53
Appendix: Drawings

Appendix: Drawingsname2-engineering.sites.olt.ubc.ca/files/2015/08/FinalReport-PNG... · Tank GA Progress (/5) Required Volume Quantity Area on GA SG Weight m3 m2 tonnes/m3 tonnes

  • Upload
    lynga

  • View
    223

  • Download
    2

Embed Size (px)

Citation preview

Appendix:

Drawings

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PR

OD

UC

ED

B

Y A

N A

UT

OD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT

Lines Plan

Mbuat
Typewritten Text
MIDSHIP SECTION
Mbuat
Typewritten Text
Mbuat
Typewritten Text
Mbuat
Typewritten Text

Appendix:

Calculations

Particular Unit Main Hull Side Hull Overall Particular Unit Required Value Displacment Main Hull Side Hull

Length m 63.39 - - Main Hull Space m3 3672.90 - -

Length WL m 60.20 36.00 60.20 Side Hull Volume m3 - -

Beam WL m 8.59 1.30 16.50 Superstructure Volume m3 2156.26 - -

Draft m 3.57 2.20 3.70 Total Volume m3 5829.16 - -

Outrigger Offset m - 2.654 - Gross Tonnage GT 1604.84 - -

Depth m 6.820 - - Displacement tonnes 1122.12 1174.85 1040.33 67.26

Midship Area m2 25.6400 2.00 - Displacement m3 1094.76 1146.20 1014.956 65.621

Waterplane m2 406.25 45.32 - % Total % 100.00% 88.55% 5.73%

LCB % -1.42% -0.82% -1.34%

Cruise Speed knots - - 14.00

Maximum Speed knots - - 18.00

Wetted Surface m2 681.04 160.98 1003.00

% WS % 67.90% 32.10% - thickness 0.01

surface total 3200

weight 324.48

Acceptable Range (Main Hull)

Main Hull Side Hull Overall Lower Bound Upper BoundLower Bound Upper BoundLower Bound Upper Bound

L/B - 7.01 27.69 3.65 6.00 10.00 12.00 20.00 3.59 6.86

B/T - 2.41 0.59 4.46 1.24 2.52 0.35 2.00 - -

B/D - - -

B(sh)/B(mh) - - - 0.15 - - - - 0.18 0.32

L(sh)/L(mh) - - - 0.60 - - - - 0.25 0.60

Rigger Offset/B(mh) - - 0.31 - - 0.29 1.11 - -

Cb - 0.55 0.64 - 0.40 0.56 0.36 0.58 - -

Cm - 0.84 0.70 - 0.70 0.90 0.64 0.96 - -

Cp - 0.66 0.91 - 0.57 0.62 0.57 0.61 - -

Cw - 0.79 0.97 - 0.65 0.80 0.86 0.88 - -

Fr - 0.30 0.38 - - - - - - -

KB m 2.19 - - - -

BM m 6.40 - - - -

KG m 5.59 - - - -

GM m 3.00 - - - - 1.50 2.20

WEIGHT

Concept Particulars

Acceptable Range (Whole)Acceptable Range (Side Hull)

Defined ParticularsVarying Particulars

Design Parameters UnitsAssigned Values

Modelling

Ref Vessels,

Zhang's PHD

Space/Item GA Progress (/5) Deck Unit Area (m2) Quantity Total Area (m

2) Height (m) Total Volume (m

3)

Captain's Room ( incl. shower+toilet) 0 34.00 1 34.0 2.75 93.50

Officer's Room ( incl. shower+toilet) 0 11.50 3 34.5 2.75 94.88

Passages, stairs = 30% ∑ 0 20.55 1 20.6 2.75 56.51

Crew Lavatories (bridge, WC+sink) 0 3.30 1 3.3 2.75 9.08

Wheelhouse 0 30.00 1 30.0 2.75 82.50

Chartroom 0 15.00 1 15.0 2.75 41.25

Radio room 0 10.50 1 10.5 2.75 28.88

First-Aid room 0 6.00 1 6.0 2.75 16.50

Fan Rooms (2.5% of total ventilated volume) 0 - 1 3.85 2.75 10.58

Lining and Flare (3.5% of total ventilated volume) - - 1 5.38 2.75 14.81

Total: 153.9 448.47275

Space/Item GA Progress (/5) Deck Unit Area (m2) Quantity Total Area (m2) Height (m) Total Volume (m3)Passenger Cabin 1 (incl. shower+toilet) 1 10.40 18 187.2 2.75 514.80

Passenger Cabin 2 (accessibility, incl. shower+toilet) 1 15.00 2 30.0 2.75 82.50

Passages, entrances, stairs = 30% ∑ 0 65.16 1 65.2 2.75 179.19

Public lavatories (3 WC, 2 sinks) 0 9.00 4 36.0 2.75 99.00

Economy Seating 1 0.60 120 72.0 2.75 198.00

Premium Seating 1 0.80 40 32.0 2.75 88.00

Shops (Canteen, kiosk) 0 30.00 1 30.0 2.75 82.50

Passages, entrances, stairs = 30% ∑ 0 51.00 1 51.0 2.75 140.25

Fan Rooms (2.5% of total ventilated volume) 0 - 1 12.58 2.75 34.61

Lining and Flare (3.5% of total ventilated volume) - - 1 17.62 2.75 48.45

Total: 533.6 1600.6848

Space/Item GA Progress (/5) Deck Unit Area (m2) Quantity Total Area (m2) Height (m) Total Volume (m3)Lifeboat (partially open) - (1 per side) 1 26.8 2 53.55 3.10 166.01

Fast Rescue Boat - (1 per side) 1 14.70 2 29.4 1.25 36.87

Liferafts (self righting) 1 1.59 8 12.75 0.50 6.38

Space/Item GA Progress (/5) Deck Unit Area (m2) Quantity Total Area (m

2) Deck Height Total Volume (m

3)

Casing (3 decks @ 4m, 3m, 3m) 0 10.71 3 32.1 3.33 107.10

Car Deck 0 1 533.6 3.50 1867.47

Item Area (m2)Total: 815.2

Passenger Spaces

Safety Spaces

Miscellaneous

Crew Spaces

Totals

Volume (m3)

2156.26

Tank GA Progress (/5) Required Volume Quantity Area on GA SG Weightm3 m2 tonnes/m3 tonnes

Fuel Oil 0 63.54 1 21.2 0.870 55.28

Fuel Oil Day Tank 0 0.24 1 0.1 0.89 0.21

Fresh Water Tank 1 60.00 1 20.0 1.000 60.00

Ballast Water 0 61.77 1 20.6 1.025 0.00

Lubricating Oil 0 0.25 1 0.1 0.920 0.23

Bilge Water 0 2.00 1 0.7 0.975 0.00

Sludge Tank 0 0.11 1 0.0 0.950 0.10

Black Water tank 0 4.00 1 1.3 1.250 0.00

Grey Water Tank 0 64.00 1 21.3 1.000 0.00

Associated Coffer Dams & Voids = 15% ∑ 0 76.77 1 25.6 - -

Total: 332.68 110.89 115.83

Space/Item GA Progress (/5) Unit Area (m2) Quantity Total Area (m2) Height (m) Total Volume (m3)Diesel Engine - 1500 kW 0 0.40 1 150 - 600.00

Emergency Generator - 200 kW 0 0.40 1 20 - 80.00

Auxillary Generators 300 kW 0.40 1 30 120.00

Propeller Shaft 0 - 0 4.00

Gearbox 0 - 0 4.00

Sewage Plant 1 15.00 1 15 4.00 60.00

Engineering Shop 0 16.00 1 16 2.40 38.40

Laundry 10.00 1 10 2.40 24.00

Galley (area/crew) 0.65 15 9.75 2.40 23.40

Messes, Recreation Room (area/crew) 1.70 15 25.5 2.40 61.20

Crew Cabin 1 (double, incl. shower+toilet) 0 10.10 2 20.2 2.40 48.48

Crew Cabin 2 (quad, incl. shower+toilet) 0 14.10 2 28.2 2.40 67.68

Passages, stairs = 35% ∑ 0 8.47 2 16.9 2.40 40.656

Refigerated Stores 0 12.00 1 12.00 2.40 28.80

General Stores 0 12.00 1 12.00 2.40 28.80

Reverse Osmosis Unit 0 1.00 1 1.00 4.00 4.00

Solid Waste Compactor 0 1.00 1 1.00 4.00 4.00

0

0

Total: 367.59 1229.42

Item Area (m2) Volume (m3)Total: 478.5 1562.10

Totals

Machinery Items/Spaces

Tanks

Weight Group Scale by Value Unit Coefficient (tonnes/unit) Weight (tonnes)Hull Volume 1562.10 m3 0.1000 324.48

Superstructure Volume 2156.26 m3 0.0700 150.94

Furnished Spaces Area 503.56 m2 0.1000 50.36

Comfort System Area 16.43 m2 0.0282 0.46

Machinery Total Power 2000.00 kW 0.0250 50.00

Machinery Outfitting Total Power 2000.00 kW 0.0105 21.00

Ship Outfitting Volume 5585.82 m3 0.0100 55.86

Electricity & Automation Volume 5585.82 m3 0.0050 27.93

Car Deck Volume 1867.47 m3 0.0700 130.72

811.75

40.59

852.33

Weight Group Scale by Value Unit Coefficient (tonnes/unit) Weight (tonnes)Crew Occupancy 15.00 person 0.1000 1.73

Passengers & Luggage Occupancy 200.00 person 0.0850 17.00

Stores Occupancy 645.00 persons*days 0.0100 6.45

Trucks Occupancy 16.00 vehicle 2.5000 40.00

Cars Occupancy 28.00 vehicle 1.5000 42.00

Fuel Oil - 63.54 m3 0.8700 55.28

Fresh Water - 60.00 m3 1.0000 60.00

Minor Tanks - 70.60 m3 - 0.55

Ballast Water - 61.77 m3 1.0250 0.00

Misc Tanks 10.00

Safety Equipment - 23.94 tonnes 1.0000 23.94

256.94

12.85

269.79

1068.69

53.435

1122.12

Total before margin:

Margin (5%):

Total including margin:

Total before margin:

Margin (5%):

Total including margin:

Concept TotalsWeight (tonnes)

Lightship Weight

Total before margin:

Margin (5%):

Total including margin:

Deadweight

Weight Group Weight

[tonnes]

LCG

[m]

TCG

[m]

VCG

[m]Weight Group

Weight

[tonnes]

LCG

[m]

TCG

[m]

VCG

[m]

100 ‐ Structure 520 28.510 0.000 5.209 100 ‐ Structure 520 28.510 0.000 5.209

200 ‐ Machinery, Mechanical & Propulsion 94 14.834 0.000 3.552     Hull 380 28.130 0.000 3.197

400 ‐ Communication, Command & Surveillance 28 39.310 0.000 9.223     Superstructure 140 29.540 0.000 10.670

500 ‐ Auxiliary Systems 29 47.780 0.000 4.470 200 ‐ Machinery, Mechanical & Pro 94 14.834 0.000 3.552

600 ‐ Outfit 132 29.913 0.035 8.027     Auxiliary engines 9 18.780 0.000 3.500

SUBTOTAL LIGHTSHIP WEIGHT 803 28.210 0.006 5.589     Generic machinery 63 14.400 0.000 3.578

    Main engines 23 14.500 0.000 3.500

Note: 400 ‐ Communication, Command & 28 39.310 0.000 9.223

     LCG measured as positive forward of frame 0     Electricity & automation ‐ hull 13 28.130 0.000 3.197

     TCG measured as positive port of centreline     Electricity & automation ‐ supers 15 49.000 0.000 14.445

     VCG measured as positive upward from baseline 500 ‐ Auxiliary Systems 29 47.780 0.000 4.470

    Mooring and towing 8 58.000 0.000 6.820

    Systems & machinery outfitting 21 43.790 0.000 3.552

600 ‐ Outfit 132 29.913 0.035 8.027

    Generic outfitting ‐ Hull 50 28.130 0.000 3.197

    Generic outfitting ‐ Superstructur 10 28.130 0.034 8.570

    Furnishing ‐ Crew Deck 9 34.680 0.034 4.870

    Furnishing ‐ 01 Deck 52 28.030 0.034 11.819

    Furnishing ‐ 02 Deck 10 45.690 0.034 14.445

Note:

    LCG measured as positive forward of frame 0

    TCG measured as positive port of centreline

    VCG measured positive from keel

LIGHTSHIP SUMMARY LIGHTSHIP BREAKDOWN

Small Support OPV Fast Ferry Canadian Ferry Corvette Benchijigua Exp. ASW Frigate ASW Frigate 2 AAW Destroyer Cruise Liner LPH Small Carrier

