensitive Lakes component of RAMP (Golder 2000, 2001, 2002, 2003; RAMP 2004, 2005, 2006, 2007). Therefore, use of recent lake water quality data was considered appropriate for calculating critical loads, without adjusting the base cation term.

Page 20: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 17 -

An ANClim for northern Alberta was derived by WRS (2000). The ANClim was based on a pH effects threshold, which was then converted to ANC using a large data set for northeastern Alberta lakes. Numerous studies have shown that a pH of 6 is sufficient for maintenance of healthy aquatic ecosystems and protection of fish and other aquatic organisms (RMCC 1990; Jeffries 1997; Sullivan 2000). To convert the pH effects threshold of 6 to the ANClim for northeastern Alberta, WRS (2000) developed an empirical relationship between pH and ANC, using the results of a lake survey conducted in northeastern Alberta in 1998 by Alberta Pacific Forest Industries and AENV. This analysis showed that for the lakes in this region, a pH of 6 corresponds with an ANC of about 75 μeq/L, which was adopted as the ANClim for calculating critical loads.

Calculation of Critical Loads Taking Organic Acids into Consideration

The 2004 RAMP report (RAMP 2005) provided an alternative method for the calculation of critical loads that takes into account the effect of organic acids present in lake water. The original Henriksen model was modified to account for both the buffering of weak organic anions and the lowering of ANC that is attributable to strong organic acids. The modified model assumes that DOC, with its associated buffering capacity due to the presence of weak organic acids (ANCorg) and reduction of ANC from strong organic acids (SAorg) is exported from the catchment basin to the lake in the same way as base cations (carbonate alkalinity). The relationships developed among ANCorg, DOC and pH, and between SAorg and DOC, were substituted into the Henriksen equation as follows:

CL = ([BC*]0 + [ANCorg] – [SAorg] – [ANClim]) x Q

where,

ANCorg = 0.00680*[DOC] (0.8833*pH); and

SAorg = 6.05*[DOC] + 21.04.

The constants for the two empirical equations above that relate DOC and pH to weak and strong organic acids were estimated from the RAMP lake data set (RAMP 2005). ANCorg and SAorg for lakes in the assessment were obtained from historical DOC and pH data. In cases when pH or DOC data were not available, the critical load was not recalculated (12 cases in total). The modified approach to calculating critical loads has been used in subsequent RAMP reports (RAMP 2006, RAMP 2007). The updated critical loads were used for the lakes assessment in Section 1.4.5.

Page 21: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 18 -

1.4.3.3 Lake Net Potential Acid Input for Comparison with Critical Loads

Lake net PAI was expressed as the sum of the background lake net PAI and the incremental lake net PAI due to project-related emissions, for each assessment case. The following sections describe methods used to estimate each component of lake net PAI.

Background Lake Net Potential Acid Input

In previous assessments in the region (Synenco 2005; Imperial 2005; Shell 2005; MEG 2005), the background PAI was based on the rate of background acid deposition predicted by the AENV RELAD model (Cheng 2001). In this assessment, background lake net PAI was calibrated based on measured sulphate and nitrate concentrations in the lakes.

Background nitrogen or sulphate inputs (I, in units of keq/ha/yr) were calculated as follows:

ACxfxQI =

where C is the concentration in the lake (mg/L), f is a conversion factor to convert from concentration reported as mg/L to keq/L, Q is the average annual outflow from the lake (L/ha/yr), and A is the gross catchment area of the lake (ha). Background lake net PAI is the sum of the calculated sulphate and nitrate inputs.

This approach to estimating nitrate and sulphate inputs is common to many dynamic and steady-state acidification models (Cosby et al. 1995; Larrsen et al. 2004; Wright et al. 1998). The input rates, as calculated in the above equation, are assumed to be the leaching rate from the catchment to the lake; however, uptake and transformation within lakes and wetlands would also contribute to the difference between acid deposition and background lake net PAI.

Incremental Lake Net Potential Acid Input Due To Oil Sands Project Related Emissions

Acid deposition was estimated by modelling as described in Section 2. Acid input to lakes above background (incremental lake net PAI) was based on the calculated inputs of SO2 and NOx above background. All SO2 deposition above background was included. All NOx deposition above 10 kg N/ha/yr and 25% of the first 10 kg N/ha/yr were included. Background NOx deposition was estimated based on the assumption that background lake net PAI was 25% of the

Page 22: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 19 -

background deposition (i.e., that 75% of deposited nitrogen under 10 kg/ha/yr is taken up in the terrestrial ecosystem). The background NOx deposition was added to the predicted incremental deposition above background prior to calculation of N removal.

In the SSWC model used to estimate critical loads, the base cation component of the critical load is assumed equivalent to the flux to the lake from all sources, including atmospheric deposition. Therefore, adjusting the acid deposition rate by accounting for the neutralizing effect of base cation deposition would result in double-counting of the base cations. Considering this, inclusion of base cations in the lake net PAI calculation would result in a reduction in conservatism because the buffering capacity from base cation deposition would be overestimated.

To determine whether the updated approach affected the results of the assessment and whether results were consistent with the approaches used previously in the Oil Sands Region, acid inputs were also calculated by two other methods. The first method used the soil net PAI (background acid input based on AENV RELAD modelling and N retention by terrestrial ecosystems). The second method used the total acid input (background acid input based on the AENV RELAD modelling without correction for N retention in terrestrial ecosystems). The results of these other methods are provided for reference but were not used as the basis of the assessment of air emission effects.

1.4.3.4 Data Sources

Basin Characteristics and Critical Loads

Gross catchment area and net annual inflow were used to calculate lake critical loads (Section 1.4.3.2). The source of these data and literature-derived critical loads are provided below:

• a study of acid-sensitive lakes under the Western and Northern Canada Technical Committee (Erickson 1987; WRS 2004);

• a summary of chemistry and critical loads for 162 Lakes sampled by Alberta-Pacific Forest Industries during 1998 (Syncrude 2000; WRS 2004);

• a study of small ponds in the Oil Sands Region (WRS 2004);

• Canadian Natural Primrose East Expansion Hydrology Baseline Report (Canadian Natural 2006);

• Canadian Natural Primrose and Wolf Lake (PAW) In-situ Oil Sands Expansion Project (Canadian Natural 2000);

Page 23: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 20 -

• OPTI Long Lake Project EIA (OPTI 2000);

• Petro-Canada Meadow Creek Project EIA (Petro-Canada 2001);

• TrueNorth Fort Hills Oil Sands Project (TrueNorth 2001);

• Rio Alto Kirby Project EIA (Rio Alto 2002);

• Canadian Natural Horizon Oil Sands Project (Canadian Natural 2002);

• Shell Canada Jackpine Mine – Phase I Application EIA (Shell 2002);

• Husky Tucker Thermal Project (Husky 2003);

• Imperial Oil Kearl Oil Sands Project – Volume 2. Baseline Report (Imperial 2005); and

• Muskeg River Mine Expansion EIA (Shell 2005).

Water Quality

Sources of water quality data included those listed above, and as follows:

• Alberta Environment Water Data System (WDS) data for Birch Lake, Christina Lake, Gregoire Lake, Kearl Lake, McClelland Lake, Burt Lake, May Lake, Marie Lake, Leming Lake, Tucker Lake, Ethel Lake, Hilda Lake, Touchwood Lake, Lac La Biche, Wolf Lake, Field Lake, Pinehurst Lake, Cold Lake, Manatokan Lake and Dolly Lake;

• Sensitivity of Alberta Lakes to Acidifying Deposition: an Update of Sensitivity Maps with Emphasis on 109 Northern lakes (Saffran and Trew 1996);

• Imperial Oil Nabiye and Mahihkan North EIA (Imperial 2002);

• RAMP data (RAMP 2004, 2005); and

• Volume 7, Section 3.3 of the Application.

Duplicate Lakes

Some lakes were included in several sampling programs, but it is not always clear which lakes were resampled because sampling programs used different lake identifiers. The lake identifier from the original study is included in the tables showing assessment results. Lake duplication has been identified by WRS (2000), Saffran and Trew (1996). Additional lake duplication was identified based on the similarity of lake coordinates (i.e., those within 500 m of each other) after subsequent verification using satellite imagery.

Page 24: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 21 -

1.4.4 Episodic Stream Acidification

1.4.4.1 Evaluation of Stream Sensitivity

The primary concern regarding acidification of streams is episodic acidification during the spring snowmelt, also referred to as a spring acid pulse. Episodic acidification is a widespread natural phenomenon in surface waters, and is usually related to hydrological events such as snowmelt or rainfall (Sullivan 2000). Acid deposition from industrial sources can contribute to episodic acidification, potentially resulting in a more severe depression of pH and a longer period of recovery than under natural conditions.

The sensitivity of streams to episodic acidification depends on several factors related to runoff and basin characteristics. Low order (small) streams with watersheds at high elevations, steep topography, extensive areas of exposed bedrock, deep snow pack and shallow, base-poor soils are considered the most sensitive to episodic acidification (Sullivan 2000).

Similar to lakes, the primary indicator of acid sensitivity in streams is alkalinity, or ANC. The generally accepted ranges of alkalinity and ANC that correspond with categories of acid sensitivity for streams are provided in Table 3 (Boward et al. 1999). Musselman (1996) specified spring baseflow as the basis for assessing acid sensitivity, whereas Boward et al. (1999) did not specify the flow conditions. A value of 150 µeq/L (annual average) has also been used as the cut-off point for designating streams as acid sensitive, based on the lack of responses by fish populations to acid deposition in streams with ANC greater than 150 µeq/L (Brewer et al. 2000).

Table 3 Acid Sensitivity Scale for Streams Based on Alkalinity/Acid Neutralizing Capacity

Acid Sensitivity Alkalinity/ANC [µeq/L] acidic <0 highly sensitive 0 to 50 sensitive >50 to 200 not sensitive >200

Source: Boward et al. (1999).

1.4.4.2 Changes in Snowmelt pH

To assess the potential contribution of changes in air emissions to episodic stream acidification during snowmelt, change in snowmelt pH was predicted for each of the catchments of the 380 lakes included in the assessment.

Page 25: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 22 -

Approximately 30% of the total annual average precipitation falls as snow in the Oil Sands Region (Environment Canada 1998). The hydrogen ion concentration in snow, calculated as the gross PAI (keq/ha/yr) divided by the precipitation rate (L/ha/yr), was converted to pH (i.e., the negative logarithm of hydrogen ion concentration). Precipitation during snow pack accumulation was estimated by assuming that precipitation falls as snow for eight months of the year and that about 30% of total annual precipitation falls as snow. Therefore, the rate of precipitation in the form of snow, during winter months, is about 55% lower than the mean annual precipitation rate in the region. Gross PAI was used in the calculation rather than net PAI so that all deposited N and the neutralizing effect of base cation deposition were included in the calculation.

1.4.5 Certainty and Prediction Confidence

The assessment is subject to a moderate degree of uncertainty. This uncertainty has been addressed by using a conservative approach in the predictions. There is a high degree of certainty that the effects of the Project emissions will not be greater than predicted. Sources of uncertainty include the following:

• air quality modelling of acid deposition is subject to uncertainty, as described in Section 2;

• the application of critical loads to Alberta lakes is still being developed and is subject to refinement. Adjustments to the calculation methods used herein may be necessary in the future based on results of ongoing research; and

• some of the critical loads were calculated based on limited water chemistry data.

The analysis of air emissions effects is conservative in the protective sense because of the conservative approach used to model acid deposition (i.e., simultaneous emissions at the fully approved rates from all developments). Therefore, there is a high degree of certainty that the effects of emissions from the Northern Lights Project will not be greater than predicted.

Sensitivity analysis of the critical load calculation was undertaken as a component of several recent oil sands EIAs (Suncor 2005f; Imperial 2005; Shell 2005; MEG 2005). Varying the key terms used in the calculation of critical loads resulted in changes that were generally proportional to the introduced variation. The exception was the ANC threshold (ANClim) used to calculate critical loads. Relatively large changes in the ANClim resulted in smaller changes in the critical load. Varying base cation concentrations and ANClim resulted in a progressively greater sensitivity at the lower end of the critical load scale, as critical loads dropped below 0.5 keq H+/ha/yr. This finding underlines the importance of using

Page 26: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 23 -

reliable lake chemistry data for calculating critical loads, especially for highly sensitive lakes.

1.5 DETAILED RESULTS FOR AQUATIC RESOURCES

1.5.1 Acid Sensitivity of Surface Waters in the Oil Sands Region

1.5.1.1 Acid Sensitivity of Lakes

Most lakes and ponds in Alberta are well buffered from acidification because they are situated in areas with carbonate-rich soils and bedrock. Standing waters in northeastern Alberta generally do not display the characteristics of acid-sensitive waters (i.e., dilute, poorly buffered, low pH, low concentrations of base cations and organic acids, high elevation and relief, rapid hydrological changes, and small basins). However, acid-sensitive lakes have been identified in upland regions of northeastern Alberta, including the Muskeg, Caribou, Birch and Stony mountains (Saffran and Trew 1996; WRS 2004).

To provide an indication of the water chemistry and acid sensitivity of lakes in the Air Quality RSA, available data were summarized for the 380 Alberta lakes selected for the assessment (Table 4). Using the classification system of Saffran and Trew (1996), the alkalinity data indicate that 30 lakes are highly sensitive, 27 lakes are moderately sensitive, 68 lakes have low sensitivity and 253 lakes are least sensitive (Table 4). Two of the lakes could not be classified because alkalinity data were not available.

Page 27: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment Lake

Identifier(a) Lake Name /

Original Identifier Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

609 Lake C(l) 501125 6380566 5 ENE 198 108 41 97 7.5 6.0 0.16 27 10 3 0.8 80 least 283 163(f) 501125 6380566 11 ESE 226 154 30 27 7.9 3.1 <0.01 32 13 1 0.3 88 least 103 Audet 520785 6384885 13 NE 281 148 18 23 8.0 1.0 0.01 33 14 6 1.5 141 least 418 P35(i) 519692 6379678 13 E 143 - 20 20 8.1 1.8 0.10 17 8 <1 0.3 73 least 484 PTH8(i) 510279 6375937 14 ESE 127 - 25 70 7.7 2.2 0.10 16 9 <1 0.0 65 least 80 P5(i), UNL-3(e) 499429 6365047 14 SSE 268 193 13 60 7.9 2.6 0.10 38 14 2 0.9 145 least 483 PTH7(i) 511202 6379065 15 E 204 - 24 60 8.0 3.5 0.10 24 14 <1 0.0 105 least 278 157(f) 508959 6386971 15 NE 307 164 20 47 8.1 0.2 <0.01 40 14 6 1.1 157 least 79 UNL-2(e) 494650 6362557 16 S 514 337 17 40 8.2 5.0 0.10 72 31 3 1.0 293 least 282 162(f) 513963 6378636 17 E 239 125 19 21 7.8 0.3 <0.01 31 13 1 0.4 127 least 417 P34(i) 514199 6382911 18 ENE 163 - 24 90 7.8 2.5 0.10 20 11 <1 0.0 83 least 5 McClelland 480016 6371236 18 WSW 259 150 13 9 8.3 5.5 0.06 24 17 5 3.0 132 least 481 PTH5(i) 513190 6386987 18 ENE 364 246 22 30 8.0 1.5 0.05 45 17 6 1.4 165 least 482 PTH6(i) 514631 6383486 19 ENE 182 - 25 70 7.8 3.2 0.10 23 11 <1 0.3 92 least 415 P3(i) 483501 6360762 22 SW 328 - 20 55 7.8 5.3 0.10 50 11 6 1.0 173 least 411 P2(i) 481401 6362412 22 SW 285 - 16 25 8.3 9.2 0.10 42 12 1 0.7 148 least 612 Compensation 519692 6379678 23 E 280 144 18 21 7.3 0.2 0.01 33 14 4 0.9 132 least 78 UNL-1(e) 485427 6357465 24 SSW 364 235 20 50 8.2 3.4 0.10 54 14 9 0.8 192 least 611 Lake F 520785 6384885 25 ENE 248 128 35 - 7.7 0.3 0.01 31 14 1 0.6 104 least 419 P38(i) 518699 6364212 26 ESE 87 - 16 30 7.5 1.4 0.10 12 4 1 0.0 43 least 277 153(f) 513886 6400901 28 NE 100 - 17 40 8.7 - <0.01 14 4 1 0.5 47 least 81 L1(k), L1(j) 504587 6349147 31 SSE 26 33 0 38 6.3 3.1 0.01 3 1 1 0.3 5 high 4 Kearl 485939 6349881 31 SSW 187 132 22 70 8.0 4.9 0.04 20 7 11 1.0 95 least 420 P4(i) 479201 6352812 31 SW 372 - 20 15 8.2 3.8 0.10 41 14 18 1.1 185 least 280 160(f) 527874 6387057 32 ENE 234 150 21 22 7.8 0.2 <0.01 31 12 2 0.6 98 least 464 PM1(i) 505194 6347380 32 SSE 27 - 21 100 4.2 1.1 0.10 0 0 <1 0.3 3 high 281 161(f) 528885 6384281 33 E 309 203 18 8 8.1 0.3 0.01 37 15 5 1.5 128 least 333 L45(k) 491985 6411117 33 N 141 91 9 19 8.0 2.5 <0.01 17 8 1 0.4 75 least 317 L2(k) 505832 6347134 33 SSE 107 62 - - 7.8 2.5 0.01 18 3 1 0.1 51 least 466 PM3(i) 505393 6346711 33 SSE 86 - 19 80 7.4 1.7 0.10 13 3 <1 0.0 42 least 318 L3(k) 503318 6346085 33 SSE 85 49 - - 7.8 2.5 0.01 14 3 1 0.1 40 least 465 PM2(i) 507264 6347115 33 SSE 73 - 18 120 7.1 1.2 0.10 11 3 <1 0.2 35 low 279 158(f) 527848 6390764 33 ENE 341 231 22 17 8.1 0.3 0.01 44 19 3 1.1 150 least 149 P23(i), P23(j) 509000 6346712 34 SSE 66 59 18 124 7.6 1.0 0.03 10 2 1 0.1 31 low 421 P43(i) 512450 6345512 37 SSE 82 - 17 40 7.5 2.4 0.10 12 3 <1 0.2 39 low 413 P24(i) 505000 6342512 37 SSE 64 - 27 200 7.2 1.6 0.10 10 3 <1 0.0 30 low 430 P52(i) 461502 6391111 37 WNW 439 - 30 35 8.3 52.7 0.10 32 28 17 13.6 180 least 473 PT6(i) 460733 6391206 38 WNW 345 - 33 50 8.4 27.3 0.10 36 19 8 6.2 157 least 85 164(f), 17(g), L10(k) 533760 6369378 38 ESE 155 83 12 8 8.0 1.3 0.01 19 7 1 0.4 68 least 432 P6(i) 512600 6343712 38 SSE 127 - 30 120 7.7 2.5 0.10 20 4 1 0.2 64 least 6 LK-1(e) 457730 6374675 39 W 1453 1037 41 23 9.1 87.9 0.10 11 105 216 28.3 801 least 476 PTH1(i) 511576 6415521 40 NNE 229 - 10 10 8.3 5.8 0.10 27 12 1 0.7 118 least 152 P7(i), P7(j) 515399 6343212 40 SSE 27 53 27 258 6.4 0.6 0.03 4 1 <1 0.1 9 high 414 P25(i) 510500 6340812 40 SSE 110 - 29 120 7.7 1.9 0.10 17 4 2 0.1 55 least 440 P8(i) 516249 6343212 41 SSE 58 - 38 300 7.0 1.7 0.10 9 2 <1 0.2 25 low 332 L44(k) 494569 6419374 41 N 150 92 7 3 8.7 2.5 <0.01 16 10 1 0.6 99 least 270 143(f) 498027 6419437 41 N 171 - - 5 8.1 1.9 <0.01 22 8 1 0.6 83 least 99 144(f), L43(k) 499704 6419587 41 N 160 89 2 6 8.1 2.2 <0.01 20 7 1 0.6 81 least 104 Johnson 536807 6389912 42 ENE 351 191 17 30 8.1 1.8 0.01 43 17 7 1.2 158 least 271 145(f) 511855 6417594 42 NNE 242 - - 5 8.4 2.0 <0.01 30 12 1 0.9 121 least 18 Lillian 455932 6365954 43 WSW 479 318 23 61 7.6 3.1 0.13 66 18 9 2.3 262 least 485 PTH9(i) 495957 6334968 44 S 97 - 17 60 7.4 3.9 0.10 13 4 2 0.5 47 least 12 LK-7(e) 455211 6364522 44 WSW 255 185 30 55 7.7 3.8 0.10 30 10 5 2.0 130 least 480 PTH2(i) 513560 6419693 44 NNE 226 - 9 10 8.1 4.8 0.10 29 11 1 0.5 116 least 477 PTH10(i) 495763 6333877 45 S 77 - 20 100 7.0 2.4 0.10 11 4 1 0.2 35 low 19 Calumet 453963 6363973 45 WSW 633 473 51 188 7.8 41.2 0.13 48 18 75 4.8 263 least 330 L41(k) 509160 6422381 45 NNE 159 84 13 1 7.8 6.0 0.01 20 7 1 0.6 81 least 54 UW4(e) 468946 6341924 46 SW 479 295 18 50 8.2 5.0 0.10 71 12 14 1.1 240 least 607 P2(e) 468831 6341793 46 SW 485 350 19 53 8.2 4.6 0.10 84 15 17 1.8 269 least

82 170(f), 14(g), L4(k), A170 (L4)(j) 509075 6334093 46 SSE 27 23 27 217 6.0 3.8 0.03 3 1 1 0.2 7 high

Page 28: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment (continued)

- 25 -

Lake Identifier(a)

Lake Name / Original Identifier

Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

150 P27(i), P27(j) 508300 6333712 47 SSE 23 66 34 285 5.2 0.8 0.04 3 1 <1 0.1 4 high 268 141(f) 503947 6424693 47 N 198 - - 4 8.3 1.3 <0.01 26 9 1 0.8 98 least 55 UW5(e) 469046 6341224 47 SW 356 250 16 38 8.2 5.2 0.10 49 11 8 1.0 173 least 53 UW3(e) 468546 6341424 47 SW 464 277 13 37 7.9 5.9 0.10 72 13 8 1.0 235 least 605 P1(e) 468548 6341335 47 SW 485 300 11 59 8.1 5.5 0.10 77 13 9 1.3 256 least 51 UW1(e) 468396 6341424 47 SW 453 267 14 35 8.0 5.8 0.10 71 13 8 1.1 231 least 445 P9(i) 524699 6341212 47 SE 152 - 30 50 7.8 2.2 0.10 23 5 2 0.2 75 least 269 142(f) 505917 6424695 47 NNE 194 - 7 9 8.3 1.4 <0.01 26 9 1 0.7 97 least 52 UW2(e) 468346 6341324 47 SW 260 145 9 10 8.1 3.6 0.10 36 7 5 2.9 131 least 267 139(f) 499012 6425927 47 N 134 - 6 3 8.1 0.8 <0.01 17 6 1 0.7 66 least 265 Pearson 486197 6425027 47 NNW 169 - - 4 8.1 1.3 <0.01 22 7 2 0.5 80 least 429 P51(i) 451552 6394711 48 WNW 126 - 13 150 7.3 23.7 0.10 12 5 3 2.1 34 low 284 Big Snuff 542056 6363054 48 ESE 68 - 17 47 7.5 0.1 0.01 9 4 1 0.1 30 low 56 UW6(e) 467296 6340324 48 SW 256 185 24 25 8.0 8.8 0.10 32 9 10 1.4 122 least 266 Kress 492117 6426859 48 N 100 - 8 23 7.9 0.1 <0.01 12 4 3 0.5 46 least 431 P54(i) 451302 6395711 48 WNW 110 - 5 20 7.8 10.9 0.10 11 5 2 0.8 44 least 276 152(f) 519738 6421333 48 NNE 198 - - 7 8.3 0.6 <0.01 29 7 1 0.6 99 least 331 L42(k) 501166 6427071 49 N 184 104 5 6 8.1 2.5 <0.01 24 9 1 0.6 100 least 20 Isadore's 463522 6343138 49 SW 456 284 11 27 7.9 54.9 0.07 54 23 7 1.8 186 least 274 149(f) 522212 6420422 49 NNE 227 - 6 7 8.3 0.8 <0.01 34 9 1 0.6 134 least 98 146(f), L40(k) 519356 6422417 49 NNE 119 73 6 3 8.0 1.5 <0.01 16 4 1 0.6 61 least 321 L11(k) 543215 6362610 49 ESE 59 34 28 68 8.1 2.5 <0.01 8 3 1 0.1 28 low 264 136(f) 484228 6426882 50 NNW 185 - - 3 8.0 0.2 <0.01 26 6 2 1.2 92 least 426 P48(i) 447802 6388211 50 W 116 - 24 100 7.7 14.7 0.10 12 5 6 0.4 41 least 273 148(f) 521711 6422278 50 NNE 156 - - 7 8.2 0.5 <0.01 23 6 1 0.6 78 least 472 PT5(i) 448974 6395163 50 WNW 61 - 21 150 7.5 1.9 0.10 8 3 <1 0.5 28 low 606 P4(e) 468605 6336285 51 SSW 260 193 14 64 8.0 2.5 0.10 43 7 4 0.8 141 least 17 LK-12(e) 445617 6381379 51 W 151 121 17 80 7.2 25.4 0.10 16 6 3 1.2 44 least 474 PT8(i) 445573 6383359 51 W 176 - 13 50 7.8 31.8 0.10 19 7 3 1.5 50 least 10 LK-5(e) 444669 6379654 52 W 207 140 11 28 7.5 30.4 0.10 21 8 7 2.9 71 least 11 LK-6(e) 444494 6382690 52 W 189 127 12 43 7.5 26.4 0.10 24 7 3 1.6 65 least 262 Dianne 463961 6419598 52 NW 300 - 15 48 7.9 27.7 0.10 37 10 10 3.3 119 least 422 P44(i) 522999 6333312 53 SSE 231 - 51 250 9.0 3.8 0.10 26 10 15 0.8 126 least 151 P49(i), P49(j) 446002 6394961 53 WNW 25 32 17 69 6.7 1.4 0.03 3 1 1 0.4 9 high 428 P50(i) 444752 6392311 54 WNW 230 - 15 80 8.2 7.5 0.10 30 11 3 0.5 118 least 83 L7(k), L7(j) 515032 6327463 54 SSE 31 30 30 250 6.4 3.7 0.01 4 1 1 0.2 10 moderate 320 L9(k) 533212 6338082 55 SE 154 81 16 54 8.5 2.5 <0.01 19 5 4 0.2 78 least 319 L6(k) 510355 6325681 55 SSE 106 56 21 99 7.7 2.5 <0.01 15 4 1 0.1 52 least 423 P45(i) 529099 6334462 55 SE 280 - 39 25 8.3 8.2 0.20 38 12 4 1.6 144 least 263 134(f) 467958 6426055 55 NNW 261 - 6 12 8.1 - <0.01 34 10 6 1.2 122 least 272 Poplar 522662 6427850 56 NNE 199 - 8 10 8.4 1.1 <0.01 31 8 1 0.8 99 least 86 166(f), L12(k) 544341 6349563 56 ESE 90 46 27 50 8.9 1.5 <0.01 11 4 3 0.2 42 least 7 LK-2(e) 440554 6382003 56 W 30 55 14 138 6.7 1.8 0.10 4 1 <1 0.3 10 moderate 140 L5(k), P28(i) 507166 6322123 58 S 61 33 27 109 7.1 2.6 0.05 9 2 <1 0.2 30 low 87 167(f), L13(k) 545725 6348186 58 ESE 80 41 19 49 7.5 1.4 0.04 9 3 2 0.2 37 low 424 P46(i) 500600 6320312 59 S 213 - 37 70 8.3 2.9 0.10 30 8 4 0.0 111 least 261 Ronald 460556 6425197 59 NW 367 - 13 26 8.0 34.1 0.03 43 12 14 3.4 137 least 412 P20(i) 438802 6390961 59 WNW 67 - 26 150 7.5 3.2 0.10 9 3 1 0.0 29 low 260 131(f) 458576 6424282 59 NW 383 - 11 27 8.0 56.0 <0.01 50 14 10 2.7 135 least 439 P79(i) 438752 6392211 59 WNW 63 - 30 150 7.0 2.8 0.10 10 3 <1 0.0 26 low 275 151(f) 541491 6417792 59 NE 41 - 13 117 7.2 1.0 <0.01 4 2 2 0.8 15 moderate 438 P77(i) 438202 6391811 60 WNW 65 - 27 125 7.1 2.7 0.10 10 3 <1 0.0 28 low 471 PT4(i) 438235 6392291 60 WNW 77 - 28 125 7.6 3.0 0.10 12 3 <1 0.0 34 low 348 Currie 515504 6436008 60 NNE 82 41 7 3 7.3 1.5 <0.01 8 2 2 1.0 42 least

105 150(f), 9(g), L39(k), A-150 (L39)(j) 536495 6424234 60 NE 32 46 14 78 6.8 2.0 0.01 3 1 2 0.6 13 moderate

88 168(f), 12(g), L14(k) 548190 6346767 61 ESE 112 55 22 34 8.2 1.7 0.01 13 4 3 0.4 55 least 475 PT9(i) 436094 6371181 61 W 119 - 16 50 7.9 4.7 0.10 15 5 2 1.3 56 least 425 P47(i) 502300 6317712 61 S 144 - 37 120 7.8 3.2 0.10 21 6 3 0.0 73 least 467 PM4(i) 502509 6317128 62 S 144 - 26 120 7.6 2.8 0.10 21 6 4 0.2 74 least 433 P60(i) 437402 6398711 63 WNW 110 - 22 125 7.7 4.7 0.10 14 6 3 0.6 50 least

Page 29: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment (continued)

- 26 -

Lake Identifier(a)

Lake Name / Original Identifier

Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

84 L8(k), L8(j) 524421 6322560 63 SSE 49 64 19 148 7.0 1.4 0.02 6 2 2 0.1 20 moderate 329 Mildred 464280 6323724 64 SSW 463 261 7 14 8.2 42.0 0.14 54 15 23 1.2 179 least 470 PT3(i) 433955 6393613 64 WNW 75 - 30 150 7.5 3.8 0.10 10 3 1 0.2 30 low 416 P30(i) 498500 6314213 65 S 104 - 37 120 7.6 2.5 0.10 13 4 5 0.3 50 least 478 PTH11(i) 492308 6313536 65 S 133 - 20 65 7.3 2.5 0.10 18 7 3 0.0 68 least 328 Clear 433258 6399414 67 WNW 83 57 21 125 7.4 2.5 0.01 12 5 1 0.3 37 low 436 P70(i) 429803 6377462 67 W 38 - 29 150 6.6 2.1 0.10 6 2 <1 0.2 14 moderate 347 L64(k) 514035 6443734 67 NNE 90 46 8 47 7.9 1.5 <0.01 12 3 1 0.4 50 least 410 P18(i) 429003 6364212 69 WSW 141 - 22 60 7.5 27.6 0.10 15 5 5 2.2 39 low 327 Eaglenest 432609 6405149 69 WNW 81 55 19 167 7.5 2.5 0.01 11 4 2 0.5 34 low 322 L15(k) 548424 6332453 69 SE 101 57 36 278 7.5 16.0 0.01 7 3 13 0.7 26 low 58 Shipyard 473350 6313235 70 SSW 339 246 20 93 7.6 5.3 0.08 45 10 15 2.0 161 least 409 P17(i) 428803 6363212 70 WSW 171 - 29 120 7.3 31.7 0.10 21 6 7 1.8 52 least 468 PT1(i) 429874 6398738 70 WNW 115 - 19 100 8.0 6.2 0.10 14 5 <1 0.0 50 least 435 P69(i) 427503 6387611 70 W 55 - 26 125 7.4 1.8 0.10 8 3 1 0.2 23 low 334 L48(k) 429234 6396488 70 WNW 114 59 29 124 7.4 1.5 <0.01 16 4 2 0.3 58 least 350 Harwood 536958 6436149 70 NE 60 31 7 12 7.7 1.5 <0.01 5 3 1 0.5 34 low 469 PT2(i) 430065 6401484 70 WNW 51 - 30 250 5.0 12.2 0.10 4 2 2 0.2 3 high 408 P16(i) 427803 6363462 71 WSW 122 - 33 250 6.9 32.6 0.10 15 4 5 0.9 23 low 444 P87(i) 426003 6373212 71 W 71 - 18 120 7.3 3.2 0.10 11 3 <1 0.0 33 low 437 P72(i) 428903 6400411 71 WNW 58 - 33 150 5.9 13.6 0.10 4 2 4 0.3 8 high 153 P94(i), P94(j) 440557 6334112 72 SW 117 165 48 137 7.4 12.4 0.03 13 5 7 1.3 40 low 434 P61(i) 425103 6385111 72 W 79 - 23 125 7.5 2.5 0.20 11 3 <1 0.5 35 low 608 Suncor_VS_UW1 472298 6310391 73 SSW 574 307 18 74 7.9 7.3 -0.17 53 20 38 2.3 200 least 479 PTH12(i) 491531 6306260 73 S 134 - 25 90 7.6 2.9 0.10 20 6 2 0.1 67 least 102 33(g), L33(k) 425151 6365349 73 W 268 146 15 29 8.4 18.0 0.01 35 9 5 2.2 129 least

129 2(f), 15(g), E15 (L15b)(j) 506092 6305335 74 S 55 121 38 122 7.0 0.6 0.01 6 2 4 1.2 22 low

442 P85(i) 422403 6371812 75 W 71 - 24 160 7.2 5.6 0.10 11 3 <1 0.2 29 low 446 P90(i) 436852 6332462 76 SW 231 - 26 70 7.9 5.2 0.10 24 9 13 2.7 122 least 349 Archer 539134 6441490 76 NE 46 24 10 15 7.8 1.5 0.02 4 2 1 0.4 25 low 346 Canopener 420461 6379858 76 W 142 72 21 132 7.6 1.5 0.01 20 6 2 0.5 69 least 406 P11(i) 423003 6353012 78 WSW 110 - 32 300 7.4 7.4 0.10 10 4 10 0.9 47 least 345 Buoy 418473 6380143 78 W 202 107 12 24 8.3 6.0 0.02 27 8 3 1.1 104 least 326 Sand 418434 6390656 79 W 105 55 16 79 8.0 2.5 <0.01 14 4 2 0.7 52 least 447 P91(i) 433852 6330512 79 SW 300 - 24 70 7.7 6.7 0.10 33 12 14 2.1 156 least 441 P84(i) 416203 6370462 81 W 68 - 18 120 7.1 3.2 0.10 10 3 <1 0.5 31 low 92 Otasan 417321 6396959 81 WNW 25 37 12 49 6.7 1.4 <0.01 3 1 1 0.4 8 high 487 PW2(i) 419555 6351513 82 WSW 233 - 31 140 7.9 13.3 0.10 26 9 17 1.1 113 least 407 P14(i) 418303 6353462 82 WSW 177 - 37 400 7.6 24.5 0.10 22 7 9 0.8 65 least 106 Bayard 416941 6404239 84 WNW 60 69 21 260 6.7 10.3 0.07 6 2 3 0.8 14 moderate 148 P13(i), P13(j) 416003 6353212 85 WSW 108 144 45 138 8.0 6.6 0.03 11 5 8 0.7 44 least 352 L69(k) 419591 6414486 85 WNW 230 124 28 103 8.0 10.0 <0.01 33 6 8 0.8 109 least 324 N. Gardiner 410554 6378483 86 W 117 61 15 64 7.8 6.0 <0.01 15 4 2 0.8 53 least 486 PW1(i) 414747 6351741 86 WSW 134 - 31 300 7.2 23.2 0.20 14 6 7 1.6 38 low 325 L21(k) 410374 6386071 87 W 106 56 0 15 7.9 10.0 <0.01 11 4 4 1.0 44 least 323 S. Gardiner 410108 6374038 87 W 109 57 10 59 7.6 6.0 <0.01 14 4 2 0.8 53 least 141 4(f), 4(270)(j) 506113 6291421 88 S 151 138 39 34 8.1 0.3 <0.01 21 7 2 0.3 75 least 351 L68(k) 413276 6411466 90 WNW 40 25 40 347 6.9 6.0 0.01 5 1 3 0.3 11 moderate 108 Waterlily 407519 6391915 90 W 70 33 22 198 7.7 8.8 0.01 7 2 3 0.6 22 low 443 P86(i) 411153 6350112 90 WSW 360 - 31 100 7.7 51.1 0.10 39 11 22 2.2 139 least 488 PW3(i) 412268 6345506 91 WSW 117 - 17 50 7.3 6.4 0.10 13 4 2 3.8 54 least 155 P97(i), P97(j) 456002 6296463 92 SSW 43 86 29 136 6.8 1.4 0.03 6 2 1 0.8 15 moderate 97 Clayton 424694 6435790 92 NW 17 33 16 203 4.3 0.6 <0.01 1 0 1 0.1 0 high 449 P95(i) 443552 6301613 94 SW 162 - 30 160 7.5 5.5 0.10 22 7 10 0.5 79 least 107 L60(k), L60(j) 403796 6392247 94 W 58 67 18 153 7.2 8.7 0.01 6 2 3 0.6 15 moderate 91 Namur 402704 6368016 95 W 62 38 10 13 7.2 7.1 <0.01 6 2 2 1.1 21 low 101 L49(k), L49(j) 404995 6403111 95 WNW 61 73 20 191 6.6 14.6 0.11 5 2 4 0.8 9 high 156 P98(i), P98(j) 451762 6293513 96 SSW 80 110 31 120 7.3 2.2 0.04 12 4 1 0.6 35 low 135 3(f), 16(g) 554892 6301050 97 SE 170 83 17 32 8.7 1.3 0.01 11 6 8 0.4 89 least 154 P96(i), P96(j) 444002 6295513 98 SSW 77 92 31 74 7.3 1.7 0.03 10 4 1 0.9 34 low

Page 30: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment (continued)

- 27 -

Lake Identifier(a)

Lake Name / Original Identifier

Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

100 27(g), L47(k), L47(j) 396500 6395456 102 W 57 67 20 142 6.7 9.4 0.10 8 2 3 1.0 14 moderate 524 Patterson 598819 6389537 103 E 42 30 3 - 6.9 - - 4 1 1 1.0 19 moderate 405 P101(i) 448002 6287963 103 SSW 121 - 21 50 7.5 3.7 0.10 16 5 <1 1.1 61 least 344 L59(k) 393655 6384983 103 W 54 33 28 270 7.3 4.0 <0.01 6 2 2 0.4 18 moderate 134 1(f), 25(g), 1 (267)(j) 441917 6290884 104 SSW 88 67 21 26 7.4 0.9 0.01 11 3 2 0.9 41 least 337 L52(k) 399323 6341684 104 WSW 152 81 21 41 7.4 17.0 0.14 14 4 6 3.1 58 least 336 L51(k) 399507 6338927 105 WSW 125 66 28 71 8.5 5.0 <0.01 14 5 6 1.4 57 least 335 L50(k) 392149 6393777 106 W 78 42 30 136 7.0 11.0 <0.01 7 4 3 0.2 26 low 338 L53(k) 396115 6344270 106 WSW 385 228 28 65 7.4 87.0 0.48 44 12 17 2.2 105 least 450 P99(i) 451402 6281113 108 SSW 151 - 21 30 7.5 2.9 0.10 23 4 <1 0.7 75 least 525 Forrest 604633 6383668 108 E 55 39 2 - 6.9 - - 4 2 2 1.0 24 low 456 PF2(i) 448416 6280450 109 SSW 259 - 9 8 7.8 3.3 0.10 43 6 2 0.3 136 least 458 PF4(i) 446055 6279117 112 SSW 369 - 16 35 7.7 5.3 0.10 64 10 2 0.5 199 least 339 L54(k) 391449 6339131 112 WSW 374 213 23 150 7.6 44.0 0.05 43 13 15 1.8 157 least 451 PF1(i) 445481 6278365 113 SSW 310 - 11 10 7.9 4.0 0.10 53 7 2 0.5 163 least 455 PF13(i) 498560 6265951 113 S 200 - 17 55 7.7 3.9 0.10 25 8 5 0.4 99 least 462 PF8(i) 471630 6268385 113 SSW 197 - 29 125 7.4 19.1 0.10 14 5 20 3.0 67 least 93 Legend 383849 6364923 114 W 29 19 10 29 6.9 2.8 0.01 3 1 1 0.6 11 moderate 142 6(f), 6 (271)(j) 549064 6277789 114 SSE 140 111 30 26 9.0 0.3 0.02 17 6 6 0.9 70 least 32 Caribou Horn 501467 6264562 114 S 183 139 19 53 7.7 6.7 0.10 23 8 6 0.8 87 least 527 Beet 611405 6391278 115 E 45 35 3 - 6.9 - - 4 2 2 1.0 22 low 457 PF3(i) 442406 6276535 116 SSW 247 - 15 25 7.9 3.9 0.10 42 6 2 0.6 130 least 526 Preston 612119 6365312 116 E 49 40 3 - 6.8 - - 4 2 3 1.0 25 low 529 Sandy-2 573917 6468241 118 NE 218 - - - 7.3 - - 17 9 6 1.2 - - 452 PF10(i) 493296 6259805 119 S 65 - 22 90 6.9 5.6 0.20 9 3 <1 1.3 22 low 459 PF5(i) 451429 6268553 119 SSW 212 - 11 13 7.9 2.8 0.10 34 7 1 0.8 111 least 453 PF11(i) 495869 6259633 119 S 43 - 32 150 6.1 2.5 0.10 5 2 <1 0.7 10 moderate 96 28(g), L28(k), L28(j) 382996 6414339 119 WNW 21 56 24 423 5.2 2.2 0.02 2 1 1 0.3 3 high 460 PF6(i) 450033 6268135 120 SSW 179 - 24 45 7.7 2.8 0.10 29 5 <1 0.4 89 least 3 Gregoire 489729 6258036 121 S 127 77 13 25 7.4 8.5 0.04 17 5 3 0.9 55 least 25 Canoe 498871 6257215 122 S 90 100 20 61 7.1 2.2 0.11 10 3 4 0.9 40 least 109 Gordon 530780 6261842 122 SSE 257 - 21 19 8.4 2.2 <0.01 24 10 21 1.8 141 least 463 PF9(i) 488075 6256727 122 S 99 - 26 100 7.1 12.3 0.10 12 4 3 0.5 32 low 33 Kiskatinaw 499571 6266398 122 S 191 143 24 52 7.8 3.1 0.10 24 7 7 0.8 97 least 170 Nora 526686 6259956 123 SSE 157 - 21 31 9.1 0.2 <0.01 17 9 3 1.1 79 least 461 PF7(i) 479616 6256890 123 S 190 - 25 150 7.5 9.4 0.10 21 10 8 0.5 83 least 35 PF12(i), UNL2(e) 500505 6255692 123 S 37 74 26 118 6.2 3.2 0.10 9 2 2 1.0 10 moderate 343 L58(k) 373071 6372273 124 W 101 51 19 42 9.3 1.5 0.01 13 4 1 0.1 50 least 29 Frog 504488 6254133 125 S 184 158 29 75 7.7 3.2 0.10 24 7 9 1.1 91 least 340 L55(k) 376224 6344078 125 WSW 174 92 13 21 7.8 13.0 <0.01 22 6 4 1.3 77 least 30 Poison 505212 6252653 126 S 180 141 25 31 7.8 2.2 0.10 23 6 8 1.2 91 least 28 Sucker 508895 6252653 127 S 223 164 19 31 7.8 4.4 0.10 26 8 10 1.6 112 least 341 L56(k) 375397 6341720 127 WSW 91 47 21 110 7.2 8.0 <0.01 11 3 3 0.8 35 low 89 Rabbit 381972 6323180 127 WSW 315 171 53 76 8.4 16.5 0.01 22 12 28 4.5 146 least 26 Long -1 502017 6251357 127 S 80 100 23 67 7.2 4.5 0.10 9 3 4 1.1 34 low 31 Rat Lake 507487 6251545 128 S 207 141 18 31 7.8 4.5 0.08 26 8 7 1.3 104 least 1 Birch -2 504672 6250565 128 S 138 118 24 97 7.7 15.3 0.08 14 10 8 2.4 96 least 34 UNL1(e) 502641 6249587 129 S 29 65 21 75 6.1 2.1 0.10 3 1 <1 1.3 9 high 169 Shortt 548241 6260147 129 SSE 251 - 16 26 7.9 0.4 <0.01 33 10 8 1.8 133 least 168 8(f) 559470 6264932 130 SSE 236 - 18 10 8.9 0.1 <0.01 19 18 5 1.6 123 least 27 Pushup 503226 6248721 130 S 84 79 20 26 7.8 1.1 0.07 10 2 2 2.4 39 low 41 Maqua 482249 6246921 133 S 59 72 12 84 6.9 1.8 - 8 2 <1 0.5 27 low 531 Cluff 595873 6468054 134 NE 155 - - - 8.1 - - 15 9 2 0.7 - - 36 UNL3(e) 509942 6244399 135 S 207 172 35 50 7.8 4.7 0.08 25 7 11 2.3 104 least 171 Gipsy 546271 6252711 135 SSE 271 - 5 4 8.5 0.4 <0.01 27 13 12 3.1 145 least 40 L11(e) 481229 6244129 135 S 26 73 17 167 6.0 2.0 - 3 1 <1 0.3 8 high 110 Birch (f) 536018 6248894 136 SSE 271 130 26 17 8.8 2.1 0.01 17 11 25 1.8 143 least 39 L10(e) 480727 6243329 136 S 41 83 10 33 5.8 5.8 0.13 2 1 <1 0.3 8 high 172 Baker 554471 6254656 137 SSE 253 - 17 20 8.7 0.2 <0.01 30 13 6 2.5 133 least 37 Surmont 489222 6240033 139 S 66 73 16 108 7.0 2.7 0.17 10 3 <1 0.6 30 low 174 17(f) 487107 6238565 140 S 61 - 12 142 7.4 1.3 0.01 9 2 1 0.5 28 low

