61
Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS AND CONVERSION FACTORS BASIC AND SUPPLEMENTARY UNITS DERIVED UNITS AND QUANTITIES PHYSICAL CONSTANTS PROPERTIES OF WATER PERIODIC TABLE OF THE ELEMENTS Abstract With the current trend toward metrication, the question of using a consistent system of units has been a problem. Wherever possible, the authors of this Handbook of Environmental Engineering series have used the British system (fps) along with the metric equivalent (mks, cgs, or SIU) or vice versa. For the convenience of the readers around the world, this book provides a detailed Conversion Factors for Environmental Engineers. In addition, the basic and supplementary units, the derived units and quantities, important physical constants, the properties of water, and the Periodic Table of the elements, are also presented in this document. Key Words Conversion factors British units metric units physical constants water properties periodic table of the elements environmental engineers Lenox Institute of Water Technology mks (meter-kilogram-second) cgs (centimeter-gram-second) SIU (Système international d’unités; International System of Units) fps (foot-pound-second). 915

Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Embed Size (px)

Citation preview

Page 1: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Appendix: Conversion Factorsfor Environmental Engineers

Lawrence K. Wang

CONTENTS

CONSTANTS AND CONVERSION FACTORS

BASIC AND SUPPLEMENTARY UNITS

DERIVED UNITS AND QUANTITIES

PHYSICAL CONSTANTS

PROPERTIES OF WATER

PERIODIC TABLE OF THE ELEMENTS

Abstract With the current trend toward metrication, the question of using a consistentsystem of units has been a problem. Wherever possible, the authors of this Handbook ofEnvironmental Engineering series have used the British system (fps) along with the metricequivalent (mks, cgs, or SIU) or vice versa. For the convenience of the readers aroundthe world, this book provides a detailed Conversion Factors for Environmental Engineers.In addition, the basic and supplementary units, the derived units and quantities, importantphysical constants, the properties of water, and the Periodic Table of the elements, are alsopresented in this document.

Key Words Conversion factors � British units � metric units � physical constants � waterproperties � periodic table of the elements � environmental engineers � Lenox Institute of WaterTechnology � mks (meter-kilogram-second) � cgs (centimeter-gram-second) � SIU (Systèmeinternational d’unités; International System of Units) � fps (foot-pound-second).

915

Page 2: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

916 L. K. Wang

1. CONSTANTS AND CONVERSION FACTORS

Multiply by to obtain

abamperes 10 amperesabamperes 2.99796 × 1010 statamperesabampere-turns 12.566 gilbertsabcoulombs 10 coulombs (abs)abcoulombs 2.99796 × 1010 statcoulombsabcoulombs/kg 30,577 statcoulombs/dyneabfarads 1 × 109 farads (abs)abfarads 8.98776 × 1020 statfaradsabhenries 1 × 10−9 henries (abs)abhenries 1.11263 × 10−21 stathenriesabohms 1 × 10−9 ohms (abs)abohms 1.11263 × 10−21 statohmsabvolts 3.33560 × 10−11 statvoltsabvolts 1 × 10−8 volts (abs)abvolts/centimeters 2.540005 × 10−8 volts (abs)/inchacres 0.4046 haacres 43,560 square feetacres 4047 square metersacres 1.562 × 10−3 square milesacres 4840 square yardsacre-feet 43,560 cubic feetacre-feet 1233.5 cubic metersacre-feet 325,850 gallons (U.S.)amperes (abs) 0.1 abamperesamperes (abs) 1.036 × 10−5 faradays/secondamperes (abs) 2.9980 × 109 statamperesampere-hours (abs) 3600 coulombs (abs)ampere-hours 0.03731 faradaysamperes/sq cm 6.452 amps/sq inamperes/sq cm 104 amps/sq meteramperes/sq in 0.1550 amps/sq cmamperes/sq in 1550.0 amps/sq meteramperes/sq meter 10−4 amps/sq cmamperes/sq meter 6.452 × 10−4 amps/sq inampere-turns 1.257 gilbertsampere-turns/cm 2.540 amp-turns/inampere-turns/cm 100.0 amp-turns/meterampere-turns/cm 1.257 gilberts/cmampere-turns/in 0.3937 amp-turns/cmampere-turns/in 39.37 amp-turns/meterampere-turns/in 0.4950 gilberts/cm

Page 3: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 917

Multiply by to obtain

ampere-turns/meter 0.01 amp-turns/cmampere-turns/meter 0.0254 amp-turns/inampere-turns/meter 0.01257 gilberts/cmangstrom units 1 × 10−8 centimetersangstrom units 3.937 × 10−9 inchesangstrom unit 1 × 10−10 meterangstrom unit 1 × 10−4 micron or µmares 0.02471 acre (U.S.)ares 1076 square feetares 100 square metersares 119.60 sq yardsassay tons 29.17 gramsastronomical unit 1.495 × 108 kilometersatmospheres (atm) 0.007348 tons/sq inchatmospheres 76.0 cms of mercuryatmospheres 1.01325 × 106 dynes/square centimeteratmospheres 33.90 ft of water (at 4◦C)atmospheres 29.92 inches of mercury (at 0◦C)atmospheres 1.033228 kg/sq cmatmospheres 10,332 kg/sq meteratmospheres 760.0 millimeters of mercuryatmospheres 14.696 pounds/square inchatmospheres 1.058 tons/sq footavograms 1.66036 × 10−24 gramsbags, cement 94 pounds of cementbarleycorns (British) 1/3 inchesbarleycorns (British) 8.467 × 10−3 metersbarrels (British, dry) 5.780 cubic feetbarrels (British, dry) 0.1637 cubic metersbarrels (British, dry) 36 gallons (British)barrels, cement 170.6 kilogramsbarrels, cement 376 pounds of cementbarrels, cranberry 3.371 cubic feetbarrels, cranberry 0.09547 cubic metersbarrels, oil 5.615 cubic feetbarrels, oil 0.1590 cubic metersbarrels, oil 42 gallons (U.S.)barrels, (U.S., dry) 4.083 cubic feetbarrels (U.S., dry) 7056 cubic inchesbarrels (U.S., dry) 0.11562 cubic metersbarrels (U.S., dry) 105.0 quarts (dry)barrels (U.S., liquid) 4.211 cubic feetbarrels (U.S., liquid) 0.1192 cubic metersbarrels (U.S., liquid) 31.5 gallons (U.S.)