Δ (tonnes) 234 514 1130 1350 1777 2602.73 4200 4300 4978 9050 11850 16657

Volume displacement (m3) 228.29 501.46 1102.44 1317.07 1733.66 2539.25 4097.56 4195.12 4856.59 8829.27 11560.98 16250.73

Length extreme (m) 61.04 78.8 105 120 112 126.65 154.7 156.8 168.6 192 191.5 231.6

Beam extreme (m) 10.85 13.7 19.2 25 20 30.40 27.5 25.9 25 28 40 43

Le/Be 5.63 5.75 5.47 4.80 5.60 4.17 5.63 6.05 6.74 6.86 4.79 5.39

Lwlcenter/Be 5.51 5.61 5.16 4.60 5.34 3.78 5.41 5.78 6.05 6.37 4.43 5.12

Depth (m) 4.3 8.5 8.5 8 8.85 8.20 10.23 12.1 11.1 13.2 23.35 23.5

Main Hull     Δ (tonnes) 214.344 482.132 1039.6 1247.4 1624.178 2375.11 3738 3981.8 4510.068 8507 10665 14391.648

     Volume displacement (m3 ) 209.12 470.37 1014.24 1216.98 1584.56 2317.18 3646.83 3884.68 4400.07 8299.51 10404.88 14040.63

     Length WL (m) 59.8 76.8 99 115 106.7 114.80 148.7 149.8 151.3 178.3 177.2 220

     Beam WL (m) 4.2 4.2 6.8 6.5 8.5 9.90 10.4 10.8 10.8 13 13.5 14.5

    Lwl/Bwl 14.24 18.29 14.56 17.69 12.55 11.60 14.30 13.87 14.01 13.72 13.13 15.17

    Draught (m) 2.1 3.4 3.4 3.2 4.25 3.93 5.2 5.3 4.8 6.4 8.74 8

    Bwl/T 2.00 1.24 2.00 2.03 2.00 2.52 2.00 2.04 2.25 2.03 1.54 1.81

     C b 0.40 0.43 0.44 0.51 0.41 0.52 0.45 0.45 0.56 0.56 0.50 0.55

Side Hull     Δ (tonnes) single 9.828 15.934 45.2 51.3 76.411 153.14 231 159.1 233.966 271.5 592.5 1132.676

     Volume displacement (m3 ) 9.59 15.55 44.10 50.05 74.55 149.41 225.37 155.22 228.26 264.88 578.05 1105.05

     Δ (%) single 4.20% 3.10% 4.00% 3.80% 4.30% 5.88% 5.50% 3.70% 4.70% 3.00% 5.00% 6.80%

     Length WL (m) 19.9 28 35 30 50 72.04 36 56.9 65 71.3 65.2 82

    Lwl sh /Lwl mh 33.28% 36.46% 35.35% 26.09% 46.86% 62.75% 24.21% 37.98% 42.96% 39.99% 36.79% 37.27%

    Beam WL (m) 1.06 0.74 1.5 2 2.7 4.21 3 2 2.5 2.8 3.65 4

    Lwl/Bwl 18.77 37.84 23.33 15.00 18.52 17.11 12.00 28.45 26.00 25.46 17.86 20.50

    Draught (m) 0.9 2.1 2 1.5 1.35 1.00 3.6 2.8 2.7 2.6 4.37 6.5

    Bwl/T 1.18 0.35 0.75 1.33 2.00 4.21 0.83 0.71 0.93 1.08 0.84 0.62

     C b 0.51 0.36 0.42 0.56 0.41 0.49 0.58 0.49 0.52 0.51 0.56 0.52

Max Speed 25 25 38 36 30 40.50 28 28 28 26 18 27

SHP (MW) 2.14 4.3 20 20 20 36.40 24 26 29 31.5 16.8 70

Distance (main hull edge to inside side hull) SH 

offset2.265 4.01 4.7 7.25 3.05 6.04 5.55 5.55 4.6 4.7 9.6 10.25

SH offset/Bmain 1.14 0.81 0.60 0.53 0.77 0.51 0.48 0.43 0.50 0.46 0.31 0.29

Cabin Weight Estimate (per Standard Cabin)

Area for Cabin 10.00 m2

Deck height 2.75 m

Furnished spaces summary: 94.8 36.0 0.0 11.4 Cabin Weight 1349.96 kg

Space Location Area

[m2]

Weight

[tonnes]

LCG

[m]

TCG

[m]

VCG

[m]

Item Weight

[tonnes]

Pullman Frames (x4) 0.160

02 Deck Mattresses 0.040

Officer Accommodation 65.30 10.3 40.900 0.000 14.445 Floor Covering 0.015

Bridge ‐ 15.0 49.000 0.000 14.445 Furnishings (Desk, etc) 0.020

TOTAL 1.585

Cabin Weight Coefficient 0.158 tonnes/m2

01 Deck

Standard Cabins St. 3‐7 180.00 28.5 30.330 0.000 11.695

Accessible Cabins St. 3‐4 28.50 4.5 38.000 0.000 11.695

Laundry St. 6‐7 ‐ 1.0 19.800 0.500 11.070

Washrooms St. 2‐9 38.90 7.8 25.500 0.000 11.695

Lifeboats St. 6‐8 ‐ 8.4 18.770 0.000 12.800

Liferafts St. 2‐10 ‐ 2.1 25.750 0.000 10.690

Anchors ‐ 3.5 58.000 0.000 6.820

Chain Cables ‐ 3.8 58.000 0.000 6.820

Tow Line ‐ 0.2 58.000 0.000 6.820

Mooring Lines ‐ 0.7 58.000 0.000 6.820

Crew Deck

Crew Cabins St. 3‐5 51.00 8.1 34.340 0.390 4.870

Crew Washrooms St. 3‐4 4.40 0.9 37.790 0.200 4.870

Total 94.8 36.0 0.0 11.4

Quantity Weight (kg) Total Weight (tox (m) y (m) z (m) LCG TCG VCG

Gearbox 2 3760 7.52 10.2 0 3.6 76.704 0 27.072

Azi Pod TH1500ML 2 13500 27 2.875 0 3.7 77.625 0 99.9

Engines MAK M 20 6C 2 11500 23 14.5 0 3.5 333.5 0 80.5

Aux Gens ACERT  C18 EM0090 2 4406 8.812 18.78 0 3.5 165.4894 0 30.842

BT hydr pump 36" 1 3000 3 51.5 0 1.5 154.5 0 4.5

Others 1 25000 25 25.5 0 3.67 637.5 0 91.75

Total Weight 94.332 1445.318 0 334.564

LCG TCG VCG

15.3216126 0 3.546664971

Mechanical Systems

Fresh Water Volume Calculation

Papua New Guinea water usage = 64.3 m3/person/year Engine Power (kW): 1000

Source: http://www.fao.org/nr/water/aquastat/countries_regions/PNG/Tables.htm 200

Ship Construction and Design  says 170 litres/person/day

Source: Ship Design and Construction, page 11‐26

Upper bound of fresh water consumption for passenger ships = 82.125 m3/person/year

Source: Marine Auxilliary Machinery by H D McGeorge, page 93

→ Assume 73 m3/person/year = 200 litres/person/day (to match with Lloyds Black + Grey water)

Specifications dictate freshwater supplies for 1000 nm; assume 14 knot speed

→ Assume speed of 14 knots

Total travel time = 71.42 hours

Total fresh water volume = 200 litres/person/day x 215 persons x 3 days / 1 m3/1000 l = 129 m3

→ Assume a reverse osmosis unit has been installed which is in use for 12 hours per day. 

Required freshwater production rate = 200 l/person/day x 1 day/12 h x 1 h/60 minx 215 p = 60 l/min = 16 gal/min

Choose : Vantage® M41‐006 Reverse Osmosis Systems ‐‐> rated at 7.5 gal/min ‐‐> produces 61.24 m3 over 1000 NM

Dimensions: 0.826 x 0.87 x 1.867; Weight: 245 kg

http://www.water.siemens.com/en/products/membrane_filtration_separation/reverse_osmosis_systems_ro/Pages/vantage‐m41‐ro.aspx

→ Required fresh water tank volume = 129m3 ‐ 61m3 = 68 m3

Sewage Retention Tank with Aeration Calculation

Black water flow rates for passenger ships range around 15 litres/person/day. (Assuming vaccuum flushing)

Grey water flow rates for passenger ships range from 184 litres/person/day. (175+((85+40)*15(Crew)/215 (Total)))

Source: Lloyd's Part 2, Chapter 7, 2.10

→ Assuming use of a Biological Sewage Treatment System ‐ Sludge storage is required.

Liquid wastes are treated and recirculated for toilet and urinal flushing.

Solid waste holding tank capacity is close to 2 litres/person/day. 

Source: Marine Auxilliary Machinery by H D McGeorge, page 108

Total sludge retention tank storage = 2 litres/person/day x 215 persons x 3 days / 1000 l/m3 = 1.3 m3

Total black+grey water flow rates = 184 litres/person/day x 215 persons = 39,500 litres/day

→ Choosing model ST25‐C by Wartsila Hamworthy. 

Dimensions: 4.62 x 3.22 x 2.50

Weight = 27,830 kg

→ Sewage tank calculation:

Assuming sewage treatment system is broken

for longest trip between ports + 25% extra:

Sewage Tank Size = 200 l/person/day x 215 people x 1.25=

V =  54 m3

Source:  http://www.wartsila.com/en/water‐management/waste‐water/sewage‐treatment

Lube Oil Calculations

Lube oil values for medium speed diesels can be approximated at 20 t

Source: Ship Design and Construction, page 11‐26

Typical lube oil consumption for medium speed diesel = 1.0 g/kWh

Assuming 1 1,500 kW engine, lube oil required for 1 trip

= 1.0 g/kWh x 1500 kW x 144 hours/trip x 1 kg/1000 g x 1 m3/890 kg = 0.25 m3

V= m3

Sludge Tank Calculations

Regulation 17(1) of MARPOL states:

V = K*C*D where  V = sludge tank volume (m3)

K = 0.005

C = 7200 (daily fuel oil consumption ‐ metric tons)

D = 3 (maximum period of voyage between ports where sludge can be disposed; we need design for 1000 nm)

→ V = 200 g/kWh x 24 h x 1500 kW x 1 ton/1000000 g x 1 m3/1 ton

.

V = m3

Bilge Water Holding Tanks

Source:  http://www.imo.org/blast/blastDataHelper.asp?data_id=14478&filename=511.pdf

→ V = 1.5 + (P‐1000)/1500 

V = m3

Hot Water Tank

Crew Showers Stalls=  8

Passenger Shower Stalls =  20

Showerhead flow rate = 2.5 gpm or 10 L/min

Say 10 minutes per shower; 10 crew showers per day & 80 passenger showers per day

→ 100 L/shower x 90 showers/day x 10% margin = 10 m3

→ V = 2.5 m3 based on an educated guess

Source: http://www.hubbellheaters.com/model/msh/#dimensions

x2 Dimensions (DxH): 0.9144x2.1336

Weight (kg): 2500

Assumed Pertinent Values

Engine SFR (g/kWh):

0.14

3

0.50

SPEED (kt) RN CF (ITTC 57) CR ΔCF (std.) CT RBARE (kN) PEBARE (kW)

0 0.00E+00 0.000000 0.000000 0.0004 0.000400 0.00 0.00

2 4.19E+07 0.002373 0.000475 0.0004 0.003248 0.28 0.29

4 8.37E+07 0.002138 0.000428 0.0004 0.002966 1.03 2.13 SPEED (kt) RTOTAL (kN) PEBARE (kW) RTOTAL (kN) PEBARE (kW) RTOTAL (kN) PEBARE (kW)