Page 31: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment (continued)

- 28 -

Lake Identifier(a)

Lake Name / Original Identifier

Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

38 L8(e) 490427 6237963 141 S 64 103 23 217 6.8 2.3 - 10 2 <1 0.6 28 low 175 Georges 513419 6236708 143 S 316 - 12 31 8.4 6.8 <0.01 42 12 10 1.6 155 least 115 21(f), A21(j) 483819 6235130 144 S 15 54 17 280 5.0 3.4 0.01 2 0 1 0.4 2 high 176 20(f) 525809 6235841 146 SSE 204 - 24 73 7.9 0.8 <0.01 22 6 15 0.5 96 least 177 22(f) 489154 6232994 146 S 26 - 7 61 6.9 1.3 <0.01 3 1 <1 0.4 11 moderate 117 26(f), A26(j) 489502 6230877 148 S 14 49 11 107 5.6 1.4 0.03 2 0 1 0.5 3 high 116 24(f), A24(j) 484387 6230872 148 S 34 44 18 241 4.7 1.0 0.01 1 0 1 0.4 1 high 143 25(f), 25 (287)(j) 487594 6229281 150 S 13 54 16 161 5.2 1.6 <0.01 1 0 1 0.4 2 high 173 Garson 561829 6243625 150 SSE 191 - 19 20 8.1 0.7 0.01 23 7 8 0.9 87 least 179 31(f) 480350 6228385 151 S 15 - 14 221 5.6 1.4 0.28 1 0 <1 0.3 3 high 144 27(f), 27 (289)(j) 477248 6228400 152 S 16 32 12 42 6.5 0.8 <0.01 2 1 1 0.4 5 high 178 30(f) 487070 6226500 153 S 11 - 12 116 5.2 0.6 <0.01 1 0 <1 0.3 2 high 130 32(f), 2(g) 493516 6226026 153 S 110 46 14 79 7.7 1.4 0.02 15 3 2 0.5 55 least 530 La Loche 592417 6259032 153 SE 229 190 9 - 8.1 - - 26 9 8 1.0 119 least 145 28(f), 28 (290)(j) 487068 6225576 153 S 18 56 20 175 5.9 0.7 0.01 2 1 1 0.4 4 high 195 53(f) 422698 6242954 155 SSW 58 - 26 335 7.2 1.5 <0.01 5 1 8 0.8 22 low 181 35(f) 540312 6230388 155 SSE 213 - 21 66 7.9 0.7 0.04 29 7 9 1.3 102 least 180 33(f) 491196 6222316 157 S 24 - 18 93 6.6 0.6 <0.01 3 1 1 0.3 7 high 194 Algar 420102 6242078 157 SSW 69 - 18 111 7.5 6.2 <0.01 5 1 8 0.6 22 low 118 29(f), A29(j) 466180 6224950 157 S 13 36 13 70 5.8 0.8 <0.01 1 0 1 0.3 3 high 182 Formby 559900 6234325 158 SSE 206 - 13 26 8.1 0.3 <0.01 27 7 8 0.7 97 least 196 54(f) 423111 6237380 159 SSW 60 - 28 327 7.2 2.8 <0.01 6 2 8 0.2 21 low 183 37(f) 554289 6228684 161 SSE 254 - 13 19 8.5 0.6 <0.01 31 11 10 2.8 134 least 184 Watchusk 543469 6224854 161 SSE 184 - 20 58 8.6 0.9 <0.01 25 7 7 1.1 90 least 316 D254(h) 374162 6271211 163 SW 164 - 20 - 8.4 3.4 <0.01 22 6 6 0.8 78 least 533 McLean 607818 6259397 163 SE 190 155 18 - 7.9 - - 22 8 6 1.5 98 least 197 55(f) 413272 6235709 166 SSW 64 - 30 291 7.1 3.4 <0.01 5 1 10 0.3 21 low 185 39(f) 554875 6223126 166 SSE 139 - 20 63 7.9 0.6 <0.01 17 6 6 0.5 69 least 136 34(f), 1(g) 474056 6213581 167 S 101 76 24 56 7.5 1.4 0.01 14 4 2 0.6 51 least 198 56(f) 432715 6224227 167 SSW 64 - 33 273 7.1 1.1 <0.01 6 1 8 0.3 23 low 186 40(f) 521815 6208917 172 S 226 - 27 68 8.1 3.3 <0.01 24 8 16 1.5 104 least 222 81(f) 471892 6199682 181 S 68 - 15 41 7.6 0.2 <0.01 10 3 2 0.6 31 low 199 57(f) 420621 6214236 181 SSW 54 - 27 170 7.0 3.5 <0.01 7 1 4 0.2 17 moderate 139 91(f), 7(g) 538503 6201610 182 SSE 154 87 16 48 9.2 1.6 0.01 18 6 7 0.9 79 least 227 Bohn 520832 6196859 183 S 193 - 22 32 8.7 1.4 <0.01 26 8 8 1.4 101 least 226 88(f) 438648 6204657 183 SSW 134 - 11 23 8.0 0.5 <0.01 16 5 4 0.7 50 least 228 90(f) 530201 6197838 184 S 157 - 25 96 8.0 1.8 <0.01 21 6 10 1.6 81 least 229 Cowper 534391 6195087 187 SSE 143 - 17 50 9.1 0.9 <0.01 19 6 6 0.9 74 least 218 77(f) 452595 6196133 188 SSW 68 - 23 291 7.1 0.5 0.01 11 3 2 0.5 31 low 202 Mariana 435473 6200997 188 SSW 150 - 11 54 7.2 3.2 <0.01 9 3 15 1.2 19 moderate 221 80(f) 458295 6193292 189 SSW 47 - 19 38 7.3 0.2 <0.01 6 2 1 0.6 20 low 190 46(f) 370920 6235856 190 SW 28 - 24 195 6.5 0.6 <0.01 4 1 1 0.3 8 high 204 63(f) 437499 6197260 191 SSW 70 - 13 80 7.5 0.4 <0.01 10 2 2 0.5 29 low 203 62(f) 432308 6198262 192 SSW 73 - 15 126 6.9 2.1 <0.01 7 2 5 0.6 14 moderate 219 78(f) 444220 6193451 193 SSW 86 - 13 140 7.3 0.6 0.05 13 3 1 0.3 41 least 220 79(f) 448879 6190611 194 SSW 68 - 16 77 7.5 0.4 <0.01 10 2 2 0.6 32 low 230 93(f) 533411 6186731 195 S 112 - 18 22 7.9 0.6 <0.01 15 6 2 0.5 58 least 201 60(f) 413544 6197673 199 SSW 78 - 27 291 7.5 1.4 <0.01 12 3 4 1.1 34 low 147 94(f), 94 (354)(j) 515689 6179208 200 S 51 84 23 35 7.2 0.4 <0.01 6 2 1 0.9 21 low 146 82(f), 82 (342)(j) 448271 6183205 201 SSW 32 107 24 62 6.8 0.6 0.01 3 1 1 1.1 11 moderate 223 83(f) 438372 6185182 202 SSW 95 - 10 41 7.9 0.5 <0.01 16 3 1 0.7 46 least 231 95(f) 516751 6175506 204 S 67 - 22 77 7.7 0.4 <0.01 9 3 2 0.7 30 low 205 Crow 426862 6184436 206 SSW 201 - 12 60 8.8 3.2 <0.01 30 7 4 1.0 98 least 234 100(f) 547077 6178511 206 SSE 152 - 26 69 8.1 0.2 <0.01 22 7 5 0.7 82 least 225 85(f) 446589 6173942 211 SSW 32 - 11 56 7.2 0.5 <0.01 4 1 1 1.2 14 moderate 206 65(f) 425742 6179813 211 SSW 213 - 14 75 8.5 3.3 <0.01 30 7 5 1.0 97 least 235 101(f) 548176 6173881 211 SSE 142 - 19 19 8.3 - <0.01 20 8 1 0.4 73 least 207 66(f) 429371 6177905 212 SSW 172 - 11 36 8.1 1.3 <0.01 28 6 1 0.9 85 least 224 84(f) 443436 6173058 212 SSW 33 - 11 60 7.1 0.6 <0.01 4 1 1 0.9 13 moderate 122 86(f), A86(j) 448014 6170896 213 SSW 25 43 14 48 6.6 1.5 0.01 2 1 1 1.6 7 high 121 59(f), A59(j) 383467 6197733 213 SSW 23 85 30 304 5.2 1.6 0.01 3 1 1 0.5 3 high

Page 32: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment (continued)

- 29 -

Lake Identifier(a)

Lake Name / Original Identifier

Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

233 98(f) 502625 6165269 214 S 105 - 21 86 7.8 0.5 <0.01 14 5 3 0.8 50 least 232 97(f) 528841 6167222 214 S 98 - 17 50 7.7 0.2 <0.01 14 5 1 0.1 48 least 209 Agnes-1 404923 6184861 214 SSW 33 - 28 317 6.5 1.2 <0.01 6 1 1 0.8 9 high 236 102(f) 558657 6173086 215 SSE 97 - 10 25 7.9 0.5 <0.01 13 4 1 0.3 49 least 200 58(f) 376102 6200433 215 SW 31 - 29 178 6.5 0.8 <0.01 5 1 1 0.4 9 high 2 Christina 510499 6163433 216 S 200 125 13 35 7.9 6.1 0.01 25 8 6 0.9 106 least 211 70(f) 388380 6191747 216 SSW 56 - 33 109 7.3 2.3 <0.01 9 2 2 0.6 21 low 131 Base 446510 6167454 217 SSW 129 69 11 62 7.6 2.2 0.01 17 5 2 0.8 62 least 208 67(f) 414088 6172614 222 SSW 73 - 19 140 7.3 3.6 <0.01 11 3 1 0.7 29 low 212 71(f) 381000 6189159 222 SSW 54 - 28 204 7.2 5.2 0.07 8 2 2 0.4 16 moderate 210 69(f) 383412 6181678 227 SSW 33 - 25 212 6.7 1.2 <0.01 5 1 2 0.3 11 moderate 213 72(f) 376691 6184647 228 SSW 57 - 20 118 6.7 11.1 <0.01 7 2 2 0.5 11 moderate 241 108(f) 510533 6149522 230 S 198 - 11 29 8.2 0.5 0.01 28 9 3 0.7 101 least 167 Wappau 463161 6151511 230 S 185 - 10 65 9.1 0.2 <0.01 28 7 4 1.2 100 least 237 Winefred 531585 6150547 231 S 195 - 7 10 8.2 0.5 0.01 27 8 4 0.9 102 least 240 Kirby 514750 6146752 233 S 228 - 7 7 8.6 0.2 <0.01 32 10 4 1.1 123 least 242 110(f) 464179 6147797 233 S 87 - 10 18 8.3 0.3 <0.01 11 4 1 0.7 42 least 214 73(f) 376481 6177226 235 SSW 54 - 21 188 7.1 3.8 0.15 6 2 3 0.9 178 least 243 111(f) 475751 6144012 236 S 68 - 19 291 7.7 0.4 <0.01 14 3 2 0.4 52 least 238 104(f) 544256 6146950 237 SSE 144 - 20 20 9.0 0.3 <0.01 21 6 3 1.1 77 least 42 Wiau 479375 6142060 237 S 161 100 16 27 8.2 1.5 0.07 22 7 3 0.6 88 least 138 Goodwin 457796 6141365 241 S 100 52 9 16 7.7 1.4 0.01 12 4 1 0.9 50 least 44 UNL1(e) 491437 6137987 241 S 150 80 13 20 8.0 1.6 0.10 18 7 2 0.7 73 least 50 UNL13(e) 489844 6137549 241 S 35 17 24 150 6.5 2.1 0.10 4 2 <1 0.4 13 moderate 244 113(f) 492606 6137452 241 S 128 - 14 39 8.0 0.2 <0.01 17 6 2 0.5 64 least 245 114(f) 468315 6136636 244 S 66 - 17 33 7.6 0.2 <0.01 8 4 2 0.7 30 low 132 Grist 533788 6137575 244 S 222 119 7 10 8.5 2.0 0.01 30 8 4 0.9 117 least 49 UNL12(e) 493107 6134651 244 S 96 45 15 35 7.4 1.0 0.10 11 4 1 0.4 46 least 48 UNL7(e) 491151 6134421 244 S 97 45 23 33 7.3 1.4 0.10 11 4 1 0.5 44 least 46 UNL4(e) 498367 6133579 245 S 180 119 18 20 8.1 1.6 0.10 21 8 2 0.3 90 least 47 UNL5(e) 493933 6132222 247 S 108 76 14 30 7.6 1.1 0.10 13 5 1 0.5 52 least 45 UNL3(e) 497711 6132160 247 S 83 41 18 50 7.4 1.1 0.10 10 4 1 0.3 39 low 239 106(f) 525364 6133813 247 S 208 - 10 7 8.3 0.2 <0.01 30 9 2 1.8 108 least 246 116(f) 452463 6135855 247 S 70 - 11 41 7.7 1.1 <0.01 8 4 1 1.5 32 low 247 117(f) 467222 6132003 248 S 120 - 22 57 7.8 0.5 <0.01 13 7 2 1.3 57 least 43 Ipiatik 496692 6127900 251 S 136 67 14 30 7.5 1.5 0.10 17 5 2 0.4 67 least 248 Clyde 470369 6128275 252 S 159 - 16 48 8.1 0.3 <0.01 22 7 2 1.0 79 least 249 Behan 465073 6127390 253 S 118 - 15 30 8.2 0.2 <0.01 15 6 2 1.1 58 least 251 Big Chief 458671 6121881 260 S 114 - 18 57 7.9 0.9 <0.01 15 5 2 2.4 54 least 250 120(f) 475613 6118973 261 S 135 - 17 24 8.7 0.2 <0.01 17 7 2 0.5 66 least 253 123(f) 444801 6114608 269 S 285 - 8 12 8.7 1.8 <0.01 30 15 8 4.8 148 least 258 128(f) 470756 6106015 274 S 315 - 21 56 8.5 3.0 <0.01 39 17 6 2.8 162 least 254 124(f) 446862 6109018 274 S 200 - 16 64 9.5 0.5 <0.01 26 8 8 2.1 106 least 259 Logan 476591 6104122 275 S 267 - 16 48 9.2 4.7 <0.01 33 12 14 1.7 147 least 255 125(f) 443614 6104417 279 S 289 - 23 73 8.5 3.0 <0.01 35 11 13 3.0 143 least 257 Heart 468042 6098611 282 S 304 - 15 31 8.9 3.4 <0.01 32 14 17 2.4 157 least 256 Piche 461651 6098662 282 S 316 - 12 27 8.7 3.6 <0.01 36 15 17 2.7 160 least 252 122(f) 458438 6096843 284 S 101 - 12 29 7.9 0.8 <0.01 12 4 1 3.1 47 least 68 LK8(e) 541457 6082627 299 S 96 125 23 80 7.8 0.9 - 13 5 2 0.4 49 least 515 Unnamed 5(e) 522785 6041366 301 S 822 426 48 - 7.7 13.0 0.02 97 52 48 2.6 429 least 598 UN-5(e) 526700 6079500 301 S 63 27 28 - 7.2 0.1 <0.01 7 2 <1 0.0 28 low 597 UN-2(e) 522600 6078500 301 S 270 146 21 - 7.9 0.1 <0.01 29 9 10 1.0 162 least 67 LK7(e) 538930 6078203 303 S 180 137 16 47 8.1 1.2 0.10 26 8 2 0.6 98 least 536 Touchwood 474032 6075393 304 S 266 143 11 9 8.3 3.7 - 31 12 8 2.6 141 least 537 La Biche 433387 6079917 305 SSW 268 138 - - 8.6 0.1 - 29 9 11 2.3 133 least 66 LK6(e) 544835 6076985 306 S 182 140 23 60 8.1 1.4 0.10 26 8 3 0.5 98 least 599 UN-6(e) 529300 6074800 306 S 86 46 26 - 6.8 0.1 0.07 8 3 1 8.1 41 least 65 LK5(e) 543092 6075676 307 S 105 100 18 52 7.8 1.5 0.10 14 5 2 0.6 52 least 64 LK4(e) 540067 6073823 308 S 127 120 24 73 7.9 1.0 0.10 18 6 2 0.5 65 least 60 Burnt 536930 6072588 309 S 200 142 17 43 8.1 5.3 0.13 28 40 3 0.7 108 least 63 LK3(e) 539930 6072774 309 S 124 113 24 55 7.9 1.0 0.10 16 6 2 0.7 61 least

Page 33: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 4 Summary of Water Chemistry Data Related to Acid Sensitivity of the 380 Lakes Included in the Assessment (continued)

- 30 -

Lake Identifier(a)

Lake Name / Original Identifier

Easting [UTM](b)

Northing [UTM](b)

Distance [km](c) Direction(c) Conductivity

[µS/cm] TDS

[mg/L] DOC

[mg/L] Colour (TCU) pH Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Calcium [mg/L]

Magnesium [mg/L]

Sodium [mg/L]

Potassium[mg/L]

Alkalinity [mg/L as CaCO3]

Acid Sensitivity(d)

62 LK2(e) 539546 6071719 310 S 105 110 30 53 7.8 1.0 - 13 6 2 0.7 53 least 61 LK1(e) 540333 6069577 312 S 207 153 25 30 8.2 1.8 0.10 30 10 4 1.3 117 least 516 Sinclair-1 522000 6064200 316 S 430 248 15 - 8.3 7.9 0.06 36 24 30 2.9 243 least 538 Wolf 503222 6061410 317 S 297 182 13 - 8.0 2.8 <0.01 29 16 11 2.1 158 least 69 May 539000 6063000 319 S 254 144 7 - 8.1 3.6 0.04 32 11 6 1.2 140 least 539 Field 43631 6065106 319 S 722 443 22 - 8.3 95.5 - 39 29 69 9.6 231 least 517 Bourque 529300 6059500 321 S 334 176 7 - 8.2 3.1 0.06 33 19 11 2.5 186 least 540 Pinehurst 467751 6057818 322 S 279 152 13 - 8.5 5.0 - 32 13 8 3.8 148 least 518 Marguerite 516000 6052000 327 S 951 660 95 - 8.8 0.7 0.01 17 124 55 45.9 679 least 519 Marie 545000 6054000 328 S 258 156 8 - 8.1 2.8 0.01 26 13 6 2.2 141 least 520 Leming 532000 6050000 331 S 194 168 35 - 8.2 2.4 0.20 19 14 9 5.5 118 least 600 Dolly 549700 6048200 335 S 441 239 40 - 8.5 5.0 0.55 14 32 22 5.0 244 least 521 Tucker 525300 6042700 337 S 400 234 13 - 8.1 5.3 0.03 28 24 21 3.4 212 least 522 Ethel 542102 6042790 339 S 302 167 11 - 8.3 4.0 0.01 29 16 12 2.7 158 least 546 Cold 560000 6045000 340 S 240 155 8 - 8.3 6.5 0.16 31 12 9 2.1 140 least 523 Hilda 537000 6041000 340 S 670 382 17 - 8.4 15.5 0.02 21 38 73 6.7 327 least 596 Manatokan 503000 6035000 344 S 392 211 16 - 8.7 8.5 0.22 35 27 9 7.1 203 least

(a) Lake Identifier used on map showing lake locations. (b) UTM coordinates NAD 83, Zone 12. (c) Distance and direction relative to the Northern Lights Project. (d) Alkalinity of 1 mg/L CaCO3 = 20 µeq/L, or 50 mg/L CaCO3 = 1 meq/L. (e) Identifier used by previous EIAs; refer to Section 1.4.2.4 (f) Identifier used by Syncrude (2000). (g) Identifier used by Erickson (1987). (h) Identifier used by WRS (2004) for a survey of 34 lakes conducted by Alberta-Pacific Forest Industries in 1999. (i) Identifier used by WRS (2004) for one hundred ponds sampled within the Oil Sands Region during September 2000. (j) Identifier used by RAMP (2004). (k) Identifier used by Saffran and Trew (1996). (l) Identifier used in Volume 7, Section 3.3 of the Application.

Page 34: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 31 -

1.5.1.2 Acid Sensitivity of Streams

Alkalinity of Local Streams and Rivers

Available alkalinity data for streams and rivers (Table 5) suggest that the degree of sensitivity to episodic acidification is low in the vicinity of the Northern Lights Project. Seasonal median alkalinity values vary between 68 and 167 mg/L as CaCO3, which correspond to 1,360 and 3,340 µeq/L respectively (Table 5). The seasonal medians are above 200 µeq/L, which is the upper limit of the ANC range considered indicative of acid sensitivity in streams (Boward et al. 1999). The lowest seasonal minimum value of 800 µeq/L was measured in spring in the Firebag watershed upstream of the Northern Lights Project, and is well above the threshold limit of 200 µeq/L for designating a river or stream acid-sensitive.

Watershed Characteristics

Watershed characteristics in the Regional Study Area (RSA) are also mostly inconsistent with those considered to predispose streams to episodic acidification (i.e., high elevation, steep topography, large areas of exposed bedrock, deep snowpack and shallow, base-poor soils; Sullivan 2000). The topography of the RSA is generally flat with the exception of the Athabasca River escarpment and the Birch Mountains, and therefore tends to release meltwaters slowly. Exposed bedrock is rare. The Oil Sands Region is generally not prone to weather events triggering rapid snowmelt, but is rather characterized by gradual warming during the spring.

Climate Characteristics

Based on climate normals for northeastern Alberta (Environment Canada 1998), snowpack accumulation in the RSA can be qualitatively classified as “low to moderate”. The long-term average annual snowfall is approximately 120 cm in this region, with a resulting snowpack that would be considerably lower due to compaction. About 30% of the total annual average precipitation falls as snow in this region.

Acid Pulse Monitoring

Spring acid pulses of low magnitude have been observed in the Oil Sands Region. AENV monitored acid pulses periodically between 1989 and 2001 in the Firebag, Muskeg and Steepbank rivers, as well as in outflows from lakes L4 and L7 (1999 only) (WRS 2002). Spring acid pulses were observed in the Firebag and Steepbank rivers (WRS 2002) and small pH depressions were recorded in the Muskeg River in 1989 and 1998.

Page 35: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 32 -

Table 5 Summary of Alkalinity and pH Data Available for Streams and Rivers Near the Northern Lights Project Winter Spring Summer Fall

River/Stream Parameter Units Median Minimum n Median Minimum n Median Minimum n Median Minimum n

Minimum Alkalinity

pH (field) - 7.0 6.9 7 7.5 6.9 12 7.5 6.5 4 7.6 6.4 6 -

pH (lab) - 7.7 7.1 11 7.6 7.3 23 8.1 7.2 8 8.1 7.4 7 -

total alkalinity mg/L 109 106 11 68 40 23 90 50 8 91 57 7 40

Steams in the Upper Firebag Watershed (1996 to 2006)

total alkalinity µeq/L 2,180 2,120 11 1,360 800 23 1,790 1,000 8 1,820 1,140 7 800

pH (field) - 5.7 5.2 5 7.1 7.0 4 7.5 7.3 4 9.4 7.8 2 -

pH (lab) - 8.1 7.4 6 7.8 7.6 4 8.2 8.1 4 8.0 7.9 6 -

total alkalinity mg/L 167 128 6 90 63 4 126 111 4 127 95 6 63

Streams in the Upper Marguerite Watershed (1998 to 2006)

total alkalinity µeq/L 3,340 2,650 6 1,800 1,252 4 2,520 2,220 4 2,530 1,904 6 1,252

n = Number of samples. - = No data or not applicable.

Page 36: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 33 -

Analysis of the data collected during acid pulse studies by WRS (2002) revealed that almost all (greater than 90%) of the ANC decline during acid pulses could be attributed to dilution by meltwaters. Naturally occurring organic acids accounted for up to 6.5% of the ANC decline. Nitrate loading was not a significant factor contributing to ANC decline in stream water. The maximum ANC decline attributable to sulphate (presumably derived from air emissions) was 4.5% in the Firebag River, but the effect of sulphate on ANC was typically less than 1%. The peaks in H+ ion concentrations observed in most of the rivers were very small and usually represented drops in pH of less than 0.5 pH units. It was noted that both the pH and buffering capacity of the rivers studied were relatively high, and that the degree of pH depression during acid pulses was too small to represent a threat to aquatic biota.

Summary

In summary, available water chemistry data and watershed characteristics in the RSA, are not indicative of a high degree of stream sensitivity to episodic acidification. According to WRS (2002), spring acid pulses observed in the Oil Sands Region during recent AENV studies were almost entirely attributable to natural factors.

1.5.2 Background Acid Input Rates

Background lake net PAI values, estimated from lake water quality data and the corresponding modelled background acid deposition rates, are provided in Table 6. Although there are some exceptions, lake water quality data suggest that present-day N and sulphate input rates are typically much lower than the background nitrate deposition rates estimated by the AENV, because watershed processes are retaining nitrogen and sulphate as expected. Estimated background acid input from N ranges from less than 0.00001 to 0.04 keq/ha/yr, whereas AENV’s estimates of deposition rates from the RELAD model range from 0.07 to 0.11 keq/ha/yr.

Estimated present-day sulphate input rates range from 0.0008 to greater than 1 keq/ha/yr; however the mean value based on the 380 lake data set is 0.1 ± 0.2 keq/ha/yr and over 95% of background acid input rates from sulphate were below 0.5 keq/ha/yr. AENV estimates of sulphate deposition rates from the RELAD model range from 0.08 to 0.13 keq/ha/yr. There is a small number of lakes with relatively high sulphate concentrations. The high sulphate concentrations appear to be outliers compared to typical regional values, and may reflect geological sources of sulphate.

Page 37: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d) 609 Lake C(l) 5 ENE 5.3 0.0137 6.0000 0.1620 0.0790 0.1015 0.0710 0.0094 283 163(f) 11 ESE 10.1 0.0243 3.0500 0.0014 0.0790 0.0484 0.0710 0.0001 103 Audet 13 NE 96.5 0.2075 0.9500 0.0091 0.0790 0.0134 0.0710 0.0004 418 P35(i) 13 E 1.3 0.0029 1.8000 0.1000 0.0790 0.0269 0.0710 0.0051 484 PTH8(i) 14 ESE 0.6 0.0015 2.2000 0.1000 0.0790 0.0358 0.0710 0.0056 80 P5(i), UNL-3(e) 14 SSE 3.0 0.0074 2.6286 0.1000 0.0860 0.0422 0.0770 0.0055 483 PTH7(i) 15 E 0.9 0.0025 3.5000 0.1000 0.0790 0.0618 0.0710 0.0061 278 157(f) 15 NE 42.3 0.1025 0.1620 0.0032 0.0790 0.0026 0.0710 0.0002 79 UNL-2(e) 16 S 7.4 0.0213 4.9667 0.1000 0.0860 0.0934 0.0770 0.0064 282 162(f) 17 E 10.2 0.0092 0.2750 0.0046 0.0790 0.0016 0.0710 0.0001 417 P34(i) 18 ENE 0.9 0.0020 2.5000 0.1000 0.0790 0.0370 0.0710 0.0051 5 McClelland 18 WSW 230.4 0.3926 5.5135 0.0630 0.0860 0.0617 0.0770 0.0024 481 PTH5(i) 18 ENE 1.0 0.0023 1.5250 0.0545 0.0790 0.0241 0.0710 0.0030 482 PTH6(i) 19 ENE 0.9 0.0023 3.2000 0.1000 0.0790 0.0549 0.0710 0.0059 415 P3(i) 22 SW 1.9 0.0045 5.3000 0.1000 0.0860 0.0842 0.0770 0.0054 411 P2(i) 22 SW 2.6 0.0064 9.2000 0.1000 0.0860 0.1463 0.0770 0.0055 612 Compensation 23 E 34.4 0.1084 0.2000 0.0090 0.0790 0.0041 0.0710 0.0006 78 UNL-1(e) 24 SSW 13.1 0.0330 3.3500 0.1000 0.0860 0.0555 0.0770 0.0057 611 Lake F 25 ENE 12.8 0.0469 0.2500 0.0140 0.0790 0.0060 0.0710 0.0012 419 P38(i) 26 ESE 0.3 0.0007 1.4000 0.1000 0.0860 0.0186 0.0770 0.0046 277 153(f) 28 NE 17.4 0.0421 - 0.0005 0.0790 - 0.0710 <0.0010 81 L1(k), L1(j) 31 SSE 4.3 0.0160 3.0800 0.0055 0.0860 0.0753 0.0770 0.0005 4 Kearl 31 SSW 71.1 0.1690 4.9373 0.0392 0.0860 0.0771 0.0770 0.0021 420 P4(i) 31 SW 2.6 0.0066 3.8000 0.1000 0.0860 0.0632 0.0770 0.0057 280 160(f) 32 ENE 24.4 0.0628 0.2400 0.0037 0.0790 0.0041 0.0710 0.0002 464 PM1(i) 32 SSE 0.5 0.0021 1.1000 0.1000 0.0860 0.0298 0.0770 0.0093 281 161(f) 33 E 8.1 0.0108 0.2500 0.0135 0.0790 0.0022 0.0710 0.0004 333 L45(k) 33 N 36.1 0.0690 2.5000 0.0010 0.0790 0.0314 0.0710 <0.0001 317 L2(k) 33 SSE 9.8 0.0410 2.5000 0.0100 0.0860 0.0690 0.0770 0.0009 466 PM3(i) 33 SSE 1.0 0.0042 1.7000 0.1000 0.0860 0.0466 0.0770 0.0094 318 L3(k) 33 SSE 7.2 0.0300 2.5000 0.0100 0.0860 0.0689 0.0770 0.0009 465 PM2(i) 33 SSE 0.7 0.0030 1.2000 0.1000 0.0860 0.0326 0.0770 0.0093 279 158(f) 33 ENE 14.5 0.0294 0.2500 0.0057 0.0790 0.0033 0.0710 0.0003 149 P23(i), P23(j) 34 SSE 7.3 0.0296 1.0290 0.0258 0.0860 0.0273 0.0770 0.0023 421 P43(i) 37 SSE 3.5 0.0138 2.4000 0.1000 0.0860 0.0625 0.0770 0.0089 413 P24(i) 37 SSE 7.6 0.0319 1.6000 0.1000 0.0860 0.0443 0.0770 0.0095 430 P52(i) 37 WNW 0.9 0.0010 52.7000 0.1000 0.0810 0.3723 0.0720 0.0024 473 PT6(i) 38 WNW 0.2 0.0002 27.3000 0.1000 0.0810 0.1960 0.0720 0.0025 85 164(f), 17(g), L10(k) 38 ESE 11.4 0.0346 1.3475 0.0081 0.0870 0.0269 0.0780 0.0006 432 P6(i) 38 SSE 4.0 0.0158 2.5000 0.1000 0.0860 0.0646 0.0770 0.0089 6 LK-1(e) 39 W 3.8 0.0024 87.9000 0.1000 0.0810 0.3596 0.0720 0.0014 476 PTH1(i) 40 NNE 1.0 0.0013 5.8000 0.1000 0.0790 0.0515 0.0710 0.0030 152 P7(i), P7(j) 40 SSE 1.9 0.0072 0.5705 0.0255 0.0860 0.0140 0.0770 0.0021 414 P25(i) 40 SSE 8.6 0.0364 1.9000 0.1000 0.0860 0.0529 0.0770 0.0095 440 P8(i) 41 SSE 2.1 0.0083 1.7000 0.1000 0.0860 0.0435 0.0770 0.0088 332 L44(k) 41 N 9.4 0.0019 2.5000 0.0010 0.0790 0.0033 0.0710 <0.0001 270 143(f) 41 N 28.3 0.0452 1.9000 0.0014 0.0790 0.0200 0.0710 0.0001 99 144(f), L43(k) 41 N 23.0 0.0473 2.1550 0.0006 0.0790 0.0291 0.0710 <0.0001 104 Johnson 42 ENE 73.5 0.1514 1.7675 0.0076 0.0760 0.0239 0.0680 0.0004 271 145(f) 42 NNE 18.6 0.0264 1.9500 0.0010 0.0790 0.0182 0.0710 <0.0001 18 Lillian 43 WSW 7.4 0.0036 3.0500 0.1250 0.0880 0.0096 0.0790 0.0013 485 PTH9(i) 44 S 2.6 0.0072 3.9000 0.1000 0.0860 0.0698 0.0770 0.0061 12 LK-7(e) 44 WSW 2.1 0.0011 3.8000 0.1000 0.0880 0.0128 0.0790 0.0012 480 PTH2(i) 44 NNE 1.2 0.0021 4.8000 0.1000 0.0790 0.0554 0.0710 0.0040 477 PTH10(i) 45 S 8.4 0.0276 2.4000 0.1000 0.0860 0.0517 0.0770 0.0074 19 Calumet 45 WSW 57.5 0.0336 41.1667 0.1333 0.0880 0.1579 0.0790 0.0018 330 L41(k) 45 NNE 36.5 0.0458 6.0000 0.0070 0.0790 0.0495 0.0710 0.0002 54 UW4(e) 46 SW 12.6 0.0229 5.0000 0.1000 0.0860 0.0598 0.0770 0.0041 607 P2(e) 46 SW 6.6 0.0122 4.5500 0.1000 0.0860 0.0555 0.0770 0.0042

Page 38: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment (continued)

- 35 -

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d)

82 170(f), 14(g), L4(k), A170 (L4)(j) 46 SSE 18.2 0.0833 3.8497 0.0310 0.0860 0.1155 0.0770 0.0032

150 P27(i), P27(j) 47 SSE 4.0 0.0172 0.8258 0.0434 0.0860 0.0231 0.0770 0.0042 268 141(f) 47 N 42.8 0.0777 1.2600 0.0003 0.0790 0.0150 0.0710 <0.0001 55 UW5(e) 47 SW 12.4 0.0234 5.1500 0.1000 0.0860 0.0637 0.0770 0.0042 53 UW3(e) 47 SW 20.6 0.0388 5.9000 0.1000 0.0860 0.0731 0.0770 0.0042 605 P1(e) 47 SW 18.3 0.0346 5.4500 0.1000 0.0860 0.0677 0.0770 0.0043 51 UW1(e) 47 SW 20.5 0.0386 5.8000 0.1000 0.0880 0.0717 0.0790 0.0042 445 P9(i) 47 SE 4.9 0.0196 2.2000 0.1000 0.0860 0.0578 0.0770 0.0090 269 142(f) 47 NNE 36.6 0.0872 1.3600 0.0003 0.0790 0.0213 0.0710 <0.0001 52 UW2(e) 47 SW 36.9 0.0699 3.5500 0.1000 0.0880 0.0442 0.0790 0.0043 267 139(f) 47 N 10.5 0.0108 0.7700 <0.0001 0.0790 0.0052 0.0710 <0.0001 265 Pearson 47 NNW 16.8 0.0137 1.3300 <0.0001 0.0790 0.0071 0.0710 <0.0001 429 P51(i) 48 WNW 0.4 0.0018 23.7000 0.1000 0.0810 0.6399 0.0720 0.0093 284 Big Snuff 48 ESE 17.3 0.0536 0.1300 0.0076 0.0870 0.0026 0.0780 0.0005 56 UW6(e) 48 SW 9.7 0.0166 8.7500 0.1000 0.0880 0.0987 0.0790 0.0039 266 Kress 48 N 31.0 0.0659 0.1000 <0.0001 0.0790 0.0014 0.0710 <0.0001 431 P54(i) 48 WNW 0.4 0.0013 10.9000 0.1000 0.0810 0.2126 0.0720 0.0067 276 152(f) 48 NNE 21.9 0.0275 0.5900 0.0004 0.0790 0.0049 0.0710 <0.0001 331 L42(k) 49 N 49.6 0.0743 2.5000 0.0010 0.0790 0.0246 0.0710 <0.0001 20 Isadore's 49 SW 28.0 0.0880 54.9143 0.0671 0.0880 1.1343 0.0790 0.0048 274 149(f) 49 NNE 7.1 0.0130 0.8300 0.0004 0.0790 0.0100 0.0710 <0.0001 98 146(f), L40(k) 49 NNE 5.6 0.0015 1.5200 0.0006 0.0790 0.0027 0.0710 <0.0001 321 L11(k) 49 ESE 19.7 0.0590 2.5000 0.0020 0.0870 0.0492 0.0780 0.0001 264 136(f) 50 NNW 5.2 0.0029 0.2100 0.0005 0.0790 0.0008 0.0710 <0.0001 426 P48(i) 50 W 4.6 0.0214 14.7000 0.1000 0.0810 0.4462 0.0720 0.0104 273 148(f) 50 NNE 6.2 0.0101 0.4600 0.0002 0.0790 0.0049 0.0710 <0.0001 472 PT5(i) 50 WNW 1.5 0.0076 1.9000 0.1000 0.0810 0.0625 0.0720 0.0113 606 P4(e) 51 SSW 9.5 0.0180 2.5250 0.1000 0.0860 0.0312 0.0770 0.0042 17 LK-12(e) 51 W 2.5 0.0079 25.4000 0.1000 0.0810 0.5199 0.0720 0.0070 474 PT8(i) 51 W 0.1 0.0003 31.8000 0.1000 0.0810 0.7552 0.0720 0.0081 10 LK-5(e) 52 W 0.8 0.0020 30.4333 0.1000 0.0810 0.5309 0.0720 0.0060 11 LK-6(e) 52 W 3.8 0.0105 26.4000 0.1000 0.0810 0.4825 0.0720 0.0063 262 Dianne 52 NW 295.8 0.5151 27.6900 0.0965 0.0810 0.3168 0.0720 0.0038 422 P44(i) 53 SSE 2.3 0.0088 3.8000 0.1000 0.0860 0.0962 0.0770 0.0087 151 P49(i), P49(j) 53 WNW 0.8 0.0044 1.4103 0.0255 0.0810 0.0485 0.0720 0.0030 428 P50(i) 54 WNW 2.9 0.0148 7.5000 0.1000 0.0810 0.2529 0.0720 0.0116 83 L7(k), L7(j) 54 SSE 21.5 0.1010 3.6650 0.0085 0.0860 0.1130 0.0770 0.0009 320 L9(k) 55 SE 33.4 0.1350 2.5000 0.0020 0.0870 0.0664 0.0780 0.0002 319 L6(k) 55 SSE 32.4 0.1370 2.5000 0.0020 0.0860 0.0695 0.0770 0.0002 423 P45(i) 55 SE 1.3 0.0040 8.2000 0.2000 0.0860 0.1630 0.0770 0.0136 263 134(f) 55 NNW 8.2 0.0067 - 0.0002 0.0810 - 0.0720 <0.0001 272 Poplar 56 NNE 48.0 0.1173 1.0600 0.0004 0.0790 0.0170 0.0710 <0.0001 86 166(f), L12(k) 56 ESE 7.1 0.0217 1.4900 0.0010 0.0870 0.0298 0.0780 0.0001 7 LK-2(e) 56 W 7.3 0.0182 1.7500 0.1000 0.0810 0.0286 0.0720 0.0056 140 L5(k), P28(i) 58 S 11.8 0.0480 2.5500 0.0510 0.0860 0.0683 0.0770 0.0047 87 167(f), L13(k) 58 ESE 15.7 0.0468 1.3700 0.0439 0.0870 0.0269 0.0780 0.0030 424 P46(i) 59 S 1.4 0.0047 2.9000 0.1000 0.0860 0.0647 0.0770 0.0077 261 Ronald 59 NW 346.1 0.5638 34.0800 0.0252 0.0810 0.3647 0.0720 0.0009 412 P20(i) 59 WNW 0.8 0.0040 3.2000 0.1000 0.0810 0.1023 0.0720 0.0110 260 131(f) 59 NW 11.9 0.0125 56.0400 0.0044 0.0810 0.3881 0.0720 0.0001 439 P79(i) 59 WNW 2.3 0.0121 2.8000 0.1000 0.0810 0.0959 0.0720 0.0117 275 151(f) 59 NE 92.0 0.2677 0.9600 0.0004 0.0760 0.0184 0.0680 <0.0001 438 P77(i) 60 WNW 1.3 0.0064 2.7000 0.1000 0.0810 0.0901 0.0720 0.0114 471 PT4(i) 60 WNW 1.7 0.0091 3.0000 0.1000 0.0810 0.1030 0.0720 0.0118 348 Currie 60 NNE 15.5 0.0225 1.5000 0.0040 0.0790 0.0143 0.0710 0.0001

105 150(f), 9(g), L39(k), A-150 (L39)(j) 60 NE 19.2 0.0501 2.0472 0.0052 0.0760 0.0350 0.0680 0.0003

88 168(f), 12(g), L14(k) 61 ESE 29.5 0.0958 1.7100 0.0094 0.0870 0.0365 0.0780 0.0007

Page 39: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment (continued)

- 36 -

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d) 475 PT9(i) 61 W 0.6 0.0025 4.7000 0.1000 0.0880 0.1343 0.0790 0.0098 425 P47(i) 61 S 16.7 0.0628 3.2000 0.1000 0.0860 0.0789 0.0770 0.0085 467 PM4(i) 62 S 17.4 0.0659 2.8000 0.1000 0.0860 0.0697 0.0770 0.0085 433 P60(i) 63 WNW 3.5 0.0183 4.7000 0.1000 0.0810 0.1633 0.0720 0.0119 84 L8(k), L8(j) 63 SSE 10.6 0.0450 1.4061 0.0152 0.0860 0.0394 0.0770 0.0015 329 Mildred 64 SSW 9.1 0.0147 42.0000 0.1390 0.0880 0.4457 0.0790 0.0051 470 PT3(i) 64 WNW 0.6 0.0031 3.8000 0.1000 0.0810 0.1288 0.0720 0.0116 416 P30(i) 65 S 1.8 0.0060 2.5000 0.1000 0.0860 0.0533 0.0770 0.0073 478 PTH11(i) 65 S 2.7 0.0098 2.5000 0.1000 0.0860 0.0587 0.0770 0.0081 328 Clear 67 WNW 107.2 0.3030 2.5000 0.0100 0.0810 0.0464 0.0720 0.0006 436 P70(i) 67 W 1.7 0.0092 2.1000 0.1000 0.0810 0.0754 0.0720 0.0123 347 L64(k) 67 NNE 9.7 0.0018 1.5000 0.0020 0.0790 0.0018 0.0710 <0.0001 410 P18(i) 69 WSW 0.6 0.0021 27.6000 0.1000 0.0880 0.6646 0.0790 0.0083 327 Eaglenest 69 WNW 128.4 0.3070 2.5000 0.0100 0.0810 0.0393 0.0720 0.0005 322 L15(k) 69 SE 8.0 0.0260 16.0000 0.0100 0.0870 0.3404 0.0780 0.0007 58 Shipyard 70 SSW 42.9 0.1296 5.2714 0.0760 0.0860 0.1046 0.0770 0.0052 409 P17(i) 70 WSW 0.5 0.0017 31.7000 0.1000 0.0880 0.7614 0.0790 0.0082 468 PT1(i) 70 WNW 1.3 0.0053 6.2000 0.1000 0.0810 0.1642 0.0720 0.0091 435 P69(i) 70 W 1.0 0.0055 1.8000 0.1000 0.0810 0.0668 0.0720 0.0127 334 L48(k) 70 WNW 102.6 0.2780 1.5000 0.0020 0.0810 0.0267 0.0720 0.0001 350 Harwood 70 NE 9.1 0.0138 1.5000 0.0020 0.0760 0.0149 0.0680 0.0001 469 PT2(i) 70 WNW 1.0 0.0045 12.2000 0.1000 0.0810 0.3749 0.0720 0.0105 408 P16(i) 71 WSW 1.0 0.0043 32.6000 0.1000 0.0880 0.9228 0.0790 0.0097 444 P87(i) 71 W 4.1 0.0220 3.2000 0.1000 0.0810 0.1117 0.0720 0.0120 437 P72(i) 71 WNW 1.7 0.0085 13.6000 0.1000 0.0810 0.4357 0.0720 0.0110 153 P94(i), P94(j) 72 SW 0.7 0.0019 12.3780 0.0296 0.0880 0.2198 0.0790 0.0018 434 P61(i) 72 W 0.8 0.0043 2.5000 0.2000 0.0810 0.0839 0.0720 0.0230 608 Suncor_VS_UW1 73 SSW 5.8 0.0170 7.3333 -0.1700 0.0860 0.1407 0.0770 -0.0112 479 PTH12(i) 73 S 1.2 0.0042 2.9000 0.1000 0.0860 0.0652 0.0770 0.0077 102 33(g), L33(k) 73 W 10.2 0.0220 18.0000 0.0135 0.0880 0.2541 0.0790 0.0007