Page 4: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

918 L. K. Wang

Multiply by to obtain

bars 0.98692 atmospheresbars 106 dynes/sq cmbars 1.0197 × 104 kg/sq meterbars 1000 millibarbars 750.06 mm of Hg (0◦C)

bars 2089 pounds/sq ftbars 14.504 pounds/sq inbarye 1.000 dynes/sq cmboard feet 1/12 cubic feetboard feet 144 sq.in. × 1 in. cubic inchesboiler horsepower 33,475 BTU (mean)/hourboiler horsepower 34.5 pounds of water evaporated from and

at 212◦F (per hour)bolts (U.S., cloth) 120 linear feetbolts (U.S., cloth) 36.576 metersbougie decimales 1 candles (int)BTU (mean) 251.98 calories, gram (g. cal)BTU (mean) 0.55556 centigrade heat units (chu)BTU (mean) 1.0548 × 1010 ergsBTU (mean) 777.98 foot-poundsBTU (mean) 3.931 × 10−4 horsepower-hrs (hp-hr)BTU (mean) 1055 joules (abs)BTU (mean) 0.25198 kilograms, cal (kg cal)BTU (mean) 107.565 kilogram-metersBTU (mean) 2.928 × 10−4 kilowatt-hr (Kwh)BTU (mean) 10.409 liter-atmBTU (mean) 6.876 × 10−5 pounds of carbon to CO2BTU (mean) 0.29305 watt-hoursBTU (mean)/cu ft 37.30 joule/literBTU/hour 0.2162 foot-pound/secBTU/hour 0.0700 gram-cal/secBTU/hour 3.929 × 10−4 horsepower-hours (hp-hr)BTU/hour 0.2930711 watt (w)BTU/hour (feet)◦F 1.730735 joule/sec (m)◦kBTU/hour (feet2) 3.15459 joule/m2-secBTU (mean)/hour(feet2)◦F 1.3562 × 10−4 gram-calorie/second (cm2)◦CBTU (mean)/hour(feet2)◦F 3.94 × 10−4 horsepower/(ft2)◦FBTU (mean)/hour(feet2)◦F 5.678264 joule/sec (m2)◦kBTU (mean)/hour(feet2)◦F 4.882 kilogram-calorie/hr (m2)◦CBTU (mean)/hour(feet2)◦F 5.682 × 10−4 watts/(cm2)◦CBTU (mean)/hour(feet2)◦F 2.035 × 10−3 watts/(in2)◦CBTU (mean)/(hour)(feet2) (◦F/inch) 3.4448 × 10−4 calories, gram

(15◦C)/sec (cm2) (◦C/cm)

BTU (mean)/(hour)(feet2) (◦F/in.) 1 chu/(hr)(ft2)(◦C/in)

Page 5: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 919

Multiply by to obtain

BTU (mean)/(hour)(feet2) (◦F/inch) 1.442 × 10−3 joules (abs)/(sec)(cm2) (◦C/cm)

BTU (mean)/(hour)(feet2) (◦F/inch) 1.442 × 10−3 watts/(cm2) (◦C/cm)

BTU/min 12.96 ft lb/secBTU/min 0.02356 hpBTU/min 0.01757 kwBTU/min 17.57 wattsBTU/min/ft2 0.1221 watts/sq inchBTU/pound 0.5556 calories-gram(mean)/gramBTU/pound 0.555 kg-cal/kgBTU/pound/◦F 1 calories, gram/gram/◦CBTU/pound/◦F 4186.8 joule/kg/◦kBTU/second 1054.350 watt (W)buckets (British, dry) 1.818 × 104 cubic cmbuckets (British, dry) 4 gallons (British)bushels (British) 1.03205 bushels (U.S.)bushels (British) 1.2843 cubic feetbushels (British) 0.03637 cubic metersbushels (U.S.) 1.2444 cubic feetbushels (U.S.) 2150.4 cubic inchbushels (U.S.) 0.035239 cubic metersbushels (U.S.) 35.24 liters (L)bushels (U.S.) 4 pecks (U.S.)bushels (U.S.) 64 pints (dry)bushels (U.S.) 32 quarts (dry)butts (British) 20.2285 cubic feetbutts (British) 126 gallons (British)cable lengths 720 feetcable lengths 219.46 meterscalories (thermochemical) 0.999346 calories (Int. Steam Tables)calories, gram (g. cal or simply cal.) 3.9685 × 10−3 BTU (mean)calories, gram (mean) 0.001459 cubic feet atmospherescalories, gram (mean) 4.186 × 107 ergscalories, gram (mean) 3.0874 foot-poundscalories, gram (mean) 4.186 joules (abs)calories, gram (mean) 0.001 kg cal (calories, kilogram)calories, gram (mean) 0.42685 kilograms-meterscalories, gram (mean) 0.0011628 watt-hourscalories, gram (mean)/gram 1.8 BTU (mean)/poundcal/gram-◦C 4186.8 joule/kg-◦kcandle power (spherical) 12.566 lumenscandles (int) 0.104 carcel unitscandles (int) 1.11 hefner unitscandles (int) 1 lumens (int)/steradiancandles (int)/square centimeter 2919 foot-lamberts