6 1.26E+08 0.002016 0.000403 0.0004 0.002820 2.21 6.82 0 0.00 0.00 0 0 0.00 0

8 1.67E+08 0.001936 0.000387 0.0004 0.002723 3.79 15.62 2 0.28 0.29 1.3 1.3 1.87 1.881978862

10 2.09E+08 0.001877 0.000375 0.0004 0.002653 5.78 29.71 4 1.03 2.13 4.79 9.8 6.86 14.051404

12 2.51E+08 0.001831 0.000366 0.0004 0.002597 8.14 50.27 6 2.21 6.82 10.16 31.4 14.58 45.04204905

14 2.93E+08 0.001793 0.000359 0.0004 0.002552 10.89 78.43 8 3.79 15.62 17.59 72.4 25.18 103.6338226

16 3.35E+08 0.001762 0.000352 0.0004 0.002514 14.01 115.33 10 5.78 29.71 28.82 148.3 40.37 207.7199513

18 3.77E+08 0.001734 0.000347 0.0004 0.002481 17.50 162.07 12 8.14 50.27 47.45 292.9 63.74 393.4334744

20 4.19E+08 0.001710 0.000342 0.0004 0.002452 21.36 219.75 14 10.89 78.43 78.42 564.8 100.20 721.6616591

16 14.01 115.33 110.71 911.3 138.73 1141.955048

18 17.50 162.07 175.12 1621.6 210.13 1945.733648

Water temp (°C) 28 20 21.36 219.75 304.09 3128.7 346.81 3568.191416

Surface Area (m2) 160.98

Length (m) 36

Density water (kg/m3) 1022.3

Viscosity (m2/s) 8.85E‐07

Roughness ks (std) 1.50E‐04

LWL (m) 60.19

Beam (m) 8.59 SPEED(kt) FN FV RN CF (ITTC 57) K CR ΔCF (HOLTROP) CT RBARE (kN) RTOTAL (kN) PEBARE (kW) RBARE/W

Draft (m) 3.57 2 0.042 0.104 7.00E+07 0.002195 1.181 0.000296 0.000627 0.003516 1.3 1.3 1.3 0.00013

Δ (t) 1015 4 0.085 0.208 1.40E+08 0.001986 1.181 0.000236 0.000666 0.003247 4.79 4.79 9.8 0.00048

Wetted Area (m2) 681 6 0.127 0.312 2.10E+08 0.001876 1.18 0.000182 0.000668 0.003064 10.16 10.16 31.4 0.00102

Cp 0.654 8 0.169 0.416 2.80E+08 0.001804 1.178 0.000198 0.000661 0.002984 17.59 17.59 72.4 0.00177

Cw 0.786 10 0.212 0.52 3.50E+08 0.001751 1.171 0.000427 0.000651 0.003129 28.82 28.82 148.3 0.0029

1/2 angle ent. (°) 14.2 12 0.254 0.624 4.20E+08 0.00171 1.158 0.000958 0.00064 0.003577 47.45 47.45 292.9 0.00477

LCG  ‐1.42% 14 0.296 0.728 4.90E+08 0.001676 1.137 0.001809 0.000629 0.004343 78.42 78.42 564.8 0.00788

Transom Area (m2) 1.01 16 0.339 0.832 5.60E+08 0.001647 1.111 0.002245 0.000619 0.004694 110.71 110.71 911.3 0.01112

Transom Beam (m) 6.736 18 0.381 0.936 6.30E+08 0.001622 1.085 0.003498 0.000609 0.005867 175.12 175.12 1621.6 0.01759

Transom Draft (m) 0.3 20 0.423 1.04 7.00E+08 0.001601 1.062 0.005953 0.000599 0.008252 304.09 304.09 3128.7 0.03055

Waterplane Area (m2) 406.25

Max sectional Area (m2

25.804

form factor Holtrop

Water temp (°C) 28

Density water (kg/m3) 1022.3

Viscosity (m2/s) 8.85E‐07

Roughness ks (std mm) 1.50E‐04

MAIN_HULL SIDE_HULL COMB

PEFF (kW) PEFF (kW) PEFF (kW)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 1.5 0.4 2.2 0.2 4.2 6.7 7.0 6.8 7.7

4 11.5 2.6 16.7 1.7 10.5 28.9 30.3 14.7 16.6

6 36.9 8.2 53.4 5.3 19.3 78.0 81.9 26.5 29.8

8 85.0 18.8 122.6 12.3 30.9 165.8 174.0 42.3 47.5

10 172.1 35.8 243.6 24.4 45.7 313.6 329.3 64.0 71.9

12 333.0 60.4 453.9 45.4 63.9 563.2 591.4 95.8 107.6

14 627.2 94.2 815.7 81.6 86.0 983.3 1032.5 143.4 161.1

16 1002.9 138.5 1279.9 128.0 112.3 1520.2 1596.2 193.9 217.9

18 1750.0 194.6 2139.1 213.9 143.2 2496.2 2621.0 283.1 318.0

20 3302.4 263.7 3829.8 383.0 289.0 4501.8 4726.9 459.4 516.2

TOTAL BARE EFFECTIVE POWER

Individual Bare Sidehull Resistance

Main hull resistance (NAVCAD) ‐ ITTC 78 METHOD (HOLTROP PREDICTION)

Assuming there is no interference effects

R FINAL (kN) THRUST REQ (kN)

Bare hull effective power + fouling resistance (proportional change in 

frictional resistance of 56%)= 10% of PEFF 15 knot wind drag

5 % Margin (account 

for wave interference 

effects, extra 

t = .11 (From Paramarine 

using HOLTROP 

estimation for twin 

SPEED (kt)APPENDAGE 

RESISTANCE (kW)

WIND RESISTANCE 

(kW)

PEFF BEFORE MARGIN 

(Kw)PEFF FINAL (kW)

SIDEHULL MAINHULL TOTAL

TOTAL EFFECTIVE POWER

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14 16 18 20

Effective Power (kW)

Speed (knots)

Bare Hull Effective Power

LWL (ft) 164.8 SPEED(kt) FN RBARE (lbs) RBARE/W

Beam (ft) 39.8 SPEED(kt) FN FV RN CF (ITTC 57) K CR ΔCF (HOLTROP) CT RBARE (lbs) PEBARE (HP) RBARE/W RBARE/Δ 7.15 0.17 3518 0.00157

Draft (ft) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0.19 4565.3 0.00204

Δ (lt) 1000 2 0.046 0.104 4.35E+07 0.002359 1.301 0.000314 0.000604 0.003988 294 2 0.00013 0.291 9.06 0.21 6001.9 0.00268

Wetted Area (ft2) 6500 4 0.093 0.208 8.69E+07 0.002126 1.301 0.000236 0.000682 0.003683 1086 13 0.00048 1.075 9.9 0.23 7661 0.00342

Cp 0.64 6 0.139 0.312 1.30E+08 0.002006 1.299 0.000156 0.000702 0.003463 2298 42 0.00103 2.307 11.04 0.26 10206.1 0.00456

Cw 0.753 8 0.185 0.416 1.74E+08 0.001926 1.292 0.000183 0.000706 0.003378 3984 98 0.00178 3.987 11.99 0.28 13398.4 0.00598

1/2 angle ent. (Holtrop) (°) 27.75 10 0.232 0.52 2.17E+08 0.001868 1.275 0.000696 0.000705 0.003782 6971 214 0.00311 6.966 13 0.3 19010.7 0.00849

LCB ‐2.00% 12 0.278 0.624 2.61E+08 0.001822 1.244 0.002066 0.0007 0.005033 13357 492 0.00596 13.350 14.14 0.33 26688.2 0.01191

Transom Area (ft2) 9.552 13 0.301 0.676 2.83E+08 0.001802 1.223 0.003272 0.000697 0.006174 19231 767 0.00859 19.242 14.93 0.35 31801.5 0.01420

Transom Beam (ft) 23.88 14 0.325 0.728 3.04E+08 0.001784 1.2 0.004052 0.000694 0.006888 24883 1069 0.01111 24.886 15.97 0.37 40320.5 0.01800

Transom Draft (ft) 0.8 16 0.371 0.833 3.48E+08 0.001753 1.152 0.005593 0.000688 0.0083 39164 1923 0.01748 39.155 16.95 0.39 53334.1 0.02381

Waterplane Area (ft2) (Est. Webb ts) 4938.01 18 0.417 0.937 3.91E+08 0.001726 1.109 0.010835 0.000682 0.01343 80199 4430 0.0358 80.192 17.85 0.41 71160.7 0.03177

Max sectional Area (ft2) 329.6

SPEED (kt) FN RBARE (kN) RBARE/W

0 0 0 0.00000

Water temp (°F) 58 2 0.042 1.865687 0.00016

Density water (slug/ft3) 1.9908 4 0.085 6.856196 0.00058

Viscosity (ft2/s) 1.28E‐05 6 0.127 14.58005 0.00124

Roughness ks (std mm) 1.50E‐04 8 0.169 25.17987 0.00214

form factor (Holtrop‐dynamic) 1.301 10 0.212 40.37131 0.00343

12 0.254 63.73653 0.00542

14 0.296 100.2015 0.00851

SPEED(kt) FN RBARE (lbs)PEBARE (HP) RBARE/Δ 16 0.339 138.7348 0.01179

7.15 0.17 3518 77.2 3.52 18 0.381 210.1267 0.01786

8 0.19 4565.3 112.1 4.56 20 0.423 346.8088 0.02947

9.06 0.21 6001.9 166.9 6

9.9 0.23 7661 233 7.66 SPEED(kt) FN RBARE/w

11.04 0.26 10206.1 346.1 10.2 0 0 0

11.99 0.28 13398.4 493.5 13.39 2 0.046 0.00013

13 0.3 19010.7 759 19 4 0.093 0.00048

14.14 0.33 26688.2 1158.8 26.67 6 0.139 0.00103

14.93 0.35 31801.5 1458.4 31.78 8 0.185 0.00178

15.97 0.37 40320.5 1976.9 40.29 10 0.232 0.00311

16.95 0.39 53334.1 2775.5 53.29 12 0.278 0.00596

17.85 0.41 71160.7 3899.9 71.11 13 0.301 0.00859

14 0.325 0.01111

16 0.371 0.01748

18 0.417 0.0358

SPEED (kt) FN RBARE (kN)ARE ‐10% (k RBARE/W

0 0 0 0 0.00000

2 0.042 1.865687 1.679118 0.00015

4 0.085 6.856196 6.170576 0.00054

6 0.127 14.58005 13.12205 0.00114

8 0.169 25.17987 22.66188 0.00197

10 0.212 40.37131 36.33418 0.00315

12 0.254 63.73653 57.36287 0.00498

14 0.296 100.2015 90.18135 0.00783

16 0.339 138.7348 124.8613 0.01084

18 0.381 210.1267 189.114 0.01641

20 0.423 346.8088 312.128 0.02709

PNG TRIumph (‐10 %   WAVE CANCELLATION 

PNG TRIumph

RORO HOLTROP

RAL 50 M RORO (NAVCAD) ‐ ITTC 78 METHOD (HOLTROP PREDICTION)

50 M RORO MODEL RESULTS

50 M RORO MODEL RESULTS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18

EHP

SPEED (kt)

COMPARISON ‐ HOLTROP PREDICTION VS. MODEL RESULTS FOR RAL 50 M RORO

RAL RORO HOLTROP PREDICTION RAL RORO MODEL RESULTS

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

0.01200

0.01400

0.01600

0.01800

0.24 0.26 0.28 0.3 0.32 0.34 0.36

RBARE/WEIGHT

Fn

PNG TRIumph RAL RORO MODEL TESTING PNG TRIumph (‐10%)

Draft (m) 3.57

Clearance (m) 2.725 20%D

D (mm) 2050

BAR 0.35

Z  3

Input RPM 900

RPM 273.1

P/D (FIXED) 0.923

J 0.681

KT 0.245

10KQ 0.432

η0 (Design Point) 0.616

THRUST/unit (KN) 80.58

PROP load (kw/m2) 302.97

Lowest point from hull (m) 2.5

146205

Bow thruster sizing

Density of air (kg/m3) 1.225

Velocity of air (kt) 20

Area above water (m2) 600

Reduction coefficient 0.9

A (wind force ‐ pp) 30.5

B (bow thruster ‐ pp) 55

Wind Force (N) 35007.55373

Wind Torque (Nm) 1067730.389

Required Thruster Force (kN) 19.41327979

Bow Thruster Power (kW) 150 ‐ 200

1 x SCHOTTEL STT 110 TRANSVERSE THRUSTER

2X  SCHOTTEL STP 1010 TWIN PROPELLER (B series prop)

HYDRA XP

Fuel Savings/yr over conventional 

azimuth 

SFC = 190 g/kWh

4275 hours of operation

P max Tunnel ø Propeller ø Weight

[kW] [mm] [mm] [kg]

200 815 790 890

STT 110

SPEED (kt) PEFF FINAL (kW) η0 PSHAFT (Kw) PBRAKE (kW) (85% Load Medium Speed Diesel) (kW)

0 0.00 0.00 0.00 0.00 0

2 7.02 0.46 16.23 16.56 10

4 30.33 0.57 56.48 57.63 34

6 81.93 0.61 142.50 145.41 86

8 174.04 0.62 293.50 299.49 176

10 329.31 0.63 549.19 560.40 330

12 591.39 0.63 990.48 1010.69 595

14 1032.49 0.62 1764.33 1800.34 1059

16 1596.23 0.60 2792.61 2849.60 1676

18 2621.03 0.59 4712.83 4809.01 2829

20 4726.87 0.57 8748.45 8926.99 5251

η0 (design point) 61.6% FROM HYDRA XP

ηS 95.0%

ηR 100.0% t = .11 w = .118 From Paramarine

ηT 98.0% Difference between Manufacture output and reality

shaft losses due to gears within z‐drive and shaft bearings (From Schottel)