129 2(f), 15(g), E15 (L15b)(j) 74 S 25.0 0.0809 0.6476 0.0065 0.0860 0.0137 0.0770 0.0005

442 P85(i) 75 W 2.2 0.0114 5.6000 0.1000 0.0880 0.1949 0.0790 0.0119 446 P90(i) 76 SW 0.6 0.0016 5.2000 0.1000 0.0880 0.0842 0.0790 0.0056 349 Archer 76 NE 42.9 0.0867 1.5000 0.0180 0.0760 0.0199 0.0680 0.0008 346 Canopener 76 W 10.9 0.0210 1.5000 0.0050 0.0810 0.0190 0.0720 0.0002 406 P11(i) 78 WSW 2.0 0.0080 7.4000 0.1000 0.0880 0.1933 0.0790 0.0090 345 Buoy 78 W 25.2 0.0650 6.0000 0.0170 0.0810 0.1018 0.0720 0.0010 326 Sand 79 W 604.6 1.6020 2.5000 0.0030 0.0810 0.0435 0.0720 0.0002 447 P91(i) 79 SW 13.7 0.0425 6.7000 0.1000 0.0880 0.1365 0.0790 0.0070 441 P84(i) 81 W 0.9 0.0048 3.2000 0.1000 0.0880 0.1072 0.0790 0.0115 92 Otasan 81 WNW 23.4 0.0430 1.3856 0.0020 0.0810 0.0167 0.0720 0.0001 487 PW2(i) 82 WSW 0.6 0.0021 13.3000 0.1000 0.0880 0.3259 0.0790 0.0084 407 P14(i) 82 WSW 8.9 0.0337 24.5000 0.1000 0.0880 0.6081 0.0790 0.0085 106 Bayard 84 WNW 57.2 0.1690 10.3095 0.0673 0.0810 0.2001 0.0720 0.0045 148 P13(i), P13(j) 85 WSW 3.8 0.0120 6.6058 0.0279 0.0880 0.1383 0.0790 0.0020 352 L69(k) 85 WNW 2.4 0.0040 10.0000 0.0030 0.0810 0.1114 0.0720 0.0001 324 N. Gardiner 86 W 1026.5 2.7480 6.0000 0.0020 0.0810 0.1055 0.0720 0.0001 486 PW1(i) 86 WSW 1.8 0.0075 23.2000 0.2000 0.0880 0.6404 0.0790 0.0189 325 L21(k) 87 W 103.2 0.1200 10.0000 0.0020 0.0810 0.0764 0.0720 0.0001 323 S. Gardiner 87 W 1201.3 3.3240 6.0000 0.0020 0.0810 0.1091 0.0720 0.0001 141 4(f), 4(270)(j) 88 S 18.1 0.0411 0.2738 0.0031 0.0860 0.0041 0.0770 0.0002 351 L68(k) 90 WNW 2.1 0.0040 6.0000 0.0050 0.0810 0.0747 0.0720 0.0002 108 Waterlily 90 W 23.2 0.0848 8.8300 0.0072 0.0810 0.2120 0.0720 0.0006 443 P86(i) 90 WSW 3.8 0.0152 51.1000 0.1000 0.0880 1.3327 0.0790 0.0089 488 PW3(i) 91 WSW 0.7 0.0029 6.4000 0.1000 0.0880 0.1689 0.0790 0.0090 155 P97(i), P97(j) 92 SSW 1.8 0.0057 1.3853 0.0307 0.0880 0.0288 0.0790 0.0022 97 Clayton 92 NW 13.1 0.0330 0.6054 0.0021 0.0810 0.0101 0.0720 0.0001 449 P95(i) 94 SW 1.6 0.0059 5.5000 0.1000 0.0880 0.1293 0.0790 0.0081

Page 40: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment (continued)

- 37 -

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d) 107 L60(k), L60(j) 94 W 60.2 0.1630 8.7367 0.0129 0.0840 0.1554 0.0760 0.0008 91 Namur 95 W 224.0 0.3250 7.0800 0.0034 0.0920 0.0675 0.0830 0.0001 101 L49(k), L49(j) 95 WNW 31.1 0.0666 14.6179 0.1069 0.0840 0.2056 0.0760 0.0052 156 P98(i), P98(j) 96 SSW 1.9 0.0070 2.1525 0.0368 0.0880 0.0515 0.0790 0.0030 135 3(f), 16(g) 97 SE 10.9 0.0373 1.3400 0.0127 0.0870 0.0303 0.0780 0.0010 154 P96(i), P96(j) 98 SSW 1.3 0.0034 1.7340 0.0292 0.0880 0.0309 0.0790 0.0018 100 27(g), L47(k), L47(j) 102 W 49.2 0.1016 9.4445 0.0983 0.0840 0.1281 0.0760 0.0046 524 Patterson 103 E 265.0 1.1937 - - 0.0790 - 0.0710 - 405 P101(i) 103 SSW 1.1 0.0038 3.7000 0.1000 0.0880 0.0817 0.0790 0.0076 344 L59(k) 103 W 201.4 0.5209 4.0000 0.0040 0.0840 0.0680 0.0760 0.0002

134 1(f), 25(g), 1 (267)(j) 104 SSW 34.5 0.1182 0.9174 0.0058 0.0880 0.0207 0.0790 0.0004

337 L52(k) 104 WSW 11.1 0.0344 17.0000 0.1360 0.0920 0.3461 0.0830 0.0095 336 L51(k) 105 WSW 65.9 0.1795 5.0000 0.0010 0.0920 0.0895 0.0830 0.0001 335 L50(k) 106 W 14.4 0.0281 11.0000 0.0040 0.0840 0.1409 0.0760 0.0002 338 L53(k) 106 WSW 50.6 0.1800 87.0000 0.4800 0.0920 2.0333 0.0830 0.0385 450 P99(i) 108 SSW 0.5 0.0015 2.9000 0.1000 0.0880 0.0563 0.0790 0.0067 525 Forrest 108 E 434.0 2.0707 - - 0.0790 - 0.0710 - 456 PF2(i) 109 SSW 0.7 0.0023 3.3000 0.1000 0.0880 0.0688 0.0790 0.0071 458 PF4(i) 112 SSW 0.3 0.0008 5.3000 0.1000 0.0880 0.1071 0.0790 0.0069 339 L54(k) 112 WSW 236.9 0.9150 44.0000 0.0480 0.0920 1.1165 0.0830 0.0042 451 PF1(i) 113 SSW 0.6 0.0019 4.0000 0.1000 0.0880 0.0824 0.0790 0.0071 455 PF13(i) 113 S 1.6 0.0049 3.9000 0.1000 0.0860 0.0804 0.0770 0.0071 462 PF8(i) 113 SSW 1.6 0.0048 19.1000 0.1000 0.0860 0.3711 0.0770 0.0067 93 Legend 114 W 93.1 0.1765 2.7645 0.0106 0.0920 0.0344 0.0830 0.0005 142 6(f), 6 (271)(j) 114 SSE 22.0 0.0485 0.3230 0.0233 0.0870 0.0047 0.0780 0.0012 32 Caribou Horn 114 S 8.5 0.0237 6.6775 0.1015 0.0860 0.1233 0.0770 0.0064 527 Beet 115 E 456.1 2.4080 - - 0.0790 - 0.0710 - 457 PF3(i) 116 SSW 0.7 0.0019 3.9000 0.1000 0.0880 0.0662 0.0790 0.0058 526 Preston 116 E 252.5 1.2037 - - 0.0860 - 0.0780 - 529 Sandy-2 118 NE 452.7 0.6243 - - 0.0760 - 0.0680 - 452 PF10(i) 119 S 1.1 0.0036 5.6000 0.2000 0.0980 0.1250 0.0880 0.0153 459 PF5(i) 119 SSW 0.5 0.0014 2.8000 0.1000 0.0880 0.0486 0.0790 0.0060 453 PF11(i) 119 S 1.3 0.0045 2.5000 0.1000 0.0980 0.0584 0.0880 0.0080 96 28(g), L28(k), L28(j) 119 WNW 19.0 0.0448 2.2366 0.0226 0.0840 0.0346 0.0760 0.0012 460 PF6(i) 120 SSW 0.7 0.0022 2.8000 0.1000 0.0880 0.0585 0.0790 0.0072 3 Gregoire 121 S 231.3 0.6655 8.4832 0.0413 0.0980 0.1604 0.0880 0.0027 25 Canoe 122 S 6.1 0.0120 2.2475 0.1076 0.0980 0.0292 0.0880 0.0048 109 Gordon 122 SSE 535.3 0.6495 2.2400 0.0007 0.0860 0.0179 0.0770 <0.0001 463 PF9(i) 122 S 1.3 0.0040 12.3000 0.1000 0.0980 0.2576 0.0880 0.0072 33 Kiskatinaw 122 S 30.1 0.0903 3.0600 0.1015 0.0980 0.0603 0.0880 0.0069 170 Nora 123 SSE 4.9 0.0085 0.1800 0.0016 0.0980 0.0021 0.0880 0.0001 461 PF7(i) 123 S 1.6 0.0056 9.4000 0.1000 0.0980 0.2131 0.0880 0.0078 35 PF12(i), UNL2(e) 123 S 3.3 0.0094 3.2250 0.1010 0.0980 0.0613 0.0880 0.0066 343 L58(k) 124 W 14.4 0.0293 1.5000 0.0050 0.0920 0.0200 0.0830 0.0002 29 Frog 125 S 8.3 0.0251 3.1650 0.1015 0.0980 0.0625 0.0880 0.0069 340 L55(k) 125 WSW 26.2 0.0927 13.0000 0.0030 0.0920 0.3022 0.0830 0.0002 30 Poison 126 S 0.9 0.0015 2.1500 0.1015 0.0980 0.0236 0.0880 0.0038 28 Sucker 127 S 5.1 0.0125 4.4200 0.1012 0.0980 0.0713 0.0880 0.0056 341 L56(k) 127 WSW 37.9 0.1675 8.0000 0.0030 0.0920 0.2323 0.0830 0.0003 89 Rabbit 127 WSW 14.6 0.0347 16.5000 0.0145 0.0920 0.2576 0.0830 0.0008 26 Long -1 127 S 4.5 0.0119 4.5125 0.1008 0.0980 0.0792 0.0880 0.0061 31 Rat Lake 128 S 20.6 0.0620 4.5250 0.0765 0.0980 0.0896 0.0880 0.0052 1 Birch -2 128 S 3.7 0.0109 15.2913 0.0812 0.0980 0.3004 0.0880 0.0055 34 UNL1(e) 129 S 2.3 0.0067 2.0540 0.1015 0.0980 0.0399 0.0880 0.0068 169 Shortt 129 SSE 169.0 0.2943 0.4200 0.0022 0.0960 0.0048 0.0860 0.0001 168 8(f) 130 SSE 22.0 0.0733 0.0600 0.0012 0.0870 0.0013 0.0780 0.0001 27 Pushup 130 S 0.9 0.0018 1.1300 0.0687 0.0980 0.0149 0.0880 0.0031 41 Maqua 133 S 6.1 0.0223 1.8000 - 0.0980 0.0430 0.0880 -

Page 41: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment (continued)

- 38 -

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d) 531 Cluff 134 NE 219.0 1.2564 - - 0.0790 - 0.0710 - 36 UNL3(e) 135 S 1.6 0.0034 4.6550 0.0765 0.0980 0.0669 0.0880 0.0038 171 Gipsy 135 SSE 94.8 0.0631 0.4200 0.0001 0.0960 0.0018 0.0860 <0.0001 40 L11(e) 135 S 0.5 0.0017 2.0000 - 0.0980 0.0453 0.0880 - 110 Birch (f) 136 SSE 73.7 0.1264 2.0850 0.0129 0.0960 0.0235 0.0860 0.0005 39 L10(e) 136 S 1.9 0.0039 5.7667 0.1333 0.0980 0.0783 0.0880 0.0062 172 Baker 137 SSE 16.5 0.0351 0.2300 0.0003 0.0960 0.0032 0.0860 <0.0001 37 Surmont 139 S 82.4 0.3135 2.7333 0.1667 0.0980 0.0683 0.0880 0.0143 174 17(f) 140 S 40.7 0.1875 1.3100 0.0093 0.0980 0.0397 0.0880 0.0010 38 L8(e) 141 S 0.8 0.0030 2.3000 - 0.0980 0.0552 0.0880 - 175 Georges 143 S 155.8 0.5433 6.8200 0.0018 0.0980 0.1563 0.0880 0.0001 115 21(f), A21(j) 144 S 14.7 0.0873 3.3557 0.0127 0.0980 0.1309 0.0880 0.0017 176 20(f) 146 SSE 54.0 0.1836 0.7700 0.0025 0.0980 0.0172 0.0880 0.0002 177 22(f) 146 S 18.8 0.0674 1.2700 0.0043 0.0980 0.0300 0.0880 0.0003 117 26(f), A26(j) 148 S 11.7 0.0367 1.4264 0.0319 0.0980 0.0294 0.0880 0.0023 116 24(f), A24(j) 148 S 8.8 0.0336 1.0420 0.0143 0.0980 0.0262 0.0880 0.0012 143 25(f), 25 (287)(j) 150 S 7.8 0.0223 1.5685 0.0023 0.0980 0.0296 0.0880 0.0001 173 Garson 150 SSE 340.0 0.7907 0.6600 0.0096 0.0960 0.0101 0.0860 0.0005 179 31(f) 151 S 6.4 0.0251 1.4100 0.2794 0.0980 0.0366 0.0880 0.0249 144 27(f), 27 (289)(j) 152 S 7.1 0.0216 0.7563 0.0006 0.0980 0.0152 0.0880 <0.0001 178 30(f) 153 S 21.5 0.1021 0.6300 0.0024 0.0980 0.0196 0.0880 0.0003 130 32(f), 2(g) 153 S 30.4 0.1282 1.3550 0.0166 0.0980 0.0375 0.0880 0.0016 530 La Loche 153 SE 1410.4 1.7912 - - 0.0960 - 0.0860 - 145 28(f), 28 (290)(j) 153 S 3.2 0.0124 0.7393 0.0072 0.0980 0.0186 0.0880 0.0006 195 53(f) 155 SSW 17.3 0.0622 1.5200 0.0010 0.0950 0.0359 0.0850 0.0001 181 35(f) 155 SSE 201.5 0.5933 0.7000 0.0419 0.0960 0.0135 0.0860 0.0028 180 33(f) 157 S 14.2 0.0671 0.5900 0.0005 0.0980 0.0184 0.0880 0.0001 194 Algar 157 SSW 63.2 0.1769 6.1900 0.0003 0.0950 0.1138 0.0850 <0.0001 118 29(f), A29(j) 157 S 5.2 0.0173 0.8103 0.0018 0.0950 0.0176 0.0850 0.0001 182 Formby 158 SSE 51.1 0.1318 0.3200 0.0045 0.0960 0.0054 0.0860 0.0003 196 54(f) 159 SSW 5.2 0.0157 2.8300 0.0008 0.0950 0.0558 0.0850 0.0001 183 37(f) 161 SSE 37.0 0.0675 0.6000 0.0003 0.0960 0.0072 0.0860 <0.0001 184 Watchusk 161 SSE 301.8 0.8826 0.9000 0.0003 0.0960 0.0173 0.0860 <0.0001 316 D254(h) 163 SW 390.6 1.4843 3.3900 0.0008 0.0920 0.0846 0.0830 0.0001 533 McLean 163 SE 235.4 0.3265 - - 0.0960 - 0.0860 - 197 55(f) 166 SSW 18.2 0.0608 3.3600 0.0008 0.0950 0.0736 0.0850 0.0001 185 39(f) 166 SSE 27.4 0.0784 0.5500 0.0015 0.0960 0.0103 0.0860 0.0001 136 34(f), 1(g) 167 S 73.8 0.3009 1.3900 0.0135 0.0980 0.0372 0.0880 0.0012 198 56(f) 167 SSW 20.6 0.0805 1.1400 0.0004 0.0950 0.0293 0.0850 <0.0001 186 40(f) 172 S 27.8 0.0949 3.3400 0.0016 0.0980 0.0749 0.0880 0.0001 222 81(f) 181 S 40.0 0.1866 0.2000 0.0025 0.0980 0.0061 0.0880 0.0003 199 57(f) 181 SSW 18.1 0.0596 3.5000 0.0005 0.0950 0.0758 0.0850 <0.0001 139 91(f), 7(g) 182 SSE 315.9 1.0086 1.6400 0.0128 0.0960 0.0344 0.0860 0.0009 227 Bohn 183 S 200.8 0.5645 1.4400 0.0003 0.0980 0.0266 0.0880 <0.0001 226 88(f) 183 SSW 8.1 0.0262 0.4900 0.0013 0.0950 0.0104 0.0850 0.0001 228 90(f) 184 S 19.9 0.0615 1.8200 0.0012 0.0980 0.0369 0.0880 0.0001 229 Cowper 187 SSE 280.5 0.9115 0.9200 0.0004 0.0960 0.0196 0.0860 <0.0001 218 77(f) 188 SSW 147.3 0.7091 0.5200 0.0135 0.0950 0.0164 0.0850 0.0015 202 Mariana 188 SSW 2.4 0.0075 3.2100 0.0002 0.0950 0.0654 0.0850 <0.0001 221 80(f) 189 SSW 2.7 0.0057 0.2100 0.0004 0.0950 0.0029 0.0850 <0.0001 190 46(f) 190 SW 33.7 0.1310 0.6100 0.0007 0.1030 0.0156 0.0920 0.0001 204 63(f) 191 SSW 40.1 0.1650 0.3600 0.0006 0.0950 0.0097 0.0850 0.0001 203 62(f) 192 SSW 7.1 0.0287 2.1200 0.0016 0.0950 0.0567 0.0850 0.0001 219 78(f) 193 SSW 23.3 0.1019 0.6200 0.0468 0.0950 0.0178 0.0850 0.0046 220 79(f) 194 SSW 15.6 0.0601 0.4300 <0.0001 0.0950 0.0109 0.0850 <0.0001 230 93(f) 195 S 11.3 0.0385 0.6000 0.0011 0.0960 0.0135 0.0860 0.0001 201 60(f) 199 SSW 53.9 0.2219 1.4000 0.0014 0.0950 0.0379 0.0850 0.0001 147 94(f), 94 (354)(j) 200 S 8.5 0.0162 0.3635 0.0020 0.0980 0.0045 0.0880 0.0001 146 82(f), 82 (342)(j) 201 SSW 6.1 0.0139 0.6153 0.0107 0.0950 0.0092 0.0850 0.0005

Page 42: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment (continued)

- 39 -

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d) 223 83(f) 202 SSW 38.1 0.1656 0.4900 <0.0001 0.0950 0.0140 0.0850 <0.0001 231 95(f) 204 S 16.1 0.0591 0.3800 0.0008 0.0980 0.0092 0.0880 0.0001 205 Crow 206 SSW 66.4 0.2860 3.2300 0.0040 0.0950 0.0915 0.0850 0.0004 234 100(f) 206 SSE 49.6 0.2048 0.1900 0.0010 0.0960 0.0052 0.0860 0.0001 225 85(f) 211 SSW 6.4 0.0208 0.5400 0.0005 0.0950 0.0115 0.0850 <0.0001 206 65(f) 211 SSW 111.4 0.4751 3.2600 0.0036 0.0950 0.0913 0.0850 0.0003 235 101(f) 211 SSE 6.5 0.0212 - 0.0009 0.0960 - 0.0860 0.0001 207 66(f) 212 SSW 14.6 0.0566 1.3200 0.0030 0.0950 0.0337 0.0850 0.0003 224 84(f) 212 SSW 9.3 0.0286 0.5700 0.0018 0.0950 0.0116 0.0850 0.0001 122 86(f), A86(j) 213 SSW 4.8 0.0115 1.5363 0.0086 0.0950 0.0243 0.0850 0.0005 121 59(f), A59(j) 213 SSW 44.8 0.1744 1.6390 0.0104 0.1030 0.0419 0.0920 0.0009 233 98(f) 214 S 25.8 0.0923 0.4600 0.0006 0.0980 0.0108 0.0880 <0.0001 232 97(f) 214 S 51.5 0.2006 0.1600 0.0007 0.0980 0.0041 0.0880 0.0001 209 Agnes-1 214 SSW 43.9 0.1747 1.2300 0.0006 0.1030 0.0321 0.0920 0.0001 236 102(f) 215 SSE 16.1 0.0605 0.4800 0.0020 0.0960 0.0118 0.0860 0.0002 200 58(f) 215 SW 21.6 0.0784 0.8100 0.0004 0.1030 0.0193 0.0920 <0.0001 2 Christina 216 S 1233.5 2.8094 6.0589 0.0127 0.0980 0.0907 0.0880 0.0007 211 70(f) 216 SSW 11.5 0.0380 2.3300 0.0004 0.1030 0.0508 0.0920 <0.0001 131 Base 217 SSW 64.1 0.3275 2.1600 0.0137 0.0950 0.0725 0.0850 0.0016 208 67(f) 222 SSW 34.6 0.1553 3.6100 0.0034 0.0950 0.1065 0.0850 0.0003 212 71(f) 222 SSW 21.9 0.0838 5.2300 0.0697 0.1030 0.1317 0.0920 0.0060 210 69(f) 227 SSW 12.6 0.0409 1.1600 0.0014 0.1030 0.0247 0.0920 0.0001 213 72(f) 228 SSW 7.7 0.0252 11.0500 <0.0001 0.1030 0.2382 0.0920 <0.0001 241 108(f) 230 S 51.1 0.1711 0.4900 0.0052 0.1150 0.0108 0.1030 0.0004 167 Wappau 230 S 75.9 0.1902 0.2000 0.0005 0.0950 0.0033 0.0850 <0.0001 237 Winefred 231 S 1185.9 4.0870 0.5200 0.0103 0.0960 0.0118 0.0860 0.0008 240 Kirby 233 S 22.4 0.0610 0.2100 0.0001 0.1150 0.0038 0.1030 <0.0001 242 110(f) 233 S 11.7 0.0402 0.3000 0.0011 0.1170 0.0068 0.1050 0.0001 214 73(f) 235 SSW 24.9 0.0919 3.7700 0.1497 0.1030 0.0915 0.0920 0.0125 243 111(f) 236 S 24.6 0.0912 0.3700 0.0001 0.1150 0.0090 0.1030 <0.0001 238 104(f) 237 SSE 8.7 0.0291 0.2800 0.0006 0.1120 0.0061 0.1010 <0.0001 42 Wiau 237 S 275.7 1.0159 1.4800 0.0668 0.1150 0.0358 0.1030 0.0055 138 Goodwin 241 S 34.6 0.0995 1.3850 0.0127 0.1170 0.0262 0.1050 0.0008 44 UNL1(e) 241 S 24.2 0.0642 1.6000 0.1000 0.1150 0.0278 0.1030 0.0060 50 UNL13(e) 241 S 2.0 0.0068 2.1000 0.1000 0.1150 0.0468 0.1030 0.0076 244 113(f) 241 S 35.1 0.1480 0.1800 0.0002 0.1150 0.0050 0.1030 <0.0001 245 114(f) 244 S 7.2 0.0242 0.1600 0.0001 0.1170 0.0035 0.1050 <0.0001 132 Grist 244 S 118.2 0.4327 1.9500 0.0134 0.1120 0.0469 0.1010 0.0011 49 UNL12(e) 244 S 1.8 0.0061 1.0000 0.1000 0.1150 0.0220 0.1030 0.0075 48 UNL7(e) 244 S 1.5 0.0041 1.4333 0.1000 0.1150 0.0258 0.1030 0.0062 46 UNL4(e) 245 S 0.9 0.0014 1.5500 0.1000 0.1150 0.0153 0.1030 0.0034 47 UNL5(e) 247 S 5.1 0.0158 1.1000 0.1000 0.1150 0.0224 0.1030 0.0070 45 UNL3(e) 247 S 3.7 0.0091 1.0500 0.1000 0.1150 0.0168 0.1030 0.0055 239 106(f) 247 S 3.5 0.0057 0.2300 0.0007 0.1150 0.0025 0.1030 <0.0001 246 116(f) 247 S 11.2 0.0366 1.0500 0.0009 0.1170 0.0226 0.1050 0.0001 247 117(f) 248 S 9.3 0.0359 0.4600 0.0012 0.1170 0.0117 0.1050 0.0001 43 Ipiatik 251 S 67.2 0.2042 1.5000 0.1000 0.1150 0.0299 0.1030 0.0068 248 Clyde 252 S 470.3 0.4883 0.2700 <0.0001 0.1150 0.0018 0.1030 <0.0001 249 Behan 253 S 65.5 0.0795 0.1900 <0.0001 0.1170 0.0015 0.1050 <0.0001 251 Big Chief 260 S 13.0 0.0383 0.9300 0.0005 0.1170 0.0180 0.1050 <0.0001 250 120(f) 261 S 15.8 0.0560 0.2400 0.0009 0.1150 0.0056 0.1030 0.0001 253 123(f) 269 S 7.9 0.0269 1.8400 0.0004 0.1170 0.0412 0.1050 <0.0001 258 128(f) 274 S 12.0 0.0411 2.9600 0.0009 0.1150 0.0664 0.1030 0.0001 254 124(f) 274 S 125.0 0.3125 0.5400 <0.0001 0.1170 0.0089 0.1050 <0.0001 259 Logan 275 S 244.6 0.9311 4.6800 0.0005 0.1150 0.1171 0.1030 <0.0001 255 125(f) 279 S 22.0 0.0831 2.9800 <0.0001 0.1170 0.0738 0.1050 <0.0001 257 Heart 282 S 495.1 1.7602 3.3500 0.0006 0.1170 0.0783 0.1050 0.0001 256 Piche 282 S 555.1 1.9812 3.6200 0.0004 0.1170 0.0849 0.1050 <0.0001 252 122(f) 284 S 18.8 0.0488 0.7900 0.0010 0.1170 0.0135 0.1050 0.0001

Page 43: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6 Modelled Background Acid Deposition Rates, Estimated Background Acid Input and Data Used to Calculate Background Acid Input for the 380 Lakes Included in the Assessment (continued)

- 40 -

Lake Identifier(a) Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Sulphate

[mg/L] Nitrate + Nitrite

[mg/L] Modelled Sulphate

Background Deposition [keq/ha/yr](c)

Estimated Background Acid Input from Sulphate

[keq/ha/yr](d)

Modelled Nitrate Background Deposition

[keq/ha/yr](c)

Estimated Background Acid Input from Nitrate

[keq/ha/yr](d) 68 LK8(e) 299 S 3.2 0.0062 0.9000 - 0.1120 0.0115 0.1010 - 515 Unnamed 5(e) 301 S 5.8 0.0077 13.0000 0.0150 0.1150 0.1128 0.1030 0.0004 598 UN-5(e) 301 S 247.6 0.7010 0.1000 0.0030 0.1150 0.0019 0.1030 0.0002 597 UN-2(e) 301 S 237.2 0.6720 0.1000 0.0030 0.1150 0.0019 0.1030 0.0002 67 LK7(e) 303 S 8.1 0.0168 1.1667 0.1000 0.1120 0.0159 0.1010 0.0047 536 Touchwood 304 S 137.3 0.2134 3.6600 - 0.1150 0.0374 0.1030 - 537 La Biche 305 SSW 4279.2 11.1540 0.0500 - 0.1170 0.0009 0.1050 - 66 LK6(e) 306 S 3.8 0.0078 1.4000 0.1000 0.1120 0.0186 0.1010 0.0046 599 UN-6(e) 306 S 247.8 0.7010 0.1000 0.0730 0.1150 0.0019 0.1030 0.0047 65 LK5(e) 307 S 17.9 0.0361 1.5000 0.1000 0.1120 0.0199 0.1010 0.0046 64 LK4(e) 308 S 6.6 0.0124 1.0000 0.1000 0.1120 0.0125 0.1010 0.0043 60 Burnt 309 S 141.4 0.2643 5.2875 0.1333 0.1120 0.0649 0.1010 0.0056 63 LK3(e) 309 S 2.0 0.0039 1.0000 0.1000 0.1120 0.0129 0.1010 0.0044 62 LK2(e) 310 S 0.8 0.0013 1.0000 - 0.1120 0.0104 0.1010 - 61 LK1(e) 312 S 12.1 0.0244 1.7667 0.1000 0.1120 0.0234 0.1010 0.0046 516 Sinclair-1 316 S 56.9 0.0945 7.8667 0.0560 0.1150 0.0858 0.1030 0.0021 538 Wolf 317 S 754.7 1.6632 2.7700 0.0010 0.1150 0.0401 0.1030 <0.0001 69 May 319 S 189.0 0.2998 3.6138 0.0448 0.1120 0.0377 0.1010 0.0016 539 Field 319 S 12.7 0.0333 95.4623 - 0.1170 1.6437 0.1050 - 517 Bourque 321 S 100.0 0.1494 3.0636 0.0563 0.1150 0.0301 0.1030 0.0019 540 Pinehurst 322 S 186.0 0.2776 5.0000 - 0.1170 0.0490 0.1050 - 518 Marguerite 327 S 39.3 0.0095 0.7000 0.0090 0.1150 0.0011 0.1030 <0.0001 519 Marie 328 S 478.0 0.6651 2.7646 0.0099 0.1120 0.0253 0.1010 0.0003 520 Leming 331 S 44.0 0.0593 2.4333 0.2000 0.1120 0.0216 0.1010 0.0061 600 Dolly 335 S 244.3 0.6910 5.0000 0.5500 0.1120 0.0929 0.1010 0.0350 521 Tucker 337 S 277.0 0.4614 5.2836 0.0323 0.1150 0.0578 0.1030 0.0012 522 Ethel 339 S 594.0 0.6473 4.0232 0.0137 0.1120 0.0288 0.1010 0.0003 546 Cold 340 S 6513.0 18.1800 6.5390 0.1575 0.1120 0.1199 0.1010 0.0099 523 Hilda 340 S 79.8 0.0515 15.5489 0.0162 0.1120 0.0659 0.1010 0.0002 596 Manatokan 344 S 409.3 1.1520 8.5000 0.2200 0.1320 0.1572 0.1090 0.0139

(a) Lake Identifier used on map showing lake locations. (b) Distance and direction relative to the Northern Lights Project. (c) Estimated deposition rates from the AENV RELAD modelling (Cheng 2001). (d) Estimated background Acid Input based on historical nitrate and sulphate concentration in lakes (Section 1.4.3.3). (e) Identifier used by previous EIAs; refer to Section 1.4.2.4. (f) Identifier used by Syncrude (2000). (g) Identifier used by Erickson (1987). (h) Identifier used by WRS (2004) for a survey of 34 lakes conducted by Alberta-Pacific Forest Industries in 1999. (i) Identifier used by WRS (2004) for one hundred ponds sampled within the Oil Sands Region during September 2000. (j) Identifier used by RAMP (2004). (k) Identifier used by Saffran and Trew (1996). (l) Identifier used in Volume 7, Section 3.3 of the Application.

Page 44: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 41 -

1.5.3 Critical Loads of Acidity

Critical loads of acidity for lakes, and data used to calculate critical loads, are provided in Table 7. Previously calculated critical loads also are provided.

In some cases, the critical loads calculated without adjusting for organic acids (Table 7) are different from previously calculated critical loads (referred to as “literature critical loads”). This reflects use of all available water quality data to calculate critical loads for this assessment, whereas previously calculated critical loads were often based on water quality data collected during a single sampling event.

Critical loads adjusted for organic acids are typically lower than those calculated without inclusion of organic acids. For lakes with lower ANC values, the difference between the two calculations is more pronounced; for lakes with higher ANC values, the two calculations provide similar results. Lakes lacking DOC and pH data are in the higher ANC range; therefore, critical loads calculated using the two methods would likely be similar.

Page 45: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

609 Lake C(l) 5 ENE 5.3 0.0137 27 10 3 0.8 41 7.5 1609 217 268 1.784 1.825 - - 283 163(f) 11 ESE 10.1 0.0243 32 13 1 0.3 30 7.9 1752 209 200 2.003 1.995 1.448 WRS 2004 103 Audet 13 NE 96.5 0.2075 33 14 6 1.5 18 8.0 2821 144 130 2.045 2.035 2.005 WRS 2004 418 P35(i) 13 E 1.3 0.0029 17 8 0 0.3 20 8.1 1460 174 142 1.050 1.027 1.035 WRS 2004 484 PTH8(i) 14 ESE 0.6 0.0015 16 9 0 <0.01 25 7.7 1300 153 172 1.099 1.114 1.133 WRS 2004 80 P5(i), UNL-3(e) 14 SSE 3.0 0.0074 38 14 2 0.9 13 7.9 2897 96 102 2.362 2.367 2.034 Imperial 2005 483 PTH7(i) 15 E 0.9 0.0025 24 14 0 <0.01 24 8.0 2100 191 166 1.944 1.922 1.961 WRS 2004 278 157(f) 15 NE 42.3 0.1025 40 14 6 1.1 20 8.1 3148 173 142 2.595 2.572 2.536 WRS 2004 79 UNL-2(e) 16 S 7.4 0.0213 72 31 3 1.0 17 8.2 5853 160 126 5.695 5.664 4.289 Imperial 2005 282 162(f) 17 E 10.2 0.0092 31 13 1 0.4 19 7.8 2537 127 133 0.724 0.726 0.692 WRS 2004 417 P34(i) 18 ENE 0.9 0.0020 20 11 0 <0.01 24 7.8 1660 160 166 1.304 1.309 1.308 WRS 2004 5 McClelland 18 WSW 230.4 0.3926 24 17 5 3.0 13 8.3 2649 131 99 1.508 1.491 1.419 WRS 2004 481 PTH5(i) 18 ENE 1.0 0.0023 45 17 6 1.4 22 8.0 3304 176 152 2.947 2.929 2.005 WRS 2004 482 PTH6(i) 19 ENE 0.9 0.0023 23 11 0 0.3 25 7.8 1840 167 172 1.634 1.638 1.644 WRS 2004 415 P3(i) 22 SW 1.9 0.0045 50 11 6 1.0 20 7.8 3460 134 142 2.745 2.752 2.717 WRS 2004 411 P2(i) 22 SW 2.6 0.0064 42 12 1 0.7 16 8.3 2960 166 118 2.352 2.315 2.317 WRS 2004 612 Compensation 23 E 34.4 0.1084 33 14 4 0.9 18 7.3 2644 76 128 2.809 2.861 - - 78 UNL-1(e) 24 SSW 13.1 0.0330 54 14 9 0.8 20 8.2 3840 177 139 3.347 3.316 3.332 Imperial 2005 611 Lake F 25 ENE 12.8 0.0469 31 14 1 0.6 35 7.7 2077 207 233 3.081 3.111 - - 419 P38(i) 26 ESE 0.3 0.0007 12 4 1 <0.01 16 7.5 860 82 118 0.566 0.588 0.621 WRS 2004 277 153(f) 28 NE 17.4 0.0421 14 4 1 0.5 17 8.7 934 243 124 0.868 0.777 0.775 WRS 2004 81 L1(k), L1(j) 31 SSE 4.3 0.0160 3 1 1 0.3 0 6.3 110 0 21 0.183 0.208 0.200 WRS 2004 4 Kearl 31 SSW 71.1 0.1690 20 7 11 1.0 22 8.0 1897 171 153 1.534 1.521 1.416 WRS 2004 420 P4(i) 31 SW 2.6 0.0066 41 14 18 1.1 20 8.2 3700 190 142 3.214 3.176 3.154 WRS 2004 280 160(f) 32 ENE 24.4 0.0628 31 12 2 0.6 21 7.8 1956 146 149 2.068 2.071 1.584 WRS 2004 464 PM1(i) 32 SSE 0.5 0.0021 0 0 0 0.3 21 4.2 50 6 148 -0.273 -0.088 -0.038 WRS 2004 281 161(f) 33 E 8.1 0.0108 37 15 5 1.5 18 8.1 2568 148 128 1.391 1.383 1.028 WRS 2004 333 L45(k) 33 N 36.1 0.0690 17 8 1 0.4 9 8.0 1490 71 74 0.881 0.883 0.992 WRS 2004 317 L2(k) 33 SSE 9.8 0.0410 18 3 1 0.1 - 7.8 1020 - - - 1.452 1.554 WRS 2004 466 PM3(i) 33 SSE 1.0 0.0042 13 3 0 <0.01 19 7.4 840 89 136 1.038 1.100 1.125 WRS 2004 318 L3(k) 33 SSE 7.2 0.0300 14 3 1 0.1 - 7.8 806 - - - 1.186 1.255 WRS 2004 465 PM2(i) 33 SSE 0.7 0.0030 11 3 0 0.2 18 7.1 700 65 130 0.801 0.886 0.925 WRS 2004 279 158(f) 33 ENE 14.5 0.0294 44 19 3 1.1 22 8.1 2994 187 153 2.477 2.455 1.773 WRS 2004 149 P23(i), P23(j) 34 SSE 7.3 0.0296 10 2 1 0.1 18 7.6 614 108 133 0.813 0.845 0.462 WRS 2004 421 P43(i) 37 SSE 3.5 0.0138 12 3 0 0.2 17 7.5 780 87 124 0.883 0.929 0.951 WRS 2004 413 P24(i) 37 SSE 7.6 0.0319 10 3 0 <0.01 27 7.2 600 106 184 0.734 0.838 0.868 WRS 2004 430 P52(i) 37 WNW 0.9 0.0010 32 28 17 13.6 30 8.3 3600 312 203 1.689 1.652 1.561 WRS 2004 473 PT6(i) 38 WNW 0.2 0.0002 36 19 8 6.2 33 8.4 3140 374 221 1.354 1.301 1.592 WRS 2004 85 164(f), 17(g), L10(k) 38 ESE 11.4 0.0346 19 7 1 0.4 12 8.0 1353 94 91 1.436 1.433 1.039 WRS 2004 432 P6(i) 38 SSE 4.0 0.0158 20 4 1 0.2 30 7.7 1280 183 203 1.561 1.584 1.584 WRS 2004 6 LK-1(e) 39 W 3.8 0.0024 11 105 216 28.3 41 9.1 16013 870 271 3.886 3.768 3.596 Canadian Natural 2002 476 PTH1(i) 40 NNE 1.0 0.0013 27 12 1 0.7 10 8.3 2360 104 82 1.023 1.013 0.985 WRS 2004 152 P7(i), P7(j) 40 SSE 1.9 0.0072 4 1 0 0.1 27 6.4 171 54 187 0.151 0.307 0.387 WRS 2004 414 P25(i) 40 SSE 8.6 0.0364 17 4 2 0.1 29 7.7 1100 177 196 1.548 1.573 1.569 WRS 2004 440 P8(i) 41 SSE 2.1 0.0083 9 2 0 0.2 38 7.0 500 125 251 0.531 0.685 0.708 WRS 2004 332 L44(k) 41 N 9.4 0.0019 16 10 1 0.6 7 8.7 1980 98 61 0.101 0.098 0.100 WRS 2004 270 143(f) 41 N 28.3 0.0452 22 8 1 0.6 - 8.1 1657 - - - 0.877 0.876 WRS 2004 99 144(f), L43(k) 41 N 23.0 0.0473 20 7 1 0.6 2 8.1 1616 20 36 1.032 1.042 1.037 WRS 2004 104 Johnson 42 ENE 73.5 0.1514 43 17 7 1.2 17 8.1 3160 142 122 2.471 2.458 2.296 WRS 2004 271 145(f) 42 NNE 18.6 0.0264 30 12 1 0.9 - 8.4 2428 - - - 1.123 1.123 WRS 2004 18 Lillian 43 WSW 7.4 0.0036 66 18 9 2.3 23 7.6 5230 122 159 0.776 0.781 0.563 Canadian Natural 2002 485 PTH9(i) 44 S 2.6 0.0072 13 4 2 0.5 17 7.4 940 80 124 0.841 0.879 0.878 WRS 2004 12 LK-7(e) 44 WSW 2.1 0.0011 30 10 5 2.0 30 7.7 2600 183 203 0.402 0.405 0.406 Canadian Natural 2002 480 PTH2(i) 44 NNE 1.2 0.0021 29 11 1 0.5 9 8.1 2320 78 75 1.305 1.303 1.121 WRS 2004 477 PTH10(i) 45 S 8.4 0.0276 11 4 1 0.2 20 7.0 700 66 142 0.774 0.852 0.817 WRS 2004 19 Calumet 45 WSW 57.5 0.0336 48 18 75 4.8 51 7.8 5267 343 332 1.319 1.317 0.916 Canadian Natural 2002 330 L41(k) 45 NNE 36.5 0.0458 20 7 1 0.6 13 7.8 1620 85 98 0.604 0.609 0.608 WRS 2004 54 UW4(e) 46 SW 12.6 0.0229 71 12 14 1.1 18 8.2 4800 164 130 2.949 2.930 2.939 Shell 2002 607 P2(e) 46 SW 6.6 0.0122 84 15 17 1.8 19 8.2 5375 178 134 3.583 3.557 3.400 Shell 2005

Page 46: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment (continued)

- 43 -

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

82 170(f), 14(g), L4(k), A170 (L4)(j) 46 SSE 18.2 0.0833 3 1 1 0.2 27 6.0 135 36 185 0.069 0.283 0.245 WRS 2004