Page 6: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

920 L. K. Wang

Multiply by to obtain

candles (int)/square centimeter 3.1416 lambertscandles (int)/square foot 3.1416 foot-lambertscandles (int)/square foot 3.382 × 10−3 lambertscandles (int)/square inch 452.4 foot-lambertscandles (int)/square inch 0.4870 lambertscandles (int)/square inch 0.155 stilbcarats (metric) 3.0865 grainscarats (metric) 0.2 gramscentals 100 poundscentares (centiares) 1.0 sq meterscentigrade heat units (chu) 1.8 BTUcentigrade heat units (chu) 453.6 calories, gram (15◦C)

centigrade heat units (chu) 1897.8 joules (abs)centigrams 0.01 gramscentiliters 0.01 literscentimeters 0.0328083 feet (U.S.)centimeters 0.3937 inches (U.S.)centimeters 0.01 meterscentimeters 6.214 × 10−6 milescentimeters 10 millimeterscentimeters 393.7 milscentimeters 0.01094 yardscm of mercury 0.01316 atmcm of mercury 0.4461 ft of watercm of mercury 136.0 kg/square metercm of mercury 1333.22 newton/meter2 (N/m2)

cm of mercury 27.85 psfcm of mercury 0.1934 psicm of water (4◦C) 98.0638 newton/meter2 (N/m2)

centimeters-dynes 1.020 × 10−3 centimeter-gramscentimeter-dynes 1.020 × 10−8 meter-kilogramscentimeter-dynes 7.376 × 10−8 pound-feetcentimeter-grams 980.7 centimeter-dynescentimeter-grams 10−5 meter-kilogramscentimeter-grams 7.233 × 10−5 pound-feetcentimeters/second 1.969 fpm (ft/min)centimeters/second 0.0328 fps (ft/sec)centimeters/second 0.036 kilometers/hourcentimeters/second 0.1943 knotscentimeters/second 0.6 m/mincentimeters/second 0.02237 miles/hourcentimeters/second 3.728 × 10−4 miles/minutecms/sec./sec. 0.03281 feet/sec/seccms/sec./sec. 0.036 kms/hour/sec

Page 7: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 921

Multiply by to obtain

cms/sec./sec. 0.02237 miles/hour/seccentipoises 3.60 kilograms/meter hourcentipoises 10−3 kilograms/meter secondcentipoises 0.001 newton-sec/m2

centipoises 2.089 × 10−5 pound force second/square footcentipoises 2.42 pounds/foot hourcentipoises 6.72 × 10−4 pounds/foot secondcentistoke 1.0 × 10−6 meter2/secchains (engineers’ or Ramden’s) 100 feetchains (engineers’ or Ramden’s) 30.48 meterschains (surveyors’ or Gunter’s) 66 feetchains (surveyors’ or Gunter’s) 20.12 meterschaldrons (British) 32 bushels (British)chaldrons (U.S.) 36 bushels (U.S.)cheval-vapours 0.9863 horsepowercheval-vapours 735.5 watts (abs)cheval-vapours heures 2.648 × 106 joules (abs)chu/(hr)(ft2)(◦C/in.) 1 BTU/(hr)(ft2)(◦F/in.)

circular inches 0.7854 square inchescircular millimeters 7.854 × 10−7 square meterscircular mils 5.067 × 10−6 square centimeterscircular mils 7.854 × 10−7 square inchescircular mils 0.7854 square milscircumferences 360 degreescircumferences 400 gradescircumferences 6.283 radianscloves 8 poundscoombs (British) 4 bushels (British)cords 8 cord feetcords 8′ × 4′ × 4′ cubic feetcords 128 cubic feetcords 3.625 cubic meterscord-feet 4′ × 4′ × 1′ cubic feetcoulombs (abs) 0.1 abcoulombscoulombs (abs) 6.281 × 1018 electronic chargescoulombs (abs) 2.998 × 109 statcoulombscoulombs (abs) 1.036 × 10−5 faradayscoulombs/sq cm 64.52 coulombs/sq incoulombs/sq cm 104 coulombs/sq metercoulombs/sq in 0.1550 coulombs/sq cmcoulombs/sq in 1550 coulombs/sq metercoulombs/sq meter 10−4 coulombs/sq cmcoulombs/sq meter 6.452 × 10−4 coulombs/sq incubic centimeters 3.531445 × 10−5 cubic feet (U.S.)

Page 8: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

922 L. K. Wang

Multiply by to obtain

cubic centimeters 6.102 × 10−2 cubic inchescubic centimeters 10−6 cubic meterscubic centimeters 1.308 × 10−6 cubic yardscubic centimeters 2.6417 × 10−4 gallons (U.S.)cubic centimeters 0.001 literscubic centimeters 0.033814 ounces (U.S., fluid)cubic centimeters 2.113 × 10−3 pints (liq.)cubic centimeters 1.057 × 10−3 quarts (liq.)cubic feet (British) 0.9999916 cubic feet (U.S.)cubic feet (U.S.) 0.8036 bushels (dry)cubic feet (U.S.) 28317.016 cubic centimeterscubic feet (U.S.) 1728 cubic inchescubic feet (U.S.) 0.02832 cubic meterscubic feet (U.S.) 0.0370 cubic yardcubic feet (U.S.) 7.48052 gallons (U.S.)cubic feet (U.S.) 28.31625 literscubic feet (U.S.) 59.84 pints (liq.)cubic feet (U.S.) 29.92 quarts (liq.)cubic feet of common brick 120 poundscubic feet of water (60◦F) 62.37 poundscubic foot-atmospheres 2.7203 BTU (mean)cubic foot-atmospheres 680.74 calories, gram (mean)cubic foot-atmospheres 2116 foot-poundscubic foot-atmospheres 2869 joules (abs)cubic foot-atmospheres 292.6 kilogram-meterscubic foot-atmospheres 7.968 × 10−4 kilowatt-hourscubic feet/hr 0.02832 m3/hrcubic feet/minute 472.0 cubic cm/seccubic feet/minute 1.6992 cu m/hrcubic feet/minute 0.0283 cu m/mincubic feet/minute 0.1247 gallons/seccubic feet/minute 0.472 liter/seccubic feet/minute 62.4 lbs of water/mincubic feet/min/1000 cu ft 0.01667 liter/sec/cu mcubic feet/second 1.9834 acre-feet/daycubic feet/second 1.7 cu m/mincubic feet/second 0.02832 m3/seccubic feet/second 448.83 gallons/minutecubic feet/second 1699 liter/mincubic feet/second 28.32 liters/seccubic feet/second (cfs) 0.64632 million gallons/day (MGD)cfs/acre 0.07 m3/sec-hacfs/acre 4.2 cu m/min/hacfs/sq mile 0.657 cu m/min/sq km