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

0 2 4 6 8 10 12 14 16 18 20

Requ

ired

Pow

er (k

W)

Speed (knots)

EFF POWER BRAKE POWER

Distance travelled per trip (nm) 750

Hours/trip @ 14 knots 53.57

Trips/week 2

Weeks of operation/year 42.00

Hours of operation/year 4500

Hours of operation (@14 knots) 4275

Engine MAK 6M20C CAT 3512CEngine Type Medium speed High SpeedL (m) 4.05 2.63W (m) 1.56 2.04H (m) 2.10 2.11Weight (tonnes) 10.90 7.40SFC (g/kWh) @ design condition 190.00 201.00Installed kW 1080.00 1040.00Engine cost ($/kW) 650.00 325.00Capitital Cost ($) 702000.00 338000.00Fuel/yr (2 engines) (tonnes) @ 1000 kW 1624.50 1718.55Cost of fuel/tonne ($) 950.00 950.00Fuel cost/year ($) 1543275.00 1632622.50MAK Medium Speed Capital Payback (yrs)

ENGINE COMPARISON

4.07

Space Unit Area Headroom Volume People/area Added BTUs Unit BTU Quantity BTUs

Below Deck

Crew Cabin (Double) 10.3 2.1 21.63 2 0 8392.44 2 16784.88

Crew Cabin (Quad) 14.1 2.1 29.61 4 1200 12688.68 2 25377.36

Passages 20 2.1 42 0 0 16296 1 16296

Galley 10 2.1 21 6 6400 14548 1 14548 Generator Size (AC only)

Mess 25.5 2.1 53.55 6 2400 23177.4 1 23177.4 Total BTUs 1397659

General Stores 20 2.1 42 0 0 16296 1 16296 Generator Size (ekW) 232.9432

Above Deck First Order Estimate based on Displacement

Passenger Cabin (Quad) 10.3 2.1 21.63 4 1200 14178 18 255204

Passenger Cabin (Accesibility) 13.3 2.1 27.93 4 1200 17958 2 35916 ∆ 1100

Cabin Lounge 25 2.1 52.5 20 10800 42300 1 42300 BTUs 1818300

Lavatory (Large) 9 2.1 18.9 2 0 11340 4 45360 kW 303.05

Kiosk 10 2.1 21 4 1200 13800 2 27600

Econ Seating 95 2.1 199.5 123 72600 192300 1 192300

Premium Seating 50 2.1 105 45 25800 88800 1 88800

First Aid 7 2.1 14.7 2 0 8820 1 8820 Genset (ekw) 375

Captain Cabin and Office 24 2.1 50.4 1 0 30240 1 30240 30%  margin 112.5

Engineer Cabin and Office 24 2.1 50.4 1 0 30240 1 30240 Require ekW 487.5

Officer Room 10.3 2.1 21.63 1 0 12978 2 25956

Officer Lounge 20 2.1 42 4 1200 26400 1 26400

Lavatory (Small) 3 2.1 6.3 1 0 3780 3 11340

Wheelhouse  60 2.1 126 4 5200 80800 1 80800

Passages 160 2.1 336 0 0 201600 1 201600

1215355.64

182303.346

1397658.986

kW

Reference loader

Communication, Nav 4

Emergency Light 7

Bilge 4

Fire 32

Potable water pump 4

Steering gear 40

Lifeboat Davit 8

Total 99

Cargo Liner

Fire pump 62

lube oil 8

Service pump 33

watertight door 0.5

Radar 0.5

Main Console 1.5

Electronics 7.8

Emer. Lighting 17

Misc (heater, alarms) 15

Total 145.3

REFERENCE TUG

Davit 11

Secondary Service Pump 37

Fire Pump 7.5

Fire Safety 5.5

Emergency Lighting 6 Estimate kW

Nav 0.1 Bilge, General Pump 25

ECU 23 Fire Pump 20

Freshwater Skid 30 Nav, Com 10

Water heater 5 Em. Lighting 10

Machinery Fan 1.5 Davits 15

Fire Supression 0.1 Freshwater 5

Charger 0.05 Misc (heating, vent, char 10

Gen Heater 0.5 sum 95

Total 127.25

HVAC LOAD ESTIMATION Calculated Using Method 2 from "Boat Mechanical Systems 

Hanbook" by D. Gerr

kW = [installed A/C BTUs]  ∕ 6000

BTU = [3000 + (1500 * ∆)]*1.1

Typically Gensets are 1.5x the minimum required for A/C loads to account for additional ship loads

REFERENCE VESSELS

Emegency GEN

Use CAT C4.4  (99 ekW)

From "Boat Mechanical Systems Hanbook" 

by D. GerrTake the minimum as 250 kW

USE  3 X CATERPILLAR ACERT  C18 (400 ekW) @ 50 hz for Aux Gensets

Sum

15% Margin for Tropics

Total

Bilge System CalculationBilge Pump Capacity

Greatest Moulded Beam B (m) 16.50 Internal Diam (mm) 90

Moulded Depth D (m) 6.82 **Assumed freeboard of 3.25 m Capacity Q (m^3/hour) 46.575

Rule Length of Ship L (m) 60.28 Nearest 5mm

Internal Diameter Main Bilge dm (mm) 87.99 90

**For passenger ships, need 3 bilge pumps (one can be operated off engine)

**All need to be self priming pumps

**NO extra pumps needed for ballast

Greatest Moulded Beam B (m) 16.50

Moulded Depth D (m) 6.82

Length Compartment Machinery (m) 30.14 **Assumed Nearest 5mm

Internal diamter branch bilge suction db (mm) 82.00 85 "‐‐‐‐‐>" needs to be smaller than main bilge line

Machinery Sp (m^3) 1000 "assumed"

Below bulkhe (m^3) 3177 "assumed"

Numeral pump 31.7280453 "‐‐‐‐>' If this is larger than 30, need extra independent power pump

Pump

4 x Wartsill 50 m3/hour

Fire Pump CapacityBilge Pump Capacity Q (m^3/hour) 46.575

Fire Pump Capacity (m^3/hour) 31.05

****1 x Wartsilla CGA50

+ bilge pump 50 m3/hour

Main Bilge Line

Branch Bilge Suction to Cargo and Machinery

Mooring Equipment

Displacement Δ (ton) 1050 /‐‐‐‐> based on original assumptions

Greatest Moulded breadth B (m) 17 /‐‐‐‐> based on original assumptions

Height of Ship From Summer Waterline H (m) 12.8 /‐‐‐‐> based on original assumptions

Profile Area of Ship above the summer waterline A (m^2) 537.6 /‐‐‐‐> based on original assumptions

Equipment Number Nc 592.2661554

From Lloyds Table 13.7.2 & Table 13.7.3 Chap 13, Part 3 Section 7 Equip. Letter: P

Anchors *2 Stockless Anchors Mass (kg)

Mass (kg) 1740 /‐‐> 3480

Chain Cables for Bower Anchor

Length (m) 440

Diameter (Mild Steel) (mm) 42 /‐‐> 3828.25433 **Assumed wire 0.8 of solid cylinder

Diameter (Special Quality  Steel) (mm) 36 2812.595018

Diameter (Extra Special Quality  Steel) (mm) 32 2222.297298

Towline

Min Length (m) 190 /‐‐‐> 204.2696216 **Assumed Diameter same as anchor

Min Breaking Stregth (kN) 338 wire

Mooring Lines **Assumed wire 0.8 of solid cylinder

Number 4

Min Length Each Line (m) 160 /‐‐‐> 688.0660938

Min Breaking Strength (kN) 132

Density Steel 7850 kg/m^3

http://www.engineeringtoolbox.com/metal‐alloys‐densities‐d_50.html

Fibre Density 970 kg/m^3

http://www.bexco.be/applications/marine

Assumed Parameters:

Main Engine Power (kW): 1800

Diesel Generator(s) (kW): 550

Boiler Rating (kW): 0

Thermal Heater (kW): 210

Electrical Genset (kW): 300

Qc + Qh = 14.68

1.5 x Qc = 6.24 Where:

Qc Total airflow needed for combustion

Q = 14.68 m3/s Qdp Airflow for combustion for main propulsion engine(s)

Qdg Airflow for combustion of diesel generator engine(s)

Qb Airflow for combustion of boiler(s)

Qc = 4.16 m3/s

Where:

Pdp The service standard power of the main propulsion diesel engine(s) at maximum continuous power output, in kilowatts;

Mad The air requirement for combustion for diesel engine(s), in kilograms per kilowatt second;

ρ Density of air in kg/m3

Qdp = 3.19 m3/s

Where:

Pdg The service standard power of the diesel generator set(s) at maximum continuous power output, in kilowatts;

Mad The air requirement for combustion for diesel engine(s), in kilograms per kilowatt second;

ρ Density of air in kg/m3

Qdg = 0.97 m3/s

Where:

Q is the maximum continuous rating of the boiler(s), in kilowatts;

Mfs The total steam capacity (maximum continuous rating) of the boiler(s), in kilograms per second;

Maf The air requirement for combustion, in kilograms of air per kilogram of fuel;

ρ Density of air in kg/m3

Qb = 0 m3/s

Where:

fdp is the heat emission from main propulsion diesel engine(s), in kilowatts (see 6.1);

fdg is the heat emission from diesel generator engine(s), in kilowatts (see 6.2);

fb is the heat emission from boilers and thermal fluid heaters, in kilowatts (see 6.3);

fp is the heat emission from steam and condensate pipes, in kilowatts (see 6.4);

fg is the heat emission from electrical air-cooled generator(s), in kilowatts (see 6.5);

fel is the heat emission from electrical installations, in kilowatts (see 6.6);

fep is the heat emission from exhaust pipes including exhaust gas-fired boilers, in kilowatt (see 6.7);

ft is the heat emission from hot tanks, in kilowatts (see 6.8);

fo is the heat emission from other components, in kilowatts (see 6.9);

Qdp Airflow for combustion for main propulsion engine(s)

Qdg Airflow for combustion of diesel generator engine(s)

Qb Airflow for combustion of boiler(s)

Where:

Pdp The service standard power of the main propulsion diesel engine(s) at maximum continuous rating, in kilowatts;

Dhd The heat loss from the diesel engine(s), in percentage;

NOTE — Where specific data are not available, fdp according to 7.1 may be used for calculation.

fdp = 75.23 kW

fdg = 32.81 kW

Where:

Q The maximum continuous rating of the thermal fluid heater or boiler in kilowatts;

B1 A constant that applies to the location of the boiler(s) in the engine room;

Dhb The heat loss, in percentage, at the maximum continuous rating of the thermal fluid heater;

fb = 0.23 kW

fp = 0 kW

NOTE: No steam pipes are operating in this vessel.

Where:

Pg The power of installed air-cooled generator(s), in kilowatts (stand-by sets shall be ignored);

h The generator efficiency, in percentage;

fg = 18 kW

NOTE: When no info is known, emission is taken as 20% of the rated power of the electrical apparatus and lighting that are in use in the area;

fel = 1 kW (Completely assumed value)

NOTE: Exhaust gas pipes and exhaust gas-fired boiler(s) situated in the casing and funnel shall not betaken into account.