150 P27(i), P27(j) 47 SSE 4.0 0.0172 3 1 0 0.1 34 5.2 76 23 227 -0.019 0.254 0.307 WRS 2004 268 141(f) 47 N 42.8 0.0777 26 9 1 0.8 - 8.3 1951 - - - 1.153 1.150 WRS 2004 55 UW5(e) 47 SW 12.4 0.0234 49 11 8 1.0 16 8.2 3450 146 118 2.192 2.175 2.200 Shell 2002 53 UW3(e) 47 SW 20.6 0.0388 72 13 8 1.0 13 7.9 4693 94 102 2.915 2.920 2.946 Shell 2002 605 P1(e) 47 SW 18.3 0.0346 77 13 9 1.3 11 8.1 5125 92 86 3.158 3.154 3.248 Shell 2005 51 UW1(e) 47 SW 20.5 0.0386 71 13 8 1.1 14 8.0 4613 106 104 2.920 2.919 3.021 Shell 2002 445 P9(i) 47 SE 4.9 0.0196 23 5 2 0.2 30 7.8 1500 200 203 1.976 1.979 1.967 WRS 2004 269 142(f) 47 NNE 36.6 0.0872 26 9 1 0.7 7 8.3 1933 68 61 1.507 1.501 1.501 WRS 2004 52 UW2(e) 47 SW 36.9 0.0699 36 7 5 2.9 9 8.1 2610 75 75 1.533 1.533 1.537 Shell 2002 267 139(f) 47 N 10.5 0.0108 17 6 1 0.7 6 8.1 1321 50 57 0.428 0.430 0.428 WRS 2004 265 Pearson 47 NNW 16.8 0.0137 22 7 2 0.5 - 8.1 1599 - - - 0.432 0.433 WRS 2004 429 P51(i) 48 WNW 0.4 0.0018 12 5 3 2.1 13 7.3 680 56 100 1.359 1.416 1.396 WRS 2004 284 Big Snuff 48 ESE 17.3 0.0536 9 4 1 0.1 17 7.5 608 90 123 0.706 0.739 0.741 WRS 2004 56 UW6(e) 48 SW 9.7 0.0166 32 9 10 1.4 24 8.0 2430 183 166 1.480 1.471 1.617 Shell 2002 266 Kress 48 N 31.0 0.0659 12 4 3 0.5 8 7.9 920 62 71 0.649 0.656 0.652 WRS 2004 431 P54(i) 48 WNW 0.4 0.0013 11 5 2 0.8 5 7.8 880 33 51 0.918 0.935 0.945 WRS 2004 276 152(f) 48 NNE 21.9 0.0275 29 7 1 0.6 - 8.3 1971 - - - 0.792 0.791 WRS 2004 331 L42(k) 49 N 49.6 0.0743 24 9 1 0.6 5 8.1 1994 42 49 0.876 0.879 0.878 WRS 2004 20 Isadore's 49 SW 28.0 0.0880 54 23 7 1.8 11 7.9 3717 78 87 4.812 4.821 3.906 True North Energy 2001 274 149(f) 49 NNE 7.1 0.0130 34 9 1 0.6 6 8.3 2678 61 56 1.385 1.382 1.380 WRS 2004 98 146(f), L40(k) 49 NNE 5.6 0.0015 16 4 1 0.6 6 8.0 1219 48 58 0.093 0.094 0.094 WRS 2004 321 L11(k) 49 ESE 19.7 0.0590 8 3 1 0.1 28 8.1 560 239 187 0.550 0.501 0.596 WRS 2004 264 136(f) 50 NNW 5.2 0.0029 26 6 2 1.2 - 8.0 1836 - - - 0.331 0.329 WRS 2004 426 P48(i) 50 W 4.6 0.0214 12 5 6 0.4 24 7.7 820 147 166 1.688 1.716 1.674 WRS 2004 273 148(f) 50 NNE 6.2 0.0101 23 6 1 0.6 - 8.2 1552 - - - 0.813 0.812 WRS 2004 472 PT5(i) 50 WNW 1.5 0.0076 8 3 0 0.5 21 7.5 560 108 148 0.815 0.879 0.825 WRS 2004 606 P4(e) 51 SSW 9.5 0.0180 43 7 4 0.8 14 8.0 2815 105 104 1.705 1.705 1.183 Shell 2005 17 LK-12(e) 51 W 2.5 0.0079 16 6 3 1.2 17 7.2 887 64 122 1.313 1.370 1.054 Canadian Natural 2002 474 PT8(i) 51 W 0.1 0.0003 19 7 3 1.5 13 7.8 1000 87 100 1.821 1.835 1.575 WRS 2004 10 LK-5(e) 52 W 0.8 0.0020 21 8 7 2.9 11 7.5 1413 55 86 1.641 1.667 1.412 Canadian Natural 2002 11 LK-6(e) 52 W 3.8 0.0105 24 7 3 1.6 12 7.5 1300 61 96 1.613 1.643 1.511 Canadian Natural 2002 262 Dianne 52 NW 295.8 0.5151 37 10 10 3.3 15 7.9 2377 109 111 1.711 1.712 1.709 WRS 2004 422 P44(i) 53 SSE 2.3 0.0088 26 10 15 0.8 51 9.0 2520 983 330 4.044 3.250 3.261 WRS 2004 151 P49(i), P49(j) 53 WNW 0.8 0.0044 3 1 1 0.4 17 6.7 178 44 122 0.234 0.363 0.329 WRS 2004 428 P50(i) 54 WNW 2.9 0.0148 30 11 3 0.5 15 8.2 2360 143 112 4.024 3.974 3.969 WRS 2004 83 L7(k), L7(j) 54 SSE 21.5 0.1010 4 1 1 0.2 30 6.4 203 56 200 0.187 0.401 0.405 WRS 2004 320 L9(k) 55 SE 33.4 0.1350 19 5 4 0.2 16 8.5 1560 202 120 1.976 1.870 1.960 WRS 2004 319 L6(k) 55 SSE 32.4 0.1370 15 4 1 0.1 21 7.7 1030 124 149 1.339 1.373 1.463 WRS 2004 423 P45(i) 55 SE 1.3 0.0040 38 12 4 1.6 39 8.3 2880 405 257 3.035 2.893 2.914 WRS 2004 263 134(f) 55 NNW 8.2 0.0067 34 10 6 1.2 6 8.1 2432 51 57 0.695 0.696 0.695 WRS 2004 272 Poplar 56 NNE 48.0 0.1173 31 8 1 0.8 8 8.4 1979 87 69 1.690 1.676 1.674 WRS 2004 86 166(f), L12(k) 56 ESE 7.1 0.0217 11 4 3 0.2 27 8.9 845 463 183 1.113 0.844 0.813 WRS 2004 7 LK-2(e) 56 W 7.3 0.0182 4 1 0 0.3 14 6.7 200 34 106 0.115 0.172 0.212 Canadian Natural 2002 140 L5(k), P28(i) 58 S 11.8 0.0480 9 2 0 0.2 27 7.1 591 99 186 0.653 0.764 0.748 WRS 2004 87 167(f), L13(k) 58 ESE 15.7 0.0468 9 3 2 0.2 19 7.5 743 99 134 0.650 0.684 0.665 WRS 2004 424 P46(i) 59 S 1.4 0.0047 30 8 4 <0.01 37 8.3 2220 384 245 2.576 2.427 2.447 WRS 2004 261 Ronald 59 NW 346.1 0.5638 43 12 14 3.4 13 8.0 2737 99 98 1.946 1.945 1.942 WRS 2004 412 P20(i) 59 WNW 0.8 0.0040 9 3 1 <0.01 26 7.5 580 133 178 0.995 1.064 1.059 WRS 2004 260 131(f) 59 NW 11.9 0.0125 50 14 10 2.7 11 8.0 2707 90 88 1.343 1.342 1.341 WRS 2004 439 P79(i) 59 WNW 2.3 0.0121 10 3 0 <0.01 30 7.0 520 99 203 0.848 1.018 1.005 WRS 2004 275 151(f) 59 NE 92.0 0.2677 4 2 2 0.8 13 7.2 308 50 100 0.315 0.361 0.363 WRS 2004 438 P77(i) 60 WNW 1.3 0.0064 10 3 0 <0.01 27 7.1 560 97 184 0.878 1.018 1.011 WRS 2004 471 PT4(i) 60 WNW 1.7 0.0091 12 3 0 <0.01 28 7.6 680 157 190 1.211 1.267 1.240 WRS 2004 348 Currie 60 NNE 15.5 0.0225 8 2 2 1.0 7 7.3 840 29 61 0.244 0.258 0.258 WRS 2004

105 150(f), 9(g), L39(k), A-150 (L39)(j) 60 NE 19.2 0.0501 3 1 2 0.6 14 6.8 252 37 104 0.177 0.233 0.271 WRS 2004

88 168(f), 12(g), L14(k) 61 ESE 29.5 0.0958 13 4 3 0.4 22 8.2 1104 215 152 1.152 1.087 1.062 WRS 2004 475 PT9(i) 61 W 0.6 0.0025 15 5 2 1.3 16 7.9 1120 117 118 1.619 1.621 1.616 WRS 2004 425 P47(i) 61 S 16.7 0.0628 21 6 3 <0.01 37 7.8 1460 247 245 1.856 1.853 1.842 WRS 2004

Page 47: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment (continued)

- 44 -

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

467 PM4(i) 62 S 17.4 0.0659 21 6 4 0.2 26 7.6 1480 146 178 1.867 1.906 1.874 WRS 2004 433 P60(i) 63 WNW 3.5 0.0183 14 6 3 0.6 22 7.7 1000 135 154 1.996 2.029 2.030 WRS 2004 84 L8(k), L8(j) 63 SSE 10.6 0.0450 6 2 2 0.1 19 7.0 398 63 134 0.584 0.679 0.626 WRS 2004 329 Mildred 64 SSW 9.1 0.0147 54 15 23 1.2 7 8.2 3580 70 66 2.494 2.491 2.497 WRS 2004 470 PT3(i) 64 WNW 0.6 0.0031 10 3 1 0.2 30 7.5 600 154 203 1.130 1.209 1.198 WRS 2004 416 P30(i) 65 S 1.8 0.0060 13 4 5 0.3 37 7.6 1000 207 245 1.163 1.201 1.192 WRS 2004 478 PTH11(i) 65 S 2.7 0.0098 18 7 3 <0.01 20 7.3 1360 86 142 1.605 1.669 1.661 WRS 2004 328 Clear 67 WNW 107.2 0.3030 12 5 1 0.3 21 7.4 734 97 148 0.779 0.824 0.841 WRS 2004 436 P70(i) 67 W 1.7 0.0092 6 2 0 0.2 29 6.6 280 67 196 0.412 0.635 0.671 WRS 2004 347 L64(k) 67 NNE 9.7 0.0018 12 3 1 0.4 8 7.9 1002 54 67 0.048 0.048 0.047 WRS 2004 410 P18(i) 69 WSW 0.6 0.0021 15 5 5 2.2 22 7.5 780 113 154 1.471 1.519 1.550 WRS 2004 327 Eaglenest 69 WNW 128.4 0.3070 11 4 2 0.5 19 7.5 674 95 134 0.652 0.682 0.775 WRS 2004 322 L15(k) 69 SE 8.0 0.0260 7 3 13 0.7 36 7.5 510 180 239 1.000 1.061 1.202 WRS 2004 58 Shipyard 70 SSW 42.9 0.1296 45 10 15 2.0 20 7.6 3227 109 139 3.473 3.501 3.154 True North Energy 2001 409 P17(i) 70 WSW 0.5 0.0017 21 6 7 1.8 29 7.3 1040 125 196 1.982 2.065 2.102 WRS 2004 468 PT1(i) 70 WNW 1.3 0.0053 14 5 0 <0.01 19 8.0 1000 151 136 1.356 1.336 1.200 WRS 2004 435 P69(i) 70 W 1.0 0.0055 8 3 1 0.2 26 7.4 460 122 178 0.940 1.040 1.031 WRS 2004 334 L48(k) 70 WNW 102.6 0.2780 16 4 2 0.3 29 7.4 1160 137 193 0.934 0.982 1.020 WRS 2004 350 Harwood 70 NE 9.1 0.0138 5 3 1 0.5 7 7.7 672 42 62 0.220 0.229 0.228 WRS 2004 469 PT2(i) 70 WNW 1.0 0.0045 4 2 2 0.2 30 5.0 50 17 203 0.231 0.505 0.501 WRS 2004 408 P16(i) 71 WSW 1.0 0.0043 15 4 5 0.9 33 6.9 460 100 221 1.533 1.698 1.676 WRS 2004 444 P87(i) 71 W 4.1 0.0220 11 3 0 <0.01 18 7.3 660 77 130 1.158 1.246 1.225 WRS 2004 437 P72(i) 71 WNW 1.7 0.0085 4 2 4 0.3 33 5.9 160 41 221 0.484 0.760 0.760 WRS 2004 153 P94(i), P94(j) 72 SW 0.7 0.0019 13 5 7 1.3 48 7.4 799 216 309 1.044 1.123 1.030 WRS 2004 434 P61(i) 72 W 0.8 0.0043 11 3 0 0.5 23 7.5 700 118 160 1.200 1.269 1.312 WRS 2004 608 Suncor_VS_UW1 73 SSW 5.8 0.0170 53 20 38 2.3 18 7.9 3990 126 129 5.476 5.478 - - 479 PTH12(i) 73 S 1.2 0.0042 20 6 2 0.1 25 7.6 1340 140 172 1.583 1.618 1.598 WRS 2004 102 33(g), L33(k) 73 W 10.2 0.0220 35 9 5 2.2 15 8.4 2584 168 113 1.843 1.805 2.258 WRS 2004

129 2(f), 15(g), E15 (L15b)(j) 74 S 25.0 0.0809 6 2 4 1.2 38 7.0 436 128 248 0.463 0.586 0.656 WRS 2004

442 P85(i) 75 W 2.2 0.0114 11 3 0 0.2 24 7.2 580 94 166 1.100 1.220 1.252 WRS 2004 446 P90(i) 76 SW 0.6 0.0016 24 9 13 2.7 26 7.9 2440 190 178 1.933 1.925 1.963 WRS 2004 349 Archer 76 NE 42.9 0.0867 4 2 1 0.4 10 7.8 502 66 81 0.209 0.219 0.218 WRS 2004 346 Canopener 76 W 10.9 0.0210 20 6 2 0.5 21 7.6 1380 123 149 0.905 0.921 1.232 WRS 2004 406 P11(i) 78 WSW 2.0 0.0080 10 4 10 0.9 32 7.4 940 150 215 1.505 1.586 1.592 WRS 2004 345 Buoy 78 W 25.2 0.0650 27 8 3 1.1 12 8.3 2080 129 95 1.730 1.703 1.898 WRS 2004 326 Sand 79 W 604.6 1.6020 14 4 2 0.7 16 8.0 1036 129 118 0.894 0.885 0.927 WRS 2004 447 P91(i) 79 SW 13.7 0.0425 33 12 14 2.1 24 7.7 3120 147 166 3.144 3.163 3.161 WRS 2004 441 P84(i) 81 W 0.9 0.0048 10 3 0 0.5 18 7.1 620 65 130 1.028 1.133 1.161 WRS 2004 92 Otasan 81 WNW 23.4 0.0430 3 1 1 0.4 12 6.7 169 32 94 0.071 0.107 0.058 WRS 2004 487 PW2(i) 82 WSW 0.6 0.0021 26 9 17 1.1 31 7.9 2260 226 209 3.230 3.209 3.277 WRS 2004 407 P14(i) 82 WSW 8.9 0.0337 22 7 9 0.8 37 7.6 1300 207 245 2.331 2.376 2.159 WRS 2004 106 Bayard 84 WNW 57.2 0.1690 6 2 3 0.8 21 6.7 278 54 147 0.424 0.510 0.333 WRS 2004 148 P13(i), P13(j) 85 WSW 3.8 0.0120 11 5 8 0.7 45 8.0 880 351 292 1.300 1.241 0.860 WRS 2004 352 L69(k) 85 WNW 2.4 0.0040 33 6 8 0.8 28 8.0 2180 217 190 1.317 1.303 1.787 WRS 2004 324 N. Gardiner 86 W 1026.5 2.7480 15 4 2 0.8 15 7.8 1050 96 111 0.926 0.939 0.970 WRS 2004 486 PW1(i) 86 WSW 1.8 0.0075 14 6 7 1.6 31 7.2 760 122 209 1.762 1.877 1.875 WRS 2004 325 L21(k) 87 W 103.2 0.1200 11 4 4 1.0 0 7.9 888 1 22 0.345 0.353 0.619 WRS 2004 323 S. Gardiner 87 W 1201.3 3.3240 14 4 2 0.8 10 7.6 1066 57 81 0.905 0.926 0.937 WRS 2004 141 4(f), 4(270)(j) 88 S 18.1 0.0411 21 7 2 0.3 39 8.1 1490 351 259 1.266 1.200 1.129 WRS 2004 351 L68(k) 90 WNW 2.1 0.0040 5 1 3 0.3 40 6.9 228 116 263 0.149 0.236 0.315 WRS 2004 108 Waterlily 90 W 23.2 0.0848 7 2 3 0.6 22 7.7 444 139 154 0.717 0.735 0.730 WRS 2004 443 P86(i) 90 WSW 3.8 0.0152 39 11 22 2.2 31 7.7 2780 190 209 4.696 4.720 4.718 WRS 2004 488 PW3(i) 91 WSW 0.7 0.0029 13 4 2 3.8 17 7.3 1080 73 124 1.285 1.350 1.352 WRS 2004 155 P97(i), P97(j) 92 SSW 1.8 0.0057 6 2 1 0.8 29 6.8 295 82 198 0.302 0.418 0.365 WRS 2004 97 Clayton 92 NW 13.1 0.0330 1 0 1 0.1 16 4.3 0 5 120 -0.084 0.007 0.015 WRS 2004 449 P95(i) 94 SW 1.6 0.0059 22 7 10 0.5 30 7.5 1580 154 203 2.249 2.304 2.319 WRS 2004 107 L60(k), L60(j) 94 W 60.2 0.1630 6 2 3 0.6 18 7.2 296 72 131 0.409 0.459 0.427 WRS 2004 91 Namur 95 W 224.0 0.3250 6 2 2 1.1 10 7.2 414 39 83 0.222 0.242 0.302 WRS 2004 101 L49(k), L49(j) 95 WNW 31.1 0.0666 5 2 4 0.8 20 6.6 172 45 145 0.291 0.358 0.361 WRS 2004

Page 48: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment (continued)

- 45 -

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

156 P98(i), P98(j) 96 SSW 1.9 0.0070 12 4 1 0.6 31 7.3 694 135 208 0.918 1.001 0.942 WRS 2004 135 3(f), 16(g) 97 SE 10.9 0.0373 11 6 8 0.4 17 8.7 1782 247 123 1.584 1.449 2.070 WRS 2004 154 P96(i), P96(j) 98 SSW 1.3 0.0034 10 4 1 0.9 31 7.3 670 139 210 0.633 0.693 0.582 WRS 2004 100 27(g), L47(k), L47(j) 102 W 49.2 0.1016 8 2 3 1.0 20 6.7 276 53 143 0.371 0.430 0.261 WRS 2004 524 Patterson 103 E 265.0 1.1937 4 1 1 1.0 3 6.9 384 8 38 0.370 0.412 0.412 Petro-Canada 2001 405 P101(i) 103 SSW 1.1 0.0038 16 5 0 1.1 21 7.5 1220 108 148 1.161 1.204 1.223 WRS 2004 344 L59(k) 103 W 201.4 0.5209 6 2 2 0.4 28 7.3 364 115 190 0.336 0.397 0.407 WRS 2004 134 1(f), 25(g), 1 (267)(j) 104 SSW 34.5 0.1182 11 3 2 0.9 21 7.4 826 102 150 0.848 0.899 0.726 WRS 2004 337 L52(k) 104 WSW 11.1 0.0344 14 4 6 3.1 21 7.4 1160 99 148 1.249 1.297 1.299 WRS 2004 336 L51(k) 105 WSW 65.9 0.1795 14 5 6 1.4 28 8.5 1140 354 189 1.287 1.145 1.144 WRS 2004 335 L50(k) 106 W 14.4 0.0281 7 4 3 0.2 30 7.0 520 98 203 0.391 0.455 0.512 WRS 2004 338 L53(k) 106 WSW 50.6 0.1800 44 12 17 2.2 28 7.4 2100 134 190 4.294 4.357 4.352 WRS 2004 450 P99(i) 108 SSW 0.5 0.0015 23 4 0 0.7 21 7.5 1500 108 148 1.307 1.344 1.370 WRS 2004 525 Forrest 108 E 434.0 2.0707 4 2 2 1.0 2 6.9 475 6 34 0.533 0.574 0.574 Petro-Canada 2001 456 PF2(i) 109 SSW 0.7 0.0023 43 6 2 0.3 9 7.8 2720 60 75 2.664 2.680 2.731 WRS 2004 458 PF4(i) 112 SSW 0.3 0.0008 64 10 2 0.5 16 7.7 3980 98 118 3.910 3.929 3.835 WRS 2004 339 L54(k) 112 WSW 236.9 0.9150 43 13 15 1.8 23 7.6 3140 123 158 4.639 4.681 4.675 WRS 2004 451 PF1(i) 113 SSW 0.6 0.0019 53 7 2 0.5 11 7.9 3260 80 88 3.194 3.201 3.211 WRS 2004 455 PF13(i) 113 S 1.6 0.0049 25 8 5 0.4 17 7.7 1980 104 124 2.042 2.062 2.058 WRS 2004 462 PF8(i) 113 SSW 1.6 0.0048 14 5 20 3.0 29 7.4 1340 136 196 1.790 1.846 1.853 WRS 2004 93 Legend 114 W 93.1 0.1765 3 1 1 0.6 10 6.9 219 27 79 0.076 0.106 0.112 WRS 2004 142 6(f), 6 (271)(j) 114 SSE 22.0 0.0485 17 6 6 0.9 30 9.0 1399 599 203 1.315 1.040 0.887 WRS 2004 32 Caribou Horn 114 S 8.5 0.0237 23 8 6 0.8 19 7.7 1730 119 136 1.721 1.737 1.680 OPTI 2000 527 Beet 115 E 456.1 2.4080 4 2 2 1.0 3 6.9 440 9 39 0.571 0.622 0.622 Petro-Canada 2001 457 PF3(i) 116 SSW 0.7 0.0019 42 6 2 0.6 15 7.9 2600 109 112 2.171 2.173 2.175 WRS 2004 526 Preston 116 E 252.5 1.2037 4 2 3 1.0 3 6.8 500 8 39 0.595 0.642 0.641 Petro-Canada 2001 529 Sandy-2 118 NE 452.7 0.6243 17 9 6 1.2 - 7.3 - - - - 0.797 0.797 Petro-Canada 2001 452 PF10(i) 119 S 1.1 0.0036 9 3 0 1.3 22 6.9 440 66 154 0.556 0.650 0.667 WRS 2004 459 PF5(i) 119 SSW 0.5 0.0014 34 7 1 0.8 11 7.9 2220 80 88 1.852 1.858 1.861 WRS 2004 453 PF11(i) 119 S 1.3 0.0045 5 2 0 0.7 32 6.1 200 48 215 0.236 0.424 0.444 WRS 2004 96 28(g), L28(k), L28(j) 119 WNW 19.0 0.0448 2 1 1 0.3 24 5.2 53 17 169 -0.013 0.100 0.096 WRS 2004 460 PF6(i) 120 SSW 0.7 0.0022 29 5 0 0.4 24 7.7 1780 147 166 1.798 1.818 1.867 WRS 2004 3 Gregoire 121 S 231.3 0.6655 17 5 3 0.9 13 7.4 1108 64 100 1.130 1.162 1.053 OPTI 2000 25 Canoe 122 S 6.1 0.0120 10 3 4 0.9 20 7.1 800 75 144 0.517 0.559 0.533 OPTI 2000 109 Gordon 122 SSE 535.3 0.6495 24 10 21 1.8 21 8.4 2811 228 147 1.145 1.114 1.112 WRS 2004 463 PF9(i) 122 S 1.3 0.0040 12 4 3 0.5 26 7.1 640 94 178 0.927 1.012 1.018 WRS 2004 33 Kiskatinaw 122 S 30.1 0.0903 24 7 7 0.8 24 7.8 1935 163 166 1.927 1.930 1.891 OPTI 2000 170 Nora 123 SSE 4.9 0.0085 17 9 3 1.1 21 9.1 1589 455 151 1.110 0.942 0.937 WRS 2004 461 PF7(i) 123 S 1.6 0.0056 21 10 8 0.5 25 7.5 1660 128 172 2.240 2.288 2.272 WRS 2004 35 PF12(i), UNL2(e) 123 S 3.3 0.0094 9 2 2 1.0 26 6.2 203 43 176 0.477 0.598 0.281 OPTI 2000 343 L58(k) 124 W 14.4 0.0293 13 4 1 0.1 19 9.3 1000 464 138 0.817 0.608 0.683 WRS 2004 29 Frog 125 S 8.3 0.0251 24 7 9 1.1 29 7.7 1815 171 193 1.980 2.001 1.826 OPTI 2000 340 L55(k) 125 WSW 26.2 0.0927 22 6 4 1.3 13 7.8 1540 87 98 1.914 1.926 1.922 WRS 2004 30 Poison 126 S 0.9 0.0015 23 6 8 1.2 25 7.8 1815 160 169 1.022 1.027 0.893 OPTI 2000 28 Sucker 127 S 5.1 0.0125 26 8 10 1.6 19 7.8 2232 132 136 1.818 1.822 1.745 OPTI 2000 341 L56(k) 127 WSW 37.9 0.1675 11 3 3 0.8 21 7.2 700 82 149 1.124 1.217 1.214 WRS 2004 89 Rabbit 127 WSW 14.6 0.0347 22 12 28 4.5 53 8.4 2910 573 340 2.650 2.476 2.693 WRS 2004 26 Long -1 127 S 4.5 0.0119 9 3 4 1.1 23 7.2 678 94 160 0.617 0.673 0.672 OPTI 2000 31 Rat Lake 128 S 20.6 0.0620 26 8 7 1.3 18 7.8 2075 117 127 2.103 2.112 2.023 OPTI 2000 1 Birch -2 128 S 3.7 0.0109 14 10 8 2.4 24 7.7 1921 144 163 1.779 1.797 0.920 OPTI 2000 34 UNL1(e) 129 S 2.3 0.0067 3 1 0 1.3 21 6.1 180 30 146 0.044 0.152 0.178 OPTI 2000 169 Shortt 129 SSE 169.0 0.2943 33 10 8 1.8 16 7.9 2652 116 115 1.515 1.514 1.513 WRS 2004 168 8(f) 130 SSE 22.0 0.0733 19 18 5 1.6 18 8.9 2466 307 130 2.913 2.727 2.725 WRS 2004 27 Pushup 130 S 0.9 0.0018 10 2 2 2.4 20 7.8 780 127 139 0.471 0.479 0.479 OPTI 2000 41 Maqua 133 S 6.1 0.0223 8 2 0 0.5 12 6.9 540 39 96 0.555 0.621 0.450 Petro-Canada 2001 531 Cluff 134 NE 219.0 1.2564 15 9 2 0.7 - 8.1 - - - - 2.715 2.715 Petro-Canada 2001 36 UNL3(e) 135 S 1.6 0.0034 25 7 11 2.3 35 7.8 2085 231 234 1.568 1.570 1.483 OPTI 2000 171 Gipsy 135 SSE 94.8 0.0631 27 13 12 3.1 5 8.5 2904 66 53 0.629 0.626 0.625 WRS 2004 40 L11(e) 135 S 0.5 0.0017 3 1 0 0.3 17 6.0 153 22 124 0.084 0.195 0.202 Petro-Canada 2001 110 Birch (f) 136 SSE 73.7 0.1264 17 11 25 1.8 26 8.8 2863 416 179 1.680 1.552 1.775 WRS 2004

Page 49: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment (continued)

- 46 -

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

39 L10(e) 136 S 1.9 0.0039 2 1 0 0.3 10 5.8 160 11 80 0.019 0.064 0.077 Petro-Canada 2001 172 Baker 137 SSE 16.5 0.0351 30 13 6 2.5 17 8.7 2666 249 122 2.015 1.929 1.929 WRS 2004 37 Surmont 139 S 82.4 0.3135 10 3 0 0.6 16 7.0 593 54 120 0.702 0.782 0.691 Petro-Canada 2001 174 17(f) 140 S 40.7 0.1875 9 2 1 0.5 12 7.4 553 53 93 0.866 0.924 0.917 WRS 2004 38 L8(e) 141 S 0.8 0.0030 10 2 0 0.6 23 6.8 553 62 160 0.614 0.727 0.539 Petro-Canada 2001 175 Georges 143 S 155.8 0.5433 42 12 10 1.6 12 8.4 3096 143 95 3.815 3.762 3.755 WRS 2004 115 21(f), A21(j) 144 S 14.7 0.0873 2 0 1 0.4 17 5.0 32 9 126 -0.068 0.149 0.117 WRS 2004 176 20(f) 146 SSE 54.0 0.1836 22 6 15 0.5 24 7.9 1926 175 169 2.370 2.363 2.358 WRS 2004 177 22(f) 146 S 18.8 0.0674 3 1 0 0.4 7 6.9 210 22 65 0.190 0.238 0.237 WRS 2004 117 26(f), A26(j) 148 S 11.7 0.0367 2 0 1 0.5 11 5.6 65 11 90 0.009 0.088 0.048 WRS 2004 116 24(f), A24(j) 148 S 8.8 0.0336 1 0 1 0.4 18 4.7 19 8 132 -0.103 0.046 0.030 WRS 2004 143 25(f), 25 (287)(j) 150 S 7.8 0.0223 1 0 1 0.4 16 5.2 37 10 117 -0.054 0.042 0.031 WRS 2004 173 Garson 150 SSE 340.0 0.7907 23 7 8 0.9 19 8.1 1733 159 137 1.456 1.439 1.438 WRS 2004 179 31(f) 151 S 6.4 0.0251 1 0 0 0.3 14 5.6 54 13 104 -0.060 0.053 0.058 WRS 2004 144 27(f), 27 (289)(j) 152 S 7.1 0.0216 2 1 1 0.4 12 6.5 106 24 93 0.033 0.100 0.112 WRS 2004 178 30(f) 153 S 21.5 0.1021 1 0 0 0.3 12 5.2 41 8 91 -0.095 0.030 0.036 WRS 2004 130 32(f), 2(g) 153 S 30.4 0.1282 15 3 2 0.5 14 7.7 1101 83 107 1.370 1.402 1.433 WRS 2004 530 La Loche 153 SE 1410.4 1.7912 26 9 8 1.0 9 8.1 2375 76 77 0.941 0.941 0.941 Petro-Canada 2001 145 28(f), 28 (290)(j) 153 S 3.2 0.0124 2 1 1 0.4 20 5.9 83 25 144 0.016 0.159 0.130 WRS 2004 195 53(f) 155 SSW 17.3 0.0622 5 1 8 0.8 26 7.2 430 100 181 0.608 0.700 0.695 WRS 2004 181 35(f) 155 SSE 201.5 0.5933 29 7 9 1.3 21 7.9 2044 150 145 2.201 2.197 2.195 WRS 2004 180 33(f) 157 S 14.2 0.0671 3 1 1 0.3 18 6.6 148 42 129 0.197 0.327 0.331 WRS 2004 194 Algar 157 SSW 63.2 0.1769 5 1 8 0.6 18 7.5 439 88 128 0.529 0.564 0.567 WRS 2004 118 29(f), A29(j) 157 S 5.2 0.0173 1 0 1 0.3 13 5.8 60 14 97 -0.005 0.082 0.061 WRS 2004 182 Formby 158 SSE 51.1 0.1318 27 7 8 0.7 13 8.1 1935 118 102 1.825 1.812 1.808 WRS 2004 196 54(f) 159 SSW 5.2 0.0157 6 2 8 0.2 28 7.2 410 110 191 0.556 0.633 0.630 WRS 2004 183 37(f) 161 SSE 37.0 0.0675 31 11 10 2.8 13 8.5 2683 168 102 1.678 1.640 1.637 WRS 2004 184 Watchusk 161 SSE 301.8 0.8826 25 7 7 1.1 20 8.6 1795 273 139 2.021 1.897 1.896 WRS 2004 316 D254(h) 163 SW 390.6 1.4843 22 6 6 0.8 20 8.4 1564 230 139 2.275 2.167 2.164 WRS 2004 533 McLean 163 SE 235.4 0.3265 22 8 6 1.5 18 7.9 1955 132 128 0.854 0.852 0.852 Petro-Canada 2001 197 55(f) 166 SSW 18.2 0.0608 5 1 10 0.3 30 7.1 428 113 204 0.622 0.718 0.715 WRS 2004 185 39(f) 166 SSE 27.4 0.0784 17 6 6 0.5 20 7.9 1381 139 139 1.389 1.390 1.389 WRS 2004 136 34(f), 1(g) 167 S 73.8 0.3009 14 4 2 0.6 24 7.5 1023 124 163 1.290 1.341 0.896 WRS 2004 198 56(f) 167 SSW 20.6 0.0805 6 1 8 0.3 33 7.1 455 121 218 0.747 0.866 0.868 WRS 2004 186 40(f) 172 S 27.8 0.0949 24 8 16 1.5 27 8.1 2082 241 183 2.716 2.654 2.652 WRS 2004 222 81(f) 181 S 40.0 0.1866 10 3 2 0.6 15 7.6 624 80 109 1.001 1.045 1.041 WRS 2004 199 57(f) 181 SSW 18.1 0.0596 7 1 4 0.2 27 7.0 334 90 184 0.490 0.588 0.584 WRS 2004 139 91(f), 7(g) 182 SSE 315.9 1.0086 18 6 7 0.9 16 9.2 1587 371 120 1.874 1.621 1.620 WRS 2004 227 Bohn 183 S 200.8 0.5645 26 8 8 1.4 22 8.7 2018 337 154 2.160 1.997 1.996 WRS 2004 226 88(f) 183 SSW 8.1 0.0262 16 5 4 0.7 11 8.0 1008 82 86 1.352 1.356 1.348 WRS 2004 228 90(f) 184 S 19.9 0.0615 21 6 10 1.6 25 8.0 1613 205 172 1.868 1.837 1.835 WRS 2004 229 Cowper 187 SSE 280.5 0.9115 19 6 6 0.9 17 9.1 1489 353 125 1.917 1.684 1.683 WRS 2004 218 77(f) 188 SSW 147.3 0.7091 11 3 2 0.5 23 7.1 614 84 159 1.050 1.164 1.159 WRS 2004 202 Mariana 188 SSW 2.4 0.0075 9 3 15 1.2 11 7.2 384 41 86 1.214 1.257 1.269 WRS 2004 221 80(f) 189 SSW 2.7 0.0057 6 2 1 0.6 19 7.3 405 82 138 0.284 0.322 0.325 WRS 2004 190 46(f) 190 SW 33.7 0.1310 4 1 1 0.3 24 6.5 160 51 166 0.189 0.330 0.332 WRS 2004 204 63(f) 191 SSW 40.1 0.1650 10 2 2 0.5 13 7.5 580 62 97 0.875 0.920 0.914 WRS 2004 203 62(f) 192 SSW 7.1 0.0287 7 2 5 0.6 15 6.9 272 45 109 0.742 0.825 0.824 WRS 2004 219 78(f) 193 SSW 23.3 0.1019 13 3 1 0.3 13 7.3 815 54 97 1.142 1.201 1.201 WRS 2004 220 79(f) 194 SSW 15.6 0.0601 10 2 2 0.6 16 7.5 635 83 115 0.836 0.876 0.877 WRS 2004 230 93(f) 195 S 11.3 0.0385 15 6 2 0.5 18 7.9 1168 129 129 1.387 1.387 1.389 WRS 2004 201 60(f) 199 SSW 53.9 0.2219 12 3 4 1.1 27 7.5 688 138 184 1.131 1.191 1.191 WRS 2004 147 94(f), 94 (354)(j) 200 S 8.5 0.0162 6 2 1 0.9 23 7.2 420 88 161 0.258 0.302 0.319 WRS 2004 146 82(f), 82 (342)(j) 201 SSW 6.1 0.0139 3 1 1 1.1 24 6.8 215 65 163 0.127 0.198 0.164 WRS 2004 223 83(f) 202 SSW 38.1 0.1656 16 3 1 0.7 10 7.9 918 76 83 1.344 1.354 1.355 WRS 2004 231 95(f) 204 S 16.1 0.0591 9 3 2 0.7 22 7.7 608 134 151 0.835 0.855 0.852 WRS 2004 205 Crow 206 SSW 66.4 0.2860 30 7 4 1.0 12 8.8 1953 194 94 3.107 2.971 2.967 WRS 2004 234 100(f) 206 SSE 49.6 0.2048 22 7 5 0.7 26 8.1 1640 220 175 2.469 2.411 2.404 WRS 2004 225 85(f) 211 SSW 6.4 0.0208 4 1 1 1.2 11 7.2 275 41 87 0.233 0.280 0.276 WRS 2004 206 65(f) 211 SSW 111.4 0.4751 30 7 5 1.0 14 8.5 1942 176 106 3.145 3.051 3.048 WRS 2004

Page 50: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment (continued)

- 47 -

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

235 101(f) 211 SSE 6.5 0.0212 20 8 1 0.4 19 8.3 1466 200 138 1.696 1.633 1.629 WRS 2004 207 66(f) 212 SSW 14.6 0.0566 28 6 1 0.9 11 8.1 1703 90 85 2.245 2.239 2.236 WRS 2004 224 84(f) 212 SSW 9.3 0.0286 4 1 1 0.9 11 7.1 267 40 89 0.237 0.285 0.287 WRS 2004 122 86(f), A86(j) 213 SSW 4.8 0.0115 2 1 1 1.6 14 6.6 141 32 105 0.084 0.140 0.124 WRS 2004 121 59(f), A59(j) 213 SSW 44.8 0.1744 3 1 1 0.5 30 5.2 65 21 202 0.023 0.245 0.172 WRS 2004 233 98(f) 214 S 25.8 0.0923 14 5 3 0.8 21 7.8 998 136 147 1.307 1.320 1.320 WRS 2004 232 97(f) 214 S 51.5 0.2006 14 5 1 0.1 17 7.7 955 102 124 1.276 1.304 1.306 WRS 2004 209 Agnes-1 214 SSW 43.9 0.1747 6 1 1 0.8 28 6.5 182 61 189 0.292 0.453 0.451 WRS 2004 236 102(f) 215 SSE 16.1 0.0605 13 4 1 0.3 10 7.9 973 69 79 1.196 1.207 1.209 WRS 2004 200 58(f) 215 SW 21.6 0.0784 5 1 1 0.4 29 6.5 182 64 198 0.248 0.401 0.403 WRS 2004 2 Christina 216 S 1233.5 2.8094 25 8 6 0.9 13 7.9 2114 91 99 1.517 1.523 1.512 WRS 2004 211 70(f) 216 SSW 11.5 0.0380 9 2 2 0.6 33 7.3 413 142 219 0.564 0.645 0.646 WRS 2004 131 Base 217 SSW 64.1 0.3275 17 5 2 0.8 11 7.6 1248 65 89 2.018 2.056 2.110 WRS 2004 208 67(f) 222 SSW 34.6 0.1553 11 3 1 0.7 19 7.3 587 78 134 1.015 1.094 1.097 WRS 2004 212 71(f) 222 SSW 21.9 0.0838 8 2 2 0.4 28 7.2 324 110 187 0.583 0.677 0.675 WRS 2004 210 69(f) 227 SSW 12.6 0.0409 5 1 2 0.3 25 6.7 214 60 172 0.245 0.359 0.355 WRS 2004 213 72(f) 228 SSW 7.7 0.0252 7 2 2 0.5 20 6.7 221 50 143 0.469 0.565 0.561 WRS 2004 241 108(f) 230 S 51.1 0.1711 28 9 3 0.7 11 8.2 2025 107 89 2.318 2.299 2.297 WRS 2004 167 Wappau 230 S 75.9 0.1902 28 7 4 1.2 10 9.1 1994 205 83 1.758 1.661 1.644 WRS 2004 237 Winefred 231 S 1185.9 4.0870 27 8 4 0.9 7 8.2 2037 66 65 2.313 2.311 2.305 WRS 2004 240 Kirby 233 S 22.4 0.0610 32 10 4 1.1 7 8.6 2470 88 62 2.225 2.203 2.200 WRS 2004 242 110(f) 233 S 11.7 0.0402 11 4 1 0.7 10 8.3 847 101 79 0.976 0.952 0.948 WRS 2004 214 73(f) 235 SSW 24.9 0.0919 6 2 3 0.9 21 7.1 3555 76 147 0.546 0.629 0.632 WRS 2004 243 111(f) 236 S 24.6 0.0912 14 3 2 0.4 19 7.7 1039 109 134 1.121 1.150 1.375 WRS 2004 238 104(f) 237 SSE 8.7 0.0291 21 6 3 1.1 20 9.0 1535 376 144 1.988 1.744 1.743 WRS 2004 42 Wiau 237 S 275.7 1.0159 22 7 3 0.6 16 8.2 1766 161 120 2.120 2.072 1.914 WRS 2004 138 Goodwin 241 S 34.6 0.0995 12 4 1 0.9 9 7.7 996 54 76 0.811 0.831 0.937 WRS 2004 44 UNL1(e) 241 S 24.2 0.0642 18 7 2 0.7 13 8.0 1450 100 97 1.249 1.247 1.246 Rio Alto 2002 50 UNL13(e) 241 S 2.0 0.0068 4 2 0 0.4 24 6.5 253 52 164 0.181 0.301 0.342 Rio Alto 2002 244 113(f) 241 S 35.1 0.1480 17 6 2 0.5 14 8.0 1279 110 104 1.864 1.856 1.849 WRS 2004 245 114(f) 244 S 7.2 0.0242 8 4 2 0.7 17 7.6 605 94 123 0.706 0.736 0.737 WRS 2004 132 Grist 244 S 118.2 0.4327 30 8 4 0.9 7 8.5 2344 87 65 2.713 2.688 2.798 WRS 2004 49 UNL12(e) 244 S 1.8 0.0061 11 4 1 0.4 15 7.4 920 70 112 0.872 0.915 1.016 Rio Alto 2002 48 UNL7(e) 244 S 1.5 0.0041 11 4 1 0.5 23 7.3 873 99 160 0.722 0.775 0.780 Rio Alto 2002 46 UNL4(e) 245 S 0.9 0.0014 21 8 2 0.3 18 8.1 1790 150 130 0.848 0.838 0.955 Rio Alto 2002 47 UNL5(e) 247 S 5.1 0.0158 13 5 1 0.5 14 7.6 1040 72 103 0.936 0.966 1.027 Rio Alto 2002 45 UNL3(e) 247 S 3.7 0.0091 10 4 1 0.3 18 7.4 780 81 130 0.561 0.599 0.639 Rio Alto 2002 239 106(f) 247 S 3.5 0.0057 30 9 2 1.8 10 8.3 2168 100 79 1.170 1.159 1.154 WRS 2004 246 116(f) 247 S 11.2 0.0366 8 4 1 1.5 11 7.7 644 65 87 0.686 0.708 0.708 WRS 2004 247 117(f) 248 S 9.3 0.0359 13 7 2 1.3 22 7.8 1147 147 154 1.584 1.593 1.594 WRS 2004 43 Ipiatik 251 S 67.2 0.2042 17 5 2 0.4 14 7.5 1340 69 103 1.206 1.239 1.234 Rio Alto 2002 248 Clyde 252 S 470.3 0.4883 22 7 2 1.0 16 8.1 1570 132 115 0.566 0.560 0.559 WRS 2004 249 Behan 253 S 65.5 0.0795 15 6 2 1.1 15 8.2 1161 138 112 0.493 0.483 1.192 WRS 2004 251 Big Chief 260 S 13.0 0.0383 15 5 2 2.4 18 7.9 1076 129 129 1.121 1.121 1.118 WRS 2004 250 120(f) 261 S 15.8 0.0560 17 7 2 0.5 17 8.7 1329 241 122 1.738 1.605 1.604 WRS 2004 253 123(f) 269 S 7.9 0.0269 30 15 8 4.8 8 8.7 2959 120 71 3.408 3.357 3.354 WRS 2004 258 128(f) 274 S 12.0 0.0411 39 17 6 2.8 21 8.5 3241 261 145 4.001 3.876 3.870 WRS 2004 254 124(f) 274 S 125.0 0.3125 26 8 8 2.1 16 9.5 2129 486 119 2.099 1.810 1.808 WRS 2004 259 Logan 275 S 244.6 0.9311 33 12 14 1.7 16 9.2 2939 378 118 4.197 3.885 3.879 WRS 2004 255 125(f) 279 S 22.0 0.0831 35 11 13 3.0 23 8.5 2863 291 158 4.047 3.889 3.884 WRS 2004 257 Heart 282 S 495.1 1.7602 32 14 17 2.4 15 8.9 3136 258 109 4.064 3.898 3.893 WRS 2004 256 Piche 282 S 555.1 1.9812 36 15 17 2.7 12 8.7 3208 171 92 4.273 4.184 4.179 WRS 2004 252 122(f) 284 S 18.8 0.0488 12 4 1 3.1 12 7.9 940 90 96 0.822 0.827 0.827 WRS 2004 68 LK8(e) 299 S 3.2 0.0062 13 5 2 0.4 23 7.8 970 154 160 0.645 0.649 0.649 CNRL 2006 515 Unnamed 5(e) 301 S 5.8 0.0077 97 52 48 2.6 48 7.7 8580 299 311 4.661 4.667 4.667 CNRL 2006 598 UN-5(e) 301 S 247.6 0.7010 7 2 0 <0.01 28 7.2 564 113 193 0.343 0.415 0.414 CNRL 2006 597 UN-2(e) 301 S 237.2 0.6720 29 9 10 1.0 21 7.9 3240 148 148 2.278 2.278 2.301 CNRL 2006 67 LK7(e) 303 S 8.1 0.0168 26 8 2 0.6 16 8.1 1953 139 118 1.311 1.297 1.297 CNRL 2006 536 Touchwood 304 S 137.3 0.2134 31 12 8 2.6 11 8.3 2826 114 87 1.435 1.422 1.421 Rio Alto 2002 537 La Biche 305 SSW 4279.2 11.1540 29 9 11 2.3 - 8.6 2660 - - - 2.181 2.298 Rio Alto 2002

Page 51: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7 Critical Loads of Acidity for the 380 Lakes Included in the Assessment (continued)

- 48 -

Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b)

Gross Catchment Area [km2]

Net Annual Inflow [m3/s]

Calcium[mg/L]

Magnesium[mg/L]

Sodium [mg/L]

Potassium[mg/L]

DOC [mg/L] pH Alkalinity(c)

[µeq/L] SAorg

[µeq/L] Asa

[µeq/L] Critical Load With

Organic Acids [keq H+/ha/yr]

Critical Load Without Organic Acids [keq H+/ha/yr]

Literature Critical Load[keq H+/ha/yr]

Literature Critical Load / Gross Catchment Area / Net Annual Inflow Data Source(d)

66 LK6(e) 306 S 3.8 0.0078 26 8 3 0.5 23 8.1 1953 200 160 1.330 1.305 1.305 CNRL 2006 599 UN-6(e) 306 S 247.8 0.7010 8 3 1 8.1 26 6.8 810 74 180 0.653 0.748 0.722 CNRL 2006 65 LK5(e) 307 S 17.9 0.0361 14 5 2 0.6 18 7.8 1040 122 128 0.709 0.713 0.713 CNRL 2006 64 LK4(e) 308 S 6.6 0.0124 18 6 2 0.5 24 7.9 1300 175 166 0.852 0.847 0.847 CNRL 2006 60 Burnt 309 S 141.4 0.2643 28 40 3 0.7 17 8.1 2165 148 124 2.852 2.838 2.838 CNRL 2006 63 LK3(e) 309 S 2.0 0.0039 16 6 2 0.7 24 7.9 1220 180 166 0.856 0.847 0.847 CNRL 2006 62 LK2(e) 310 S 0.8 0.0013 13 6 2 0.7 30 7.8 1050 197 200 0.574 0.575 0.575 CNRL 2006 61 LK1(e) 312 S 12.1 0.0244 30 10 4 1.3 25 8.2 2340 238 172 1.611 1.569 1.569 CNRL 2006 516 Sinclair-1 316 S 56.9 0.0945 36 24 30 2.9 15 8.3 4860 153 114 2.683 2.663 1.643 CNRL 2006 538 Wolf 317 S 754.7 1.6632 29 16 11 2.1 13 8.0 3150 107 102 2.238 2.235 2.260 Rio Alto 2002 69 May 319 S 189.0 0.2998 32 11 6 1.2 7 8.1 2793 58 62 1.363 1.365 1.374 CNRL 2006 539 Field 319 S 12.7 0.0333 39 29 69 9.6 22 8.3 4630 236 157 6.261 6.196 5.999 Rio Alto 2002 517 Bourque 321 S 100.0 0.1494 33 19 11 2.5 7 8.2 3725 64 61 1.715 1.714 1.750 CNRL 2006 540 Pinehurst 322 S 186.0 0.2776 32 13 8 3.8 13 8.5 2970 164 100 1.458 1.428 1.429 Rio Alto 2002 518 Marguerite 327 S 39.3 0.0095 17 124 55 45.9 95 8.8 13580 1508 596 1.178 1.108 0.241 CNRL 2006 519 Marie 328 S 478.0 0.6651 26 13 6 2.2 8 8.1 2813 69 68 1.155 1.155 1.102 CNRL 2006 520 Leming 331 S 44.0 0.0593 19 14 9 5.5 35 8.2 2362 320 231 1.117 1.079 1.076 CNRL 2006 600 Dolly 335 S 244.3 0.6910 14 32 22 5.0 40 8.5 4880 496 263 4.082 3.874 3.877 CNRL 2006 521 Tucker 337 S 277.0 0.4614 28 24 21 3.4 13 8.1 4242 115 99 2.291 2.283 2.526 CNRL 2006 522 Ethel 339 S 594.0 0.6473 29 16 12 2.7 11 8.3 3167 109 87 1.124 1.117 1.156 CNRL 2006 546 Cold 340 S 6513.0 18.1800 31 12 9 2.1 8 8.3 2801 89 72 2.559 2.545 2.545 CNRL 2006 523 Hilda 340 S 79.8 0.0515 21 38 73 6.7 17 8.4 6540 198 123 1.523 1.507 1.505 CNRL 2006 596 Manatokan 344 S 409.3 1.1520 35 27 9 7.1 16 8.7 4050 243 120 4.058 3.949 3.965 CNRL 2006

(a) Lake Identifier used on map showing lake locations. (b) Distance and direction relative to the Northern Lights Project. (c) Alkalinity of 1 mg/L CaCO3 = 20 µeq/L, or 50 mg/L CaCO3 = 1 meq/L. (d) See Reference list for complete citation (e) Identifier used by previous EIAs; refer to Section 1.4.2.4. (f) Identifier used by Syncrude (2000). (g) Identifier used by Erickson (1987). (h) Identifier used by WRS (2004) for a survey of 34 lakes conducted by Alberta-Pacific Forest Industries in 1999. (i) Identifier used by WRS (2004) for one hundred ponds sampled within the Oil Sands Region during September 2000. (j) Identifier used by RAMP (2004). (k) Identifier used by Saffran and Trew (1996). (l) Identifier used in Volume 7, Section 3.3 of the Application.