Page 9: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 923

Multiply by to obtain

cubic inches (U.S.) 16.387162 cubic centimeterscubic inches (U.S.) 5.787 × 10−4 cubic feetcubic inches (U.S.) 1.0000084 cubic inches (British)cubic inches (U.S.) 1.639 × 10−5 cubic meterscubic inches (U.S.) 2.143 × 10−5 cubic yardscubic inches (U.S.) 4.329 × 10−3 gallons (U.S.)cubic inches (U.S.) 1.639 × 10−2 literscubic inches (U.S.) 16.39 mLcubic inches (U.S.) 0.55411 ounces (U.S., fluid)cubic inches (U.S.) 0.03463 pints (liq.)cubic inches (U.S.) 0.01732 quarts (liq.)cubic meters 8.1074 × 10−4 acre-feetcubic meters 8.387 barrels (U.S., liquid)cubic meters 28.38 bushels (dry)cubic meters 106 cubic centimeterscubic meters 35.314 cubic feet (U.S.)cubic meters 61,023 cubic inches (U.S.)cubic meters 1.308 cubic yards (U.S.)cubic meters 264.17 gallons (U.S.)cubic meters 1000 literscubic meters 2113 pints (liq.)cubic meters (m3) 1057 quarts (liq.)cubic meters/day 0.183 gallons/mincubic meters/ha 106.9 gallons/acrecubic meters/hour 0.2272 gallons/minutecubic meters/meter-day 80.53 gpd/ftcubic meters/minute 35.314 cubic ft/minutecubic meters/second 35.314 cubic ft/seccubic meters/second 22.82 MGDcubic meters/sec-ha 14.29 cu ft/sec-acrecubic meters/meters2-day 24.54 gpd/ft2

cubic yards (British) 0.9999916 cubic yards (U.S.)cubic yards (British) 0.76455 cubic meterscubic yards (U.S.) 7.646 × 105 cubic centimeterscubic yards (U.S.) 27 cubic feet (U.S.)cubic yards (U.S.) 46,656 cubic inchescubic yards (U.S.) 0.76456 cubic meterscubic yards (U.S.) 202.0 gallons (U.S.)cubic yards (U.S.) 764.6 literscubic yards (U.S.) 1616 pints (liq.)cubic yards (U.S.) 807.9 quarts (liq.)cubic yards of sand 2700 poundscubic yards/minute 0.45 cubic feet/secondcubic yards/minute 3.367 gallons/second

Page 10: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

924 L. K. Wang

Multiply by to obtain

cubic yards/minute 12.74 liters/secondcubits 45.720 centimeterscubits 1.5 feetdalton 1.65 × 10−24 gramdays 1440 minutesdays 86,400 secondsdays (sidereal) 86164 seconds (mean solar)debye units (dipole moment) 1018 electrostatic unitsdecigrams 0.1 gramsdeciliters 0.1 litersdecimeters 0.1 metersdegrees (angle) 60 minutesdegrees (angle) 0.01111 quadrantsdegrees (angle) 0.01745 radiansdegrees (angle) 3600 secondsdegrees/second 0.01745 radians/secondsdegrees/second 0.1667 revolutions/mindegrees/second 0.002778 revoltuions/secdegree Celsius ◦F = (◦C × 9/5) + 32 Fahrenheitdegree Celsius ◦K = ◦C + 273.15 Kelvindegree Fahrenheit ◦C = (◦F − 32) × 5/9 Celsiusdegree Fahrenheit ◦K = (◦F + 459.67)/1.8 Kelvindegree Rankine ◦K = ◦R/1.8 Kelvindekagrams 10 gramsdekaliters 10 litersdekameters 10 metersdrachms (British, fluid) 3.5516 × 10−6 cubic metersdrachms (British, fluid) 0.125 ounces (British, fluid)drams (apothecaries’ or troy) 0.1371429 ounces (avoirdupois)drams (apothecaries’ or troy) 0.125 ounces (troy)drams (U.S., fluid or apoth.) 3.6967 cubic cmdrams (avoirdupois) 1.771845 gramsdrams (avoirdupois) 27.3437 grainsdrams (avoirdupois) 0.0625 ouncesdrams (avoirdupois) 0.00390625 pounds (avoirdupois)drams (troy) 2.1943 drams (avoirdupois)drams (troy) 60 grainsdrams (troy) 3.8879351 gramsdrams (troy) 0.125 ounces (troy)drams (U.S., fluid) 3.6967 × 10−6 cubic metersdrams (U.S., fluid) 0.125 ounces (fluid)dynes 0.00101972 grams

Page 11: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 925

Multiply by to obtain

dynes 10−7 joules/cmdynes 10−5 joules/meter (newtons)dynes 1.020 × 10−6 kilogramsdynes 1 × 10−5 newton (N)dynes 7.233 × 10−5 poundalsdynes 2.24809 × 10−6 poundsdyne-centimeters (torque) 7.3756 × 10−8 pound-feetdynes/centimeter 1 ergs/square centimeterdynes/centimeter 0.01 ergs/square millimeterdynes/square centimeter 9.8692 × 10−7 atmospheresdynes/square centimeter 10−6 barsdynes/square centimeter 2.953 × 10−5 inch of mercury at 0◦Cdynes/square centimeter 4.015 × 10−4 inch of water at 4◦Cdynes/square centimeter 0.01020 kilograms/square meterdynes/square centimeter 0.1 newtons/square meterdynes/square centimeter 1.450 × 10−5 pounds/square inchelectromagnetic fps units of

magnetic permeability0.0010764 electromagnetic cgs units of

magnetic permeabilityelectromagnetic fps units of

magnetic permeability1.03382 × 10−18 electrostatic cgs units of

magnetic permeabilityelectromagnetic cgs units, of

magnetic permeability1.1128 × 10−21 electrostatic cgs units of

magnetic permeabilityelectromagnetic cgs units of

mass resistance9.9948 × 10−6 ohms (int)-meter-gram

electronic charges 1.5921 × 10−19 coulombs (abs)electron-volts 1.6020 × 10−12 ergselectron-volts 1.0737 × 10−9 mass unitselectron-volts 0.07386 rydberg units of energyelectronstatic cgs units of