NOTE: Length of exhaust pipes not known at the moment.

fep = 0 kW

Dimensions (B x L x H)

1.32 x 2 x 1.47 60

0.6 x 0.6 x 0.6 100

ft(1) = 1.35 kW

ft(2) = 0.17 kW

ft = 1.53 kW

fo = 45 kW (assumed gearbox efficiency of 2.5%)

fi = 173.79 kW

ρ 1.13 kg/m3

c 1.01 kJ/kgK

DT 12.5 K

Qdp 3.19 m3/s

Qdg 0.97 m3/s

Qb 0 m3/s

Qh 10.52 m3/s

From graph in 7.1 for assumed propulsion power:

From graph in 7.1 for assumed generator power:

Tank

Hot Water Tank

Lube oil Tank

Surface Area

9.66

2.16

Temperature

Use Required Flow (CFM) Model Quantity Diameter (m) Capacity (CFM) Power

Engine & Gen Sets 8815.00 Cincinnati 18-4-30 2 0.46 4837 0.76

Ventilation 22300.00 Cincinnati 36-6-26 1 0.92 24430 6.1

Sizing of Exhaust Pipe

For assumed engine Parameters we have (following Wartsilla and Caterpillar design guides):

V max = 40 m/s

m = 3.6 kg/s

t = 335 C

D = 0.44 m Use D = 0.40 m

D = 0.40 m V = 49.08 m/s

Sizing of Exhaust Silencer

Selecting for DN = 0.40 m Parameter Value Unit

For 25dB attenuation: D = 1.06 m

A = 1.5 m

B = 0.15 m

L = 3.28 m

W = 570 kg

Source: http://www.cincinnatifan.com/catalogs/Tube-Axial-internet.pdf

Particular Value Units

LR 57.9 m σ =  235 N/mm 2 kL , k = 1

LWL 60 m

LSH 36 m

LSHWL 36 m

B 16.5 m

BWL 16.5 m

BWLTOT 16.5 m

BSH 1.3 m

BMH 8.57 m

BMHWL 8.57 m

BSHWL 1.3 m

D 7.1 m

DSH 5.05 m

LCG ‐2.4 m

T 3.57 m

TSH 2.2 m

D 1192.33 tonnes

DMH 1070.68 tonnes

DSH 60.82 tonnes

CB 0.51 ‐

s 600 mm

S 2400 mm

Slong. 2400 mm

σmaterial 235 Mpa

(Defined in Volume 1 ‐ Section 5.2)Principle Particulars  Assuming materials utilised are within specifications and standards required by Lloyd's Register.

Part 3, Chapter 1 General, Section 6 ‐ Definitions Part 3, Chapter 3 Structural Design, Section 4 ‐ Bulkhead Requirements Imin m 4

MW,S ‐3653.43 tonnef m

MW,H 2912.52 tonnef m

Hb ‐ bow reference height MS 3653.43 tonnef m

MS_B ‐2699.68 tonnef m

MS_D ‐2903.56 tonnef m

Hb =  3.26 m ZC

ZD 4.29 m 3

Part 3, Chapter 2 Materials, Section 1 ‐ Materials of Construction ZB 5.45 m 3

Zmin 0.435 m 3

σB‐Plate 196.813 MPa

σB‐Stiff 193.875 MPa

σD‐Plate 196.813 MPa

σD‐Stiff 193.875 MPa

MW = FfDfMO kN m

Collision Bulkhead

0.05LL<LCBH<10 m 0.05LL =  2.895 m

0.08LL>LCBH<3 + 0.08LL 0.08LL =  4.632 m

σ =  235 N/mm 2 kL , k = 1

Part 3, Chapter 4 Longitudinal Strength, Section 5 ‐ Hull Bending Strength

C1 =  6.472

Parameter Value Units C2 =  1 Note: 0 at aft end; 1 between 0.4L and 0.65L from aft; 0 at bow

f1 1.00 ‐

f2,S ‐1.10 ‐ MO = 3321.30 tonnef m

f2,H 0.88 ‐ MW,S = ‐3653.43 tonnef m

FB‐Plate 0.84 ‐ 125% of Minimum assumed MW,H = 2912.52 tonnef m

FB‐Stiff 0.83 ‐ 125% of Minimum assumed

FD‐Plate 0.84 ‐ 125% of Minimum assumed

FD‐Stiff 0.83 ‐ 125% of Minimum assumed

Zmin =  0.4349 m3

Note: Redirected from Trimaran Classification Rules

Determination of :

Note: This is the minimum section modulus about the 

transver neutral axis at the wet deck or keel. 

4.1.1. All ships are to have a collision bulkhead, an after peak bulkhead, generally enclosing the sterntubes in a 

watertight compartment, and a watertight bulkhead at each end of the machinery space. Additional watertight 

bulkheads are to be fitted so that the total number of bulkheads is at least in accordance with Table 3.4.1.

Determination of :

Part 4, Chapter 2 RoRo and Passenger Ships

Deck Plating Calculations

Rounded (mm)

5.00

6.00

6.00

6.50

6.50

5.00

5.00

Keel Plate, Bottom Shell & Bilge Calculations

A = 9200 mm 2

t = 44 mm

b =  1000 mm

t1,A =  6.91 mm

t1,B=  10.79 mm 10.5 mm

t1=  12.79 mm 12.5 mm

Location Plate Thickness (mm)

Keel Plate 12.79 Bottom Shell  10.79 Bilge 12.79

Side Shell Plating

Location (see 

above)Plate Thickness (mm)

A 6.77 B 6.75 C 7.97 D 8.46

Vehicle Deck Calculations

Parameter Value Units u v a s

tC = 1.5 mm Cars 150 225 2400 1200

n =  0.9 ‐ Trucks 175 250 2400 1200

 =  1.63 ‐

1,Car = 1.20 ‐

2,Car = 1.36 ‐

3,Car = 1.00 ‐

1,Truck = 1.22 ‐

2,Truck = 1.34 ‐

3,Truck = 1.00 ‐

PW,Car = 0.38 tonnes

PW,Truck = 0.88 tonnes

P1,Car = 1.00 tonnes

P1,Truck = 2.33 tonnes

Car = 0.84 ‐

Truck = 1.21 ‐

Car = 5.00 ‐

Truck = 6.50 ‐  

t1,Car = 6.00 mm

t1,Truck = 7.80 mm

tCar = 7.50 mm

tTruck = 9.30 mm

Location Plate Thickness (mm)

Car Lanes 7.50 Truck Lanes 9.30

6.00

Note: Rounded up to same as A

6.00

9.5

Selection (mm)

Third+ Decks

5.00

5.00

Rounded Value (mm)

Rounded Value (mm)

Rounded Value (mm)

7.00

7.00

8.50

9.50

8.00

7.50

Note: Redirected from Trimaran Classification Rules

13

11

13

Note: Fore end refers to region forward of 0.3L from forward perpendicular

Deck Location

Accomodation & Public Spaces

Baggage Handling & Storage

Storerooms

Weather Exposed Lifeboat Deck

Plate Thickness (mm)

4.80

Workshops & Machinery Spaces

Second Deck

6.36

5.40

A

B

C

D

Part 4, Chapter 2 RoRo and Passenger Ships

dDB =  849.34 mm 1300.00 mm

t =  10.79 mm 11.00 mm

tNWT =  11.40 mm 11.50 mm dDB / t > 130 OKAY

tWT =  13.40 mm 13.50 mm

Z = 42.40 cm3

Watertight Hulkep Tank Bulkhe Units

k 1 1 ‐

h4 6.74 2.66 m

s 600 600 mm

S 2.4 2.4 m

f 1 1 ‐

t 7.00 7.50 mm

Zsecondary 7 9 cm3

Zprimary 156 134 cm3

SecPrimary L200x90x8 L200x90x8 ‐

SecSecondary L75x75x8 L75x75x8 ‐

Zsection‐Prim. 113 113 cm3

Zsection‐Sec. 21.3 21.3 cm3

Note: Redirected from Trimaran Classification Rules

Flat Bar:     8mm x 200mm; Z = 53.3 cm3

Part 6, Scantling Determination, Trimaran Calculations

Stiffener Properties

Primary and Secondary Stiffiners

PHYS

PRM

PPM

PHYD

IPBI

IPWI

Pd

Pdes

cZ cI f TX zK HW PHYS PRM PPM PHYD IPBI IPWI Pd Pcomb.‐Part Pdes PCombined (kPa) S,s (m,mm) lassumed (m) le le2 fσ σyd (MPa) E (N/cm2) ZREQ (cm

3) IREQ (mm4) Selection Z (cm3) I (x10

6 mm4) Mass (kg/m)

1 Main hull bottom and bilge longitudinals    ‐0.10 0.0035 0.80 3.57 0.00 4.51 35.70 23.10 0.00 23.10 48.88 ‐ 9.00 58.8 107.68 1900.0000 1.10 0.88 0.77 0.75 235.00 2050.00 39.27 156307.08 L152x152x7.9 48.40 5.38 18.5

2 Main hull side longitudinals    ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ 23.10 0.00 23.10 ‐ ‐ 9.00 23.1 23.10 3400.0000 1.65 1.32 1.74 0.75 235.00 2050.00 62.12 247241.37 L152x152x11 66.40 7.29 25.5

3 Side hull bottom and bilge longitudinals ‐0.10 0.0035 0.80 3.57 0.00 4.51 22.00 26.70 0.00 26.70 35.70 ‐ 9.00 48.7 84.40 600.0000 0.60 0.48 0.23 0.75 235.00 2050.00 3.06 12163.12 L102x102x7.9 21.30 1.57 12.2

4 Side hull side longitudinals    ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ 26.70 0.00 26.70 ‐ ‐ 9.00 26.7 26.70 600.0000 0.60 0.60 0.36 0.75 235.00 2050.00 2.62 10419.51 L102x102x7.9 21.30 1.57 12.2

1 Main hull bottom transverse frames    ‐0.10 0.0035 0.80 3.57 0.00 4.51 35.70 23.10 0.00 23.10 48.88 ‐ 9 58.80 107.68 600.00 4.285 3.43 11.75 0.75 235.00 2050 188 7.49E+05 BP250x12 159 23.6 29.9

2 Main hull side frames    ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ 23.10 0.00 23.10 ‐ ‐ 9 23.10 23.10 600.00 2.400 1.92 3.69 0.75 235.00 2050 23 9.23E+04 L102x76x9.5 24.1 1.67 11.4

3 Side hull bottom transverse frames  ‐0.10 0.0035 0.80 3.57 0.00 4.51 22.00 26.70 0.00 26.70 35.70 ‐ 9 48.70 84.40 600.00 1.300 1.04 1.08 0.75 235.00 2050 14 5.71E+04 L102x102x7.9 21.3 1.57 12.2

4 Side hull side frames    ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ 26.70 0.00 26.70 ‐ ‐ 9 26.70 26.70 600.00 2.250 1.80 3.24 0.75 235.00 2050 24 9.38E+04 L102x76x9.5 24.1 1.67 11.4

1 Bottom girder ‐0.04 0.0026 0.50 3.57 0.00 4.51 35.70 23.10 0.00 23.10 48.88 ‐ 9 58.80 107.68 8.57 9.600 9.60 92.16 0.75 235.00 2050 5489 3.93E+08 WT1300x300x18x14 5459 4371 185

2 Side stringers    ‐0.04 0.0026 0.50 3.57 0.00 4.51 35.70 23.10 0.00 23.10 ‐ ‐ 9 23.10 23.10 3.40 4.800 3.84 14.75 0.75 235.00 2050 137 9.81E+06 WT230x191x16x9.9 141 24.8 41

3 Floors  ‐0.04 0.0026 0.50 3.57 0.00 4.51 35.70 23.10 0.00 23.10 48.88 ‐ 9 58.80 107.68 2.40 8.570 6.86 47.00 0.75 235.00 2050 1436 5.62E+07 ‐ ‐ ‐ ‐

4 Bottom transverse web frames    ‐0.04 0.0026 0.50 3.57 0.00 4.51 35.70 23.10 0.00 23.10 48.88 ‐ 9.00 58.80 107.68 2.40 4.000 3.20 10.24 0.65 235.00 2050 197 1.41E+07 L350x100x11 314 70.3 42.7

5 Side transverse web frames  ‐0.04 0.0026 0.50 3.57 0.00 4.51 ‐ 23.10 0.00 23.10 ‐ ‐ 9 58.80 23.10 2.40 2.400 2.40 5.76 0.65 235.00 2050 111 7.94E+06 WT230x191x16x9.9 141 24.8 41

1 Wet‐deck longitudinals ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ 23.10 0.00 21.04 ‐ 1.69 9 34.00 23.10 600.00 0.600 0.48 0.23 0.75 235.00 2050 2 8.49E+03 L127x89x9.5 37.6 3.24 13

2 Wet deck transverse frames  ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ ‐ 0.00 0.00 ‐ 1.69 9.00 34.00 23.10 2400.00 2.750 2.20 4.84 0.65 235.00 2050 207 8.23E+05 L125x75x10 36 2.99 14.9

1 Wet‐deck transverse web frames ‐0.10 0.0035 0.50 3.57 0.00 4.51 ‐ ‐ 0.00 21.04 ‐ 1.69 9 34.00 10.69 7.20 4.125 4.13 17.02 0.65 235.00 2050 1363 5.43E+07 WT400x250x16x10 460 134 62.6

2 Wet‐deck girders  ‐0.04 0.0026 0.50 3.57 0.00 4.51 ‐ ‐ 0.00 21.04 ‐ 1.69 9 34.00 10.69 8.500 4.800 3.84 14.75 0.75 235.00 2050 504 3.61E+07 WT750x150x8x8 969 425 56.4