Page 52: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission Deccember 2007

- 49 -

1.5.4 Comparison of Critical Loads and Acid Input Rates

Critical loads of acidity and acid input rates are provided in Table 8 for the 380 lakes included in the assessment. The assessment was based on critical loads adjusted for organic acids. Additionally, the assessment used lake net PAI, based on background rates calibrated to observed water quality, and a nitrogen deposition threshold of 75% of the first 10 kg/ha/yr. The results of the other two approaches for calculating acid inputs (described in Section 1.4.3) are provided for reference in Table 8.

Page 53: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment Acid Input (keq H+/ha/yr) Critical Loads of Acidity

[keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen Threshold

Based on Calibrated Background and a Nitrogen Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

609 Lake C(l) 5 ENE 7.5 1.784 1.825 0.150 0.425 0.574 0.608 0.111 0.386 0.535 0.569 0.111 0.207 0.245 0.259 1 4 6 7 283 163(f) 11 ESE 7.9 2.003 1.995 0.150 0.372 0.416 0.448 0.048 0.270 0.315 0.347 0.048 0.129 0.141 0.155 1 4 4 5 103 Audet 13 NE 8.0 2.045 2.035 0.150 0.347 0.404 0.433 0.014 0.210 0.268 0.297 0.014 0.088 0.103 0.116 1 3 4 4 418 P35(i) 13 E 8.1 1.050 1.027 0.150 0.342 0.386 0.416 0.032 0.224 0.268 0.298 0.032 0.105 0.116 0.131 1 3 4 4 484 PTH8(i) 14 ESE 7.7 1.099 1.114 0.150 0.347 0.382 0.413 0.041 0.238 0.273 0.304 0.041 0.116 0.125 0.140 1 3 4 4 80 P5(i), UNL-3(e) 14 SSE 7.9 2.362 2.367 0.163 0.701 0.743 0.786 0.048 0.585 0.628 0.671 0.048 0.214 0.225 0.241 1 8 9 9 483 PTH7(i) 15 E 8.0 1.944 1.922 0.150 0.333 0.374 0.403 0.068 0.251 0.291 0.321 0.068 0.139 0.149 0.163 1 3 4 4 278 157(f) 15 NE 8.1 2.595 2.572 0.150 0.323 0.367 0.394 0.003 0.176 0.220 0.247 0.003 0.070 0.081 0.093 1 3 4 4 79 UNL-2(e) 16 S 8.2 5.695 5.664 0.163 1.562 1.595 1.659 0.100 1.499 1.532 1.596 0.100 0.983 1.015 1.080 1 20 20 21 282 162(f) 17 E 7.8 0.724 0.726 0.150 0.320 0.351 0.379 0.002 0.172 0.202 0.231 0.002 0.069 0.077 0.091 1 3 3 4 417 P34(i) 18 ENE 7.8 1.304 1.309 0.150 0.312 0.339 0.366 0.042 0.204 0.231 0.258 0.042 0.107 0.114 0.127 1 3 3 3 5 McClelland 18 WSW 8.3 1.508 1.491 0.163 0.689 0.696 0.774 0.064 0.590 0.597 0.676 0.064 0.237 0.239 0.265 1 8 8 9 481 PTH5(i) 18 ENE 8.0 2.947 2.929 0.150 0.303 0.332 0.356 0.027 0.180 0.209 0.233 0.027 0.088 0.095 0.107 1 3 3 3 482 PTH6(i) 19 ENE 7.8 1.634 1.638 0.150 0.309 0.335 0.362 0.061 0.220 0.246 0.273 0.061 0.125 0.131 0.144 1 3 3 3 415 P3(i) 22 SW 7.8 2.745 2.752 0.163 0.878 0.888 1.201 0.090 0.805 0.815 1.128 0.090 0.315 0.317 0.609 1 10 10 15 411 P2(i) 22 SW 8.3 2.352 2.315 0.163 0.872 0.880 1.017 0.152 0.860 0.868 1.006 0.152 0.377 0.379 0.487 1 10 10 12 612 Compensation 23 E 7.3 2.809 2.861 0.150 0.299 0.318 0.344 0.005 0.154 0.173 0.199 0.005 0.067 0.072 0.084 1 3 3 3 78 UNL-1(e) 24 SSW 8.1 3.347 3.316 0.163 1.027 1.038 1.464 0.061 0.925 0.936 1.362 0.061 0.406 0.417 0.843 1 12 12 18 611 Lake F 25 ENE 7.7 3.081 3.111 0.150 0.290 0.306 0.330 0.007 0.147 0.163 0.187 0.007 0.066 0.070 0.082 1 3 3 3 419 P38(i) 26 ESE 7.5 0.566 0.588 0.163 0.360 0.372 0.404 0.023 0.220 0.232 0.265 0.023 0.103 0.106 0.122 1 3 3 4 277 153(f) 28 NE 8.7 0.868 0.777 0.150 0.285 0.303 0.325 0.079 0.214 0.232 0.254 0.079 0.135 0.140 0.150 1 2 3 3 81 L1(k), L1(j) 31 SSE 6.3 0.183 0.208 0.163 0.589 0.608 0.665 0.076 0.502 0.521 0.577 0.076 0.229 0.233 0.264 1 6 6 7 4 Kearl 31 SSW 8.0 1.534 1.521 0.163 1.183 1.193 1.372 0.079 1.099 1.109 1.288 0.079 0.570 0.580 0.759 1 14 14 17 420 P4(i) 31 SW 8.2 3.214 3.176 0.163 1.086 1.091 1.187 0.069 0.992 0.997 1.093 0.069 0.473 0.479 0.575 1 13 13 14 280 160(f) 32 ENE 7.8 2.068 2.071 0.150 0.276 0.286 0.308 0.004 0.130 0.140 0.162 0.004 0.059 0.062 0.073 1 2 2 3 464 PM1(i) 32 SSE 4.2 -0.273 -0.088 0.163 0.571 0.588 0.646 0.039 0.447 0.464 0.522 0.039 0.189 0.194 0.228 1 6 6 7 281 161(f) 33 E 8.1 1.391 1.383 0.150 0.278 0.287 0.309 0.003 0.130 0.140 0.162 0.003 0.058 0.061 0.072 1 2 2 3 333 L45(k) 33 N 8.0 0.881 0.883 0.150 0.319 0.328 0.360 0.031 0.201 0.209 0.242 0.031 0.102 0.104 0.119 1 3 3 3 317 L2(k) 33 SSE 7.8 - 1.452 0.163 0.567 0.584 0.646 0.070 0.474 0.490 0.553 0.070 0.221 0.225 0.265 1 6 6 6 466 PM3(i) 33 SSE 7.4 1.038 1.100 0.163 0.565 0.581 0.639 0.056 0.458 0.474 0.532 0.056 0.205 0.209 0.245 1 6 6 6 318 L3(k) 33 SSE 7.8 - 1.186 0.163 0.582 0.598 0.647 0.070 0.488 0.505 0.554 0.070 0.220 0.224 0.247 1 6 6 7 465 PM2(i) 33 SSE 7.1 0.801 0.886 0.163 0.570 0.587 0.661 0.042 0.449 0.466 0.540 0.042 0.200 0.204 0.258 1 6 6 6 279 158(f) 33 ENE 8.1 2.477 2.455 0.150 0.272 0.282 0.303 0.004 0.126 0.136 0.157 0.004 0.057 0.059 0.070 1 2 2 3 149 P23(i), P23(j) 34 SSE 7.6 0.813 0.845 0.163 0.585 0.601 0.694 0.030 0.452 0.468 0.561 0.030 0.199 0.203 0.278 1 6 6 6 421 P43(i) 37 SSE 7.5 0.883 0.929 0.163 0.528 0.543 0.624 0.071 0.437 0.451 0.532 0.071 0.223 0.227 0.293 1 5 5 6 413 P24(i) 37 SSE 7.2 0.734 0.838 0.163 0.543 0.556 0.606 0.054 0.433 0.446 0.497 0.054 0.198 0.201 0.230 1 5 6 6 430 P52(i) 37 WNW 8.3 1.689 1.652 0.153 0.429 0.431 0.471 0.375 0.651 0.652 0.693 0.375 0.478 0.478 0.496 1 4 4 5 473 PT6(i) 38 WNW 8.4 1.354 1.301 0.153 0.419 0.420 0.460 0.198 0.464 0.466 0.505 0.198 0.298 0.299 0.316 1 4 4 5 85 164(f), 17(g), L10(k) 38 ESE 8.0 1.436 1.433 0.165 0.302 0.309 0.333 0.027 0.164 0.171 0.195 0.027 0.089 0.091 0.103 1 2 3 3 432 P6(i) 38 SSE 7.7 1.561 1.584 0.163 0.518 0.531 0.605 0.073 0.429 0.442 0.516 0.073 0.222 0.225 0.285 1 5 5 5 6 LK-1(e) 39 W 9.1 3.886 3.768 0.153 0.865 0.867 0.954 0.361 1.073 1.075 1.162 0.361 0.602 0.603 0.636 1 10 10 11 476 PTH1(i) 40 NNE 8.3 1.023 1.013 0.150 0.278 0.289 0.311 0.055 0.183 0.194 0.216 0.055 0.110 0.112 0.123 1 2 3 3 152 P7(i), P7(j) 40 SSE 6.4 0.151 0.307 0.163 0.429 0.442 0.488 0.016 0.282 0.295 0.341 0.016 0.129 0.132 0.163 1 4 4 4 414 P25(i) 40 SSE 7.7 1.548 1.573 0.163 0.532 0.543 0.598 0.062 0.431 0.442 0.498 0.062 0.215 0.217 0.261 1 5 5 5 440 P8(i) 41 SSE 7.0 0.531 0.685 0.163 0.414 0.427 0.469 0.052 0.304 0.316 0.358 0.052 0.159 0.162 0.189 1 4 4 4 332 L44(k) 41 N 8.7 0.101 0.098 0.150 0.289 0.295 0.322 0.003 0.142 0.149 0.176 0.003 0.062 0.064 0.076 1 2 3 3 270 143(f) 41 N 8.0 - 0.877 0.150 0.285 0.292 0.318 0.020 0.155 0.162 0.188 0.020 0.078 0.079 0.091 1 2 3 3 99 144(f), L43(k) 41 N 8.1 1.032 1.042 0.150 0.283 0.290 0.315 0.029 0.162 0.169 0.194 0.029 0.086 0.088 0.099 1 2 3 3 104 Johnson 42 ENE 8.1 2.471 2.458 0.144 0.255 0.261 0.281 0.024 0.135 0.142 0.161 0.024 0.074 0.076 0.086 1 2 2 2 271 145(f) 42 NNE 8.4 - 1.123 0.150 0.275 0.285 0.307 0.018 0.143 0.153 0.175 0.018 0.072 0.075 0.085 1 2 2 3 18 Lillian 43 WSW 7.5 0.776 0.781 0.167 1.074 1.075 1.203 0.011 0.918 0.919 1.047 0.011 0.386 0.387 0.515 1 12 12 14 485 PTH9(i) 44 S 7.4 0.841 0.879 0.163 0.617 0.626 0.676 0.076 0.530 0.539 0.588 0.076 0.241 0.244 0.265 1 6 7 7 12 LK-7(e) 44 WSW 7.7 0.402 0.405 0.167 1.129 1.130 1.270 0.014 0.976 0.977 1.117 0.014 0.444 0.445 0.584 1 13 13 15 480 PTH2(i) 44 NNE 8.1 1.305 1.303 0.150 0.269 0.278 0.299 0.059 0.178 0.187 0.208 0.059 0.111 0.113 0.123 1 2 2 3 477 PTH10(i) 45 S 7.0 0.774 0.852 0.163 0.610 0.619 0.668 0.059 0.506 0.515 0.564 0.059 0.224 0.226 0.247 1 6 6 7 19 Calumet 45 WSW 7.8 1.319 1.317 0.167 1.084 1.085 1.229 0.160 1.076 1.077 1.222 0.160 0.546 0.547 0.691 1 13 13 14 330 L41(k) 45 NNE 7.8 0.604 0.609 0.150 0.271 0.279 0.301 0.050 0.171 0.179 0.201 0.050 0.102 0.104 0.115 1 2 2 3 54 UW4(e) 46 SW 8.1 2.949 2.930 0.163 1.259 1.262 1.514 0.064 1.160 1.163 1.415 0.064 0.637 0.639 0.892 1 15 15 18 607 P2(e) 46 SW 8.2 3.583 3.557 0.163 1.259 1.262 1.523 0.060 1.156 1.158 1.420 0.060 0.633 0.635 0.897 1 15 15 18

82 170(f), 14(g), L4(k), A170 (L4)(j) 46 SSE 6.0 0.069 0.283 0.163 0.459 0.467 0.511 0.119 0.415 0.423 0.466 0.119 0.239 0.242 0.267 1 4 4 5

Page 54: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment (continued)

- 51 -

Acid Input (keq H+/ha/yr) Critical Loads of Acidity [keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen

Threshold Based on Calibrated Background and a Nitrogen

Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

150 P27(i), P27(j) 47 SSE 5.2 -0.019 0.254 0.163 0.460 0.469 0.512 0.027 0.325 0.333 0.376 0.027 0.148 0.150 0.174 1 4 4 5 268 141(f) 47 N 8.3 - 1.153 0.150 0.271 0.278 0.301 0.015 0.136 0.143 0.166 0.015 0.067 0.069 0.080 1 2 2 3 55 UW5(e) 47 SW 8.1 2.192 2.175 0.163 1.235 1.237 1.505 0.068 1.140 1.142 1.409 0.068 0.617 0.619 0.886 1 15 15 18 53 UW3(e) 47 SW 7.9 2.915 2.920 0.163 1.256 1.258 1.545 0.077 1.170 1.172 1.459 0.077 0.647 0.649 0.936 1 15 15 18 605 P1(e) 47 SW 8.1 3.158 3.154 0.163 1.253 1.255 1.544 0.072 1.162 1.164 1.453 0.072 0.639 0.641 0.930 1 15 15 18 51 UW1(e) 47 SW 8.0 2.920 2.919 0.167 1.264 1.266 1.560 0.076 1.173 1.175 1.469 0.076 0.650 0.652 0.946 1 15 15 18 445 P9(i) 47 SE 7.8 1.976 1.979 0.163 0.344 0.352 0.383 0.067 0.248 0.256 0.287 0.067 0.149 0.151 0.169 1 3 3 3 269 142(f) 47 NNE 8.3 1.507 1.501 0.150 0.269 0.277 0.299 0.021 0.141 0.148 0.171 0.021 0.073 0.075 0.085 1 2 2 3 52 UW2(e) 47 SW 8.0 1.533 1.533 0.167 1.262 1.264 1.564 0.048 1.143 1.145 1.445 0.048 0.620 0.622 0.923 1 15 15 18 267 139(f) 47 N 8.1 0.428 0.430 0.150 0.272 0.278 0.301 0.005 0.127 0.133 0.156 0.005 0.058 0.059 0.070 1 2 2 3 265 Pearson 47 NNW 8.0 - 0.432 0.150 0.272 0.277 0.301 0.007 0.129 0.135 0.158 0.007 0.060 0.061 0.072 1 2 2 3 429 P51(i) 48 WNW 7.3 1.359 1.416 0.153 0.316 0.317 0.348 0.649 0.812 0.813 0.844 0.649 0.720 0.720 0.735 1 3 3 3 284 Big Snuff 48 ESE 7.5 0.706 0.739 0.165 0.293 0.297 0.320 0.003 0.131 0.136 0.158 0.003 0.062 0.063 0.075 1 2 2 3 56 UW6(e) 48 SW 7.9 1.480 1.471 0.167 1.242 1.244 1.636 0.103 1.177 1.179 1.572 0.103 0.653 0.655 1.048 1 15 15 19 266 Kress 48 N 7.9 0.649 0.656 0.150 0.271 0.276 0.300 0.001 0.122 0.128 0.151 0.001 0.054 0.055 0.066 1 2 2 3 431 P54(i) 48 WNW 7.3 0.918 0.935 0.153 0.306 0.307 0.337 0.219 0.373 0.374 0.404 0.219 0.287 0.287 0.301 1 3 3 3 276 152(f) 48 NNE 8.3 - 0.792 0.150 0.260 0.268 0.287 0.005 0.115 0.123 0.142 0.005 0.054 0.056 0.065 1 2 2 2 331 L42(k) 49 N 8.1 0.876 0.879 0.150 0.269 0.275 0.297 0.025 0.143 0.149 0.172 0.025 0.076 0.077 0.088 1 2 2 3 20 Isadore's 49 SW 8.0 4.812 4.821 0.167 1.498 1.500 1.779 1.139 2.470 2.472 2.751 1.139 1.949 1.951 2.230 1 18 18 21 274 149(f) 49 NNE 8.3 1.385 1.382 0.150 0.259 0.268 0.287 0.010 0.119 0.128 0.147 0.010 0.059 0.061 0.070 1 2 2 2 98 146(f), L40(k) 49 NNE 8.0 0.093 0.094 0.150 0.260 0.268 0.287 0.003 0.112 0.120 0.139 0.003 0.051 0.053 0.062 1 2 2 2 321 L11(k) 49 ESE 8.1 0.550 0.501 0.165 0.291 0.296 0.318 0.049 0.175 0.180 0.202 0.049 0.108 0.109 0.120 1 2 2 3 264 136(f) 50 NNW 8.0 - 0.331 0.150 0.264 0.269 0.290 0.001 0.115 0.119 0.141 0.001 0.050 0.051 0.062 1 2 2 2 426 P48(i) 50 W 7.7 1.688 1.716 0.153 0.369 0.370 0.414 0.457 0.673 0.674 0.718 0.457 0.552 0.552 0.573 1 3 3 4 273 148(f) 50 NNE 8.2 - 0.813 0.150 0.258 0.266 0.285 0.005 0.113 0.121 0.140 0.005 0.053 0.055 0.064 1 2 2 2 472 PT5(i) 50 WNW 7.5 0.815 0.879 0.153 0.303 0.304 0.334 0.074 0.224 0.225 0.255 0.074 0.142 0.142 0.156 1 3 3 3 606 P4(e) 51 SSW 7.9 1.705 1.705 0.163 1.216 1.218 1.554 0.035 1.088 1.090 1.427 0.035 0.565 0.567 0.904 1 14 14 18 17 LK-12(e) 51 W 7.2 1.313 1.370 0.153 0.446 0.447 0.509 0.527 0.820 0.821 0.883 0.527 0.656 0.656 0.684 1 4 4 5 474 PT8(i) 51 W 7.8 1.821 1.835 0.153 0.417 0.417 0.473 0.763 1.027 1.028 1.083 0.763 0.880 0.880 0.906 1 4 4 4 10 LK-5(e) 52 W 7.5 1.641 1.667 0.153 0.456 0.457 0.521 0.537 0.840 0.841 0.905 0.537 0.672 0.672 0.701 1 4 4 5 11 LK-6(e) 52 W 7.5 1.613 1.643 0.153 0.413 0.413 0.468 0.489 0.748 0.749 0.804 0.489 0.605 0.605 0.630 1 4 4 4 262 Dianne 52 NW 7.9 1.711 1.712 0.153 0.244 0.246 0.263 0.321 0.412 0.414 0.430 0.321 0.361 0.361 0.369 1 2 2 2 422 P44(i) 53 SSE 9.0 4.044 3.250 0.163 0.345 0.353 0.386 0.105 0.287 0.295 0.328 0.105 0.186 0.188 0.207 1 3 3 3 151 P49(i), P49(j) 53 WNW 6.7 0.234 0.363 0.153 0.293 0.294 0.322 0.051 0.191 0.192 0.221 0.051 0.116 0.116 0.130 1 2 2 3 428 P50(i) 54 WNW 8.2 4.024 3.974 0.153 0.308 0.309 0.341 0.264 0.420 0.420 0.452 0.264 0.336 0.336 0.351 1 3 3 3 83 L7(k), L7(j) 54 SSE 6.4 0.187 0.401 0.163 0.388 0.394 0.433 0.114 0.339 0.345 0.383 0.114 0.211 0.213 0.234 1 3 4 4 320 L9(k) 55 SE 8.5 1.976 1.870 0.165 0.316 0.321 0.347 0.067 0.217 0.222 0.249 0.067 0.138 0.139 0.153 1 3 3 3 319 L6(k) 55 SSE 7.7 1.339 1.373 0.163 0.412 0.418 0.456 0.070 0.319 0.325 0.362 0.070 0.175 0.177 0.197 1 4 4 4 423 P45(i) 55 SE 8.3 3.035 2.893 0.163 0.321 0.327 0.356 0.177 0.335 0.341 0.369 0.177 0.250 0.252 0.267 1 3 3 3 263 134(f) 55 NNW 8.1 0.695 0.696 0.153 0.242 0.245 0.261 0.081 0.170 0.173 0.189 0.081 0.121 0.121 0.129 1 2 2 2 272 Poplar 56 NNE 8.4 1.690 1.676 0.150 0.252 0.259 0.277 0.017 0.119 0.126 0.144 0.017 0.063 0.065 0.073 1 2 2 2 86 166(f), L12(k) 56 ESE 8.9 1.113 0.844 0.165 0.287 0.291 0.313 0.030 0.152 0.156 0.178 0.030 0.088 0.088 0.100 1 2 2 3 7 LK-2(e) 56 W 6.6 0.115 0.172 0.153 0.371 0.371 0.416 0.034 0.252 0.253 0.297 0.034 0.134 0.135 0.155 1 3 3 4 140 L5(k), P28(i) 58 S 7.1 0.653 0.764 0.163 0.418 0.423 0.460 0.073 0.327 0.333 0.370 0.073 0.180 0.181 0.199 1 4 4 4 87 167(f), L13(k) 58 ESE 7.5 0.650 0.684 0.165 0.284 0.288 0.309 0.030 0.149 0.152 0.174 0.030 0.086 0.087 0.098 1 2 2 3 424 P46(i) 59 S 8.3 2.576 2.427 0.163 0.453 0.459 0.495 0.072 0.362 0.368 0.404 0.072 0.190 0.191 0.207 1 4 4 5 261 Ronald 59 NW 8.0 1.946 1.945 0.153 0.225 0.227 0.241 0.366 0.438 0.440 0.453 0.366 0.398 0.399 0.405 1 2 2 2 412 P20(i) 59 WNW 7.5 0.995 1.064 0.153 0.289 0.290 0.317 0.113 0.249 0.250 0.277 0.113 0.178 0.178 0.190 1 2 2 3 260 131(f) 59 NW 8.0 1.343 1.342 0.153 0.222 0.223 0.236 0.388 0.457 0.458 0.471 0.388 0.419 0.419 0.425 1 2 2 2 439 P79(i) 59 WNW 7.00 0.848 1.018 0.153 0.282 0.283 0.308 0.108 0.237 0.237 0.263 0.108 0.169 0.169 0.181 1 2 2 3 275 151(f) 59 NE 7.2 0.315 0.361 0.144 0.236 0.243 0.259 0.018 0.110 0.117 0.133 0.018 0.060 0.062 0.070 1 2 2 2 438 P77(i) 60 WNW 7.1 0.878 1.018 0.153 0.282 0.282 0.308 0.102 0.230 0.231 0.256 0.102 0.163 0.163 0.175 1 2 2 3 471 PT4(i) 60 WNW 7.6 1.211 1.267 0.153 0.279 0.280 0.305 0.115 0.241 0.242 0.267 0.115 0.175 0.175 0.187 1 2 2 3 348 Currie 60 NNE 7.3 0.244 0.258 0.150 0.248 0.253 0.271 0.014 0.112 0.118 0.136 0.014 0.058 0.059 0.068 1 2 2 2

105 150(f), 9(g), L39(k), A-150 (L39)(j) 60 NE 6.8 0.177 0.233 0.144 0.236 0.243 0.259 0.035 0.127 0.134 0.150 0.035 0.077 0.079 0.087 1 2 2 2

88 168(f), 12(g), L14(k) 61 ESE 8.2 1.152 1.087 0.165 0.279 0.282 0.302 0.037 0.151 0.154 0.174 0.037 0.091 0.092 0.102 1 2 2 2 475 PT9(i) 61 W 7.9 1.619 1.621 0.167 0.393 0.393 0.437 0.144 0.370 0.370 0.414 0.144 0.250 0.250 0.269 1 3 3 4 425 P47(i) 61 S 7.8 1.856 1.853 0.163 0.428 0.434 0.469 0.087 0.353 0.358 0.393 0.087 0.196 0.198 0.214 1 4 4 4 467 PM4(i) 62 S 7.6 1.867 1.906 0.163 0.424 0.429 0.464 0.078 0.339 0.345 0.379 0.078 0.186 0.187 0.203 1 4 4 4 433 P60(i) 63 WNW 7.7 1.996 2.029 0.153 0.249 0.249 0.268 0.175 0.271 0.271 0.290 0.175 0.222 0.222 0.230 1 2 2 2 84 L8(k), L8(j) 63 SSE 7.0 0.584 0.679 0.163 0.348 0.354 0.388 0.041 0.226 0.232 0.266 0.041 0.128 0.129 0.148 1 3 3 3

Page 55: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment (continued)

- 52 -

Acid Input (keq H+/ha/yr) Critical Loads of Acidity [keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen

Threshold Based on Calibrated Background and a Nitrogen

Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

329 Mildred 64 SSW 8.2 2.494 2.491 0.167 1.105 1.106 1.183 0.451 1.388 1.390 1.467 0.451 0.868 0.869 0.946 1 11 11 12 470 PT3(i) 64 WNW 7.5 1.130 1.209 0.153 0.258 0.258 0.278 0.140 0.245 0.246 0.266 0.140 0.192 0.192 0.201 1 2 2 2 416 P30(i) 65 S 7.6 1.163 1.201 0.163 0.449 0.453 0.491 0.061 0.346 0.351 0.389 0.061 0.178 0.179 0.196 1 4 4 5 478 PTH11(i) 65 S 7.3 1.605 1.669 0.163 0.520 0.524 0.568 0.067 0.424 0.428 0.471 0.067 0.209 0.210 0.230 1 5 5 6 328 Clear 67 WNW 7.4 0.779 0.824 0.153 0.238 0.238 0.254 0.047 0.132 0.132 0.149 0.047 0.089 0.089 0.097 1 2 2 2 436 P70(i) 67 W 6.6 0.412 0.635 0.153 0.298 0.299 0.329 0.088 0.233 0.234 0.263 0.088 0.159 0.159 0.172 1 2 2 3 347 L64(k) 67 NNE 7.9 0.048 0.048 0.150 0.239 0.244 0.261 0.002 0.091 0.096 0.113 0.002 0.042 0.043 0.051 1 2 2 2 410 P18(i) 69 WSW 7.5 1.471 1.519 0.167 0.330 0.331 0.360 0.673 0.836 0.837 0.866 0.673 0.753 0.754 0.766 1 3 3 3 327 Eaglenest 69 WNW 7.5 0.652 0.682 0.153 0.222 0.223 0.236 0.040 0.109 0.109 0.123 0.040 0.074 0.075 0.081 1 2 2 2 322 L15(k) 69 SE 7.5 1.000 1.061 0.165 0.280 0.283 0.303 0.341 0.456 0.459 0.479 0.341 0.396 0.397 0.407 1 2 2 2 58 Shipyard 70 SSW 7.6 3.473 3.501 0.163 0.997 0.999 1.045 0.110 0.944 0.946 0.992 0.110 0.468 0.468 0.489 1 10 10 10 409 P17(i) 70 WSW 7.3 1.982 2.065 0.167 0.329 0.330 0.358 0.770 0.932 0.933 0.961 0.770 0.850 0.850 0.862 1 3 3 3 468 PT1(i) 70 WNW 8.0 1.356 1.336 0.153 0.233 0.233 0.249 0.173 0.253 0.253 0.269 0.173 0.213 0.214 0.221 1 2 2 2 435 P69(i) 70 W 7.4 0.940 1.040 0.153 0.252 0.253 0.273 0.079 0.179 0.179 0.200 0.079 0.129 0.129 0.139 1 2 2 2 334 L48(k) 70 WNW 7.4 0.934 0.982 0.153 0.236 0.237 0.253 0.027 0.110 0.110 0.127 0.027 0.069 0.069 0.077 1 2 2 2 350 Harwood 70 NE 7.7 0.220 0.229 0.144 0.228 0.233 0.248 0.015 0.099 0.104 0.119 0.015 0.054 0.055 0.062 1 2 2 2 469 PT2(i) 70 WNW 5.0 0.231 0.505 0.153 0.227 0.227 0.242 0.385 0.459 0.460 0.474 0.385 0.423 0.423 0.430 1 2 2 2 408 P16(i) 71 WSW 6.9 1.533 1.698 0.167 0.322 0.322 0.349 0.933 1.087 1.088 1.115 0.933 1.009 1.009 1.021 1 3 3 3 444 P87(i) 71 W 7.30 1.158 1.246 0.153 0.282 0.283 0.309 0.124 0.253 0.254 0.279 0.124 0.188 0.188 0.200 1 2 2 2 437 P72(i) 71 WNW 5.1 0.484 0.760 0.153 0.227 0.228 0.242 0.447 0.521 0.521 0.536 0.447 0.484 0.484 0.491 1 2 2 2 153 P94(i), P94(j) 72 SW 7.0 1.044 1.123 0.167 0.384 0.385 0.423 0.222 0.439 0.439 0.478 0.222 0.313 0.313 0.328 1 3 3 4 434 P61(i) 72 W 7.5 1.200 1.269 0.153 0.250 0.250 0.271 0.107 0.204 0.204 0.225 0.107 0.156 0.156 0.166 1 2 2 2 608 Suncor_VS_UW1 73 SSW 7.8 5.476 5.478 0.163 0.948 0.949 0.992 0.130 0.914 0.916 0.959 0.130 0.482 0.483 0.502 1 9 9 10 479 PTH12(i) 73 S 7.6 1.583 1.618 0.163 0.461 0.464 0.506 0.073 0.371 0.374 0.415 0.073 0.194 0.195 0.214 1 4 4 5 102 33(g), L33(k) 73 W 8.4 1.843 1.805 0.167 0.303 0.304 0.327 0.255 0.391 0.391 0.415 0.255 0.323 0.323 0.334 1 2 2 3

129 2(f), 15(g), E15 (L15b)(j) 74 S 7.0 0.463 0.586 0.163 0.368 0.372 0.404 0.014 0.219 0.223 0.255 0.014 0.104 0.105 0.120 1 3 3 4

442 P85(i) 75 W 7.2 1.100 1.220 0.167 0.278 0.279 0.300 0.207 0.318 0.319 0.340 0.207 0.263 0.263 0.273 1 2 2 2 446 P90(i) 76 SW 7.9 1.933 1.925 0.167 0.330 0.331 0.360 0.090 0.253 0.254 0.283 0.090 0.160 0.161 0.172 1 3 3 3 349 Archer 76 NE 7.8 0.209 0.219 0.144 0.222 0.227 0.241 0.021 0.099 0.104 0.118 0.021 0.057 0.059 0.065 1 2 2 2 346 Canopener 76 W 7.6 0.905 0.921 0.153 0.244 0.244 0.263 0.019 0.110 0.110 0.129 0.019 0.065 0.066 0.074 1 2 2 2 406 P11(i) 78 WSW 7.4 1.505 1.586 0.167 0.298 0.298 0.320 0.202 0.333 0.333 0.355 0.202 0.267 0.267 0.277 1 2 2 3 345 Buoy 78 W 8.3 1.730 1.703 0.153 0.238 0.239 0.255 0.103 0.188 0.188 0.205 0.103 0.147 0.147 0.155 1 2 2 2 326 Sand 79 W 8.0 0.894 0.885 0.153 0.223 0.223 0.237 0.044 0.114 0.114 0.128 0.044 0.080 0.080 0.087 1 2 2 2 447 P91(i) 79 SW 7.7 3.144 3.163 0.167 0.301 0.302 0.326 0.144 0.277 0.278 0.302 0.144 0.203 0.203 0.213 1 3 3 3 441 P84(i) 81 W 7.1 1.028 1.133 0.167 0.261 0.262 0.279 0.119 0.213 0.214 0.231 0.119 0.168 0.168 0.176 1 2 2 2 92 Otasan 81 WNW 6.7 0.071 0.107 0.153 0.213 0.214 0.226 0.017 0.077 0.078 0.089 0.017 0.049 0.049 0.054 1 2 2 2 487 PW2(i) 82 WSW 7.9 3.230 3.209 0.167 0.284 0.285 0.305 0.334 0.452 0.452 0.472 0.334 0.393 0.393 0.402 1 2 2 2 407 P14(i) 82 WSW 7.6 2.331 2.376 0.167 0.279 0.280 0.299 0.617 0.729 0.729 0.748 0.617 0.672 0.673 0.681 1 2 2 2 106 Bayard 84 WNW 6.7 0.424 0.510 0.153 0.205 0.205 0.215 0.205 0.257 0.257 0.267 0.205 0.232 0.232 0.237 1 1 1 2 148 P13(i), P13(j) 85 WSW 8.0 1.300 1.241 0.167 0.268 0.269 0.287 0.140 0.241 0.242 0.260 0.140 0.191 0.191 0.199 1 2 2 2 352 L69(k) 85 WNW 8.0 1.317 1.303 0.153 0.197 0.197 0.206 0.111 0.156 0.156 0.164 0.111 0.134 0.134 0.138 1 1 1 1 324 N. Gardiner 86 W 7.8 0.926 0.939 0.153 0.224 0.224 0.237 0.106 0.176 0.177 0.190 0.106 0.143 0.144 0.150 1 2 2 2 486 PW1(i) 86 WSW 7.2 1.762 1.877 0.167 0.262 0.262 0.280 0.659 0.754 0.755 0.772 0.659 0.707 0.707 0.715 1 2 2 2 325 L21(k) 87 W 7.8 0.345 0.353 0.153 0.217 0.217 0.229 0.076 0.140 0.140 0.152 0.076 0.111 0.111 0.116 1 2 2 2 323 S. Gardiner 87 W 7.6 0.905 0.926 0.153 0.226 0.226 0.240 0.109 0.182 0.183 0.196 0.109 0.148 0.148 0.154 1 2 2 2 141 4(f), 4(270)(j) 88 S 8.1 1.266 1.200 0.163 0.332 0.335 0.370 0.004 0.173 0.176 0.211 0.004 0.079 0.080 0.096 1 3 3 3 351 L68(k) 90 WNW 6.8 0.149 0.236 0.153 0.195 0.195 0.203 0.075 0.117 0.117 0.125 0.075 0.097 0.097 0.100 1 1 1 1 108 Waterlily 90 W 7.7 0.717 0.735 0.153 0.208 0.208 0.218 0.213 0.267 0.267 0.277 0.213 0.242 0.242 0.247 1 1 1 2 443 P86(i) 90 WSW 7.7 4.696 4.720 0.167 0.246 0.246 0.262 1.342 1.420 1.421 1.436 1.342 1.381 1.381 1.388 1 2 2 2 488 PW3(i) 91 WSW 7.3 1.285 1.350 0.167 0.246 0.246 0.262 0.178 0.257 0.257 0.273 0.178 0.216 0.216 0.224 1 2 2 2 155 P97(i), P97(j) 92 SSW 6.8 0.302 0.418 0.167 0.376 0.377 0.408 0.031 0.239 0.241 0.272 0.031 0.116 0.116 0.130 1 3 3 4 97 Clayton 92 NW 4.3 -0.084 0.007 0.153 0.190 0.191 0.197 0.010 0.047 0.048 0.054 0.010 0.029 0.030 0.033 1 1 1 1 449 P95(i) 94 SW 7.5 2.249 2.304 0.167 0.323 0.324 0.356 0.137 0.293 0.294 0.326 0.137 0.202 0.202 0.216 1 3 3 3 107 L60(k), L60(j) 94 W 7.2 0.409 0.459 0.160 0.210 0.210 0.219 0.156 0.206 0.206 0.215 0.156 0.183 0.184 0.188 1 1 1 2 91 Namur 95 W 7.2 0.222 0.242 0.175 0.232 0.232 0.242 0.068 0.125 0.125 0.135 0.068 0.097 0.097 0.102 1 2 2 2 101 L49(k), L49(j) 95 WNW 6.5 0.291 0.358 0.160 0.203 0.203 0.211 0.211 0.254 0.254 0.262 0.211 0.234 0.234 0.237 1 1 1 2 156 P98(i), P98(j) 96 SSW 7.3 0.918 1.001 0.167 0.338 0.339 0.370 0.054 0.225 0.226 0.257 0.054 0.126 0.126 0.140 1 3 3 3 135 3(f), 16(g) 97 SE 8.7 1.584 1.449 0.165 0.277 0.279 0.302 0.031 0.143 0.145 0.168 0.031 0.088 0.088 0.100 1 2 2 2 154 P96(i), P96(j) 98 SSW 7.3 0.633 0.693 0.167 0.309 0.310 0.340 0.033 0.175 0.176 0.205 0.033 0.093 0.093 0.106 1 3 3 3 100 27(g), L47(k), L47(j) 102 W 6.7 0.371 0.430 0.160 0.200 0.201 0.208 0.133 0.173 0.173 0.180 0.133 0.155 0.155 0.158 1 1 1 1 524 Patterson 103 E 6.9 0.370 0.412 0.150 0.212 0.214 0.225 0.150 0.212 0.214 0.225 0.150 0.180 0.181 0.187 1 2 2 2

Page 56: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment (continued)

- 53 -

Acid Input (keq H+/ha/yr) Critical Loads of Acidity [keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen

Threshold Based on Calibrated Background and a Nitrogen

Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

405 P101(i) 103 SSW 7.5 1.161 1.204 0.167 0.302 0.303 0.332 0.089 0.225 0.225 0.255 0.089 0.147 0.147 0.161 1 3 3 3 344 L59(k) 103 W 7.2 0.336 0.397 0.160 0.200 0.200 0.207 0.068 0.108 0.109 0.115 0.068 0.091 0.091 0.094 1 1 1 1 134 1(f), 25(g), 1 (267)(j) 104 SSW 7.4 0.848 0.899 0.167 0.290 0.291 0.318 0.021 0.144 0.145 0.173 0.021 0.074 0.075 0.087 1 2 2 3 337 L52(k) 104 WSW 7.4 1.249 1.297 0.175 0.224 0.224 0.235 0.356 0.405 0.405 0.416 0.356 0.381 0.381 0.386 1 2 2 2 336 L51(k) 105 WSW 8.5 1.287 1.145 0.175 0.224 0.225 0.236 0.090 0.139 0.139 0.150 0.090 0.114 0.115 0.120 1 2 2 2 335 L50(k) 106 W 7.0 0.391 0.455 0.160 0.197 0.197 0.203 0.141 0.178 0.178 0.184 0.141 0.162 0.162 0.165 1 1 1 1 338 L53(k) 106 WSW 7.4 4.294 4.357 0.175 0.220 0.220 0.230 2.072 2.117 2.117 2.127 2.072 2.095 2.095 2.100 1 2 2 2 450 P99(i) 108 SSW 7.5 1.307 1.344 0.167 0.295 0.295 0.324 0.063 0.190 0.191 0.220 0.063 0.119 0.119 0.133 1 2 2 3 525 Forrest 108 E 6.9 0.533 0.574 0.150 0.206 0.208 0.218 0.150 0.206 0.208 0.218 0.150 0.178 0.178 0.183 1 2 2 2 456 PF2(i) 109 SSW 7.8 2.664 2.680 0.167 0.287 0.287 0.316 0.076 0.196 0.196 0.225 0.076 0.129 0.129 0.143 1 2 2 3 458 PF4(i) 112 SSW 7.7 3.910 3.929 0.167 0.277 0.278 0.307 0.114 0.224 0.225 0.254 0.114 0.163 0.163 0.177 1 2 2 3 339 L54(k) 112 WSW 7.6 4.639 4.681 0.175 0.214 0.215 0.224 1.121 1.160 1.160 1.169 1.121 1.141 1.141 1.145 1 2 2 2 451 PF1(i) 113 SSW 7.9 3.194 3.201 0.167 0.274 0.275 0.303 0.089 0.197 0.197 0.226 0.089 0.137 0.137 0.151 1 2 2 3 455 PF13(i) 113 S 7.7 2.042 2.062 0.163 0.362 0.363 0.400 0.087 0.286 0.287 0.324 0.087 0.187 0.188 0.206 1 3 3 3 462 PF8(i) 113 SSW 7.4 1.790 1.846 0.163 0.293 0.294 0.324 0.378 0.508 0.508 0.538 0.378 0.438 0.438 0.452 1 2 2 3 93 Legend 114 W 6.8 0.076 0.106 0.175 0.205 0.205 0.211 0.035 0.064 0.065 0.071 0.035 0.051 0.051 0.053 1 1 1 1 142 6(f), 6 (271)(j) 114 SSE 9.0 1.315 1.040 0.165 0.290 0.293 0.321 0.006 0.131 0.134 0.162 0.006 0.068 0.068 0.083 1 2 2 3 32 Caribou Horn 114 S 7.7 1.721 1.737 0.163 0.365 0.367 0.404 0.130 0.332 0.333 0.371 0.130 0.232 0.232 0.251 1 3 3 3 527 Beet 115 E 69 0.571 0.622 0.150 0.196 0.198 0.206 0.150 0.196 0.198 0.206 0.150 0.173 0.173 0.178 1 1 1 2 457 PF3(i) 116 SSW 7.9 2.171 2.173 0.167 0.263 0.264 0.291 0.072 0.168 0.169 0.196 0.072 0.115 0.115 0.128 1 2 2 2 526 Preston 116 E 6.8 0.595 0.642 0.164 0.208 0.210 0.218 0.164 0.208 0.210 0.218 0.164 0.186 0.186 0.190 1 2 2 2 529 Sandy-2 118 NE 7.3 - 0.797 0.144 0.185 0.187 0.194 0.144 0.185 0.187 0.194 0.144 0.163 0.164 0.167 1 1 1 1 452 PF10(i) 119 S 6.9 0.556 0.650 0.186 0.375 0.376 0.416 0.140 0.329 0.330 0.370 0.140 0.237 0.237 0.257 1 3 3 3 459 PF5(i) 119 SSW 7.9 1.852 1.858 0.167 0.265 0.266 0.293 0.055 0.153 0.153 0.181 0.055 0.099 0.099 0.112 1 2 2 2 453 PF11(i) 119 S 6.1 0.236 0.424 0.186 0.389 0.390 0.431 0.066 0.269 0.270 0.311 0.066 0.171 0.172 0.192 1 3 3 3 96 28(g), L28(k), L28(j) 119 WNW 5.2 -0.013 0.100 0.160 0.187 0.187 0.192 0.036 0.063 0.063 0.068 0.036 0.051 0.051 0.053 1 1 1 1 460 PF6(i) 120 SSW 7.7 1.798 1.818 0.167 0.263 0.263 0.291 0.066 0.161 0.162 0.190 0.066 0.109 0.109 0.122 1 2 2 2 3 Gregoire 121 S 7.4 1.130 1.162 0.186 0.352 0.353 0.394 0.163 0.329 0.330 0.371 0.163 0.246 0.247 0.267 1 3 3 3 25 Canoe 122 S 7.1 0.517 0.559 0.186 0.410 0.411 0.455 0.034 0.258 0.259 0.303 0.034 0.153 0.153 0.175 1 3 3 4 109 Gordon 122 SSE 8.4 1.145 1.114 0.163 0.314 0.316 0.351 0.018 0.169 0.171 0.206 0.018 0.093 0.093 0.111 1 2 3 3 463 PF9(i) 122 S 7.1 0.927 1.012 0.186 0.343 0.344 0.387 0.265 0.422 0.423 0.466 0.265 0.343 0.343 0.364 1 3 3 3 33 Kiskatinaw 122 S 7.8 1.927 1.930 0.186 0.417 0.418 0.462 0.067 0.298 0.299 0.343 0.067 0.190 0.191 0.212 1 3 3 4 170 Nora 123 SSE 9.1 1.110 0.942 0.186 0.349 0.351 0.390 0.002 0.166 0.168 0.207 0.002 0.084 0.084 0.104 1 3 3 3 461 PF7(i) 123 S 7.5 2.240 2.288 0.186 0.323 0.323 0.364 0.221 0.358 0.358 0.399 0.221 0.287 0.287 0.307 1 3 3 3 35 PF12(i), UNL2(e) 123 S 6.2 0.477 0.598 0.186 0.422 0.423 0.468 0.068 0.304 0.305 0.350 0.068 0.195 0.195 0.217 1 3 3 4 343 L58(k) 124 W 9.2 0.817 0.608 0.175 0.193 0.193 0.196 0.020 0.038 0.038 0.042 0.020 0.030 0.030 0.031 1 1 1 1 29 Frog 125 S 7.7 1.980 2.001 0.186 0.410 0.411 0.456 0.069 0.293 0.295 0.340 0.069 0.190 0.190 0.212 1 3 3 4 340 L55(k) 125 WSW 7.8 1.914 1.926 0.175 0.198 0.198 0.204 0.302 0.326 0.326 0.331 0.302 0.315 0.315 0.317 1 1 1 1 30 Poison 126 S 7.8 1.022 1.027 0.186 0.405 0.406 0.453 0.027 0.246 0.248 0.294 0.027 0.145 0.146 0.168 1 3 3 4 28 Sucker 127 S 7.8 1.818 1.822 0.186 0.400 0.402 0.446 0.077 0.291 0.293 0.337 0.077 0.192 0.192 0.214 1 3 3 4 341 L56(k) 127 WSW 7.2 1.124 1.217 0.175 0.198 0.198 0.203 0.233 0.255 0.255 0.261 0.233 0.244 0.244 0.247 1 1 1 1 89 Rabbit 127 WSW 8.3 2.650 2.476 0.175 0.204 0.204 0.212 0.258 0.287 0.287 0.295 0.258 0.273 0.273 0.277 1 1 1 2 26 Long -1 127 S 7.2 0.617 0.673 0.186 0.401 0.403 0.453 0.085 0.301 0.302 0.352 0.085 0.201 0.201 0.226 1 3 3 4 31 Rat Lake 128 S 7.8 2.103 2.112 0.186 0.399 0.401 0.447 0.095 0.308 0.309 0.356 0.095 0.210 0.210 0.233 1 3 3 4 1 Birch -2 128 S 7.7 1.779 1.797 0.186 0.397 0.398 0.448 0.306 0.517 0.518 0.568 0.306 0.419 0.420 0.444 1 3 3 4 34 UNL1(e) 129 S 6.1 0.044 0.152 0.186 0.390 0.392 0.444 0.047 0.251 0.252 0.305 0.047 0.156 0.156 0.183 1 3 3 4 169 Shortt 129 SSE 7.9 1.515 1.514 0.182 0.311 0.312 0.343 0.005 0.133 0.135 0.166 0.005 0.069 0.069 0.085 1 2 2 3 168 8(f) 130 SSE 8.9 2.913 2.727 0.165 0.278 0.280 0.306 0.001 0.114 0.116 0.143 0.001 0.058 0.059 0.072 1 2 2 2 27 Pushup 130 S 7.8 0.471 0.479 0.186 0.386 0.387 0.440 0.018 0.218 0.219 0.273 0.018 0.125 0.125 0.152 1 3 3 3 41 Maqua 133 S 6.9 0.555 0.621 0.186 0.357 0.358 0.425 0.131 0.302 0.303 0.370 0.131 0.216 0.216 0.250 1 3 3 3 531 Cluff 134 NE 8.1 - 2.715 0.150 0.183 0.185 0.191 0.150 0.183 0.185 0.191 0.150 0.166 0.166 0.169 1 1 1 1 36 UNL3(e) 135 S 7.8 1.568 1.570 0.186 0.377 0.379 0.433 0.071 0.262 0.263 0.318 0.071 0.175 0.175 0.203 1 3 3 3 171 Gipsy 135 SSE 8.5 0.629 0.626 0.182 0.313 0.314 0.347 0.002 0.132 0.134 0.166 0.002 0.067 0.068 0.084 1 2 2 3 40 L11(e) 135 S 6.0 0.084 0.195 0.186 0.361 0.361 0.432 0.133 0.308 0.309 0.380 0.133 0.220 0.220 0.256 1 3 3 4 110 Birch (f) 136 SSE 8.8 1.680 1.552 0.182 0.331 0.332 0.371 0.024 0.173 0.174 0.213 0.024 0.099 0.100 0.119 1 3 3 3 39 L10(e) 136 S 5.8 0.019 0.064 0.186 0.359 0.360 0.431 0.084 0.258 0.259 0.330 0.084 0.170 0.170 0.206 1 3 3 4 172 Baker 137 SSE 8.7 2.015 1.929 0.182 0.304 0.306 0.336 0.003 0.125 0.127 0.157 0.003 0.065 0.065 0.080 1 2 2 3 37 Surmont 139 S 7.0 0.702 0.782 0.186 0.361 0.362 0.432 0.083 0.258 0.258 0.329 0.083 0.171 0.171 0.207 1 3 3 4 174 17(f) 140 S 7.3 0.866 0.924 0.186 0.356 0.357 0.426 0.041 0.211 0.212 0.281 0.041 0.126 0.126 0.161 1 3 3 3 38 L8(e) 141 S 6.8 0.614 0.727 0.186 0.356 0.356 0.423 0.143 0.313 0.314 0.380 0.143 0.228 0.228 0.262 1 3 3 3 175 Georges 143 S 8.4 3.815 3.762 0.186 0.347 0.348 0.411 0.156 0.318 0.319 0.381 0.156 0.241 0.241 0.274 1 3 3 3 115 21(f), A21(j) 144 S 4.9 -0.068 0.149 0.186 0.343 0.344 0.410 0.133 0.290 0.290 0.356 0.133 0.211 0.211 0.243 1 3 3 3

Page 57: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment (continued)

- 54 -

Acid Input (keq H+/ha/yr) Critical Loads of Acidity [keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen

Threshold Based on Calibrated Background and a Nitrogen

Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

176 20(f) 146 SSE 7.9 2.370 2.363 0.186 0.340 0.341 0.388 0.017 0.171 0.172 0.220 0.017 0.097 0.097 0.121 1 3 3 3 177 22(f) 146 S 6.9 0.190 0.238 0.186 0.344 0.345 0.406 0.030 0.188 0.189 0.250 0.030 0.109 0.109 0.140 1 3 3 3 117 26(f), A26(j) 148 S 5.6 0.009 0.088 0.186 0.339 0.340 0.400 0.032 0.185 0.185 0.245 0.032 0.108 0.108 0.138 1 3 3 3 116 24(f), A24(j) 148 S 4.7 -0.103 0.046 0.186 0.334 0.335 0.399 0.027 0.175 0.176 0.240 0.027 0.101 0.101 0.132 1 3 3 3 143 25(f), 25 (287)(j) 150 S 5.2 -0.054 0.042 0.186 0.334 0.335 0.396 0.030 0.178 0.178 0.239 0.030 0.104 0.104 0.133 1 3 3 3 173 Garson 150 SSE 8.0 1.456 1.439 0.182 0.293 0.295 0.322 0.011 0.122 0.123 0.151 0.011 0.067 0.068 0.081 1 2 2 3 179 31(f) 151 S 5.6 -0.060 0.053 0.186 0.324 0.324 0.390 0.061 0.199 0.200 0.266 0.061 0.130 0.130 0.161 1 3 3 3 144 27(f), 27 (289)(j) 152 S 6.5 0.033 0.100 0.186 0.320 0.321 0.384 0.015 0.150 0.150 0.214 0.015 0.082 0.082 0.112 1 3 3 3 178 30(f) 153 S 5.2 -0.095 0.030 0.186 0.327 0.328 0.389 0.020 0.161 0.162 0.223 0.020 0.091 0.091 0.119 1 3 3 3 130 32(f), 2(g) 153 S 7.6 1.370 1.402 0.186 0.333 0.334 0.390 0.039 0.186 0.187 0.243 0.039 0.113 0.113 0.141 1 3 3 3 530 La Loche 153 SE 8.0 0.941 0.941 0.182 0.249 0.250 0.267 0.182 0.249 0.250 0.267 0.182 0.217 0.217 0.226 1 2 2 2 145 28(f), 28 (290)(j) 153 S 5.9 0.016 0.159 0.186 0.326 0.326 0.386 0.019 0.159 0.160 0.220 0.019 0.089 0.089 0.118 1 3 3 3 195 53(f) 155 SSW 7.2 0.608 0.700 0.180 0.243 0.244 0.260 0.036 0.099 0.100 0.116 0.036 0.066 0.066 0.074 1 2 2 2 181 35(f) 155 SSE 7.9 2.201 2.197 0.182 0.318 0.319 0.359 0.016 0.152 0.153 0.193 0.016 0.086 0.086 0.106 1 2 2 3 180 33(f) 157 S 6.6 0.197 0.327 0.186 0.325 0.326 0.382 0.018 0.157 0.158 0.214 0.018 0.088 0.088 0.115 1 3 3 3 194 Algar 157 SSW 7.5 0.529 0.564 0.180 0.242 0.243 0.258 0.114 0.176 0.176 0.192 0.114 0.143 0.143 0.151 1 2 2 2 118 29(f), A29(j) 157 S 5.8 -0.005 0.082 0.180 0.285 0.285 0.330 0.018 0.123 0.123 0.168 0.018 0.070 0.070 0.092 1 2 2 3 182 Formby 158 SSE 8.1 1.825 1.812 0.182 0.293 0.295 0.324 0.006 0.117 0.118 0.148 0.006 0.062 0.063 0.077 1 2 2 3 196 54(f) 159 SSW 7.2 0.556 0.633 0.180 0.244 0.245 0.261 0.056 0.120 0.121 0.137 0.056 0.086 0.086 0.094 1 2 2 2 183 37(f) 161 SSE 8.5 1.678 1.640 0.182 0.299 0.301 0.333 0.007 0.125 0.126 0.158 0.007 0.067 0.067 0.083 1 2 2 3 184 Watchusk 161 SSE 8.6 2.021 1.897 0.182 0.305 0.306 0.343 0.017 0.140 0.141 0.178 0.017 0.080 0.080 0.098 1 2 2 3 316 D254(h) 163 SW 8.4 2.275 2.167 0.175 0.195 0.195 0.200 0.085 0.104 0.105 0.110 0.085 0.095 0.095 0.097 1 1 1 1 533 McLean 163 SE 7.9 0.854 0.852 0.182 0.236 0.236 0.250 0.182 0.236 0.236 0.250 0.182 0.210 0.210 0.217 1 2 2 2 197 55(f) 166 SSW 7.1 0.622 0.718 0.180 0.237 0.238 0.252 0.074 0.131 0.131 0.146 0.074 0.101 0.101 0.108 1 2 2 2 185 39(f) 166 SSE 7.9 1.389 1.390 0.182 0.294 0.295 0.326 0.010 0.122 0.123 0.155 0.010 0.067 0.068 0.083 1 2 2 3 136 34(f), 1(g) 167 S 7.5 1.290 1.341 0.186 0.284 0.285 0.329 0.038 0.137 0.137 0.181 0.038 0.087 0.087 0.108 1 2 2 3 198 56(f) 167 SSW 7.1 0.747 0.866 0.180 0.246 0.246 0.265 0.029 0.095 0.095 0.114 0.029 0.061 0.061 0.070 1 2 2 2 186 40(f) 172 S 8.1 2.716 2.654 0.186 0.281 0.281 0.315 0.075 0.170 0.170 0.204 0.075 0.122 0.122 0.139 1 2 2 2 222 81(f) 181 S 7.6 1.001 1.045 0.186 0.263 0.264 0.309 0.006 0.083 0.084 0.129 0.006 0.044 0.044 0.064 1 2 2 2 199 57(f) 181 SSW 7.0 0.490 0.588 0.180 0.236 0.236 0.252 0.076 0.132 0.132 0.147 0.076 0.102 0.103 0.110 1 2 2 2 139 91(f), 7(g) 182 SSE 9.2 1.874 1.621 0.182 0.278 0.279 0.308 0.035 0.131 0.132 0.161 0.035 0.084 0.084 0.098 1 2 2 2 227 Bohn 183 S 8.7 2.160 1.997 0.186 0.272 0.273 0.301 0.027 0.113 0.113 0.142 0.027 0.069 0.069 0.083 1 2 2 2 226 88(f) 183 SSW 7. 1.352 1.356 0.180 0.243 0.244 0.267 0.011 0.074 0.074 0.097 0.011 0.040 0.040 0.050 1 2 2 2 228 90(f) 184 S 8.03 1.868 1.837 0.186 0.276 0.277 0.306 0.037 0.127 0.128 0.157 0.037 0.082 0.082 0.097 1 2 2 2 229 Cowper 187 SSE 9.1 1.917 1.684 0.182 0.276 0.276 0.305 0.020 0.113 0.114 0.143 0.020 0.067 0.067 0.081 1 2 2 2 218 77(f) 188 SSW 7.1 1.050 1.164 0.180 0.239 0.239 0.278 0.018 0.077 0.077 0.116 0.018 0.046 0.046 0.063 1 2 2 2 202 Mariana 188 SSW 7.2 1.214 1.257 0.180 0.240 0.241 0.261 0.065 0.126 0.126 0.146 0.065 0.093 0.093 0.102 1 2 2 2 221 80(f) 189 SSW 7.3 0.284 0.322 0.180 0.240 0.240 0.294 0.003 0.063 0.063 0.117 0.003 0.032 0.032 0.054 1 2 2 2 190 46(f) 190 SW 6.5 0.189 0.330 0.195 0.212 0.213 0.218 0.016 0.033 0.033 0.038 0.016 0.025 0.025 0.027 1 1 1 1 204 63(f) 191 SSW 7.5 0.875 0.920 0.180 0.240 0.240 0.260 0.010 0.070 0.070 0.090 0.010 0.037 0.037 0.046 1 2 2 2 203 62(f) 192 SSW 6.9 0.742 0.825 0.180 0.238 0.238 0.257 0.057 0.115 0.115 0.134 0.057 0.084 0.084 0.092 1 2 2 2 219 78(f) 193 SSW 7.3 1.142 1.201 0.180 0.237 0.238 0.262 0.022 0.080 0.080 0.104 0.022 0.049 0.049 0.060 1 2 2 2 220 79(f) 194 SSW 7.5 0.836 0.876 0.180 0.235 0.236 0.264 0.011 0.066 0.067 0.095 0.011 0.037 0.037 0.049 1 2 2 2 230 93(f) 195 S 7.9 1.387 1.387 0.182 0.284 0.285 0.315 0.014 0.116 0.117 0.147 0.014 0.065 0.065 0.080 1 2 2 2 201 60(f) 199 SSW 7.5 1.131 1.191 0.180 0.223 0.223 0.235 0.038 0.081 0.081 0.093 0.038 0.059 0.059 0.064 1 2 2 2 147 94(f), 94 (354)(j) 200 S 7.2 0.258 0.302 0.186 0.289 0.289 0.321 0.005 0.108 0.108 0.140 0.005 0.056 0.056 0.071 1 2 2 3 146 82(f), 82 (342)(j) 201 SSW 6.8 0.127 0.198 0.180 0.231 0.231 0.251 0.010 0.061 0.061 0.081 0.010 0.034 0.034 0.043 1 2 2 2 223 83(f) 202 SSW 7.9 1.344 1.354 0.180 0.229 0.229 0.245 0.014 0.063 0.063 0.079 0.014 0.037 0.037 0.044 1 2 2 2 231 95(f) 204 S 7.7 0.835 0.855 0.186 0.299 0.299 0.332 0.009 0.122 0.123 0.155 0.009 0.067 0.067 0.082 1 2 2 3 205 Crow 206 SSW 8.8 3.107 2.971 0.180 0.224 0.224 0.237 0.092 0.136 0.136 0.149 0.092 0.112 0.112 0.119 1 2 2 2 234 100(f) 206 SSE 8.1 2.469 2.411 0.182 0.281 0.282 0.309 0.005 0.105 0.105 0.133 0.005 0.056 0.056 0.069 1 2 2 2 225 85(f) 211 SSW 7.1 0.233 0.280 0.180 0.228 0.228 0.244 0.011 0.059 0.059 0.075 0.011 0.033 0.033 0.041 1 2 2 2 206 65(f) 211 SSW 8.5 3.145 3.051 0.180 0.223 0.223 0.235 0.092 0.134 0.135 0.147 0.092 0.111 0.111 0.117 1 2 2 2 235 101(f) 211 SSE 8.3 1.696 1.633 0.182 0.280 0.280 0.306 0.096 0.194 0.194 0.221 0.096 0.146 0.146 0.159 1 2 2 2 207 66(f) 212 SSW 8.1 2.245 2.239 0.180 0.224 0.225 0.237 0.034 0.078 0.078 0.091 0.034 0.054 0.054 0.060 1 2 2 2 224 84(f) 212 SSW 7.1 0.237 0.285 0.180 0.227 0.227 0.242 0.012 0.058 0.059 0.073 0.012 0.033 0.033 0.040 1 2 2 2 122 86(f), A86(j) 213 SSW 6.6 0.084 0.140 0.180 0.227 0.227 0.243 0.025 0.072 0.072 0.088 0.025 0.046 0.046 0.053 1 2 2 2 121 59(f), A59(j) 213 SSW 5.2 0.023 0.245 0.195 0.219 0.219 0.226 0.043 0.067 0.067 0.074 0.043 0.054 0.055 0.058 1 2 2 2 233 98(f) 214 S 7.8 1.307 1.320 0.186 0.278 0.278 0.309 0.011 0.103 0.103 0.134 0.011 0.056 0.056 0.071 1 2 2 2 232 97(f) 214 S 7.7 1.276 1.304 0.186 0.308 0.308 0.336 0.004 0.126 0.127 0.154 0.004 0.067 0.067 0.080 1 2 2 3 209 Agnes-1 214 SSW 6.5 0.292 0.453 0.195 0.227 0.228 0.236 0.032 0.065 0.065 0.073 0.032 0.047 0.048 0.051 1 2 2 2 236 102(f) 215 SSE 7.9 1.196 1.207 0.182 0.269 0.270 0.293 0.012 0.099 0.100 0.123 0.012 0.057 0.057 0.068 1 2 2 2

Page 58: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment (continued)

- 55 -

Acid Input (keq H+/ha/yr) Critical Loads of Acidity [keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen

Threshold Based on Calibrated Background and a Nitrogen

Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

200 58(f) 215 SW 6.5 0.248 0.401 0.195 0.214 0.214 0.220 0.019 0.039 0.039 0.044 0.019 0.029 0.029 0.031 1 1 1 2 2 Christina 216 S 7.9 1.517 1.523 0.186 0.305 0.306 0.338 0.091 0.211 0.211 0.243 0.091 0.156 0.156 0.172 1 2 2 3 211 70(f) 216 SSW 7.3 0.564 0.645 0.195 0.221 0.221 0.228 0.051 0.076 0.076 0.083 0.051 0.063 0.063 0.066 1 2 2 2 131 Base 217 SSW 7.6 2.018 2.056 0.180 0.226 0.226 0.241 0.074 0.120 0.120 0.135 0.074 0.095 0.095 0.101 1 2 2 2 208 67(f) 222 SSW 7.3 1.015 1.094 0.180 0.216 0.216 0.226 0.107 0.143 0.143 0.152 0.107 0.123 0.123 0.128 1 2 2 2 212 71(f) 222 SSW 7.2 0.583 0.677 0.195 0.216 0.216 0.222 0.138 0.158 0.159 0.164 0.138 0.148 0.148 0.150 1 1 1 2 210 69(f) 227 SSW 6.6 0.245 0.359 0.195 0.215 0.216 0.221 0.025 0.045 0.045 0.051 0.025 0.034 0.034 0.037 1 1 1 2 213 72(f) 228 SSW 6.7 0.469 0.565 0.195 0.212 0.212 0.217 0.238 0.255 0.255 0.260 0.238 0.246 0.246 0.249 1 1 1 2 241 108(f) 230 S 8.2 2.318 2.299 0.218 0.353 0.354 0.387 0.011 0.147 0.147 0.181 0.011 0.085 0.085 0.102 1 3 3 3 167 Wappau 230 S 9.0 1.758 1.661 0.180 0.226 0.227 0.241 0.003 0.050 0.050 0.064 0.003 0.025 0.025 0.032 1 2 2 2 237 Winefred 231 S 8.1 2.313 2.311 0.182 0.267 0.267 0.287 0.013 0.097 0.098 0.118 0.013 0.056 0.056 0.066 1 2 2 2 240 Kirby 233 S 8.6 2.225 2.203 0.218 0.339 0.339 0.368 0.004 0.125 0.125 0.154 0.004 0.067 0.067 0.081 1 3 3 3 242 110(f) 233 S 8.3 0.976 0.952 0.222 0.268 0.268 0.282 0.007 0.053 0.053 0.067 0.007 0.029 0.029 0.035 1 2 2 2 214 73(f) 235 SSW 7.1 0.546 0.629 0.195 0.211 0.211 0.215 0.104 0.120 0.120 0.124 0.104 0.111 0.111 0.113 1 1 1 1 243 111(f) 236 S 7.6 1.121 1.150 0.218 0.269 0.269 0.284 0.009 0.060 0.060 0.075 0.009 0.034 0.034 0.041 1 2 2 2 238 104(f) 237 SSE 8.9 1.988 1.744 0.213 0.293 0.293 0.313 0.006 0.086 0.087 0.106 0.006 0.047 0.047 0.056 1 2 2 2 42 Wiau 237 S 8.2 2.120 2.072 0.218 0.270 0.271 0.287 0.041 0.094 0.094 0.110 0.041 0.067 0.067 0.074 1 2 2 2 138 Goodwin 241 S 7.7 0.811 0.831 0.222 0.264 0.265 0.276 0.027 0.069 0.070 0.081 0.027 0.047 0.047 0.052 1 2 2 2 44 UNL1(e) 241 S 8.0 1.249 1.247 0.218 0.283 0.284 0.303 0.034 0.099 0.099 0.119 0.034 0.066 0.066 0.075 1 2 2 2 50 UNL13(e) 241 S 6.5 0.181 0.301 0.218 0.281 0.281 0.300 0.054 0.117 0.117 0.136 0.054 0.085 0.085 0.094 1 2 2 2 244 113(f) 241 S 8.0 1.864 1.856 0.218 0.284 0.285 0.304 0.005 0.071 0.072 0.091 0.005 0.038 0.038 0.047 1 2 2 2 245 114(f) 244 S 7.6 0.706 0.736 0.222 0.267 0.267 0.279 0.004 0.048 0.049 0.061 0.004 0.025 0.025 0.030 1 2 2 2 132 Grist 244 S 8.4 2.713 2.688 0.213 0.296 0.297 0.315 0.048 0.131 0.132 0.150 0.048 0.087 0.087 0.095 1 2 2 2 49 UNL12(e) 244 S 7.4 0.872 0.915 0.218 0.283 0.284 0.302 0.029 0.095 0.095 0.113 0.029 0.062 0.062 0.070 1 2 2 2 48 UNL7(e) 244 S 7.3 0.722 0.775 0.218 0.280 0.280 0.298 0.032 0.094 0.094 0.112 0.032 0.063 0.063 0.071 1 2 2 2 46 UNL4(e) 245 S 8.0 0.848 0.838 0.218 0.291 0.292 0.311 0.019 0.092 0.092 0.111 0.019 0.055 0.055 0.064 1 2 2 2 47 UNL5(e) 247 S 7.5 0.936 0.966 0.218 0.283 0.283 0.300 0.029 0.094 0.094 0.112 0.029 0.061 0.061 0.069 1 2 2 2 45 UNL3(e) 247 S 7.3 0.561 0.599 0.218 0.288 0.289 0.307 0.022 0.093 0.093 0.111 0.022 0.057 0.057 0.066 1 2 2 2 239 106(f) 247 S 8.3 1.170 1.159 0.218 0.310 0.310 0.330 0.002 0.094 0.095 0.114 0.002 0.044 0.044 0.054 1 2 2 3 246 116(f) 247 S 7.7 0.686 0.708 0.222 0.262 0.262 0.271 0.023 0.062 0.063 0.072 0.023 0.041 0.041 0.045 1 2 2 2 247 117(f) 248 S 7.8 1.584 1.593 0.222 0.265 0.266 0.277 0.012 0.055 0.055 0.066 0.012 0.032 0.032 0.037 1 2 2 2 43 Ipiatik 251 S 7.5 1.206 1.239 0.218 0.281 0.281 0.298 0.037 0.100 0.100 0.117 0.037 0.068 0.068 0.075 1 2 2 2 248 Clyde 252 S 8.1 0.566 0.560 0.218 0.261 0.262 0.273 0.002 0.045 0.045 0.056 0.002 0.023 0.023 0.028 1 2 2 2 249 Behan 253 S 8.2 0.493 0.483 0.222 0.263 0.264 0.274 0.002 0.043 0.043 0.053 0.002 0.021 0.021 0.026 1 2 2 2 251 Big Chief 260 S 7.9 1.121 1.121 0.222 0.258 0.259 0.267 0.018 0.054 0.055 0.063 0.018 0.035 0.035 0.039 1 2 2 2 250 120(f) 261 S 8.7 1.738 1.605 0.218 0.260 0.261 0.271 0.006 0.048 0.048 0.059 0.006 0.026 0.026 0.031 1 2 2 2 253 123(f) 269 S 8.7 3.408 3.357 0.222 0.251 0.251 0.257 0.041 0.070 0.070 0.076 0.041 0.054 0.054 0.057 1 2 2 2 258 128(f) 274 S 8.5 4.001 3.876 0.218 0.255 0.255 0.262 0.066 0.103 0.103 0.111 0.066 0.083 0.083 0.087 1 2 2 2 254 124(f) 274 S 9.5 2.099 1.810 0.222 0.250 0.250 0.255 0.009 0.037 0.037 0.042 0.009 0.021 0.022 0.024 1 2 2 2 259 Logan 275 S 9.2 4.197 3.885 0.218 0.255 0.255 0.263 0.117 0.154 0.154 0.162 0.117 0.134 0.134 0.138 1 2 2 2 255 125(f) 279 S 8.5 4.047 3.889 0.222 0.249 0.250 0.255 0.074 0.101 0.101 0.106 0.074 0.086 0.086 0.088 1 2 2 2 257 Heart 282 S 8.9 4.064 3.898 0.222 0.255 0.255 0.261 0.078 0.111 0.111 0.118 0.078 0.093 0.093 0.096 1 2 2 2 256 Piche 282 S 8.7 4.273 4.184 0.222 0.253 0.253 0.259 0.085 0.116 0.116 0.122 0.085 0.099 0.099 0.101 1 2 2 2 252 122(f) 284 S 7.9 0.822 0.827 0.222 0.252 0.252 0.258 0.014 0.044 0.044 0.050 0.014 0.027 0.027 0.029 1 2 2 2 68 LK8(e) 299 S 7.8 0.645 0.649 0.213 0.325 0.326 0.354 0.112 0.225 0.225 0.253 0.112 0.168 0.168 0.177 1 2 2 3 515 Unnamed 5(e) 301 S 7.7 4.661 4.667 0.218 0.321 0.321 0.347 0.113 0.216 0.216 0.242 0.113 0.164 0.164 0.173 1 2 2 3 598 UN-5(e) 301 S 7.2 0.343 0.415 0.218 0.321 0.321 0.347 0.002 0.105 0.105 0.131 0.002 0.053 0.053 0.062 1 2 2 3 597 UN-2(e) 301 S 7.9 2.278 2.278 0.218 0.308 0.308 0.328 0.002 0.092 0.092 0.112 0.002 0.046 0.046 0.053 1 2 2 3 67 LK7(e) 303 S 8.1 1.311 1.297 0.213 0.332 0.332 0.356 0.021 0.140 0.140 0.164 0.021 0.081 0.081 0.089 1 3 3 3 536 Touchwood 304 S 8.3 1.435 1.422 0.218 0.245 0.246 0.250 0.140 0.168 0.168 0.173 0.140 0.153 0.153 0.155 1 2 2 2 537 La Biche 305 SSW 8.6 - 2.181 0.222 0.244 0.244 0.247 0.106 0.127 0.128 0.131 0.106 0.115 0.115 0.117 1 2 2 2 66 LK6(e) 306 S 8.1 1.330 1.305 0.213 0.323 0.323 0.342 0.023 0.133 0.134 0.152 0.023 0.080 0.080 0.086 1 2 2 3 599 UN-6(e) 306 S 6.8 0.653 0.748 0.218 0.323 0.323 0.343 0.007 0.111 0.111 0.131 0.007 0.060 0.060 0.066 1 2 2 3 65 LK5(e) 307 S 7.8 0.709 0.713 0.213 0.329 0.329 0.347 0.024 0.140 0.140 0.158 0.024 0.085 0.085 0.091 1 2 2 3 64 LK4(e) 308 S 7.9 0.852 0.847 0.213 0.335 0.335 0.352 0.017 0.138 0.139 0.156 0.017 0.081 0.081 0.087 1 2 2 3 60 Burnt 309 S 8.1 2.852 2.838 0.213 0.332 0.332 0.349 0.071 0.189 0.190 0.207 0.071 0.133 0.133 0.139 1 2 2 3 63 LK3(e) 309 S 7.9 0.856 0.847 0.213 0.334 0.335 0.351 0.017 0.139 0.139 0.155 0.017 0.082 0.082 0.088 1 2 2 3 62 LK2(e) 310 S 7.8 0.574 0.575 0.213 0.334 0.335 0.350 0.111 0.233 0.233 0.249 0.111 0.177 0.177 0.182 1 2 2 3 61 LK1(e) 312 S 8.2 1.611 1.569 0.213 0.335 0.335 0.349 0.028 0.150 0.150 0.164 0.028 0.095 0.095 0.100 1 2 2 3 516 Sinclair-1 316 S 8.2 2.683 2.663 0.218 0.292 0.292 0.300 0.088 0.161 0.162 0.169 0.088 0.126 0.126 0.129 1 2 2 2 538 Wolf 317 S 8.0 2.238 2.235 0.218 0.254 0.254 0.260 0.040 0.076 0.076 0.082 0.040 0.058 0.058 0.060 1 2 2 2 69 May 319 S 8.1 1.363 1.365 0.213 0.333 0.333 0.343 0.039 0.159 0.159 0.169 0.039 0.107 0.107 0.111 1 2 2 2

Page 59: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Critical Loads of Acidity and Acid Input Rates for the 380 Lakes Included in the Assessment (continued)

- 56 -

Acid Input (keq H+/ha/yr) Critical Loads of Acidity [keq H+/ha/y] Based on All Acid Deposition Based on Calibrated Background and No Nitrogen

Threshold Based on Calibrated Background and a Nitrogen

Threshold of 75% of the first 10 kg/ha/yr

Nitrogen Deposition [kg N/ha/yr] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) pH With Organic

Acids Without

Organic Acids AENV

Background(c) Baseline

Case Application

Case CEA Case Calibrated Background(d)

Baseline Case

Application Case CEA Case Calibrated

Background(d)Baseline

Case Application

Case CEA Case AENV Background(c)

Baseline Case

Application Case CEA Case

539 Field 319 S 8.3 6.261 6.196 0.222 0.241 0.241 0.244 1.749 1.767 1.767 1.770 1.749 1.757 1.757 1.758 1 2 2 2 517 Bourque 321 S 8.2 1.715 1.714 0.218 0.335 0.335 0.343 0.032 0.149 0.149 0.157 0.032 0.095 0.095 0.098 1 2 2 3 540 Pinehurst 322 S 8.5 1.458 1.428 0.222 0.243 0.243 0.246 0.154 0.175 0.175 0.178 0.154 0.164 0.164 0.165 1 2 2 2 518 Marguerite 327 S 8.8 1.178 1.108 0.218 0.269 0.269 0.275 0.001 0.052 0.052 0.058 0.001 0.028 0.028 0.030 1 2 2 2 519 Marie 328 S 8.1 1.155 1.155 0.213 0.288 0.288 0.294 0.026 0.100 0.100 0.107 0.026 0.066 0.066 0.068 1 2 2 2 520 Leming 331 S 8.2 1.117 1.079 0.213 0.316 0.316 0.322 0.028 0.130 0.131 0.136 0.028 0.084 0.084 0.086 1 2 2 2 600 Dolly 335 S 8.5 4.082 3.874 0.213 0.269 0.269 0.274 0.128 0.184 0.184 0.189 0.128 0.158 0.158 0.160 1 2 2 2 521 Tucker 337 S 8.1 2.291 2.283 0.218 0.266 0.266 0.270 0.059 0.107 0.107 0.111 0.059 0.084 0.084 0.086 1 2 2 2 522 Ethel 339 S 8.2 1.124 1.117 0.213 0.266 0.266 0.270 0.029 0.082 0.082 0.086 0.029 0.058 0.058 0.059 1 2 2 2 546 Cold 340 S 8.3 2.559 2.545 0.213 0.243 0.243 0.247 0.130 0.160 0.160 0.164 0.130 0.145 0.145 0.147 1 2 2 2 523 Hilda 340 S 8.4 1.523 1.507 0.213 0.262 0.262 0.267 0.066 0.115 0.116 0.120 0.066 0.093 0.093 0.094 1 2 2 2 596 Manatokan 344 S 8.7 4.058 3.949 0.241 0.266 0.266 0.269 0.171 0.196 0.196 0.199 0.171 0.183 0.183 0.184 2 2 2 2

(a) Lake Identifier used on map showing lake locations. (b) Distance and direction relative to the Northern Lights Project. (c) Estimated deposition rates from the AENV RELAD modelling (Cheng 2001). (d) Estimated background Acid Input based on historical nitrate and sulphate concentration in lakes (Section 1.4.3.3). (e) Identifier used by previous EIAs; refer to Section 1.4.2.4. (f) Identifier used by Syncrude (2000). (g) Identifier used by Erickson (1987). (h) Identifier used by WRS (2004) for a survey of 34 lakes conducted by Alberta-Pacific Forest Industries in 1999. (i) Identifier used by WRS (2004) for one hundred ponds sampled within the Oil Sands Region during September 2000. (j) Identifier used by RAMP (2004). (k) Identifier used by Saffran and Trew (1996). (l) Identifier used in Volume 7, Section 3.3 of the Application.

Page 60: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 57 -

1.5.5 Predicted Snowmelt PH

Predicted pH in snowmelt in the catchments of the 380 lakes are provided in Table 9. The predicted pH in snowmelt is somewhat lower than observed in precipitation at the Wood Buffalo Precipitation Monitoring Station in Fort McKay. The predicted pH calculation takes into account dry deposition throughout the winter and is, therefore, expected to be lower than the pH of precipitation. Snowmelt pH for the Baseline Case is predicted to be 0.07 to 1.59 pH units lower than background conditions with differences of <1 pH unit for most (90%) lake catchments. Snowmelt pH for the Application Case is predicted to range from <0.001 to 0.17 pH unit below Baseline Case values. Snowmelt pH for the CEA Case is predicted to range from 0.01 to 0.20 pH unit below Baseline Case values.