Hall effect2.6962 × 1031 electromagnetic cgs units of Hall

effectelectrostatic fps units of

charge1.1952 × 10−6 coulombs (abs)

electrostatic fps units ofmagnetic permeability

929.03 electrostatic cgs units ofmagnetic permeability

ells 114.30 centimetersells 45 inchesems, pica (printing) 0.42333 centimetersems, pica (printing) 1/6 inchesergs 9.4805 × 10−11 BTU (mean)ergs 2.3889 × 10−8 calories, gram (mean)ergs 1 dyne-centimetersergs 7.3756 × 10−8 foot-poundsergs 0.2389 × 10−7 gram-caloriesergs 1.020 × 10−3 gram-centimeters

Page 12: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

926 L. K. Wang

Multiply by to obtain

ergs 3.7250 × 10−14 horsepower-hrsergs 10−7 joules (abs)ergs 2.390 × 10−11 kilogram-calories (kg cal)ergs 1.01972 × 10−8 kilogram-metersergs 0.2778 × 10−13 kilowatt-hrsergs 0.2778 × 10−10 watt-hoursergs/second 5.692 × 10−9 BTU/minergs/second 4.426 × 10−6 foot-pounds/minergs/second 7.376 × 10−8 foot-pounds/secergs/second 1.341 × 10−10 horsepowerergs/second 1.434 × 10−9 kg-calories/minergs/second 10−10 kilowattsfarad (international of 1948) 0.9995 farad (F)faradays 26.80 ampere-hoursfaradays 96,500 coulombs (abs)faradays/second 96,500 amperes (abs)farads (abs) 10−9 abfaradsfarads (abs) 106 microfaradsfarads (abs) 8.9877 × 1011 statfaradsfathoms 6 feetfathom 1.829 meterfeet (U.S.) 1.0000028 feet (British)feet (U.S.) 30.4801 centimetersfeet (U.S.) 12 inchesfeet (U.S.) 3.048 × 10−4 kilometersfeet (U.S.) 0.30480 metersfeet (U.S.) 1.645 × 10−4 miles (naut.)feet (U.S.) 1.893939 × 10−4 miles (statute)feet (U.S.) 304.8 millimetersfeet (U.S.) 1.2 × 104 milsfeet (U.S.) 1/3 yardsfeet of air (1 atmosphere, 60◦F) 5.30 × 10−4 pounds/square inchfeet of water 0.02950 atmfeet of water 0.8826 inches of mercuryfeet of water at 39.2◦F 0.030479 kilograms/square centimeterfeet of water at 39.2◦F 2988.98 newton/meter2 (N/m2)

feet of water at 39.2◦F 304.79 kilograms/square meterfeet of water 62.43 pounds/square feet (psf)feet of water at 39.2◦F 0.43352 pounds/square inch (psi)feet/hour 0.08467 mm/secfeet/min 0.5080 cms/secfeet/min 0.01667 feet/secfeet/min 0.01829 km/hrfeet/min 0.3048 meters/min

Page 13: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 927

Multiply by to obtain

feet/min 0.01136 miles/hrfeet/sec 30.48 cm/secfeet/sec 1.097 km/hrfeet/sec 0.5921 knotsfeet/sec 18.29 meters/minfeet/sec 0.6818 miles/hrfeet/sec 0.01136 miles/minfeet/sec/sec 30.48 cm/sec/secfeet/sec/sec 1.097 km/hr/secfeet/sec/sec 0.3048 meters/sec/secfeet/sec/sec 0.6818 miles/hr/secfeet/100 feet 1.0 percent gradefirkins (British) 9 gallons (British)firkins (U.S.) 9 gallons (U.S.)foot-candle (ft-c) 10.764 lumen/sq mfoot-poundals 3.9951 × 10−5 BTU (mean)foot-poundals 0.0421420 joules (abs)foot-pounds 0.0012854 BTU (mean)foot-pounds 0.32389 calories, gram (mean)foot-pounds 1.13558 × 107 ergsfoot-pounds 32.174 foot-poundalsfoot-pounds 5.050 × 10−7 hp-hrfoot-pounds 1.35582 joules (abs)foot-pounds 3.241 × 10−4 kilogram-caloriesfoot-pounds 0.138255 kilogram-metersfoot-pounds 3.766 × 10−7 kwhfoot-pounds 0.013381 liter-atmospheresfoot-pounds 3.7662 × 10−4 watt-hours (abs)foot-pounds/minute 1.286 × 10−3 BTU/minutefoot-pounds/minute 0.01667 foot-pounds/secfoot-pounds/minute 3.030 × 10−5 hpfoot-pounds/minute 3.241 × 10−4 kg-calories/minfoot-pounds/minute 2.260 × 10−5 kwfoot-pounds/second 4.6275 BTU (mean)/hourfoot-pounds/second 0.07717 BTU/minutefoot-pounds/second 0.0018182 horsepowerfoot-pounds/second 0.01945 kg-calories/minfoot-pounds/second 0.001356 kilowattsfoot-pounds/second 1.35582 watts (abs)furlongs 660.0 feetfurlongs 201.17 metersfurlongs 0.125 miles (U.S.)furlongs 40.0 rodsgallons (Br.) 3.8125 × 10−2 barrels (U.S.)