1 Deck longitudinals ‐0.10 0.0035 0.80 3.57 0.00 4.51 ‐ 23.10 0.00 21.04 ‐ ‐ 6.38 8.44 8.44 600.00 0.600 0.48 0.23 0.65 235.00 2050 1 2.43E+03 L50x50x6 1.44 0.629 9

2 Deck beams  ‐0.04 0.0026 0.80 3.57 0.00 4.51 ‐ 23.10 0.00 21.04 ‐ ‐ 6.38 8.44 8.44 2400.00 4.800 3.84 14.75 0.65 235.00 2050 65 4.67E+05 L150x9x12 62.3 6.19 21.5

1 Deck girders ‐0.10 0.0035 0.50 3.57 0.00 4.51 ‐ 23.10 0.00 21.04 ‐ ‐ 6.38 8.44 8.44 2.400 4.800 3.84 14.75 0.75 235.00 2050 85 3.37E+06 WT230x191x16x9.9 141 24.8 41

2 Deck transverses  ‐0.04 0.0026 0.50 3.57 0.00 4.51 ‐ 23.10 0.00 21.04 ‐ ‐ 6.38 8.44 8.44 2400.00 4.800 4.80 23.04 0.65 235.00 2050 64 4.56E+05 WT175x100x14x10 88.3 11.4 24.7

3 Deck deep beams  ‐0.04 0.0026 0.50 3.57 0.00 4.51 ‐ 23.10 0.00 21.04 ‐ ‐ 6.38 18.34 18.34 2.40 8.570 6.86 47.00 0.75 235.00 2050 245 1.75E+07 L200x90x8  331 57.3 30.7

1 I Inner bottom longitudinals‐0.04

0.0026 0.80 3.57 0.00 ‐ 35.70 23.10 0.00 23.10 ‐ ‐ ‐ 48.19 48.19 2400.00 4.800 3.84 14.75 0.75 235.00 2050 323 2.31E+06 ‐ ‐ ‐ ‐

2 J Inner bottom transverse frames  ‐0.04 0.0026 0.50 3.57 0.00 ‐ 35.70 23.10 0.00 23.10 ‐ ‐ ‐ 48.19 48.19 2.40 8.570 6.86 47.00 0.75 235.00 2050 643 4.60E+07 ‐ ‐ ‐ ‐

Wave impact Pressure

Minimum Weather Deck Pressure

Design pressure;combination of above pressures

Hydrostatic pressure

Hydrodynamic pressure due to relative motion

Hydrodynamic pressure due to pitching motion

Hydrodynamic wave pressure

Bottom impact Pressure

Parameters

PHYS, P

HYD, P

D, IPBI, IP

WI

G

Inner 

Bottom

PHYS, P

HYD

DEWet Deck

F

Weather & 

Exposed Decks

AB

C

Shell Envelope

Location Thickness (mm)

Keel Plate 12

Bottom Shell 10

Bilge 12

Side Shell 6.5

Sheerstrake 7

Machinery Space 6.5

Store Room 5.5

Wet Deck 6.5

Car Lanes 5.5

Truck Lanes  6

Main Deck (Lifeboat) 6

1st deck shell 5

2nd deck shell 5

Item Length (m) Plate Thickness (m) Area (m2) Leverkeel (m) Momentkeel(m3) Second Moment (m4) Momentcentroid (m

4)

Upper Deck 7.50 0.006 0.05 13.32 0.60 7.98 0.00

1st Deck 7.50 0.006 0.05 10.32 0.46 4.79 0.00

Car Deck Side Shell 3.50 0.0065 0.02 8.57 0.19 1.67 0.02

1st Deck Side Shell 3.00 0.0065 0.02 11.82 0.23 2.72 0.01

P (kN) Pa (kN) le Ap‐approx. (cm2) Ap‐calc. (cm

2) Check r t dp S lp Hg C E Car Deck/Main Deck 8.25 0.0095 0.08 6.82 0.53 3.65 0.00

2nd Deck 73.17272 0 2.2 7.85 6.09 320.68 5.5 75 2.4 7.2 0.6 1.39 0 Cross Deck Bottom 4.29 0.0070 0.03 6.82 0.20 1.40 0.00

1st Deck 6282.698 73.17272 2.2 709.59 2.4 7.2 0.9 1.39 0 Side Hull Outer Shell 5.45 0.0070 0.04 4.10 0.16 0.64 0.09

Side Hull Inner Shell 5.45 0.0070 0.04 4.10 0.16 0.64 0.09

Main Hull Outer Shell 4.70 0.0070 0.03 3.41 0.11 0.38 0.06

Machinery Space 4.29 0.0065 0.03 1.30 0.04 0.05 0.00

Bottom Shell 4.29 0.0130 0.06 0.00 0.00 0.00 0.00

Center Girder 0.08 0.0130 0.00 0.65 0.00 0.00 0.00

Summations: ‐ ‐ 0.43 71.22 2.69 23.92 0.29

PropertyABOUT Value Units

Neutral Axis HeightKEEL 6.19 m

Second MomentKEEL 24.21 m4

Second MomentNA 7.55 m4

Section ModulusDECK 2.12 m3 OKAY

Section ModulusKEEL 2.44 m3 OKAY

Plating

Note: Zmin = 0.4349 m3

Parameter Value Units

fserv 0.7 -

Wsh 60.75 tonnes

D 1107.84 tonnes

DSH 60.75 tonnes

aheave 0.256394 -

arollz 0.118668 -

az 0.282525 -

yI 4.285 m

yo 5.595163 m

ysh 7.536342 m

Bmh 8.57 m

fwv 0.5 -

Vcr 9.333333 knots

Lwl 60 m

froll 1.418182 -

Bwltot 16.5 m

GMassumed 1.8 m

Vcd 19 m3

Vsh 237.8 m3

Parameter Value Units

Msph,I 1739.57 kN m

Msph,O 1038.59 kN m

Msps,I 3110.88 kN m

Msps,O 1857.31 kN m

Qsph 535.0311 kN

Qsps 956.7973 kN

Mtt 6377.625 kN m

Item Length (m) Thickness (m) Area (m2) Leverbottom (m) Momentbottom(m3) Second Moment (m4) Second Momentcentroid (m4)

Top Deck Plate 18 0.0065 0.117 0.75 0.08775000 0.0658125 4.11938E-07

Cross Deck Side Plate 0.75 0.0065 0.004875 0.375 0.00182813 0.000685547 0.000228516

Wet Deck Plate 18 0.0065 0.117 0 0.00000000 0 4.11938E-07

Top Deck Transverse Web Frames

1 (WT265x41) 0.265 0.0095 0.00523 0.5519 0.00288644 0.001593025 0.000035

2 (WT265x41) 0.265 0.0095 0.00523 0.5519 0.00288644 0.001593025 0.000035

3 (WT265x41) 0.265 0.0095 0.00523 0.5519 0.00288644 0.001593025 0.000035

4 (WT265x41) 0.265 0.0095 0.00523 0.5519 0.00288644 0.001593025 0.000035

5 (WT265x41) 0.265 0.0095 0.00523 0.5519 0.00288644 0.001593025 0.000035

Cross Deck Transverse Web Frame

1 (WT265x41) 0.265 0.0095 0.00523 0.1981 0.00103606 0.000205244 0.000035

2 (WT265x41) 0.265 0.0095 0.00523 0.1981 0.00103606 0.000205244 0.000035

3 (WT265x41) 0.265 0.0095 0.00523 0.1981 0.00103606 0.000205244 0.000035

4 (WT265x41) 0.265 0.0095 0.00523 0.1981 0.00103606 0.000205244 0.000035

5 (WT265x41) 0.265 0.0095 0.00523 0.1981 0.00103606 0.000205244 0.000035

Bulkheads

1 0.75 0.007 0.00525 0.375 0.00196875 0.000738281 0.000246094

2 0.75 0.007 0.00525 0.375 0.00196875 0.000738281 0.000246094

3 0.75 0.007 0.00525 0.375 0.00196875 0.000738281 0.000246094

Bulkhead Stiffeners

1-top (L102x102x7.9) 0.102 0.008 0.00156 0.4716 0.00073570 0.000346954 0.00000128

2-top (L102x102x7.9) 0.102 0.008 0.00156 0.4716 0.00073570 0.000346954 0.00000128

3-top (L102x102x7.9) 0.102 0.008 0.00156 0.4716 0.00073570 0.000346954 0.00000128

4-top (L102x102x7.9) 0.102 0.008 0.00156 0.4716 0.00073570 0.000346954 0.00000128

5-bottom (L102x102x7.9) 0.102 0.008 0.00156 0.2784 0.00043430 0.00012091 0.00000128

6-bottom (L102x102x7.9) 0.102 0.008 0.00156 0.2784 0.00043430 0.00012091 0.00000128

7-bottom (L102x102x7.9) 0.102 0.008 0.00156 0.2784 0.00043430 0.00012091 0.00000128

8-bottom (L102x102x7.9) 0.102 0.008 0.00156 0.2784 0.00043430 0.00012091 0.00000128

Summations: - - 0.32 9.00 0.12 0.0796 0.0013

PropertyABOUT Value Units

Neutral Axis Heightbottom 0.3750 m

Second Momentbottom 0.0809 m4

Second MomentNA 0.0360 m4

Section Modulustop 0.1919 m3

Section Modulusbottom 0.1919 m3

Parameter ValueUnits Value Units

Zcdb 191931.86 cm3 16.21 (N/mm

2)

Zcdt 191931.86 cm3 9.063 (N/mm

2)

Zcd 191931.86 cm 3 22.78 (N/mm2)

Sbhd 9.00 m 12.74 (N/mm2)

Msph 1739.57 kN m 0.52 (N/mm2)

Msps 3110.88 kN m 0.01 (N/mm2)

Qsph 535.03 kN

Qsps 956.80 kN

Mtt 6377.62 kN m

Acd 210.00 cm2

yo 5.60 m

yI 4.29 m

nbhd 5.00 -

zi 180000.00 cm3

K 61.09 m4

R 87.75 m3

k 0.70 m

Ii 3598722.44 cm 4

tdk 6.50 mm

tbhd 7.00 mm

dcd 0.75 m

Qsph

Mtt,bending

Mtt,shear

Msps σsps

Qsps tsps

Component Stress Types

Msph

Nominal Stress

σsph

tsph

σtt

ttt

Formula Value (kN/mm2)

(a) σsps 16.21

(b) σsph 9.06

(c) σtt + 0.6σsps 10.24

(d) σtt + 0.6σsph 5.95

(a) tsps 22.78

(b) tsph 12.74

(c) ttt + 0.6tsps 13.68

(d) ttt + 0.6tsph 7.65

(σcd + 3t2

cd)0.5 -- --

a 39.66 211.5

b 22.27 211.5

c 23.91 211.5

d 13.48 211.5

Component StressesStress Type

Allowable Stress

(N/mm2)Eq

uiv

alen

t

Stre

ss, σ

eq

169.2

97.2

Tota

l Dir

ect

Stre

ss, σ

cd

Tota

l Sh

ear

Stre

ss, t

cd

Hull Structure Items Density Unit Quantity Length Width Area Weight VCG Hull Structure Items Density Unit Quantity Length Width Area Weight VCG

Item Value Unit Item Value Unit [‐] [m] [m] [m2] [kg] [m] [‐] [m] [m] [m

2] [kg] [m]

Hull length 60.00 m Midship area 74.30 m2

Superstructure length 42.00 m Midship fr. volume 44.58 m3 Angle Bar Angle Bar

Frame spacing 0.600 m Typicalframe density (hull) 134.08 kg/m3 Side hull longitudinals ‐ L 63x63x7 4.810 kg/m 26.0 0.600 ‐ ‐ 75.0 3.717 Side hull longitudinals ‐ L 102x102x7.9 12.200 kg/m 26.0 0.600 ‐ ‐ 190.3 3.717

Web frames interval 4 frames Web frame density (hull) 162.21 kg/m3 Cross deck longitudinals ‐ L 76x76x7.9 9.000 kg/m 56.0 0.600 ‐ ‐ 302.4 6.445 Cross deck longitudinals ‐ L 102x102x7.9 12.200 kg/m 52.0 0.600 ‐ ‐ 380.6 6.445

Total hull frames 100 ‐ Average density (hull) 155.17 kg/m3 Cross deck connection longitudinals ‐ L 76x76x7.9 9.000 kg/m 4.0 0.600 ‐ ‐ 21.6 5.760 Cross deck connection longitudinals ‐ L 76x76x7.9 12.200 kg/m 4.0 0.600 ‐ ‐ 29.3 5.760