Page 61: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 58 -

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the AssessmentGross Potential Acid Input

[keq H+/ha/yr] Snowmelt pH

[pH units] Change in pH

[pH units] Lake Identifier(a)

Lake Name / Original Identifier

Distance [km](b) Direction(b) Gross Catchment Area

[km2] Net Annual Inflow

[m3/s] Background Baseline Application CEA

Case Background Baseline Application CEA Case Baseline Relative to Background

Application Relative to Baseline

CEA Case Relative to Baseline

609 Lake C(h) 5 ENE 5.3 0.014 0.035 0.309 0.458 0.493 4.025 3.073 2.902 2.870 0.95 0.17 0.20 283 163(d) 11 ESE 10.1 0.024 0.035 0.257 0.301 0.333 3.992 3.126 3.056 3.013 0.87 0.07 0.11 103 Audet 13 NE 96.5 0.208 0.033 0.230 0.287 0.316 3.963 3.123 3.027 2.985 0.84 0.10 0.14 418 P35(g) 13 E 1.3 0.003 0.034 0.226 0.270 0.301 3.972 3.154 3.077 3.030 0.82 0.08 0.12 484 PTH8(g) 14 ESE 0.6 0.002 0.035 0.231 0.266 0.297 4.007 3.182 3.121 3.073 0.82 0.06 0.11 80 P5(g), UNL-3(c) 14 SSE 3.0 0.007 0.037 0.574 0.617 0.660 3.977 2.782 2.750 2.721 1.20 0.03 0.06 483 PTH7(g) 15 E 0.9 0.003 0.034 0.218 0.258 0.288 4.048 3.244 3.171 3.123 0.80 0.07 0.12 278 157(d) 15 NE 42.3 0.103 0.033 0.206 0.251 0.277 4.015 3.223 3.138 3.094 0.79 0.08 0.13 79 UNL-2(c) 16 S 7.4 0.021 0.037 1.437 1.469 1.533 4.038 2.451 2.442 2.423 1.59 0.01 0.03 282 162(d) 17 E 10.2 0.009 0.034 0.205 0.235 0.264 3.575 2.798 2.738 2.688 0.78 0.06 0.11 417 P34(g) 18 ENE 0.9 0.002 0.034 0.195 0.222 0.250 3.980 3.215 3.158 3.108 0.76 0.06 0.11 5 McClelland 18 WSW 230.4 0.393 0.037 0.562 0.570 0.648 3.817 2.634 2.628 2.572 1.18 0.01 0.06 481 PTH5(g) 18 ENE 1.0 0.002 0.033 0.186 0.215 0.239 4.014 3.262 3.202 3.154 0.75 0.06 0.11 482 PTH6(g) 19 ENE 0.9 0.002 0.033 0.193 0.219 0.245 4.045 3.284 3.229 3.179 0.76 0.05 0.11 415 P3(g) 22 SW 1.9 0.005 0.038 0.753 0.763 1.076 3.956 2.659 2.654 2.504 1.30 0.01 0.15 411 P2(g) 22 SW 2.6 0.006 0.038 0.746 0.755 0.892 3.957 2.663 2.659 2.586 1.29 <0.001 0.08 612 Compensation 23 E 34.4 0.108 0.034 0.183 0.202 0.228 4.122 3.388 3.346 3.293 0.73 0.04 0.09 78 UNL-1(c) 24 SSW 13.1 0.033 0.038 0.902 0.913 1.339 3.970 2.599 2.593 2.427 1.37 0.01 0.17 611 Lake F 25 ENE 12.8 0.047 0.033 0.173 0.189 0.213 4.197 3.477 3.440 3.387 0.72 0.04 0.09 419 P38(g) 26 ESE 0.3 0.001 0.036 0.233 0.245 0.277 3.902 3.090 3.069 3.015 0.81 0.02 0.08 277 153(d) 28 NE 17.4 0.042 0.031 0.166 0.184 0.206 4.042 3.316 3.272 3.223 0.73 0.04 0.09 81 L1(i), L1(h) 31 SSE 4.3 0.016 0.039 0.465 0.484 0.540 4.136 3.056 3.038 2.990 1.08 0.02 0.07 4 Kearl 31 SSW 71.1 0.169 0.039 1.059 1.069 1.248 3.934 2.503 2.499 2.432 1.43 <0.001 0.07 420 P4(g) 31 SW 2.6 0.007 0.039 0.962 0.968 1.064 3.961 2.573 2.570 2.529 1.39 <0.001 0.04 280 160(d) 32 ENE 24.4 0.063 0.032 0.158 0.168 0.190 4.054 3.364 3.338 3.284 0.69 0.03 0.08 464 PM1(g) 32 SSE 0.5 0.002 0.039 0.447 0.464 0.522 4.179 3.118 3.101 3.050 1.06 0.02 0.07 281 161(d) 33 E 8.1 0.011 0.033 0.160 0.170 0.192 3.761 3.071 3.046 2.992 0.69 0.03 0.08 333 L45(i) 33 N 36.1 0.069 0.032 0.201 0.210 0.242 3.931 3.130 3.112 3.050 0.80 0.02 0.08 317 L2(i) 33 SSE 9.8 0.041 0.039 0.443 0.459 0.522 4.186 3.130 3.113 3.058 1.06 0.02 0.07 466 PM3(g) 33 SSE 1.0 0.004 0.039 0.441 0.457 0.515 4.183 3.129 3.113 3.061 1.05 0.02 0.07 318 L3(i) 33 SSE 7.2 0.030 0.039 0.458 0.474 0.523 4.183 3.115 3.099 3.057 1.07 0.02 0.06 465 PM2(g) 33 SSE 0.7 0.003 0.039 0.446 0.462 0.537 4.180 3.120 3.104 3.039 1.06 0.02 0.08 279 158(d) 33 ENE 14.5 0.029 0.032 0.154 0.164 0.185 3.958 3.273 3.246 3.193 0.69 0.03 0.08 149 P23(g), P23(h) 34 SSE 7.3 0.030 0.039 0.461 0.477 0.570 4.169 3.094 3.080 3.002 1.08 0.01 0.09 421 P43(g) 37 SSE 3.5 0.014 0.039 0.404 0.419 0.500 4.160 3.144 3.128 3.051 1.02 0.02 0.09 413 P24(g) 37 SSE 7.6 0.032 0.039 0.419 0.432 0.482 4.180 3.154 3.141 3.094 1.03 0.01 0.06 430 P52(g) 37 WNW 0.9 0.001 0.036 0.312 0.313 0.354 3.630 2.690 2.688 2.635 0.94 <0.001 0.05 473 PT6(g) 38 WNW 0.2 <0.00010 0.036 0.301 0.303 0.343 3.637 2.712 2.710 2.656 0.92 <0.001 0.06 85 164(d), 17(e), L10(i) 38 ESE 11.4 0.035 0.035 0.172 0.179 0.203 4.093 3.401 3.384 3.329 0.69 0.02 0.07 432 P6(g) 38 SSE 4.0 0.016 0.039 0.394 0.407 0.481 4.154 3.151 3.137 3.064 1.00 0.01 0.09 6 LK-1(c) 39 W 3.8 0.002 0.038 0.750 0.752 0.839 3.366 2.071 2.071 2.023 1.29 <0.001 0.05 476 PTH1(g) 40 NNE 1.0 0.001 0.030 0.158 0.169 0.191 3.807 3.083 3.055 3.002 0.72 0.03 0.08 152 P7(g), P7(h) 40 SSE 1.9 0.007 0.039 0.305 0.318 0.364 4.132 3.241 3.223 3.164 0.89 0.02 0.08 414 P25(g) 40 SSE 8.6 0.036 0.040 0.409 0.419 0.475 4.182 3.168 3.157 3.103 1.01 0.01 0.07 440 P8(g) 41 SSE 2.1 0.008 0.039 0.290 0.303 0.345 4.150 3.280 3.262 3.205 0.87 0.02 0.08 332 L44(i) 41 N 9.4 0.002 0.031 0.170 0.176 0.203 2.967 2.228 2.212 2.150 0.74 0.02 0.08 270 143(d) 41 N 28.3 0.045 0.031 0.166 0.173 0.199 3.869 3.137 3.119 3.058 0.73 0.02 0.08 99 144(d), L43(i) 41 N 23.0 0.047 0.031 0.163 0.171 0.196 3.979 3.251 3.232 3.173 0.73 0.02 0.08 104 Johnson 42 ENE 73.5 0.151 0.032 0.142 0.149 0.168 3.968 3.313 3.294 3.240 0.65 0.02 0.07 271 145(d) 42 NNE 18.6 0.026 0.030 0.155 0.165 0.186 3.831 3.114 3.088 3.034 0.72 0.03 0.08 18 Lillian 43 WSW 7.4 0.004 0.039 0.946 0.948 1.075 3.237 1.856 1.855 1.800 1.38 <0.001 0.06 485 PTH9(g) 44 S 2.6 0.007 0.041 0.495 0.504 0.553 3.977 2.893 2.885 2.844 1.08 0.01 0.05 12 LK-7(c) 44 WSW 2.1 0.001 0.040 1.001 1.003 1.142 3.267 1.863 1.863 1.806 1.40 <0.001 0.06 480 PTH2(g) 44 NNE 1.2 0.002 0.029 0.148 0.157 0.178 3.929 3.226 3.201 3.147 0.70 0.03 0.08 477 PTH10(g) 45 S 8.4 0.028 0.041 0.488 0.497 0.546 4.055 2.979 2.971 2.931 1.08 0.01 0.05 19 Calumet 45 WSW 57.5 0.034 0.040 0.956 0.957 1.102 3.320 1.938 1.937 1.876 1.38 <0.001 0.06 330 L41(i) 45 NNE 36.5 0.046 0.030 0.151 0.159 0.181 3.780 3.073 3.049 2.993 0.71 0.02 0.08 54 UW4(c) 46 SW 12.6 0.023 0.041 1.138 1.140 1.393 3.796 2.357 2.356 2.269 1.44 <0.001 0.09

Page 62: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the Assessment (continued)

- 59 -

Gross Potential Acid Input [keq H+/ha/yr]

Snowmelt pH [pH units]

Change in pH [pH units] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) Gross Catchment Area [km2]

Net Annual Inflow[m3/s]

Background Baseline Application CEA Case Background Baseline Application CEA Case Baseline Relative

to Background Application

Relative to BaselineCEA Case Relative to Baseline

607 P2(c) 46 SW 6.6 0.012 0.041 1.138 1.140 1.401 3.804 2.365 2.364 2.275 1.44 <0.001 0.09

82 170(d), 14(e), L4(i), A170 (L4)(h) 46 SSE 18.2 0.083 0.041 0.336 0.345 0.388 4.203 3.285 3.275 3.223 0.92 0.01 0.06

150 P27(g), P27(h) 47 SSE 4.0 0.017 0.041 0.338 0.346 0.389 4.173 3.253 3.243 3.192 0.92 0.01 0.06 268 141(d) 47 N 42.8 0.078 0.030 0.151 0.158 0.181 3.935 3.233 3.213 3.154 0.70 0.02 0.08 55 UW5(c) 47 SW 12.4 0.023 0.041 1.113 1.116 1.383 3.810 2.381 2.380 2.286 1.43 <0.001 0.09 53 UW3(c) 47 SW 20.6 0.039 0.041 1.134 1.136 1.423 3.810 2.373 2.372 2.274 1.44 <0.001 0.10 605 P1(c) 47 SW 18.3 0.035 0.041 1.131 1.133 1.423 3.811 2.376 2.375 2.276 1.44 <0.001 0.10 51 UW1(c) 47 SW 20.5 0.039 0.041 1.138 1.141 1.435 3.809 2.371 2.370 2.270 1.44 <0.001 0.10 445 P9(g) 47 SE 4.9 0.020 0.039 0.221 0.228 0.260 4.159 3.411 3.396 3.340 0.75 0.01 0.07 269 142(d) 47 NNE 36.6 0.087 0.030 0.149 0.157 0.179 4.056 3.356 3.334 3.277 0.70 0.02 0.08 52 UW2(c) 47 SW 36.9 0.070 0.042 1.136 1.138 1.438 3.812 2.374 2.374 2.272 1.44 <0.001 0.10 267 139(d) 47 N 10.5 0.011 0.030 0.152 0.158 0.181 3.685 2.984 2.967 2.907 0.70 0.02 0.08 265 Pearson 47 NNW 16.8 0.014 0.031 0.153 0.158 0.182 3.572 2.877 2.863 2.803 0.69 0.01 0.07 429 P51(g) 48 WNW 0.4 0.002 0.036 0.199 0.200 0.231 4.208 3.468 3.466 3.402 0.74 <0.001 0.07 284 Big Snuff 48 ESE 17.3 0.054 0.036 0.163 0.168 0.191 4.090 3.431 3.418 3.363 0.66 0.01 0.07 56 UW6(c) 48 SW 9.7 0.017 0.042 1.116 1.118 1.511 3.767 2.339 2.338 2.208 1.43 <0.001 0.13 266 Kress 48 N 31.0 0.066 0.031 0.151 0.157 0.180 3.995 3.300 3.285 3.224 0.70 0.01 0.08 431 P54(g) 48 WNW 0.4 0.001 0.036 0.189 0.190 0.220 4.068 3.348 3.345 3.282 0.72 <0.001 0.07 276 152(d) 48 NNE 21.9 0.028 0.029 0.139 0.147 0.166 3.794 3.109 3.084 3.032 0.68 0.02 0.08 331 L42(i) 49 N 49.6 0.074 0.030 0.148 0.155 0.177 3.851 3.156 3.139 3.079 0.69 0.02 0.08 20 Isadore's 49 SW 28.0 0.088 0.042 1.373 1.375 1.654 4.031 2.512 2.512 2.431 1.52 <0.001 0.08 274 149(d) 49 NNE 7.1 0.013 0.029 0.138 0.147 0.165 3.962 3.277 3.251 3.199 0.68 0.03 0.08 98 146(d), L40(i) 49 NNE 5.6 0.002 0.029 0.138 0.146 0.165 3.121 2.437 2.413 2.360 0.68 0.02 0.08 321 L11(i) 49 ESE 19.7 0.059 0.036 0.162 0.166 0.189 4.075 3.420 3.408 3.353 0.65 0.01 0.07 264 136(d) 50 NNW 5.2 0.003 0.031 0.145 0.149 0.171 3.412 2.741 2.728 2.668 0.67 0.01 0.07 426 P48(g) 50 W 4.6 0.021 0.037 0.254 0.255 0.299 4.246 3.413 3.411 3.342 0.83 <0.001 0.07 273 148(d) 50 NNE 6.2 0.010 0.028 0.136 0.145 0.163 3.910 3.228 3.203 3.150 0.68 0.03 0.08 472 PT5(g) 50 WNW 1.5 0.008 0.036 0.187 0.188 0.218 4.292 3.581 3.579 3.514 0.71 <0.001 0.07 606 P4(c) 51 SSW 9.5 0.018 0.042 1.095 1.097 1.434 3.803 2.388 2.387 2.271 1.41 <0.001 0.12 17 LK-12(c) 51 W 2.5 0.008 0.038 0.331 0.332 0.394 4.063 3.126 3.124 3.050 0.94 <0.001 0.08 474 PT8(g) 51 W 0.1 <0.00010 0.038 0.302 0.302 0.358 4.131 3.231 3.230 3.157 0.90 <0.001 0.07 10 LK-5(c) 52 W 0.8 0.002 0.039 0.342 0.343 0.406 3.991 3.043 3.041 2.968 0.95 <0.001 0.07 11 LK-6(c) 52 W 3.8 0.011 0.038 0.298 0.299 0.353 4.015 3.123 3.121 3.049 0.89 <0.001 0.07 262 Dianne 52 NW 295.8 0.515 0.033 0.124 0.126 0.142 3.880 3.300 3.294 3.240 0.58 0.01 0.06 422 P44(g) 53 SSE 2.3 0.009 0.041 0.223 0.231 0.264 4.129 3.391 3.375 3.316 0.74 0.02 0.07 151 P49(g), P49(h) 53 WNW 0.8 0.004 0.037 0.177 0.177 0.206 4.308 3.624 3.622 3.558 0.68 <0.001 0.07 428 P50(g) 54 WNW 2.9 0.015 0.037 0.192 0.193 0.224 4.295 3.579 3.577 3.511 0.72 <0.001 0.07 83 L7(i), L7(h) 54 SSE 21.5 0.101 0.042 0.266 0.273 0.311 4.205 3.398 3.388 3.331 0.81 0.01 0.07 320 L9(i) 55 SE 33.4 0.135 0.040 0.191 0.196 0.222 4.158 3.479 3.468 3.413 0.68 0.01 0.07 319 L6(i) 55 SSE 32.4 0.137 0.042 0.291 0.297 0.334 4.158 3.315 3.306 3.255 0.84 0.01 0.06 423 P45(g) 55 SE 1.3 0.004 0.040 0.199 0.205 0.233 4.026 3.335 3.322 3.265 0.69 0.01 0.07 263 134(d) 55 NNW 8.2 0.007 0.032 0.121 0.124 0.140 3.563 2.983 2.974 2.920 0.58 0.01 0.06 272 Poplar 56 NNE 48.0 0.117 0.028 0.130 0.137 0.155 4.096 3.426 3.404 3.351 0.67 0.02 0.08 86 166(d), L12(i) 56 ESE 7.1 0.022 0.038 0.161 0.164 0.186 4.055 3.430 3.420 3.367 0.63 0.01 0.06 7 LK-2(c) 56 W 7.3 0.018 0.039 0.256 0.257 0.301 3.962 3.140 3.139 3.070 0.82 <0.001 0.07 140 L5(i), P28(g) 58 S 11.8 0.048 0.042 0.297 0.303 0.339 4.136 3.290 3.281 3.232 0.85 0.01 0.06 87 167(d), L13(i) 58 ESE 15.7 0.047 0.038 0.157 0.161 0.182 4.044 3.430 3.421 3.367 0.61 0.01 0.06 424 P46(g) 59 S 1.4 0.005 0.043 0.333 0.338 0.374 4.054 3.162 3.154 3.110 0.89 0.01 0.05 261 Ronald 59 NW 346.1 0.564 0.032 0.105 0.106 0.120 3.855 3.344 3.337 3.285 0.51 0.01 0.06 412 P20(g) 59 WNW 0.8 0.004 0.038 0.174 0.174 0.201 4.264 3.600 3.598 3.536 0.66 <0.001 0.06 260 131(d) 59 NW 11.9 0.013 0.032 0.101 0.103 0.116 3.664 3.170 3.164 3.112 0.49 0.01 0.06 439 P79(g) 59 WNW 2.3 0.012 0.038 0.166 0.167 0.193 4.295 3.649 3.647 3.585 0.65 <0.001 0.06 275 151(d) 59 NE 92.0 0.268 0.027 0.119 0.126 0.142 4.184 3.541 3.516 3.464 0.64 0.03 0.08 438 P77(g) 60 WNW 1.3 0.006 0.038 0.166 0.167 0.192 4.283 3.637 3.636 3.574 0.65 <0.001 0.06 471 PT4(g) 60 WNW 1.7 0.009 0.038 0.164 0.165 0.189 4.296 3.656 3.654 3.593 0.64 <0.001 0.06 348 Currie 60 NNE 15.5 0.023 0.028 0.126 0.131 0.149 3.869 3.215 3.197 3.140 0.65 0.02 0.07

105 150(d), 9(e), L39(i), A-150 (L39)(h) 60 NE 19.2 0.050 0.027 0.119 0.125 0.141 4.141 3.494 3.470 3.418 0.65 0.02 0.08

Page 63: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the Assessment (continued)

- 60 -

Gross Potential Acid Input [keq H+/ha/yr]

Snowmelt pH [pH units]

Change in pH [pH units] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) Gross Catchment Area [km2]

Net Annual Inflow[m3/s]

Background Baseline Application CEA Case Background Baseline Application CEA Case Baseline Relative

to Background Application

Relative to BaselineCEA Case Relative to Baseline

88 168(d), 12(e), L14(i) 61 ESE 29.5 0.096 0.039 0.152 0.155 0.176 4.078 3.482 3.473 3.419 0.60 0.01 0.06 475 PT9(g) 61 W 0.6 0.003 0.040 0.266 0.267 0.310 4.184 3.366 3.365 3.299 0.82 <0.001 0.07 425 P47(g) 61 S 16.7 0.063 0.043 0.308 0.314 0.349 4.094 3.238 3.230 3.184 0.86 0.01 0.05 467 PM4(g) 62 S 17.4 0.066 0.043 0.304 0.309 0.344 4.097 3.248 3.240 3.194 0.85 0.01 0.05 433 P60(g) 63 WNW 3.5 0.018 0.037 0.133 0.133 0.152 4.309 3.753 3.751 3.695 0.56 <0.001 0.06 84 L8(i), L8(h) 63 SSE 10.6 0.045 0.042 0.227 0.233 0.268 4.155 3.425 3.414 3.354 0.73 0.01 0.07 329 Mildred 64 SSW 9.1 0.015 0.044 0.982 0.983 1.060 3.716 2.369 2.368 2.335 1.35 <0.001 0.03 470 PT3(g) 64 WNW 0.6 0.003 0.038 0.143 0.143 0.163 4.287 3.710 3.709 3.653 0.58 <0.001 0.06 416 P30(g) 65 S 1.8 0.006 0.044 0.329 0.334 0.371 4.024 3.146 3.140 3.094 0.88 0.01 0.05 478 PTH11(g) 65 S 2.7 0.010 0.044 0.401 0.405 0.449 4.063 3.102 3.098 3.054 0.96 <0.001 0.05 328 Clear 67 WNW 107.2 0.303 0.037 0.122 0.122 0.139 4.033 3.518 3.516 3.462 0.52 <0.001 0.06 436 P70(g) 67 W 1.7 0.009 0.040 0.186 0.186 0.216 4.286 3.622 3.620 3.556 0.66 <0.001 0.07 347 L64(i) 67 NNE 9.7 0.002 0.028 0.117 0.121 0.138 2.981 2.353 2.337 2.280 0.63 0.02 0.07 410 P18(g) 69 WSW 0.6 0.002 0.042 0.205 0.206 0.235 4.094 3.404 3.403 3.346 0.69 <0.001 0.06 327 Eaglenest 69 WNW 128.4 0.307 0.037 0.106 0.106 0.119 3.968 3.507 3.505 3.454 0.46 <0.001 0.05 322 L15(i) 69 SE 8.0 0.026 0.041 0.156 0.159 0.179 4.049 3.470 3.462 3.410 0.58 0.01 0.06 58 Shipyard 70 SSW 42.9 0.130 0.045 0.879 0.881 0.927 3.980 2.689 2.688 2.665 1.29 <0.001 0.02 409 P17(g) 70 WSW 0.5 0.002 0.042 0.204 0.205 0.233 4.091 3.405 3.403 3.348 0.69 <0.001 0.06 468 PT1(g) 70 WNW 1.3 0.005 0.038 0.117 0.118 0.133 4.182 3.689 3.687 3.633 0.49 <0.001 0.06 435 P69(g) 70 W 1.0 0.006 0.039 0.138 0.139 0.159 4.311 3.763 3.761 3.702 0.55 <0.001 0.06 334 L48(i) 70 WNW 102.6 0.278 0.038 0.121 0.122 0.138 4.006 3.502 3.501 3.446 0.50 <0.001 0.06 350 Harwood 70 NE 9.1 0.014 0.026 0.109 0.115 0.129 3.922 3.294 3.274 3.221 0.63 0.02 0.07 469 PT2(g) 70 WNW 1.0 0.005 0.037 0.111 0.112 0.126 4.251 3.777 3.775 3.723 0.47 <0.001 0.05 408 P16(g) 71 WSW 1.0 0.004 0.042 0.197 0.198 0.224 4.162 3.492 3.491 3.436 0.67 <0.001 0.06 444 P87(g) 71 W 4.1 0.022 0.041 0.170 0.171 0.197 4.264 3.646 3.645 3.584 0.62 <0.001 0.06 437 P72(g) 71 WNW 1.7 0.009 0.037 0.112 0.112 0.127 4.266 3.793 3.791 3.738 0.47 <0.001 0.05 153 P94(g), P94(h) 72 SW 0.7 0.002 0.045 0.262 0.263 0.301 3.933 3.166 3.165 3.106 0.77 <0.001 0.06 434 P61(g) 72 W 0.8 0.004 0.040 0.137 0.137 0.158 4.261 3.725 3.723 3.662 0.54 <0.001 0.06 608 Suncor_VS_UW1 73 SSW 5.8 0.017 0.045 0.830 0.832 0.875 3.961 2.699 2.698 2.676 1.26 <0.001 0.02 479 PTH12(g) 73 S 1.2 0.004 0.045 0.343 0.346 0.388 4.032 3.151 3.147 3.098 0.88 <0.001 0.05 102 33(e), L33(i) 73 W 10.2 0.022 0.042 0.178 0.179 0.203 3.859 3.234 3.232 3.178 0.63 <0.001 0.06

129 2(d), 15(e), E15 (L15b)(h) 74 S 25.0 0.081 0.045 0.250 0.254 0.286 4.009 3.264 3.257 3.206 0.75 0.01 0.06

442 P85(g) 75 W 2.2 0.011 0.042 0.153 0.154 0.175 4.257 3.692 3.690 3.634 0.56 <0.001 0.06 446 P90(g) 76 SW 0.6 0.002 0.045 0.209 0.209 0.238 3.888 3.225 3.223 3.167 0.66 <0.001 0.06 349 Archer 76 NE 42.9 0.087 0.025 0.104 0.108 0.122 4.054 3.442 3.423 3.370 0.61 0.02 0.07 346 Canopener 76 W 10.9 0.021 0.041 0.132 0.132 0.150 3.825 3.317 3.315 3.259 0.51 <0.001 0.06 406 P11(g) 78 WSW 2.0 0.008 0.044 0.175 0.175 0.197 4.108 3.510 3.508 3.458 0.60 <0.001 0.05 345 Buoy 78 W 25.2 0.065 0.041 0.126 0.127 0.143 3.951 3.463 3.462 3.408 0.49 <0.001 0.06 326 Sand 79 W 604.6 1.602 0.040 0.110 0.110 0.124 3.976 3.535 3.533 3.482 0.44 <0.001 0.05 447 P91(g) 79 SW 13.7 0.043 0.046 0.180 0.180 0.204 3.983 3.389 3.388 3.333 0.59 <0.001 0.06 441 P84(g) 81 W 0.9 0.005 0.043 0.137 0.137 0.154 4.231 3.723 3.722 3.671 0.51 <0.001 0.05 92 Otasan 81 WNW 23.4 0.043 0.039 0.100 0.100 0.112 3.823 3.418 3.416 3.368 0.41 <0.001 0.05 487 PW2(g) 82 WSW 0.6 0.002 0.045 0.162 0.162 0.182 4.075 3.515 3.514 3.463 0.56 <0.001 0.05 407 P14(g) 82 WSW 8.9 0.034 0.044 0.157 0.157 0.176 4.081 3.535 3.534 3.484 0.55 <0.001 0.05 106 Bayard 84 WNW 57.2 0.169 0.038 0.090 0.091 0.101 4.039 3.667 3.665 3.620 0.37 <0.001 0.05 148 P13(g), P13(h) 85 WSW 3.8 0.012 0.045 0.146 0.146 0.164 4.005 3.491 3.490 3.440 0.51 <0.001 0.05 352 L69(i) 85 WNW 2.4 0.004 0.037 0.081 0.081 0.090 3.814 3.473 3.471 3.429 0.34 <0.001 0.04 324 N. Gardiner 86 W 1026.5 2.748 0.042 0.113 0.113 0.126 3.955 3.528 3.526 3.480 0.43 <0.001 0.05 486 PW1(g) 86 WSW 1.8 0.008 0.045 0.140 0.140 0.158 4.122 3.630 3.628 3.577 0.49 <0.001 0.05 325 L21(i) 87 W 103.2 0.120 0.041 0.105 0.105 0.117 3.603 3.198 3.196 3.151 0.41 <0.001 0.05 323 S. Gardiner 87 W 1201.3 3.324 0.043 0.116 0.116 0.129 3.964 3.531 3.529 3.483 0.43 <0.001 0.05 141 4(d), 4(270)(h) 88 S 18.1 0.041 0.047 0.216 0.219 0.254 3.835 3.174 3.168 3.104 0.66 0.01 0.07 351 L68(i) 90 WNW 2.1 0.004 0.038 0.080 0.080 0.088 3.850 3.528 3.526 3.486 0.32 <0.001 0.04 108 Waterlily 90 W 23.2 0.085 0.041 0.095 0.096 0.106 4.104 3.736 3.734 3.692 0.37 <0.001 0.04 443 P86(g) 90 WSW 3.8 0.015 0.046 0.124 0.125 0.140 4.091 3.656 3.655 3.604 0.43 <0.001 0.05 488 PW3(g) 91 WSW 0.7 0.003 0.046 0.125 0.126 0.141 4.092 3.659 3.657 3.606 0.43 <0.001 0.05 155 P97(g), P97(h) 92 SSW 1.8 0.006 0.048 0.257 0.258 0.289 3.967 3.242 3.241 3.191 0.73 <0.001 0.05 97 Clayton 92 NW 13.1 0.033 0.034 0.072 0.072 0.079 4.018 3.701 3.698 3.660 0.32 <0.001 0.04

Page 64: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the Assessment (continued)

- 61 -

Gross Potential Acid Input [keq H+/ha/yr]

Snowmelt pH [pH units]

Change in pH [pH units] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) Gross Catchment Area [km2]

Net Annual Inflow[m3/s]

Background Baseline Application CEA Case Background Baseline Application CEA Case Baseline Relative

to Background Application

Relative to BaselineCEA Case Relative to Baseline

449 P95(g) 94 SW 1.6 0.006 0.049 0.205 0.205 0.237 4.018 3.395 3.393 3.331 0.62 <0.001 0.06 107 L60(i), L60(h) 94 W 60.2 0.163 0.041 0.091 0.091 0.100 3.970 3.625 3.624 3.584 0.34 <0.001 0.04 91 Namur 95 W 224.0 0.325 0.044 0.101 0.102 0.112 3.667 3.308 3.306 3.266 0.36 <0.001 0.04 101 L49(i), L49(h) 95 WNW 31.1 0.067 0.040 0.083 0.083 0.091 3.882 3.566 3.564 3.524 0.32 <0.001 0.04 156 P98(g), P98(h) 96 SSW 1.9 0.007 0.049 0.220 0.221 0.252 4.022 3.371 3.369 3.312 0.65 <0.001 0.06 135 3(d), 16(e) 97 SE 10.9 0.037 0.046 0.158 0.160 0.183 4.023 3.490 3.483 3.426 0.53 0.01 0.06 154 P96(g), P96(h) 98 SSW 1.3 0.003 0.049 0.192 0.192 0.222 3.891 3.303 3.301 3.239 0.59 <0.001 0.06 100 27(e), L47(i), L47(h) 102 W 49.2 0.102 0.042 0.082 0.082 0.089 3.847 3.553 3.551 3.517 0.29 <0.001 0.04 524 Patterson 103 E 265.0 1.194 0.033 0.094 0.097 0.108 4.291 3.831 3.821 3.773 0.46 0.01 0.06 405 P101(g) 103 SSW 1.1 0.004 0.050 0.185 0.186 0.215 3.979 3.410 3.409 3.345 0.57 <0.001 0.07 344 L59(i) 103 W 201.4 0.521 0.043 0.084 0.084 0.090 3.929 3.643 3.642 3.609 0.29 <0.001 0.03 134 1(d), 25(e), 1 (267)(h) 104 SSW 34.5 0.118 0.050 0.173 0.174 0.202 3.986 3.449 3.447 3.383 0.54 <0.001 0.07 337 L52(i) 104 WSW 11.1 0.034 0.048 0.097 0.098 0.109 3.961 3.655 3.654 3.608 0.31 <0.001 0.05 336 L51(i) 105 WSW 65.9 0.180 0.049 0.098 0.098 0.109 3.901 3.597 3.595 3.549 0.30 <0.001 0.05 335 L50(i) 106 W 14.4 0.028 0.042 0.079 0.080 0.086 3.815 3.542 3.541 3.509 0.27 <0.001 0.03 338 L53(i) 106 WSW 50.6 0.180 0.048 0.093 0.093 0.103 4.020 3.735 3.733 3.689 0.29 <0.001 0.05 450 P99(g) 108 SSW 0.5 0.002 0.051 0.178 0.179 0.208 3.917 3.371 3.370 3.305 0.55 <0.001 0.07 525 Forrest 108 E 434.0 2.071 0.034 0.090 0.092 0.102 4.301 3.877 3.868 3.823 0.42 0.01 0.05 456 PF2(g) 109 SSW 0.7 0.002 0.051 0.171 0.171 0.200 3.946 3.422 3.420 3.352 0.52 <0.001 0.07 458 PF4(g) 112 SSW 0.3 0.001 0.051 0.162 0.162 0.191 3.930 3.432 3.430 3.360 0.50 <0.001 0.07 339 L54(i) 112 WSW 236.9 0.915 0.049 0.089 0.089 0.098 4.045 3.791 3.790 3.747 0.25 <0.001 0.04 451 PF1(g) 113 SSW 0.6 0.002 0.052 0.159 0.159 0.188 3.937 3.448 3.446 3.375 0.49 <0.001 0.07 455 PF13(g) 113 S 1.6 0.005 0.052 0.250 0.252 0.288 3.936 3.250 3.248 3.189 0.69 <0.001 0.06 462 PF8(g) 113 SSW 1.6 0.005 0.052 0.181 0.182 0.212 3.911 3.364 3.363 3.296 0.55 <0.001 0.07 93 Legend 114 W 93.1 0.177 0.047 0.076 0.077 0.083 3.759 3.547 3.545 3.513 0.21 <0.001 0.03 142 6(d), 6 (271)(h) 114 SSE 22.0 0.049 0.050 0.175 0.178 0.206 3.797 3.251 3.245 3.181 0.55 0.01 0.07 32 Caribou Horn 114 S 8.5 0.024 0.052 0.254 0.255 0.293 3.886 3.196 3.194 3.134 0.69 <0.001 0.06 527 Beet 115 E 456.1 2.408 0.033 0.080 0.081 0.090 4.354 3.974 3.966 3.923 0.38 0.01 0.05 457 PF3(g) 116 SSW 0.7 0.002 0.052 0.148 0.149 0.176 3.849 3.394 3.392 3.320 0.46 <0.001 0.07 526 Preston 116 E 252.5 1.204 0.037 0.081 0.082 0.091 4.265 3.922 3.915 3.873 0.34 0.01 0.05 529 Sandy-2 118 NE 452.7 0.624 0.025 0.065 0.067 0.075 3.897 3.477 3.464 3.416 0.42 0.01 0.06 452 PF10(g) 119 S 1.1 0.004 0.053 0.241 0.243 0.283 3.962 3.300 3.299 3.232 0.66 <0.001 0.07 459 PF5(g) 119 SSW 0.5 0.001 0.052 0.150 0.151 0.179 3.855 3.397 3.395 3.322 0.46 <0.001 0.07 453 PF11(g) 119 S 1.3 0.005 0.053 0.255 0.256 0.297 3.981 3.296 3.294 3.230 0.69 <0.001 0.07 96 28(e), L28(i), L28(h) 119 WNW 19.0 0.045 0.041 0.068 0.068 0.073 3.909 3.691 3.690 3.660 0.22 <0.001 0.03 460 PF6(g) 120 SSW 0.7 0.002 0.052 0.148 0.149 0.176 3.934 3.484 3.482 3.408 0.45 <0.001 0.08 3 Gregoire 121 S 231.3 0.666 0.053 0.219 0.220 0.261 3.887 3.271 3.269 3.194 0.62 <0.001 0.08 25 Canoe 122 S 6.1 0.012 0.053 0.277 0.279 0.322 3.723 3.005 3.003 2.940 0.72 <0.001 0.06 109 Gordon 122 SSE 535.3 0.650 0.052 0.203 0.205 0.241 3.517 2.929 2.924 2.855 0.59 <0.001 0.07 463 PF9(g) 122 S 1.3 0.004 0.053 0.210 0.211 0.254 3.930 3.333 3.331 3.251 0.60 <0.001 0.08 33 Kiskatinaw 122 S 30.1 0.090 0.053 0.284 0.285 0.329 3.902 3.176 3.174 3.111 0.73 <0.001 0.06 170 Nora 123 SSE 4.9 0.009 0.053 0.216 0.218 0.257 3.673 3.060 3.056 2.985 0.61 <0.001 0.08 461 PF7(g) 123 S 1.6 0.006 0.053 0.190 0.191 0.232 3.964 3.412 3.410 3.326 0.55 <0.001 0.09 35 PF12(g), UNL2(c) 123 S 3.3 0.009 0.053 0.289 0.291 0.335 3.886 3.153 3.151 3.089 0.73 <0.001 0.06 343 L58(i) 124 W 14.4 0.029 0.047 0.065 0.065 0.069 3.785 3.646 3.646 3.623 0.14 <0.001 0.02 29 Frog 125 S 8.3 0.025 0.054 0.278 0.279 0.324 3.900 3.187 3.184 3.120 0.71 <0.001 0.07 340 L55(i) 125 WSW 26.2 0.093 0.051 0.074 0.074 0.080 3.997 3.832 3.831 3.800 0.16 <0.001 0.03 30 Poison 126 S 0.9 0.001 0.054 0.273 0.274 0.321 3.643 2.940 2.937 2.870 0.70 <0.001 0.07 28 Sucker 127 S 5.1 0.013 0.054 0.268 0.270 0.314 3.810 3.114 3.112 3.045 0.70 <0.001 0.07 341 L56(i) 127 WSW 37.9 0.168 0.051 0.074 0.074 0.079 4.090 3.931 3.930 3.899 0.16 <0.001 0.03 89 Rabbit 127 WSW 14.6 0.035 0.053 0.082 0.082 0.090 3.804 3.616 3.615 3.576 0.19 <0.001 0.04 26 Long -1 127 S 4.5 0.012 0.054 0.270 0.271 0.321 3.845 3.149 3.147 3.073 0.70 <0.001 0.08 31 Rat Lake 128 S 20.6 0.062 0.054 0.267 0.269 0.316 3.897 3.204 3.202 3.132 0.69 <0.001 0.07 1 Birch -2 128 S 3.7 0.011 0.054 0.265 0.267 0.316 3.892 3.204 3.202 3.128 0.69 <0.001 0.08 34 UNL1(c) 129 S 2.3 0.007 0.055 0.259 0.260 0.313 3.886 3.210 3.208 3.128 0.68 <0.001 0.08 169 Shortt 129 SSE 169.0 0.294 0.053 0.181 0.183 0.214 3.671 3.135 3.130 3.063 0.54 <0.001 0.07 168 8(d) 130 SSE 22.0 0.073 0.052 0.165 0.167 0.193 3.959 3.458 3.453 3.389 0.50 0.01 0.07 27 Pushup 130 S 0.9 0.002 0.055 0.255 0.256 0.309 3.717 3.050 3.048 2.966 0.67 <0.001 0.08

Page 65: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the Assessment (continued)

- 62 -

Gross Potential Acid Input [keq H+/ha/yr]

Snowmelt pH [pH units]

Change in pH [pH units] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) Gross Catchment Area [km2]

Net Annual Inflow[m3/s]

Background Baseline Application CEA Case Background Baseline Application CEA Case Baseline Relative

to Background Application

Relative to BaselineCEA Case Relative to Baseline

41 Maqua 133 S 6.1 0.022 0.055 0.226 0.227 0.294 3.974 3.359 3.358 3.245 0.61 <0.001 0.11 531 Cluff 134 NE 219.0 1.256 0.026 0.059 0.060 0.067 4.499 4.140 4.129 4.087 0.36 0.01 0.05 36 UNL3(c) 135 S 1.6 0.003 0.056 0.247 0.248 0.303 3.747 3.100 3.097 3.011 0.65 <0.001 0.09 171 Gipsy 135 SSE 94.8 0.063 0.054 0.185 0.186 0.219 3.243 2.709 2.705 2.636 0.53 <0.001 0.07 40 L11(c) 135 S 0.5 0.002 0.055 0.230 0.231 0.302 3.946 3.327 3.326 3.210 0.62 <0.001 0.12 110 Birch (d) 136 SSE 73.7 0.126 0.055 0.204 0.205 0.244 3.648 3.078 3.074 2.999 0.57 <0.001 0.08 39 L10(c) 136 S 1.9 0.004 0.056 0.229 0.230 0.301 3.723 3.108 3.107 2.989 0.61 <0.001 0.12 172 Baker 137 SSE 16.5 0.035 0.054 0.176 0.178 0.207 3.751 3.235 3.231 3.164 0.52 <0.001 0.07 37 Surmont 139 S 82.4 0.313 0.056 0.231 0.232 0.303 3.982 3.368 3.367 3.251 0.61 <0.001 0.12 174 17(d) 140 S 40.7 0.188 0.057 0.227 0.228 0.297 4.064 3.460 3.459 3.344 0.60 <0.001 0.12 38 L8(c) 141 S 0.8 0.003 0.057 0.226 0.227 0.294 3.961 3.360 3.359 3.248 0.60 <0.001 0.11 175 Georges 143 S 155.8 0.543 0.057 0.218 0.220 0.282 3.937 3.356 3.353 3.245 0.58 <0.001 0.11 115 21(d), A21(h) 144 S 14.7 0.087 0.057 0.214 0.215 0.281 4.169 3.595 3.594 3.478 0.57 <0.001 0.12 176 20(d) 146 SSE 54.0 0.184 0.057 0.211 0.212 0.260 3.925 3.359 3.356 3.269 0.57 <0.001 0.09 177 22(d) 146 S 18.8 0.067 0.058 0.216 0.217 0.278 3.946 3.374 3.372 3.265 0.57 <0.001 0.11 117 26(d), A26(h) 148 S 11.7 0.037 0.058 0.211 0.212 0.272 3.884 3.324 3.323 3.215 0.56 <0.001 0.11 116 24(d), A24(h) 148 S 8.8 0.034 0.058 0.206 0.207 0.271 3.971 3.421 3.420 3.303 0.55 <0.001 0.12 143 25(d), 25 (287)(h) 150 S 7.8 0.022 0.059 0.207 0.207 0.268 3.843 3.295 3.294 3.182 0.55 <0.001 0.11 173 Garson 150 SSE 340.0 0.791 0.056 0.167 0.168 0.196 3.774 3.297 3.293 3.227 0.48 <0.001 0.07 179 31(d) 151 S 6.4 0.025 0.058 0.196 0.197 0.263 3.982 3.457 3.455 3.330 0.53 <0.001 0.13 144 27(d), 27 (289)(h) 152 S 7.1 0.022 0.058 0.193 0.193 0.257 3.873 3.353 3.352 3.229 0.52 <0.001 0.12 178 30(d) 153 S 21.5 0.102 0.059 0.201 0.201 0.262 4.057 3.526 3.525 3.411 0.53 <0.001 0.12 130 32(d), 2(e) 153 S 30.4 0.128 0.059 0.206 0.207 0.263 4.002 3.463 3.461 3.357 0.54 <0.001 0.11 530 La Loche 153 SE 1410.4 1.791 0.053 0.120 0.121 0.138 3.531 3.175 3.172 3.116 0.36 <0.001 0.06 145 28(d), 28 (290)(h) 153 S 3.2 0.012 0.059 0.199 0.200 0.260 3.962 3.436 3.435 3.321 0.53 <0.001 0.12 195 53(d) 155 SSW 17.3 0.062 0.058 0.122 0.122 0.139 3.944 3.623 3.622 3.567 0.32 <0.001 0.06 181 35(d) 155 SSE 201.5 0.593 0.058 0.194 0.195 0.235 3.856 3.333 3.330 3.249 0.52 <0.001 0.08 180 33(d) 157 S 14.2 0.067 0.060 0.199 0.200 0.256 4.047 3.528 3.526 3.420 0.52 <0.001 0.11 194 Algar 157 SSW 63.2 0.177 0.059 0.121 0.121 0.137 3.831 3.517 3.516 3.462 0.31 <0.001 0.06 118 29(d), A29(h) 157 S 5.2 0.017 0.058 0.163 0.164 0.208 3.905 3.460 3.458 3.354 0.45 <0.001 0.11 182 Formby 158 SSE 51.1 0.132 0.057 0.169 0.170 0.199 3.807 3.337 3.334 3.265 0.47 <0.001 0.07 196 54(d) 159 SSW 5.2 0.016 0.059 0.123 0.123 0.140 3.860 3.540 3.538 3.483 0.32 <0.001 0.06 183 37(d) 161 SSE 37.0 0.068 0.058 0.176 0.177 0.209 3.648 3.169 3.166 3.094 0.48 <0.001 0.08 184 Watchusk 161 SSE 301.8 0.883 0.059 0.182 0.183 0.220 3.845 3.358 3.356 3.276 0.49 <0.001 0.08 316 D254(f) 163 SW 390.6 1.484 0.061 0.081 0.081 0.086 3.943 3.823 3.822 3.796 0.12 <0.001 0.03 533 McLean 163 SE 235.4 0.327 0.053 0.107 0.107 0.121 3.569 3.266 3.263 3.211 0.30 <0.001 0.05 197 55(d) 166 SSW 18.2 0.061 0.061 0.118 0.118 0.133 3.892 3.604 3.602 3.551 0.29 <0.001 0.05 185 39(d) 166 SSE 27.4 0.078 0.059 0.171 0.172 0.203 3.836 3.376 3.374 3.301 0.46 <0.001 0.08 136 34(d), 1(e) 167 S 73.8 0.301 0.061 0.160 0.160 0.204 3.974 3.560 3.558 3.452 0.41 <0.001 0.11 198 56(d) 167 SSW 20.6 0.081 0.059 0.125 0.125 0.144 3.974 3.649 3.647 3.585 0.33 <0.001 0.06 186 40(d) 172 S 27.8 0.095 0.064 0.158 0.159 0.192 3.881 3.486 3.484 3.401 0.40 <0.001 0.08 222 81(d) 181 S 40.0 0.187 0.065 0.142 0.143 0.188 4.008 3.668 3.667 3.547 0.34 <0.001 0.12 199 57(d) 181 SSW 18.1 0.060 0.063 0.119 0.119 0.134 3.872 3.595 3.594 3.542 0.28 <0.001 0.05 139 91(d), 7(e) 182 SSE 315.9 1.009 0.065 0.161 0.161 0.190 3.845 3.451 3.449 3.377 0.39 <0.001 0.07 227 Bohn 183 S 200.8 0.565 0.067 0.153 0.153 0.182 3.776 3.417 3.416 3.342 0.36 <0.001 0.08 226 88(d) 183 SSW 8.1 0.026 0.061 0.124 0.125 0.148 3.878 3.568 3.567 3.492 0.31 <0.001 0.08 228 90(d) 184 S 19.9 0.062 0.066 0.156 0.157 0.186 3.822 3.447 3.446 3.372 0.37 <0.001 0.08 229 Cowper 187 SSE 280.5 0.912 0.067 0.160 0.161 0.190 3.841 3.459 3.458 3.386 0.38 <0.001 0.07 218 77(d) 188 SSW 147.3 0.709 0.065 0.124 0.124 0.163 4.022 3.742 3.740 3.623 0.28 <0.001 0.12 202 Mariana 188 SSW 2.4 0.008 0.063 0.123 0.124 0.144 3.845 3.552 3.551 3.485 0.29 <0.001 0.07 221 80(d) 189 SSW 2.7 0.006 0.066 0.126 0.127 0.180 3.655 3.375 3.374 3.221 0.28 <0.001 0.15 190 46(d) 190 SW 33.7 0.131 0.069 0.086 0.086 0.091 3.905 3.807 3.806 3.782 0.10 <0.001 0.03 204 63(d) 191 SSW 40.1 0.165 0.064 0.124 0.125 0.145 3.958 3.672 3.671 3.606 0.29 <0.001 0.07 203 62(d) 192 SSW 7.1 0.029 0.065 0.123 0.123 0.141 3.951 3.673 3.672 3.611 0.28 <0.001 0.06 219 78(d) 193 SSW 23.3 0.102 0.066 0.123 0.124 0.148 3.975 3.703 3.702 3.624 0.27 <0.001 0.08 220 79(d) 194 SSW 15.6 0.060 0.067 0.122 0.123 0.151 3.911 3.650 3.649 3.559 0.26 <0.001 0.09 230 93(d) 195 S 11.3 0.039 0.069 0.171 0.172 0.202 3.848 3.452 3.451 3.381 0.40 <0.001 0.07 201 60(d) 199 SSW 53.9 0.222 0.069 0.112 0.113 0.124 3.926 3.717 3.716 3.673 0.21 <0.001 0.04

Page 66: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the Assessment (continued)

- 63 -

Gross Potential Acid Input [keq H+/ha/yr]

Snowmelt pH [pH units]

Change in pH [pH units] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) Gross Catchment Area [km2]

Net Annual Inflow[m3/s]