Page 14: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

928 L. K. Wang

Multiply by to obtain

gallons (Br.) 4516.086 cubic centimetersgallons (Br.) 0.16053 cu ftgallons (Br.) 277.4 cu inchesgallons (Br.) 1230 drams (U.S. fluid)gallons (Br.) 4.54596 litersgallons (Br.) 7.9620 × 104 minims (Br.)gallons (Br.) 7.3783 × 104 minims (U.S.)gallons (Br.) 4545.96 mLgallons (Br.) 1.20094 gallons (U.S.)gallons (Br.) 160 ounces (Br., fl.)gallons (Br.) 153.72 ounces (U.S., fl.)gallons (Br.) 10 pounds (avoirdupois) of

water at 62◦Fgallons (U.S.) 3.068 × 10−4 acre-ftgallons (U.S.) 0.031746 barrels (U.S.)gallons (U.S.) 3785.434 cubic centimetersgallons (U.S.) 0.13368 cubic feet (U.S.)gallons (U.S.) 231 cubic inchesgallons (U.S.) 3.785 × 10−3 cubic metersgallons (U.S.) 4.951 × 10−3 cubic yardsgallons (U.S.) 1024 drams (U.S., fluid)gallons (U.S.) 0.83268 gallons (Br.)gallons (U.S.) 0.83267 imperial galgallons (U.S.) 3.78533 litersgallons (U.S.) 6.3950 × 104 minims (Br.)gallons (U.S.) 6.1440 × 104 minims (U.S.)gallons (U.S.) 3785 mLgallons (U.S.) 133.23 ounces (Br., fluid)gallons (U.S.) 128 ounces (U.S., fluid)gallons 8 pints (liq.)gallons 4 quarts (liq.)gal water (U.S.) 8.345 lb of watergallons/acre 0.00935 cu m/hagallons/day 4.381 × 10−5 liters/secgpd/acre 0.00935 cu m/day/hagpd/acre 9.353 liter/day/hagallons/capita/day 3.785 liters/capita/daygpd/cu yd 5.0 L/day/cu mgpd/ft 0.01242 cu m/day/mgpd/sq ft 0.0408 cu m/day/sq mgpd/sq ft 1.698 × 10−5 cubic meters/hour/sq metergpd/sq ft 0.283 cu meter/minute/hagpm (gal/min) 8.0208 cfh (cu ft/hr)gpm 2.228 × 10−3 cfs (cu ft/sec)

Page 15: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 929

Multiply by to obtain

gpm 4.4021 cubic meters/hrgpm 0.00144 MGDgpm 0.0631 liters/secgpm/sq ft 2.445 cu meters/hour/sq metergpm/sq ft 40.7 L/min/sq metergpm/sq ft 0.679 liter/sec/sq metergallons/sq ft 40.743 liters/sq metergausses (abs) 3.3358 × 10−4 electrostatic cgs units of

magnetic flux densitygausses (abs) 0.99966 gausses (int)gausses (abs) 1 lines/square centimetergausses (abs) 6.452 lines/sq ingausses (abs) 1 maxwells (abs)/square centimetersgausses (abs) 6.4516 maxwells (abs)/square inchgausses (abs) 10−8 webers/sq cmgausses (abs) 6.452 × 10−8 webers/sq ingausses (abs) 10−4 webers/sq metergilberts (abs) 0.07958 abampere turnsgilberts (abs) 0.7958 ampere turnsgilberts (abs) 2.998 × 1010 electrostatic cgs units of magneto

motive forcegilberts/cm 0.7958 amp-turns/cmgilberts/cm 2.021 amp-turns/ingilberts/cm 79.58 amp-turns/metergills (Br.) 142.07 cubic cmgills (Br.) 5 ounces (British, fluid)gills (U.S.) 32 drams (fluid)gills 0.1183 litersgills 0.25 pints (liq.)grade 0.01571 radiangrains 0.036571 drams (avoirdupois)grains 0.01667 drams (troy)grains (troy) 1.216 grains (avdp)grains (troy) 0.06480 gramsgrains (troy) 6.480 × 10−5 kilogramsgrains (troy) 64.799 milligramsgrains (troy) 2.286 × 10−3 ounces (avdp)grains (troy) 2.0833 × 10−3 ounces (troy)grains (troy) 0.04167 pennyweights (troy)grains 1/7000 pounds (avoirdupois)grains 1.736 × 10−4 pounds (troy)grains 6.377 × 10−8 tons (long)grains 7.142 × 10−8 tons (short)grains/imp gal 14.254 mg/L

Page 16: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

930 L. K. Wang

Multiply by to obtain

grains/imp. gal 14.254 parts/million (ppm)grains/U.S. gal 17.118 mg/Lgrains/U.S. gal 17.118 parts/million (ppm)grains/U.S. gal 142.86 lb/mil galgrams 0.5611 drams (avdp)grams 0.25721 drams (troy)grams 980.7 dynesgrams 15.43 grainsgrams 9.807 × 10−5 joules/cmgrams 9.807 × 10−3 joules/meter (newtons)grams 10−3 kilogramsgrams 103 milligramsgrams 0.0353 ounces (avdp)grams 0.03215 ounces (troy)grams 0.07093 poundalsgrams 2.205 × 10−3 poundsgrams 2.679 × 10−3 pounds (troy)grams 9.842 × 10−7 tons (long)grams 1.102 × 10−6 tons (short)grams-calories 4.1868 × 107 ergsgram-calories 3.0880 foot-poundsgram-calories 1.5597 × 10−6 horsepower-hrgram-calories 1.1630 × 10−6 kilowatt-hrgram-calories 1.1630 × 10−3 watt-hrgram-calories 3.968 × 10−3 British Thermal Units (BTU)gram-calories/sec 14.286 BTU/hrgram-centimeters 9.2967 × 10−8 BTU (mean)gram-centimeters 2.3427 × 10−5 calories, gram (mean)gram-centimeters 980.7 ergsgram-centimeters 7.2330 × 10−5 foot-poundsgram-centimeters 9.8067 × 10−5 joules (abs)gram-centimeters 2.344 × 10−8 kilogram-caloriesgram-centimeters 10−5 kilogram-metersgram-centimeters 2.7241 × 10−8 watt-hoursgrams-centimeters2 2.37305 × 10−6 pounds-feet2