Hull web frames 25 ‐ Hull volume 2451.9 m3 Total per typical frame: 399.0 5.895 Main Hull transverse side ‐ L 102x76x9.5 11.400 kg/m 2.0 4.540 ‐ ‐ 103.5 3.570

Hull typical frames 75 ‐ Hull weight 380 tonnes Main Hull transverse top ‐ L 102x76x9.5 11.400 kg/m 2.0 4.285 ‐ ‐ 97.7 6.000

Total superstr. frames 70 ‐ Hull VCG 3.197 m Bracket Total per typical frame: 801.5 5.347

Superstr. web frames 18 ‐ Superstructure weight 140 tonnes Side hull side shell bracket (middle) ‐ 8mm 62.800 kg/m2 4.0 ‐ ‐ 0.213 53.5 2.500

Superstr. typical frames 53 ‐ Superstructure VCG 10.670 m Side shell stiffener bracket (bottom)‐ 10 mm 78.500 kg/m2 2.0 ‐ ‐ 0.165 25.9 1.400 Bracket

Side shell stiffener bracket (top) ‐ 10 mm 78.500 kg/m2 2.0 ‐ ‐ 0.230 36.1 5.750 Main hull bracket top and bottom ‐ 330x330x9.5 74.575 kg/m2 4.0 ‐ ‐ 0.110 32.8 3.700

Total per typical frame: 115.5 3.269 Total per typical frame: 32.8 3.700

Flat Bar Flat Bar

Hull Structure Items Weight VCG Hull Structure Items Weight VCG Wet deck flat bar ‐ 117 x 10 mm 9.180 kg/m 10.0 0.750 0.117 ‐ 68.9 6.445 Wet deck flat bar ‐ 117 x 10 mm 9.180 kg/m 10.0 0.750 0.117 ‐ 68.9 6.445

[kg] [m] [kg] [m] Double bottom flat bar ‐ 200 x 9 mm 14.130 kg/m 12.0 0.845 0.200 ‐ 143.3 0.650 Double bottom flat bar ‐ 200 x 9 mm 14.130 kg/m 12.0 0.845 0.200 ‐ 143.3 0.650

Angle Bar 399 5.895 Angle Bar 801 5.347 Total per typical frame: 212.1 2.531 Total per typical frame: 212.1 2.531

Bracket 116 3.269 Bracket 33 3.700

Flat Bar 212 2.531 Flat Bar 212 2.531 Plate Plate

Plate 4766 2.629 Plate 3988 2.422 Bilge plate ‐ 12.5 mm 98.125 kg/m2 2.0 0.600 3.700 2.220 435.7 0.890

T‐Bar 1738 4.336 Round Bar 0 1.357 Bottom plate ‐ 11 mm 86.350 kg/m2 2.0 0.600 2.950 1.770 305.7 0.445 Bilge plate ‐ 12.5 mm 98.125 kg/m2 2.0 0.600 3.700 2.220 435.7 0.890

Total per typical frame: 7231 3.227 T‐Bar 943 4.097 Keel plate ‐ 12.5 mm 98.125 kg/m2 2.0 0.600 0.750 0.450 88.3 0.000 Bottom plate ‐ 10.5 mm 84.425 kg/m2 2.0 0.600 2.950 1.770 298.9 0.445

Total per web frame: 5977 3.089 Turn of bilge plate ‐ 8 mm 62.800 kg/m2 2.0 0.600 6.600 3.960 497.4 2.470 Keel plate ‐ 12.5 mm 98.125 kg/m2 2.0 0.600 0.750 0.450 88.3 0.006

Side shell plate ‐ 7 mm 54.950 kg/m2 2.0 0.600 6.200 3.720 408.8 3.570 Turn of bilge plate ‐ 7.5 mm 58.875 kg/m2 2.0 0.600 6.600 3.960 466.3 2.470

Superstructure Items Weight VCG Hull bottom plate ‐ 11 mm 86.350 kg/m2 1.0 0.600 8.570 5.142 444.0 1.300 Side shell plate ‐ 7 mm 54.950 kg/m2 2.0 0.600 6.200 3.720 408.8 3.570

[kg] [m] Superstructure Items Weight VCG Double bottom floors ‐ 13.5 mm 105.980 kg/m2 2.0 ‐ ‐ 6.740 1428.6 0.650 Double bottom floors ‐ 11.5 mm 90.275 kg/m2 2.0 ‐ ‐ 6.740 1216.9 0.650

Angle Bar 175 9.758 [kg] [m] Double bottom trans. plate ‐ cutouts ‐105.980 kg/m2 2.0 ‐ ‐ 0.900 ‐95.4 0.650 Double bottom trans. plate ‐ cutouts ‐90.275 kg/m2 2.0 ‐ ‐ 0.900 ‐162.5 0.650

Flat Bar 50 10.000 Angle Bar 459 9.800 Sheer strake plate ‐ 8.5 mm 66.275 kg/m2 2.0 0.600 3.000 1.800 238.6 4.820 Engine bottom floors ‐ 11.5 mm 90.275 kg/m2 2.0 0.600 8.570 5.142 208.9 0.650

Plate 1169 10.893 Bracket 0 10.050 Wet deck bottom plate ‐ 7 mm 54.950 kg/m2 1.0 ‐ 16.500 0.900 49.5 6.000 Sheer strake plate ‐ 8.5 mm 66.275 kg/m2 2.0 0.600 3.000 1.800 238.6 1.770

T‐Bar 680 10.422 Flat Bar 0 10.120 Wet deck through plate ‐ 7 mm 5887.500 kg/m2 1.0 0.007 16.500 0.116 226.7 6.375 Wet deck bottom plate ‐ 7 mm 54.950 kg/m2 1.0 ‐ 16.500 0.900 49.5 6.000

Total per typical frame: 2074 10.621 Pillar 20 11.700 Wet deck top plate ‐ 9.5 mm 74.575 kg/m2 1.0 0.600 16.500 9.900 738.3 6.750 Wet deck top plate ‐ 9.5 mm 74.575 kg/m2 1.0 0.600 16.500 9.900 738.3 6.750

Plate 1077 11.091 Total per typical frame: 4766.1 2.629 Total per typical frame: 3987.6 2.422

T‐Bar 196 11.816

Total per web frame: 1753 10.841 T‐Bar Round Bar

Main hull side stringer ‐ T 300 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 0.600 ‐ ‐ 49.2 3.700 Bilge chine bar ‐ 33 mm 0.100 kg/m 2.0 0.600 ‐ ‐ 0.1 1.357

Main hull web (side) ‐ 230 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 4.800 ‐ ‐ 393.6 3.500 Total per typical frame: 0.1 1.357

Main hull web (top) ‐ 230 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 4.300 ‐ ‐ 352.6 6.000

Side hull web (side) ‐ 230 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 8.900 ‐ ‐ 729.8 3.570 T‐Bar

Side hull web (top) ‐ 230 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 2.600 ‐ ‐ 213.2 5.900 Side hull web (side) ‐ 230 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 8.900 ‐ ‐ 729.8 3.570

Total per typical frame: 1738.4 4.336 Side hull web (top) ‐ 230 x 191 x 16 x 9.9 mm 41.000 kg/m 2.0 2.600 ‐ ‐ 213.2 5.900

Total per typical frame: 943.0 4.097

Superstructure Items Density Unit Quantity Length Width Area Weight VCG

[‐] [m] [m] [m2] [kg] [m]

Superstructure Items Density Unit Quantity Length Width Area Weight VCG

Angle Bar [‐] [m] [m] [m2] [kg] [m]

Deck longitudinals (01 Deck) ‐ L 50x50x6 4.430 kg/m 22.0 0.600 ‐ ‐ 58.5 8.120

Deck longitudinals (02 Deck) ‐ L 50x50x6 4.430 kg/m 26.0 0.600 ‐ ‐ 69.1 10.870 Angle Bar

Side plate stiffeners (01 Deck) ‐ L 50x50x6 4.430 kg/m 8.0 0.600 ‐ ‐ 21.3 8.320 Deck longitudinals (01 Deck) ‐ L 76 x 76 x 7.9 11.600 kg/m 22.0 0.600 ‐ ‐ 153.1 8.120

Side plate stiffeners (02 Deck) ‐  L 50x50x6 4.430 kg/m 10.0 0.600 ‐ ‐ 26.6 11.620 Deck longitudinals (02 Deck) ‐  L 76 x 76 x 7.9 11.600 kg/m 26.0 0.600 ‐ ‐ 181.0 10.870

Total per typical frame: 175.4 9.758 Side plate stiffeners (01 Deck) ‐  L 76 x 76 x 7.9 11.600 kg/m 8.0 0.600 ‐ ‐ 55.7 8.570

Side plate stiffeners (02 Deck) ‐  L 76 x 76 x 7.9 11.600 kg/m 10.0 0.600 ‐ ‐ 69.6 11.700

Flat Bar Total per typical frame: 459.4 9.800

Main Deck flat bar ‐ 117x10 mm 9.180 kg/m 12.0 0.450 ‐ ‐ 49.6 10.000

Total per typical frame: 49.6 10.000 Bracket

Pillar bracket (01 Deck) ‐ 6 mm 0.100 kg/m2 1.5 ‐ ‐ 0.024 0.0 10.050

Plate Total per typical frame: 0.0 10.050

Deck plate (01 Deck) ‐ 6.5 mm 51.025 kg/m2 1.0 0.600 16.500 9.900 505.1 10.000

Deck plate (02 Deck) ‐ 5 mm 39.250 kg/m2 1.0 0.600 18.300 10.980 431.0 12.750 Flat Bar

Side plate (01 Deck) ‐ 6.5 mm 51.025 kg/m2 2.0 0.600 2.800 1.680 171.4 8.570 02 Deck flat bar ‐ 160 x 5 mm 0.100 kg/m 2.0 0.600 ‐ ‐ 0.1 10.120

Side plate (02 Deck) ‐ 5 mm 39.250 kg/m2 2.0 0.600 2.800 1.680 131.9 11.700 Total per typical frame: 0.1 10.120

Side plate (02 Deck) ‐ cutouts ‐39.250 kg/m2 2.0 0.600 1.500 0.900 ‐70.7 11.700

Total per typical frame: 1168.8 10.893 Pillar

Pillar (01 Deck) ‐ 4" SCH 80 22.290 kg/m 0.3 2.750 ‐ ‐ 20.4 11.700

T‐Bar Total per typical frame: 20.4 11.700

Deck girder (01 Deck) ‐ T 500x150x10x8 43.050 kg/m 3.0 0.600 ‐ ‐ 77.5 10.000

Deck girder (02) ‐ T 230x191x10x10 32.960 kg/m 3.0 0.600 59.3 13.000 Plate

DeckTransverse (01 Deck) ‐ T 450x150x10x8 39.920 kg/m 1.0 8.250 ‐ ‐ 329.3 10.000 Deck plate (01 Deck) ‐ 6.5 mm 51.025 kg/m2 1.0 0.600 16.500 9.900 505.1 10.000

Deck Transverse side (01 Deck) ‐ T 150x75x8x6 11.740 kg/m 2.0 3.050 ‐ ‐ 71.6 8.300 Deck plate (02 Deck) ‐ 5 mm 39.250 kg/m2 1.0 0.600 18.300 10.980 431.0 12.750

Deck Transverse side(02) ‐ T 150x80x5x5 8.600 kg/m 1.0 16.525 ‐ ‐ 142.1 11.625

Total per typical frame: 679.9 10.422 Side plate (01 Deck) ‐ 6.5 mm 51.025 kg/m2 2.0 0.600 2.800 1.680 171.4 8.570

Side plate (01 Deck) ‐ cutouts ‐51.025 kg/m2 2.0 0.600 1.500 0.900 ‐91.8 8.570

Side plate (02 Deck) ‐ 5 mm 39.250 kg/m2 2.0 0.600 2.800 1.680 131.9 11.700

Side plate (02 Deck) ‐ cutouts ‐39.250 kg/m2 2.0 0.600 1.500 0.900 ‐70.7 11.700

Total per typical frame: 1076.9 11.091

T‐Bar

Deck girder (01 Deck) ‐ T 500x150x10x8 43.000 kg/m 3.0 0.600 ‐ ‐ 77.4 10.000

Deck girder (02 ) ‐ T 230x150x10x10 32.960 kg/m 6.0 0.600 118.7 13.000

Total per typical frame: 196.1 11.816

TYPICAL FRAME at FR. 22

SWBS 100 ‐ VESSEL SUMMARY

WEB FRAME SUMMARY TYPICAL FRAME SUMMARY

WEB FRAME at FR. 48

WEB FRAME at FR. 48

TYPICAL FRAME at FR. 22

Verification of Intact Stability Results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90

Rig

hti

ng

Arm

(m)

Roll Angle (°)

AutoCAD

Paramarine

Comparison of Righting Arm Curve obtained manually to Paramarine results

Manual Derivation of Righting Arm Curve (with Displacement Held Constant)

[Heel Angles of 0, 5, 10, 20, 30, ... 80°]

The righting lever curve of a two-dimensional trimaran section was calculated and

compared with that of a similar hullform at the same draft obtained using Paramarine.