Background Baseline Application CEA Case Background Baseline Application CEA Case Baseline Relative

to Background Application

Relative to BaselineCEA Case Relative to Baseline

147 94(d), 94 (354)(h) 200 S 8.5 0.016 0.072 0.175 0.175 0.207 3.574 3.189 3.187 3.114 0.39 <0.001 0.07 146 82(d), 82 (342)(h) 201 SSW 6.1 0.014 0.070 0.121 0.122 0.142 3.663 3.426 3.425 3.359 0.24 <0.001 0.07 223 83(d) 202 SSW 38.1 0.166 0.070 0.119 0.119 0.135 3.946 3.716 3.714 3.659 0.23 <0.001 0.06 231 95(d) 204 S 16.1 0.059 0.073 0.186 0.186 0.219 3.855 3.448 3.447 3.377 0.41 <0.001 0.07 205 Crow 206 SSW 66.4 0.286 0.072 0.116 0.116 0.129 3.931 3.724 3.723 3.676 0.21 <0.001 0.05 234 100(d) 206 SSE 49.6 0.205 0.070 0.170 0.170 0.198 3.921 3.538 3.537 3.472 0.38 <0.001 0.07 225 85(d) 211 SSW 6.4 0.021 0.074 0.122 0.122 0.138 3.791 3.576 3.575 3.521 0.21 <0.001 0.05 206 65(d) 211 SSW 111.4 0.475 0.074 0.117 0.117 0.129 3.913 3.715 3.714 3.670 0.20 <0.001 0.04 235 101(d) 211 SSE 6.5 0.021 0.072 0.169 0.170 0.196 3.808 3.435 3.433 3.371 0.37 <0.001 0.06 207 66(d) 212 SSW 14.6 0.057 0.074 0.119 0.119 0.131 3.871 3.668 3.667 3.623 0.20 <0.001 0.04 224 84(d) 212 SSW 9.3 0.029 0.075 0.121 0.122 0.137 3.768 3.558 3.557 3.507 0.21 <0.001 0.05 122 86(d), A86(h) 213 SSW 4.8 0.012 0.075 0.123 0.123 0.139 3.656 3.445 3.444 3.392 0.21 <0.001 0.05 121 59(d), A59(h) 213 SSW 44.8 0.174 0.076 0.101 0.101 0.107 3.860 3.740 3.739 3.712 0.12 <0.001 0.03 233 98(d) 214 S 25.8 0.092 0.076 0.168 0.169 0.200 3.822 3.479 3.478 3.405 0.34 <0.001 0.07 232 97(d) 214 S 51.5 0.201 0.075 0.197 0.197 0.224 3.870 3.449 3.448 3.392 0.42 <0.001 0.06 209 Agnes-1 214 SSW 43.9 0.175 0.076 0.109 0.109 0.117 3.870 3.716 3.715 3.683 0.15 <0.001 0.03 236 102(d) 215 SSE 16.1 0.061 0.071 0.158 0.159 0.182 3.875 3.527 3.525 3.466 0.35 <0.001 0.06 200 58(d) 215 SW 21.6 0.078 0.077 0.096 0.096 0.102 3.826 3.729 3.728 3.705 0.10 <0.001 0.02 2 Christina 216 S 1233.5 2.809 0.077 0.196 0.197 0.229 3.624 3.217 3.216 3.150 0.41 <0.001 0.07 211 70(d) 216 SSW 11.5 0.038 0.077 0.103 0.103 0.110 3.785 3.661 3.660 3.632 0.12 <0.001 0.03 131 Base 217 SSW 64.1 0.328 0.077 0.123 0.123 0.138 3.974 3.771 3.770 3.722 0.20 <0.001 0.05 208 67(d) 222 SSW 34.6 0.155 0.079 0.115 0.115 0.125 3.906 3.743 3.742 3.708 0.16 <0.001 0.03 212 71(d) 222 SSW 21.9 0.084 0.080 0.100 0.100 0.106 3.835 3.735 3.734 3.709 0.10 <0.001 0.03 210 69(d) 227 SSW 12.6 0.041 0.082 0.102 0.102 0.108 3.750 3.653 3.653 3.629 0.10 <0.001 0.02 213 72(d) 228 SSW 7.7 0.025 0.082 0.099 0.099 0.104 3.755 3.672 3.672 3.651 0.08 <0.001 0.02 241 108(d) 230 S 51.1 0.171 0.081 0.217 0.217 0.251 3.768 3.342 3.341 3.279 0.43 <0.001 0.06 167 Wappau 230 S 75.9 0.190 0.082 0.129 0.129 0.143 3.635 3.441 3.440 3.395 0.19 <0.001 0.05 237 Winefred 231 S 1185.9 4.087 0.080 0.164 0.165 0.185 3.789 3.474 3.473 3.424 0.31 <0.001 0.05 240 Kirby 233 S 22.4 0.061 0.082 0.203 0.203 0.232 3.675 3.282 3.281 3.223 0.39 <0.001 0.06 242 110(d) 233 S 11.7 0.040 0.084 0.130 0.130 0.144 3.767 3.576 3.575 3.533 0.19 <0.001 0.04 214 73(d) 235 SSW 24.9 0.092 0.084 0.100 0.100 0.105 3.793 3.719 3.718 3.700 0.07 <0.001 0.02 243 111(d) 236 S 24.6 0.091 0.085 0.135 0.135 0.151 3.795 3.592 3.591 3.544 0.20 <0.001 0.05 238 104(d) 237 SSE 8.7 0.029 0.080 0.160 0.160 0.179 3.775 3.473 3.472 3.422 0.30 <0.001 0.05 42 Wiau 237 S 275.7 1.016 0.085 0.137 0.138 0.154 3.789 3.581 3.580 3.532 0.21 <0.001 0.05 138 Goodwin 241 S 34.6 0.100 0.086 0.129 0.129 0.140 3.674 3.501 3.500 3.464 0.17 <0.001 0.04 44 UNL1(c) 241 S 24.2 0.064 0.086 0.151 0.151 0.171 3.641 3.396 3.395 3.343 0.25 <0.001 0.05 50 UNL13(c) 241 S 2.0 0.007 0.086 0.149 0.149 0.168 3.747 3.510 3.509 3.458 0.24 <0.001 0.05 244 113(d) 241 S 35.1 0.148 0.086 0.153 0.153 0.172 3.842 3.594 3.593 3.540 0.25 <0.001 0.05 245 114(d) 244 S 7.2 0.024 0.087 0.132 0.132 0.144 3.736 3.556 3.556 3.518 0.18 <0.001 0.04 132 Grist 244 S 118.2 0.433 0.083 0.166 0.167 0.185 3.795 3.495 3.494 3.449 0.30 <0.001 0.05 49 UNL12(c) 244 S 1.8 0.006 0.087 0.152 0.153 0.171 3.737 3.494 3.493 3.444 0.24 <0.001 0.05 48 UNL7(c) 244 S 1.5 0.004 0.087 0.149 0.150 0.167 3.651 3.417 3.416 3.367 0.23 <0.001 0.05 46 UNL4(c) 245 S 0.9 0.001 0.087 0.160 0.161 0.180 3.389 3.124 3.123 3.074 0.27 <0.001 0.05 47 UNL5(c) 247 S 5.1 0.016 0.088 0.152 0.153 0.170 3.701 3.461 3.461 3.413 0.24 <0.001 0.05 45 UNL3(c) 247 S 3.7 0.009 0.088 0.158 0.158 0.176 3.596 3.340 3.339 3.291 0.26 <0.001 0.05 239 106(d) 247 S 3.5 0.006 0.085 0.177 0.177 0.197 3.433 3.116 3.115 3.069 0.32 <0.001 0.05 246 116(d) 247 S 11.2 0.037 0.089 0.128 0.129 0.138 3.720 3.559 3.559 3.528 0.16 <0.001 0.03 247 117(d) 248 S 9.3 0.036 0.089 0.132 0.133 0.144 3.790 3.618 3.617 3.582 0.17 <0.001 0.04 43 Ipiatik 251 S 67.2 0.204 0.089 0.152 0.152 0.169 3.686 3.453 3.452 3.408 0.23 <0.001 0.05 248 Clyde 252 S 470.3 0.488 0.090 0.134 0.134 0.145 3.214 3.043 3.042 3.008 0.17 <0.001 0.04 249 Behan 253 S 65.5 0.080 0.091 0.132 0.132 0.143 3.279 3.116 3.115 3.083 0.16 <0.001 0.03 251 Big Chief 260 S 13.0 0.038 0.093 0.129 0.130 0.138 3.653 3.509 3.509 3.482 0.14 <0.001 0.03 250 120(d) 261 S 15.8 0.056 0.093 0.135 0.135 0.146 3.734 3.571 3.570 3.538 0.16 <0.001 0.03 253 123(d) 269 S 7.9 0.027 0.096 0.125 0.125 0.131 3.701 3.588 3.587 3.567 0.11 <0.001 0.02 258 128(d) 274 S 12.0 0.041 0.097 0.134 0.134 0.141 3.700 3.560 3.559 3.536 0.14 <0.001 0.02 254 124(d) 274 S 125.0 0.313 0.098 0.125 0.126 0.131 3.561 3.452 3.451 3.433 0.11 <0.001 0.02 259 Logan 275 S 244.6 0.931 0.097 0.134 0.134 0.142 3.746 3.606 3.605 3.580 0.14 <0.001 0.03 255 125(d) 279 S 22.0 0.083 0.099 0.126 0.127 0.132 3.733 3.627 3.626 3.609 0.11 <0.001 0.02

Page 67: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9 Predicted pH of Snowmelt for the 380 Lake Catchments Included in the Assessment (continued)

- 64 -

Gross Potential Acid Input [keq H+/ha/yr]

Snowmelt pH [pH units]

Change in pH [pH units] Lake

Identifier(a) Lake Name /

Original Identifier Distance

[km](b) Direction(b) Gross Catchment Area [km2]

Net Annual Inflow[m3/s]

Background Baseline Application CEA Case Background Baseline Application CEA Case Baseline Relative

to Background Application

Relative to BaselineCEA Case Relative to Baseline

257 Heart 282 S 495.1 1.760 0.099 0.132 0.132 0.138 3.708 3.584 3.583 3.562 0.12 <0.001 0.02 256 Piche 282 S 555.1 1.981 0.099 0.130 0.130 0.136 3.709 3.592 3.591 3.572 0.12 <0.001 0.02 252 122(d) 284 S 18.8 0.049 0.100 0.130 0.130 0.136 3.568 3.453 3.453 3.435 0.11 <0.001 0.02 68 LK8(c) 299 S 3.2 0.006 0.096 0.208 0.209 0.237 3.458 3.122 3.121 3.066 0.34 <0.001 0.06 515 Unnamed 5(c) 301 S 5.8 0.008 0.098 0.201 0.201 0.227 3.281 2.970 2.970 2.916 0.31 <0.001 0.05 598 UN-5(c) 301 S 247.6 0.701 0.098 0.201 0.201 0.227 3.612 3.301 3.301 3.248 0.31 <0.001 0.05 597 UN-2(c) 301 S 237.2 0.672 0.099 0.188 0.189 0.209 3.610 3.329 3.329 3.284 0.28 <0.001 0.05 67 LK7(c) 303 S 8.1 0.017 0.097 0.216 0.216 0.240 3.482 3.134 3.134 3.088 0.35 <0.001 0.05 536 Touchwood 304 S 137.3 0.213 0.103 0.131 0.131 0.135 3.330 3.228 3.227 3.212 0.10 <0.001 0.02 537 La Biche 305 SSW 4279.2 11.154 0.106 0.128 0.128 0.131 3.543 3.462 3.462 3.450 0.08 <0.001 0.01 66 LK6(c) 306 S 3.8 0.008 0.096 0.207 0.207 0.225 3.476 3.144 3.144 3.107 0.33 <0.001 0.04 599 UN-6(c) 306 S 247.8 0.701 0.098 0.203 0.203 0.223 3.611 3.296 3.296 3.255 0.31 <0.001 0.04 65 LK5(c) 307 S 17.9 0.036 0.097 0.212 0.212 0.230 3.473 3.131 3.131 3.095 0.34 <0.001 0.04 64 LK4(c) 308 S 6.6 0.012 0.097 0.219 0.219 0.236 3.443 3.090 3.090 3.057 0.35 <0.001 0.03 60 Burnt 309 S 141.4 0.264 0.098 0.217 0.217 0.234 3.434 3.088 3.088 3.055 0.35 <0.001 0.03 63 LK3(c) 309 S 2.0 0.004 0.097 0.219 0.219 0.235 3.458 3.107 3.106 3.075 0.35 <0.001 0.03 62 LK2(c) 310 S 0.8 0.001 0.097 0.219 0.219 0.235 3.361 3.010 3.009 2.979 0.35 <0.001 0.03 61 LK1(c) 312 S 12.1 0.024 0.098 0.220 0.220 0.234 3.468 3.116 3.115 3.089 0.35 <0.001 0.03 516 Sinclair-1 316 S 56.9 0.094 0.100 0.174 0.174 0.182 3.371 3.132 3.132 3.113 0.24 <0.001 0.02 538 Wolf 317 S 754.7 1.663 0.103 0.139 0.139 0.144 3.484 3.354 3.353 3.336 0.13 <0.001 0.02 69 May 319 S 189.0 0.300 0.098 0.218 0.218 0.228 3.360 3.014 3.014 2.995 0.35 <0.001 0.02 539 Field 319 S 12.7 0.033 0.108 0.127 0.127 0.130 3.536 3.467 3.466 3.457 0.07 <0.001 0.01 517 Bourque 321 S 100.0 0.149 0.100 0.217 0.217 0.225 3.327 2.990 2.990 2.975 0.34 <0.001 0.02 540 Pinehurst 322 S 186.0 0.278 0.106 0.127 0.127 0.130 3.300 3.222 3.222 3.211 0.08 <0.001 0.01 518 Marguerite 327 S 39.3 0.010 0.102 0.153 0.153 0.159 2.526 2.350 2.350 2.335 0.18 <0.001 0.01 519 Marie 328 S 478.0 0.665 0.098 0.173 0.173 0.179 3.304 3.058 3.058 3.042 0.25 <0.001 0.02 520 Leming 331 S 44.0 0.059 0.100 0.203 0.203 0.209 3.281 2.975 2.974 2.962 0.31 <0.001 0.01 600 Dolly 335 S 244.3 0.691 0.098 0.153 0.153 0.159 3.613 3.418 3.418 3.403 0.20 <0.001 0.01 521 Tucker 337 S 277.0 0.461 0.102 0.149 0.150 0.154 3.367 3.199 3.199 3.187 0.17 <0.001 0.01 522 Ethel 339 S 594.0 0.647 0.099 0.152 0.152 0.157 3.192 3.008 3.007 2.995 0.18 <0.001 0.01 546 Cold 340 S 6513.0 18.180 0.096 0.126 0.126 0.131 3.614 3.497 3.497 3.482 0.12 <0.001 0.01 523 Hilda 340 S 79.8 0.051 0.100 0.149 0.150 0.154 2.961 2.787 2.787 2.775 0.17 <0.001 0.01 596 Manatokan 344 S 409.3 1.152 0.105 0.130 0.130 0.133 3.581 3.489 3.489 3.478 0.09 <0.001 0.01

(a) Lake Identifier used on map showing lake locations. (b) Distance and direction relative to the Northern Lights Project. (c) Identifier used by previous EIAs; refer to Section 1.4.2.4. (d) Identifier used by Syncrude (2000). (e) Identifier used by Erickson (1987). (f) Identifier used by WRS (2004) for a survey of 34 lakes conducted by Alberta-Pacific Forest Industries in 1999. (g) Identifier used by WRS (2004) for one hundred ponds sampled within the Oil Sands Region during September 2000. (h) Identifier used by RAMP (2004). (i) Identifier used by Saffran and Trew (1996). (j) Identifier used in Volume 7, Section 3.3 of the Application.

Page 68: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 65 -

2 REFERENCES

Almer, B., W. Dickson, C. Ekstrom, E. Hornstrom and V. Miller. 1974. Effects of Acidification on Swedish Lakes. Ambio. 3: 30-36.

Appleberg, M., B.I. Henrickson, L. Henrickson and M. Svedang. 1993. Biotic Interactions Within the Littoral Community of Swedish Forest Lakes During Acidification. Ambio. 22: 290–297.

Arts, G.H.P., G.M. Roelofs and M.J.H. De Lyon. 1989. Differential Tolerances Among Soft-Water Macrophyte Species to Acidification. Canadian Journal of Botany. 68: 2,127–2,134.

Baker, L.A., P.R. Kaufmann, A.T. Herlihi and J.M. Eilers. 1990. Current Status of Surface Water Acid-Base Chemistry, State of Science SOS/T 9, National Acid Precipitation Program.

Bendell, B.E and D.K. McNicol. 1995. Lake Acidity, Fish Predation and the Distribution and Abundance of Some Littoral Insects. Hydrobiologia. 302: 133-145.

Boward, D., P. Kayzak, S. Stranko, M. Hurd and A. Prochaska. 1999. From the Mountains to the Sea: The State of Maryland’s Freshwater Streams. Maryland Department of Natural Resources. Annapolis, MD.

Brewer, P.F., T.J. Sullivan, J. Cosby and R. Munson. 2000. Acid deposition effects on forests and steams in the southern Appalachian Mountains. Prepared for Southern Appalachian Mountains Initiative.

Canadian Natural (Canadian Natural Resources Limited). 2000. Primrose and Wolf Lake (PAW) In-situ Oil Sands Expansion Project. Application to the EUB and AENV. October 2000.

Canadian Natural. 2002. Horizon Oil Sands Project – Application for Approval. Volume 1 Prepared by Canadian Natural Resources Limited. Volumes 2, 3, 4, 5, 6, 7 and 8 Prepared by Golder Associates Ltd. June 2002. Calgary, AB.

Canadian Natural. 2006. In-situ Oil Sands Project Primrose East Expansion. Volume 4. Prepared by Golder Associates Ltd. for Canadian Natural Resources Limited. Calgary, AB.

Page 69: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 66 -

Carter, J.C.H., W.D. Taylor, R. Chengalath and D.A. Scruton. 1986. Limnetic Zooplankton Assemblages in Atlantic Canada with Special Reference to Acidification. Canadian Journal of Fisheries and Aquatic Sciences. 43: 444-456.

CASA (Clean Air Strategic Alliance). 1996. Final Report of the Target Loading Subgroup on Critical and Target Loading in Alberta. CASA SO2 Management Project Team.

Catling, P.M., B. Freedman, J. Stewart, J. Kerekes and L.P. Lefkovitch. 1986. Aquatic Plants of Acid Lakes in Kejimkujik National Park, Nova Scotia; Floristic Composition and Relation to Water Chemistry. Canadian Journal of Botany. 64: 724-729.

CEMA (Cumulative Environmental Management Association). 2004. Recommendations for the Acid Deposition Management Framework for the Oil Sands Region of North-Eastern Alberta. Approved February 25, 2004. Fort McMurray, AB. 39 pp.

Cheng, L. 2001. Background PAI for the Oil Sands Region, Determined for 1995 Using the RELAD Model and all Sources Within the Oil Sands Region Set to Zero. May 8, 2001.

Confer, J.L., T. Kaaret and G.E. Likens. 1983. Zooplankton Diversity and Biomass in Recently Acidified Lakes. Canadian Journal of Fisheries and Aquatic Sciences.

Cosby, B.J., R.F. Wright and E. Gjessing. 1995. An acidification model (MAGIC) with organic acids evaluated using whole catchment manipulations in Norway. J. Hydrol. 170: 101-122.

Dale, J., B. Freedman and J. Kerekes. 1985. Experimental Studies of the Effects of Acidity and Associated Water Chemistry on Amphibians. Proceedings of the Nova Scotia Institute of Science. 35: 35-54.

Dixit, S. and J.P. Smol. 1989. Relationship Between Chrysophyte Assemblages and Environmental Variables in 72 Sudbury Lakes as Examined by Canonical Correspondence Analysis (CCA). Canadian Journal of Fisheries and Aquatic Sciences. 46: 1,676–1,677.

Doka, S.E., M.L. Mallory, D.K. McNicol and C.K. Minns. 1997. Species Richness and Species Occurrence of Five Taxonomic Groups in Relation to pH and

Page 70: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 67 -

Other Lake Characteristics in Southeastern Canada. Canadian Technical Report of Fisheries and Aquatic Sciences No. 2179.

EIFAC (European Inland Fisheries Advisory Commission). 1996. Report of the Workshop on Recreational Fishery Planning and Management Strategies in Central and Eastern Europe. August 22–25 1995. EIFAC Occasional Paper. No. 32. Rome Food and Agriculture Organization. Žilina, Slovakia. 92pp.

Environment Canada. 1998. Canadian Daily Climate Data. Temperature and Precipitation.

Erickson, P.K. 1987. An Assessment of the Potential Sensitivity of Alberta Lakes to Acidic Deposition. Environmental Protection Services, Alberta Environment. Edmonton, AB. 137 pp.

Ericksson, M.O.G., L. Henrickson, B.L. Nilson, G. Nyman, M.G. Oscarson, A.E Stenson and K. Larsson. 1980. Predator Prey Relations Important for the Biotic Changes in the Acidified Lakes. Ambio. 9: 248–249.

Exley, C., A.J. Wicks, R.B. Hubert and J.D. Birchall. 1996. Kinetic constraints in acute aluminum toxicity in the rainbow trout (Oncorhynchus mykiss). Journal of Theoretical Biology. 179: 25-31.

Freda, J. and D.H. Taylor. 1992. Behavioural Response of Amphibian Larvae to Acidic Water. Journal of Herpetology. 26: 429–433.

Freda, J. and W.A. Dunson. 1985. The Influence of External Cation Concentration on the Hatching of Amphibian Embryos in Water of Low pH. Canadian Journal of Zoology. 63: 2,649–2,656.

Freda, J. and W.A. Dunson. 1986. Effects of Low pH and Other Chemical Variables on the Local Distribution of Amphibians. Copeia. (2): 454–466.

Gascon, C. and D. Planas. 1986. Spring Pond Water Chemistry and the Reproduction of the Wood Frog, Rana sylvatica. Canadian Journal of Zoology. 64: 543–550.

Gill, J.D. (ed.). 1993. Acidic Depositions: Effects on Wildlife and Habitats. Prepared with the Wildlife Society Technical Advisory Committee on Acid Rain and Wildlife (Ad Hoc). Technical Review 93–1.

Page 71: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 68 -

Golder (Golder Associates Ltd.). 2000. Oil Sands Regional Aquatics Monitoring Program (RAMP), 1999 Report. Prepared for RAMP Steering Committee. Calgary, AB.

Golder. 2001. Oil Sands Regional Aquatics Monitoring Program (RAMP): 2000 Report. Volume I: Chemical and Biological Monitoring. Prepared for RAMP Steering Committee. Calgary, AB.

Golder. 2002. Oil Sands Regional Aquatics Monitoring Program (RAMP). 2001 Report. Volume I: Chemical and Biological Monitoring. Prepared for RAMP Steering Committee. Calgary, AB.

Golder. 2003. Oil Sands Regional Aquatics Monitoring Program (RAMP) - 2002. Prepared for RAMP Steering Committee. Calgary, AB. 825 pp.

Grahn, O. 1977. Macrophyte Succession in Swedish Lakes Caused by Deposition of Airborne Acid Substances. Water, Air and Soil Pollution. 7: 295-305.

Grahn, O. 1985. Macrophyte Biomass and Production in Lake Gardsjon - An Acidified Clearwater Lake in SW Sweden. Ecological Bulletin. 37: 203-212.

Grahn, O. 1986. Vegetation Structure and Primary Production in Acidified Lakes in Southwestern Sweden. Experimentia. 42: 465–470.

Grahn, O., H. Hultberg and L. Landner. 1974. Oligotrophication a Self Accelerating Process in Lakes Subject to Excessive Supply of Acid Substances. Ambio. 3: 93–94.

Gunn, J.M. and W. Keller. 1990. Biological recovery of an acid lake after reductions in industrail emissions of sulfur. Nature. 355: 431.

Haines, T.A. 1981. Acidic Precipitation and its Consequences for Aquatic Ecosystems: A Review. Transactions of the American Fisheries Society. 110: 669–707.

Hall, R.J. and F.P. Ide. 1987. Evidence of Acidification Effects on Stream Insect Communities in Central Ontario Between 1937-1985. Canadian Journal of Fisheries and Aquatic Sciences. 44: 1,652–1,657.

Page 72: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 69 -

Halvorsen, K. 1977. Macrophytes in Some Lakes in Agder, South Norway. SNSF Project. TN 36/37.

Havens, K.E. 1992. Acid and Aluminum Effects on Sodium Hmeostatis and Survival of Acid Sensitive and Acid Tolerant Cladocera. Canadian Journal of Fisheries and Aquatic Sciences. 49: 2,392–2,398.

Havens, K. E. and J. DeCosta. 1987. Freshwater Plankton Community Succession During Experimental Acidification. Arch. Hydrobiologia. 111: 37–65.

Havens, K.E. and R.T. Heath. 1990. Phytoplankton Succession During Acidification With and Without Increasing Aluminum Levels. Environmental Pollution. 68: 129–145.

Hazewinkel, R. 2006. A Paleolimnological Assessment of Environmental Change in Eight Northeastern Alberta Lakes. M.Sc. Thesis. University of Alberta. Edmonton, AB.

Henriksen, A., J. Kamari, M. Posch and A. Wilander. 1992. Critical Loads of Acidity: Nordic Surface Waters. Ambio. 21(5): 356–363.

Henriksen, A. and M. Posch. 2001. Steady-State Models for Calculating Critical Loads of Acidity For Surface Waters. Water, Air and Soil Pollution: Focus 1: 375-398.

Henriksen, A., P.J. Dillon and J. Aherne. 2002. Critical Loads of Acidity for Surface Waters in South-Central Ontario, Canada: Regional Applications of the Steady-State Water Chemistry (SSWC) Model. Can. J. Fish. Aquat. Sci. 59: 1,287-1,295.

Holowaychuk, N. and R.J. Fessenden. 1987. Soil Sensitivity to Acid Deposition and the Potential of Soil and Geology to Reduce the Acidity of Acidic Inputs. Alberta Research Council. Earth Sciences Report 87–1. Edmonton, AB. 38 pp. + Maps.

Hultberg, H. and O. Grahn. 1975. Effects of Acid Precipitation on Macrophytes in Oligotrophic Swedish Lakes. In Proceedings of the First Specialty Symposium on Atmospheric Contribution to the Chemistry of Lake Waters. International Association of Great Lakes Research.

Page 73: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 70 -

Husky (Husky Energy Inc.). 2003. Tucker Thermal Project. Volume 2B: Environmental Impact Assessment, Water. Submitted to the Alberta Energy and Utilities Board and Alberta Environment. February 2003.

Imperial (Imperial Oil Resources Limited). 2002. Surface Water Quality. Environmental Impact Assessment for the Nabiye and Mahihkan North Development. Volume 2, Section 5.

Imperial. 2005. Kearl Oil Sands Project. Mine Development. Volume 1 to 9. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Prepared by Imperial Oil Resources Ventures Limited in Association with Golder Associates Ltd., Axys Environmental Consulting Ltd., Komex International Inc. and Nichols Applied Management. July 2005. Calgary, AB.

Ingersoll, C.G., D.R. Mount, D.D. Gulley, T.W. La Point and H.L. Bergman. 1990a. Effects of pH, Aluminum and Calcium on Survival and Growth of Eggs and Fry of Brook Trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences. 47: 1,580–1,592.

Ingersoll, C.G., M.J. Swanson, J.E. Breck, A.M. Farag and H.L. Bergman. 1990b. Epidermal Response to pH, Aluminum and Calcium Exposure in Brook Trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences. 47: 1,616–1,622.

Jackson, S.T. and D.F. Charles. 1988. Aquatic Macrophytes in Adirondack (New York) Lakes: Patterns of Species Composition in Relation to Environment. Canadian Journal of Botany. 66: 1,449-1,460.

Jeffries, D.S. (ed.). 1997. Canadian Acid Rain Assessment. Volume Three: Aquatic Effects. Aquatic Ecosystems Conservation Branch, National Water Research Institute. 214 pp. Burlington, ON.

Kamari, J., M. Forsius and M. Posch. 1992a. Critical Loads of Sulfur and Nitrogen for Lakes II: Regional Extent and Variability in Finland. Water, Air, Soil Pollution. 66: 77-96.

Kamari, J.D., S. Jeffries, D.O. Hessen, A. Henriksen, M. Posch and M. Forsius. 1992b. Nitrogen Critical Loads and their Exceedances for Surface Waters. In: Proceedings Workshop on Critical Loads for Nitrogen. P. Grennfelt and E. Thornolof. Lokeberg, Sweden. 161-200 pp.

Page 74: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 71 -

Keller, W. and J.R. Pitblado. 1984. Crustacean Plankton in Northeastern Ontario Lakes Subjected to Acidic Deposition. Water, Air and Soil Pollution. 23: 271-91.

Kenttamies K., S. Haapaniemi, J. Hynynen, P. Joki-Heiskala and J. Kamari. 1985. Biological Characteristics of Small Acidic Lakes in Southern Finland. Aqua Fennica. 15(1): 21–34.

Klug, J. L. and J. M. Fischer. 2000. Factors Influencing the Growth of Mougeotia in Experimentally Acidified Mesocosms. Canadian Journal of Fisheries and Aquatic Sciences. 57: 538–547.

Lacorix, G.L. and D.R. Townsend. 1987. Responses of Juvenille Atlantic Salmon (Salmo salar) to Episodic Increases in Acidity of Nova Scotia Rivers. Canadian Journal of Fisheries and Aquatic Sciences. 44: 1,475–1,484.

Lazarek, S. 1983. Structural and Functional Aspects of Epiphytic and Benthic Alge in the Acidified Lake Gardsjon, Sweden. Ph.D. Thesis. Institute of Limnology, University of Lund.

Leftwich, K.N. and P.D. Lilly. 1992. The Effects of Duration of Exposure to Acidic Conditions on Survival of Bufo americanus Embyos. Journal of Herpetology. 26(1): 70–71.

Lehtonen, J. 1989. Effects of Acidification on the Metal Levels in Aquatic Macrophytes in Espoo, S. Finland. Ann. Bot. Fennici. 26: 39–50.

Locke, A. 1992. Factors Influencing Community Structure Along Stress Gradients: Zooplankton Responses to Acidification. Ecology. 73: 903-909.

Lucas, A.E. and D.W. Cowell. 1984. Regional Assessment of Sensitivity to Acidic Deposition for Eastern Canada. In O.P. Bricker (ed.). Acid Precipitation Series 7. Butterworth. 113-129 pp. Boston, MA.

MacIssac, H.J., W. Keller, T.C. Hutchinson and N.D. Yan. 1986. Natural Changes in the Planktonic Rotifera of a Small Acid Lake Near Sudbury, Ontario, Following Water Quality Improvements. Water, Air and Soil Pollution. 31: 791-797.

McNicol, D.K and M. Wayland. 1992. Distribution of Waterfowl Broods in Sudbury Area Lakes in Relation to Fish, Macroinvertebrates and Water

Page 75: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 72 -

Chemistry. Canadian Journal of Fish and Aquatic Science. 49 Supplement 1:122–133.

MEG (MEG Energy Corp.). 2005. Christina Lake Regional Project Application and Environmental Impact Assessment. Volume 1,2, 3,4 and 5. Submitted to Alberta Energy and Utilities Board and Alberta Environment. July 2005.

Minns C.K., J.E. Moore, D.W. Schindler and M.L. Jones. 1990. Assessing the Potential Extent of Damage to Inland Lakes in Eastern Canada due to Acidic Deposition. III Predicted Impacts on Species Richness in Seven Groups of Aquatic Biota. Canadian Journal of Fisheries and Aquatic Sciences. 47(4): 821-830.

Morling, G., C. Forsberg and R.G. Wetzel. 1985. Lake Anketjarn, a Non-Acidified Lake in an Acidified Region. Oikos. 44: 324-330.

Musselman, R.C. 1996. Chapter 5: Acid Deposition. In Southern Appalachian Man and the Biosphere (SAMAB). The Southern Appalachian Assessment Atmospheric Technical Report. U.S. Department of Agriculture, Forest Service, Southern Region.

Nilsson, J. and P. Grennfelt (Eds.). 1988. Critical Loads for Sulphur and N, Report from a Workshop Held at Skokloster, Sweden. March 19-34, 1988. NORD Miljorapport 1988:15, Nordic Council of Ministers, Copenhagen. 225 pp.

NRCC (National Research Council Canada). 1981. Acidification in the Canadian Aquatic Environment: Scientific Criteria for Assessing the Effects of Acidic Deposition on Aquatic Ecosystems. NRCC Publication No. 18475. Environmental Secretariat. Ottawa, ON. 369 pp.

OPTI (OPTI Canada Inc.). 2000. Long Lake Project Application for Approval to Alberta Energy and Utilities Board and to Alberta Environment. Volume 1 (Application) and Volumes 2 to 7 (EIA). December 2000. Calgary, AB.

Petro-Canada (Petro-Canada Oil and Gas). 2001. Application for the Approval of the Meadow Creek Project. Submitted to Alberta Energy and Utilities Board and Alberta Environment. November 2001.

Pierce, B.A. 1985. Acid Tolerance in Amphibians. BioScience. 35(4): 239–243.

Pierce, B.A., J.B. Hoskins and E. Epstein. 1984. Acid Tolerance in Connecticut Wood Frogs (Rana sylvatica). Journal of Herpetology. 18(2): 159–167.

Page 76: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 73 -

Posch, M., M. Forsius and J. Kamari. 1992. Critical Loads of Sulfur and Nitrogen for Lakes I: Model Description and Estimates of Uncertainty. Water, Air, Soil Pollution. 66: 173-192.

RAMP (Regional Aquatics Monitoring Program). 2004. 2003 Annual Report. Prepared for the RAMP Steering Committee by the RAMP 2003 Implementation Team consisting of: Hatfield Consultants Ltd., Jacques Whitford Environment Ltd., Mack, Slack & Associates Inc., and Western Resource Solutions.

RAMP (RAMP 2004 Implementation Team). 2005. Regional Aquatics Monitoring Program (RAMP) 2004 Annual Report. Prepared for: RAMP Steering Committee. Submitted by the RAMP 2004 Implementation Team consisting of: Hatfield Consultants Ltd., Jacques Whitford Environment Ltd., Mack, Slack & Associates Inc., and Western Resource Solutions. April 2005.

RAMP (RAMP 2005 Implementation Team). 2006. Regional Aquatics Monitoring Program (RAMP) 2005 Annual Report. Prepared for: RAMP Steering Committee. Submitted by the RAMP 2005 Implementation Team consisting of: Hatfield Consultants Ltd., Mack, Slack & Associates Inc., Stantec Consulting Ltd. and Western Resource Solutions. April 2007.

RAMP (RAMP 2006 Implementation Team). 2007. Regional Aquatics Monitoring Program (RAMP) 2005 Annual Report. Prepared for: RAMP Steering Committee. Submitted by the RAMP 2006 Implementation Team consisting of: Hatfield Consultants Ltd., Stantec Consulting Ltd, Mack, Slack & Associates Inc., and Western Resource Solutions. April 2007.

Rihm, B. 1995. Critical Loads of Acidity for Forest Soils and Alpine Lakes: Steady State Mass Balance Method. Published by the Federal Office at Environment. Forests and Landscapes. Berne, Switzerland.

Rio Alto (Rio Alto Exploration Ltd.). 2002. Kirby Project Application for Approval to Alberta Energy and Utilities Board and to Alberta Environment. Volumes 1, 2, 3, 5, 6 and 7. Prepared by Golder Associates Ltd. Calgary, AB.

RMCC (Research and Monitoring Committee of Canada). 1990. The 1990 Canadian Long–Range Transport of Air Pollutants and Acid Deposition Report. Part 4: Aquatic Effects. Federal–Provincial Research and Monitoring Committee. 151 pp. Ottawa, ON.

Page 77: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 74 -

Roelofs, J.G.M. 1983. Impact of Acidification and Eutrophication on Macrophyte Communities in Soft Waters in the Netherlands. I. Field Observations. Aquatic Botany. 17: 139-155.

Roff, J.C. and R.E. Kwiatkowski. 1977. Zooplankton and Zoobenthos Communities from Selected Northern Ontario Lakes of Different Acidities. Canadian Journal of Zoology. 55: 899-911.

Saffran, K.A. and D.O. Trew. 1996. Sensitivity of Alberta Lakes to Acidifying Deposition: An Update of Maps with Emphasis on 109 Northern Lakes. Alberta Environmental Protection, Water Management Division. 70 pp. Edmonton, AB.

Schell, V.A. and J.J. Kerekes. 1989. Distribution Abundance and Biomass of Benthic Macroinvertebrates Relative to pH and Nutrients in Eight Lake of Nova Scotia, Canada. Water Air and Soil Pollution. 46: 359-374.

Schindler, D.W. 1990. Natural and Anthropogenically Imposed Limitations to Biotic Richness in Fresh Waters. In G.M. Woodwell (ed.). The Earth in Transition: Patterns and Process of Biotic Impoverishment. Cambridge University Press. 425–462 pp. New York, NY.

Schindler, D.W. 1996. The Response of Aquatic Ecosystems in Alberta to Acidifying Deposition. In Clean Air Strategic Alliance. Scientific Appendix to the Final Report of the Target Loading Subgroup on Critical and Target Loading in Alberta. 48 pp. Edmonton AB.

Schindler, D.W. 1997. Widespread Effects of Climatic Warming on Freshwater Ecosystems in North America. Hydrol. Process. 11: 1,042-1,067.

Schindler, D.W., K.H. Mills, D.F. Malley, D.L. Findlay, J.A. Shearer, I.J. Davies, M.A. Turner, G.A. Linsey and D.R. Cruikshank. 1985. Long-Term Ecosystem Stress: The Effects of Years of Experimental Acidification on a Small Lake. Science. 228: 1,395-1,401.

Schindler, D.W., S.E.M. Kasien and R.H. Hesslein. 1989. Biological Improvements in Lakes of the Midwestern and Northeastern United States from Acid Rain. Environmental Science Technology. 23: 573-580.

Shell (Shell Canada Limited). 2002. Jackpine Mine – Phase 1 Application, Environmental Impact Assessment and Socio-Economic Assessment. Volumes 1 to 7. Prepared by Shell Canada Limited, Golder Associates Ltd.,

Page 78: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 75 -

Komex International Inc., Cantox Environmental Inc. and Nichols Applied Management. May 2002.

Shell. 2005. Muskeg River Mine Expansion Project Application and Environmental Impact Assessment. Volume 1,2, 3 and 4. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Prepared by Shell Canada Limited in Association with Golder Associates Ltd. and Nichols Applied Management. April 2005. Fort McMurray, AB.

Stumm, W. and J.J. Morgan. 1981. Aquatic Chemistry. Wiley Interscience, New York, NY.

Sullivan, T.J. 2000. Aquatic Effects of Acidic Deposition. CRC Press LLC. Boca Raton, FL.

Synenco (Synenco Energy Inc.). 2005. Voyageur Project Application and Environmental Impact assessment. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Volumes 1A, 1B, 2, 3, 4, 5 and 6. Fort McMurry, AB. Submitted March 2005.

Syncrude. 2000. Critical Loads of Acidity to 162 Lakes Sampled. Alberta. Pacific Forest Industries during 1998.

Tome, M.A. and F.H. Pough. 1982. Responses of Amphibians to Acid Precipitation. In R.E. Johnson (ed.). Acid Rain/Fisheries. Journal of the American Fisheries Society. 245–253 pp.

Tremblay, S. and Y. Richard. 1993. Effects of Acidity on Fish Communities in Southwestern Quebec (Canada). Water, Air and Soil Pollution. 66: 315-331.

TrueNorth (TrueNorth Energy). 2001. Application for Approval of the Fort Hills Oil Sands Project. Volume 2: Environmental Baseline Study. Prepared by AXYS Environmental Consulting Ltd. and Golder Associates Ltd. Calgary, AB.

Turner, M.A., M.B. Jackson, D.L. Findlay, R.W. Graham, E.R. DeBruyn and E.M. Vandermeer. 1987. Early Responses of Periphyton to Experimental Lake Acidification. Canadian Journal of Fisheries and Aquatic Sciences. 44(Suppl. 1): 135-149.

Page 79: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 76 -

U.S. EPA (United States Enviromental Protection Agency). 1986. Quality Criteria for Water (Gold Book). EPA440/5-86-001. Washington, DC.

Van Dam, H. 1988. Acidification of Three Moorland Pools in The Netherlands by Acid Precipitation and Extreme Drought Periods over Seven Decades. Freshwater Biology. 20: 157-176.

Vestergaard, O. and K. Sand-Jensen. 2000. Alkalinity and Trophic State Regulate Aquatic Plant Distribution In Danish Lakes. Aquatic Botany. 67: 85-108.

Webster, K.E., T.M. Frost, C.J. Watras, W.A. Swenson, M. Gonzalez and P.J. Garrison. 1992. Complex Biological Responses to the Experimental Acidification of Little Rock Lake, Wisconsin, USA. Environmental Pollution. 78: 73-78.

Wetzel, R.G. 2001. Limnology, Third Edition. Academic Press. New York, NY.

WHO (World Health Organization). 1994. Updating and Revision of the Air Quality Guidelines for Europe. Report on the WHO Working Group on Ecotoxic Effects. Copenhagen, Denmark . 22 pp.

Wigington, P.J., J.P. Baker, D.R. Dewalle, W.A. Krester, P.S. Murdoch, H.A. Simonin, J. Van Sickle, M.K. McDowell, D.V. Peck, and W.R. Barchet. 1993. Episdoic acidification of streams in the northeastern United States: chemical and biological results from the Episodic Response Project, EPA/600/R-93/190, Enviromnetal Protection Agency, Washington, DC.

Wood, C.M., D.G. McDonald, C.G. Ingersoll, D.R. Mount, O.E. Johannsson, S. Landsberger and H.L. Bergman. 1990a. Effects of Water Acidity, Calcium and Aluminium on Whole Body Ions of Brook Trout Continuously Exposed from Fertilization to Swim Up: A Study by Instrumental Neutron Activation Analysis. Canadian Journal of Fisheries and Aquatic Sciences. 47: 1,593-1,603.

Wood, C.M., D.G. McDonald, C.G. Ingersoll, D.R. Mount, O.E. Johannsson, S. Landsberger and H.L. Bergman. 1990b. Whole Body Ions of Brook Trout (Salvelinus fontinalis) Alevins: Responses of Yolk-Sac and Swim-up Stages to Water Acidity, Calcium and Aluminum and Recovery Effects. Canadian Journal of Fisheries and Aquatic Sciences. 47: 1,604-1,615.

Wright R.F., B. Emmett and A. Jenkins. 1998. Acid deposition, land-use change and global change: MAGIC 7 model applied to Aber, UK (NITREX project) and

Page 80: APPENDIX H-6 AIR EMISSION EFFECTSNorthern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 - 1 - 1 AIR EMISSION EFFECTS 1.1 INTRODUCTION This appendix

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 77 -

Risdalsheia, Norway (RAIN and CLIMEX projects). Hydrology and Earth System Sciences. 2: 385-397.

WRS (Western Resource Solutions). 2000. Critical Loads of Acidity to 162 Lakes Sampled by Alberta–Pacific Forest Industries During 1998. Prepared for Syncrude Canada Limited. Fort McMurray, AB.

WRS. 2002. Analysis of the Water Quality of the Steepbank, Firebag and Muskeg Rivers During the Spring Melt (1989-2001). Prepared for: The Wood Buffalo Environmental Association. Fort McMurray, AB.

WRS. 2004. Calculation of Critical Loads of Acidity to Lakes in the Athabasca Oil Sands Region. Prepared for: NOx-SOx Committee. Fort McMurray, AB.

Yan, N.D. 1979. Phytoplankton Community of an Acidified, Heavy Metal-Contaminated Lake near Sudbury, Ontario: 1973–1977. Water, Air and Soil Pollution. 11: 43-55.

Yan, N.D. and P.J. Dillion. 1984. Experimental Neutralization of Lakes Near Sudbury, Ontario. In J. Nriagu (ed.). Environmental Impacts of Smelters. J. Wiley and Sons, Inc. New York, NY. 457-521 pp

Yan, N.D. and P.M. Struss. 1980. Crustacean Zooplankton Communities Of Acidic Metal-Contaminated Lakes Near Sudbury, ON. Canadian Journal of Fisheries and Aquatic Sciences. 37: 2,282-2,293.

Yan, N.D. and P.M. Welbourn. 1990. The Impoverishment of Aquatic Communities by Smelter Activities near Sudbury, Canada. In G.M. Woodwell (ed.). The Earth in Transition: Patterns and Processes on Biotic Impoverishment. Cambridge University Press. 477-494 pp. New York, NY.