(moment of inertia)grams-centimeters2 3.4172 × 10−4 pounds-inch2

(moment of inertia)gram-centimeters/second 1.3151 × 10−7 hpgram-centimeters/second 9.8067 × 10−8 kilowattsgram-centimeters/second 0.065552 lumensgram-centimeters/second 9.80665 × 10−5 watt (abs)grams/cm 5.600 × 10−3 pounds/inchgrams/cu cm 62.428 pounds/cubic footgrams/cu cm 0.03613 pounds/cubic inch

Page 17: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 931

Multiply by to obtain

grams/cu cm 8.3454 pounds/gallon (U.S.)grams/cu cm 3.405 × 10−7 pounds/mil-footgrams/cu ft 35.314 grams/cu metergrams/cu ft 106 micrograms/cu ftgrams/cu ft 35.314 × 106 micrograms/cu metergrams/cu ft 35.3145 × 103 milligrams/cu metergrams/cu ft 2.2046 pounds/1000 cu ftgrams/cu m 0.43700 grains/cubic footgrams/cu m 0.02832 grams/cu ftgrams/cu m 28.317 × 103 micrograms/cu ftgrams/cu m 0.06243 pounds/cu ftgrams/liter 58.417 grains/gallon (U.S.)grams/liter 9.99973 × 10−4 grams/cubic centimetergrams/liter 1000 mg/Lgrams/liter 1000 parts per million (ppm)grams/liter 0.06243 pounds/cubic footgrams/liter 8.345 lb/1000 galgrams/sq centimeter 2.0481 pounds/sq ftgrams/sq centimeter 0.0142234 pounds/square inchgrams/sq ft 10.764 grams/sq metergrams/sq ft 10.764 × 103 kilograms/sq kmgrams/sq ft 1.0764 milligrams/sq cmgrams/sq ft 10.764 × 103 milligrams/sq metergrams/sq ft 96.154 pounds/acregrams/sq ft 2.204 pounds/1000 sq ftgrams/sq ft 30.73 tons/sq milegrams/sq meter 0.0929 grams/sq ftgrams/sq meter 1000 kilograms/sq kmgrams/sq meter 0.1 milligrams/square cmgrams/sq meter 1000 milligrams/sq metergrams/sq meter 8.921 pounds/acregrams/sq meter 0.2048 pounds/1000 sq ftgrams/sq meter 2.855 tons/sq mileg (gravity) 9.80665 meters/sec2

g (gravity) 32.174 ft/sec2

hand 10.16 cmhands 4 incheshectare (ha) 2.471 acrehectares 1.076 × 105 sq feethectograms 100 gramshectoliters 100 litershectometers 100 metershectowatts 100 wattshemispheres 0.5 spheres

Page 18: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

932 L. K. Wang

Multiply by to obtain

hemispheres 4 spherical right angleshemispheres 6.2832 steradianshenries (abs) 109 abhenrieshenries 1000.0 millihenrieshenries (abs) 1.1126 × 10−12 stathenrieshogsheads (British) 63 gallons (British)hogsheads (British) 10.114 cubic feethogsheads (U.S.) 8.422 cubic feethogsheads (U.S.) 0.2385 cubic metershogsheads (U.S.) 63 gallons (U.S.)horsepower 2545.08 BTU (mean)/hourhorsepower 42.44 BTU/minhorsepower 7.457 × 109 erg/sechorsepower 33,000 ft lb/minhorsepower 550 foot-pounds/secondhorsepower 7.6042 × 106 g cm/sechorsepower, electrical 1.0004 horsepowerhorsepower 10.70 kg.-calories/minhorsepower 0.74570 kilowatts (g = 980.665)

horsepower 498129 lumenshorsepower, continental 736 watts (abs)horsepower, electrical 746 watts (abs)horsepower (boiler) 9.803 kwhorsepower (boiler) 33.479 BTU/hrhorsepower-hours 2545 BTU (mean)horsepower-hours 2.6845 × 1013 ergshorsepower-hours 6.3705 × 107 ft poundalshorsepower-hours 1.98 × 106 foot-poundshorsepower-hours 641,190 gram-calorieshorsepower-hours 2.684 × 106 jouleshorsepower-hours 641.7 kilogram-calorieshorsepower-hours 2.737 × 105 kilogram-metershorsepower-hours 0.7457 kilowatt-hours (abs)horsepower-hours 26,494 liter atmospheres (normal)horsepower-hours 745.7 watt-hourshours 4.167 × 10−2 dayshours 60 minuteshours 3600 secondshours 5.952 × 10−3 weekshundredweights (long) 112 poundshundredweights (long) 0.05 tons (long)hundredweights (short) 1600 ounces (avoirdupois)hundredweights (short) 100 poundshundredweights (short) 0.0453592 tons (metric)

Page 19: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 933

Multiply by to obtain

hundredweights (short) 0.0446429 tons (long)inches (British) 2.540 centimetersinches (U.S.) 2.54000508 centimetersinches (British) 0.9999972 inches (U.S.)inches 2.540 × 10−2 metersinches 1.578 × 10−5 milesinches 25.40 millimetersinches 103 milsinches 2.778 × 10−2 yardsinches2 6.4516 × 10−4 meter2

inches3 1.6387 × 10−5 meter3

in. of mercury 0.0334 atmin. of mercury 1.133 ft of waterin. of mercury (0◦C) 13.609 inches of water (60◦F)

in. of mercury 0.0345 kgs/square cmin. of mercury at 32◦F 345.31 kilograms/square meterin. of mercury 33.35 millibarsin. of mercury 25.40 millimeters of mercuryin. of mercury (60◦F) 3376.85 newton/meter2