The derivation of the manual curve as well as the curves themselves may be found below.

Paramarine Hullform Model

The integrals of the righting arm curves

seen above are approximately 6%

different in magnitude, with the

Paramarine curve providing a more

conservative value for the same

conditions. It can be concluded that the

Paramarine stability software adequately

accounts for the complex hullform of a

trimaran. Paramarine will thus be used

with confidence for stability evaluation

throughout this report.

Intact Stability

Righting Lever Curves

 

 

Hydrostatics for Various Loading Conditions

Loading conditions

Hydrostatics [Units] Departure Condition Departure Condition & Overcrowded

Arrival Condition Arrival Condition & Overcrowded Arrival Condition & Overcrowded & Misplaced Cargo

Displacement [tonne] 1170.07 1202.33 1140.977 1173.148 1137.59

mean draft [m] 3.51 3.55 3.47 3.51 3.43

AP Draft [m] 4.03 4.27 3.85 4.1 4.05

FP Draft [m] 2.99 2.83 3.08 2.92 2.81

Trim BP [m] 1.04 1.44 0.77 1.17 1.24

List Angle [deg] 0.13 -0.14 0.20 0.20 2.78

LCG [m] 27.82 27.24 28.24 27.64 27.56

TCG [m] 0.01 0.01 -0.01 -0.01 -0.14

VCG [m] 5.45 5.59 5.56 5.70 5.65

LCB [m] 27.77 27.16 28.20 27.57 27.49

TCB [m] 0.01 0.01 -0.02 -0.02 -0.31

VCB [m] 2.21 2.26 2.17 2.22 2.19

LCF [m] 26.96 26.83 27.05 26.92 26.83

TCF [m] 0.01 0.01 -0.01 -0.01 -0.13

TPI [tonne/cm] 5.074 5.10 5.05 5.08 5.07

Moment Causing trim [tonnes× m/cm] 16.6 16.6 16.52 16.53 16.47

GM [m] 3.05 2.91 2.95 2.81 3.00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80

Righ

ting

Leve

r GZ

(m)

Angle of Heel (Degrees)

Curve of Intact StabilityDeparture Condition

DepartureCondition &No FreeSurface Effect

DepartureCondition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80

Righ

ting

Leve

r GZ

(m)

Angle of Heel (Degrees)

GZ Curve of Intact StabilityArrival Condition Arrival Condition &

No Free SurfaceEffect

Arrival Condition

Arrival Condition &Overcrowded

Arrival Condition &Overcrowded &Misplaced Cargo

Loading Conditions

Damage Stability

The table at right details the performance of Damage Cases 1 and 8 with the following load conditions:

Arrival Arrival with overcrowding Departure Departure with overcrowding

As seen, the vessel passes SOLAS 90 two-compartment damage criteria. A probabilistic method should be used on further design iterations to verify these results.

Damage Case 1 Damage Case 8

 

-1.5

-1

-0.5

0

0.5

1

1.5

-100 -50 0 50 100

Righ

ting

Leve

r (m

)

Angle of Heel (Degrees)

Righting Lever CurvesOutrigger Flooding

Three AftCompartmentsFlooded

Three ForwardCompartmentFlooded

The table below details the performance of Damage Case 1 with the following load conditions

Arrival with passenger overcrowding + asymmetric cargo Arrival with passenger overcrowding + passengers assembled at one side

As seen, the vessel still passes SOLAS 90 two-compartment damage criteria under these extreme conditions. The passengers assembled at one side scenario is unlikely as the passengers must be dispersed throughout the vessel to accommodate the high level of overcrowding. Such a passenger-induced heeling moment is likely impossible.

The table below details the performance of outrigger damage with the following load conditions

Arrival with passenger overcrowding The cases analyzed represent the worst survivable damage that the side hull may take. The righting arm curves for these cases as well as their hydrostatics are detailed in the figure and table at right, respectively.

Loading conditions

Hydrostatics [Units] 3 Forward 3 Aft

Displacement [tonne] 1173.278 1173.156

mean draft [m] 3.61 3.61

AP Draft [m] 4.02 4.36

FP Draft [m] 3.20 2.85

Trim BP [m] 0.82 1.51

List Angle [deg] -6.18 -9.88

LCG [m] 27.636 27.634

TCG [m] 0.00 0.00

VCG [m] 5.70 5.70

LCB [m] 27.59 27.63

TCB [m] 0.368 0.6

VCB [m] 2.267 2.32

LCF [m] 26.31 27.3

TCF [m] -0.048 0.06

TPI [tonne/cm] 4.94 4.83

Moment Causing trim [tonnes× m/cm] 16.2 16.35

GM [m] 1.9 1.35

Vessel (qty)Age 

(years)Operator Travel Route Schedule

Distance 

(nm)Passenger Fees Passengers

Cargo Fees (per 

m3 or tonne)Sources

MV Gejamsao (2) 9 Lutheran 

Shipping

Lae to Finschhafen ‐ Weekly trips

‐ 3 hour journey

60 ‐deck class (K70)

‐cabin class (K110)

180  K26 to K44 http://www.iccc.gov.pg/docs/Lutheran%20Shippi

ng%20‐%20Submission.pdf

MV Momose 

Express

19 Lutheran 

Shipping

Lae to Lablab  ‐ Leaves Mondays and 

Thursdays

‐ Overnight trip

125 ‐deck class (K96)

‐cabin class (K120)

274  K26 to K44 

http://www.iccc.gov.pg/docs/Lutheran%20Shippi

ng%20‐%20Submission.pdf

Lae to Wasum ‐ Leaves Mondays and 

Thursdays

‐ Overnight trip

150 ‐deck class (K110)

‐cabin class (K120)

274  K26 to K44 

http://www.iccc.gov.pg/docs/Lutheran%20Shippi

ng%20‐%20Submission.pdf

Morobe Queen 42 Unknown Alotau to Port 

Moresby

‐ Leaves Sunday 

(overnight), returns 

Tuesday arriving 

260 ‐economy (K150)

‐first (K300)

‐tourist (K350)

unknown unknownBook: Papua New Guinea & Solomon Islands

By Rowan McKinnon, Jean‐Bernard Carillet, Dean 

Starnes

Rabaul Queen 33 Rabaul Shipping Lae to Kimbe ‐ sails on Monday and 

Friday 

‐ approx. 20 hour 

journey

350 ‐deck class (K210)

‐cabin class (K335)

310 unknown

http://www.lonelyplanet.com/papua‐new‐

guinea/morobe‐and‐madang‐

provinces/lae/transport/other/rabaul‐shipping

Lae to Rabaul ‐ approx. 40 hour 

journey

550 ‐deck class (K330)

‐cabin class (K440)

310 unknownhttp://www.lonelyplanet.com/papua‐new‐

guinea/morobe‐and‐madang‐

provinces/lae/transport/other/rabaul‐shipping

Lae to Alotau ‐ approx. 20 hour 

journey

350 ‐deck class (K220)?

‐cabin class (K340)

310 unknownhttp://www.lonelyplanet.com/papua‐new‐

guinea/morobe‐and‐madang‐

provinces/lae/transport/other/rabaul‐shipping

Lae to Oro bay

‐ approx. 11 hour journ

200 ‐cabin class (K190)? 310 unknownhttp://www.lonelyplanet.com/papua‐new‐

guinea/morobe‐and‐madang‐

provinces/lae/transport/other/rabaul‐shipping

1 USD = 2.45 kina

Deck Class Cabin Class

nm Price nm Price

60 70 60 110

125 96 125 120

150 110 150 120

260 225 260 300

350 210 350 335

550 330 550 440

350 220 350 340

200 190

y = 0.7704x + 47.444

y = 0.5327x + 39.751

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600

Price (kina) vs Distance (nm)

Cabin Class Deck Class Linear (Cabin Class) Linear (Deck Class)

System Number Title Weight (LT) Labor Man Hours Material Dollars Labor Dollars Variable Value Units

100 Hull 520 $123,468 $832,000 $4,321,383 Lightship Disp. $803 tonnes

200 Propulsion M/C 94 $29,106 $3,790,000 $1,018,701 Lightship Disp. (LT) $790 long tonnes

300 Electrical 14 $10,947 $700,000 $383,130 Ship Type Factor $1 Passenger ferry

400 Command & Comm. 14 $13,819 $1,120,000 $483,655 Size Factor $3 --

500 Auxilliary M/C 29 $1,493 $600,000 $52,250 Complexity Factor $3 --

600 Outfit 132 $21,477 $2,650,000 $751,681 Labor Rate $35 $US/hour

Total: 803 $200,309 $9,692,000 $7,010,799

Item Cost

Material Dollars (x2) $9,692,000

Labour Dollars $7,010,799

Material Overhead (10%) $969,200

Labour Overhead (100%) $7,010,799

Profit $2,468,280

Total: $27,151,078

Conversion Rate 2.67 kina/$US (Apr. 2014)

Average Hourly Rate 0.986380661 $US/hr

Annual Average Earnings 2897 $US

Annual Average Hours 2937 Hours

Vessel Annual Days 292 Days

Vessel Annual Hours 7008 Hours

Vessel Annual Round Trips 42 Roundtrips

Fuel Per Round Trip 50.98325893 tonnes

MDO Price 900 $US/tonne

Crew Number Annual Salary (kina) Annual Salary ($US) Per Trip Salary

Captain 1 10000 $3,745 $89

Chief Officer 1 7500 $2,809 $67

Engineer 1 6000 $2,247 $54

Second Officer 1 5000 $1,873 $45

Kiosk Attendant 2 2500 $936 $22

General Attendant 6 3000 $1,124 $27

Janitor 2 3000 $1,124 $27

Total: $330

Crew Expenses $13,858

Fuel Expenses $1,927,167

Annual Maintenance $481,792

Total: $2,422,817

Lae Kimbe Rabaul Kavieng

Lae $0 $85 $125 $164

Kimbe $85 $0 $55 $95

Rabaul $125 $55 $0 $55

Kavieng $164 $95 $55 $0

Lae Kimbe Rabaul Kavieng

Lae $0 $102 $151 $199

Kimbe $102 $0 $65 $114

Rabaul $151 $65 $0 $65

Kavieng $199 $114 $65 $0

Lae Kimbe Rabaul Kavieng

Lae $0 $119 $176 $234

Kimbe $119 $0 $75 $133

Rabaul $176 $75 $0 $75

Kavieng $234 $133 $75 $0

Lae Kimbe Rabaul Kavieng

Lae $0 $297 $441 $585

Kimbe $297 $0 $189 $333

Rabaul $441 $189 $0 $189

Kavieng $585 $333 $189 $0

Lae Kimbe Rabaul Kavieng

Lae $0 $445 $662 $878

Kimbe $445 $0 $283 $499

Rabaul $662 $283 $0 $283

Kavieng $878 $499 $283 $0

Class Max Capacity Revenue Per Trip100 Revenue Per Trip90 Revenue Per Trip80 Revenue Per Trip70 Revenue Per Trip60 Revenue Per Trip50

Economy 122 $20,064 $18,057 $16,051 $14,044 $12,038 $10,032

Premium 54 $10,763 $9,687 $8,610 $7,534 $6,458 $5,381

Cabin 80 $18,734 $16,861 $14,987 $13,114 $11,240 $9,367

Car 22 $12,880 $11,592 $10,304 $9,016 $7,728 $6,440

Truck 14 $12,294 $11,065 $9,835 $8,606 $7,376 $6,147

Total: $74,734 $67,261 $59,787 $52,314 $44,840 $37,367

Annual Total: $3,138,833.69 $2,824,950.32 $2,511,066.96 $2,197,183.59 $1,883,300.22 $1,569,416.85

Cabin Class Ticket Price ($US)

Premium Class Ticket Price ($US)

Car Rates ($US)

Truck Rates ($US)

Papua New Guinea Statistics

Vessel Annual Operating Expenses

Economy Class Ticket Price ($US)

y = 0.7704x + 47.444

y = ‐0.0002x2 + 0.648x + 27.425

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600

kina

Distance (knots)

Price (kina) vs Distance (nm)

Cabin Class Deck Class Linear (Cabin Class) Poly. (Deck Class)

Appendix:

Renderings