in. of mercury 70.73 pounds/square ftin. of mercury at 32◦F 0.4912 pounds/square inchin. of water 0.002458 atmospheresin. of water 0.0736 in. of mercuryin. of water (at 4◦C) 2.540 × 10−3 kgs/sq cmin. of water 25.40 kgs/square meterin. of water (60◦F) 1.8663 millimeters of mercury (0◦C)

in. of water (60◦F) 248.84 newton/meter2

in. of water 0.5781 ounces/square inin. of water 5.204 pounds/square ftin. of water 0.0361 psiinches/hour 2.54 cm/hrinternational ampere .9998 ampere (absolute)international volt 1.0003 volts (absolute)international volt 1.593 × 10−19 joules (absolute)international volt 9.654 × 104 joulesjoules 9.480 × 10−4 BTUjoules (abs) 107 ergsjoules 23.730 foot poundalsjoules (abs) 0.73756 foot-poundsjoules 3.7251 × 10−7 horsepower hoursjoules 2.389 × 10−4 kg-caloriesjoules (abs) 0.101972 kilogram-metersjoules 9.8689 × 10−3 liter atmospheres (normal)joules 2.778 × 10−4 watt-hrs

Page 20: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

934 L. K. Wang

Multiply by to obtain

joules-sec 1.5258 × 1033 quantajoules/cm 1.020 × 104 gramsjoules/cm 107 dynesjoules/cm 100.0 joules/meter (newtons)joules/cm 723.3 poundalsjoules/cm 22.48 poundsjoules/liter 0.02681 BTU/cu ftjoules/m2-sec 0.3167 BTU/ft2-hrjoules/sec 3.41304 BTU/hrjoules/sec 0.056884 BTU/minjoules/sec 1 × 107 erg/secjoules/sec 44.254 ft lb/minjoules/sec 0.73756 ft lb/secjoules/sec 1.0197 × 104 g cm/secjoules/sec 1.341 × 10−3 hpjoules/sec 0.01433 kg cal/minjoules/sec 0.001 kilowattsjoules/sec 668 lumensjoules/sec 1 wattskilograms 564.38 drams (avdp)kilograms 257.21 drams (troy)kilograms 980,665 dyneskilograms 15,432 grainskilograms 1000 gramskilograms 0.09807 joules/cmkilograms 9.807 joules/meter (newtons)kilograms 1 × 106 milligramskilograms 35.274 ounces (avdp)kilograms 32.151 ounces (troy)kilograms 70.93 poundalskilograms 2.20462 pounds (avdp)kilograms 2.6792 pounds (troy)kilograms 9.84207 × 10−4 tons (long)kilograms 0.001 tons (metric)kilograms 0.0011023 tons (short)kilogram-calories 3.968 British Thermal Units (BTU)kilogram-calories 3086 foot-poundskilogram-calories 1.558 × 10−3 horsepower-hourskilogram-calories 4186 jouleskilogram-calories 426.6 kilogram-meterskilogram-calories 4.186 kilojouleskilogram-calories 1.162 × 10−3 kilowatt-hourskg-cal/min 238.11 BTU/hrkg-cal/min 3.9685 BTU/min

Page 21: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 935

Multiply by to obtain

kg-cal/min 6.9770 × 108 erg/seckg-cal/min 3087.4 ft-lb/minkg-cal/min 51.457 ft-lb/seckg-cal/min 7.1146 × 105 g cm/seckg-cal/min 0.0936 hpkg-cal/min 69.769 joules/seckg-cal/min 0.0698 kwkg-cal/min 46636 lumenskg-cal/min 69.767 wattskgs-cms. squared 2.373 × 10−3 pounds-feet squaredkgs-cms. squared 0.3417 pounds-inches squaredkilogram-force (kgf) 9.80665 newtonkilogram-meters 0.0092967 BTU (mean)kilogram-meters 2.3427 calories, gram (mean)kilogram-meters 9.80665 × 107 ergskilogram-meters 232.71 ft poundalskilogram-meters 7.2330 foot-poundskilogram-meters 3.6529 × 10−6 horsepower-hourskilogram-meters 9.80665 joules (abs)kilogram-meters 2.344 × 10−3 kilogram-calorieskilogram-meters 2.52407 × 10−6 kilowatt-hours (abs)kilogram-meters 2.7241 × 10−6 kilowatt-hourskilogram-meters 0.096781 liter atmospheres (normal)kilogram-meters 6.392 × 10−7 pounds carbon to CO2

kilogram-meters 9.579 × 10−6 pounds water evap. at 212◦Fkilograms/cubic meter 10−3 grams/cubic cmkilograms/cubic meter 0.06243 pounds/cubic footkilograms/cubic meter 3.613 × 10−5 pounds/cubic inchkilograms/cubic meter 3.405 × 10−10 pounds/mil. footkilograms/m3-day 0.0624 lb/cu ft-daykilograms/cu meter-day 62.43 pounds/1000 cu ft-daykilograms/ha 0.8921 pounds/acrekilograms/meter 0.6720 pounds/footkilograms/sq cm 980,665 dyneskilograms/sq cm 0.96784 atmospherekilograms/sq cm 32.81 feet of waterkilograms/sq cm 28.96 inches of mercurykilograms/sq cm 735.56 mm of mercurykilograms/sq cm 2048 pounds/sq ftkilograms/sq cm 14.22 pounds/square inchkilograms/sq km 92.9 × 10−6 grams/sq ftkilograms/sq km 0.001 grams/sq meterkilograms/sq km 0.0001 milligrams/sq cmkilograms/sq km 1.0 milligrams/sq meter

Page 22: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

936 L. K. Wang

Multiply by to obtain

kilograms/sq km 8.921 × 10−3 pounds/acrekilograms/sq km 204.8 × 10−6 pounds/1000sq ftkilograms/sq km 2.855 × 10−3 tons/sq milekilograms/sq meter 9.6784 × 10−5 atmosphereskilograms/sq meter 98.07 × 10−6 barskilograms/sq meter 98.0665 dynes/sq centimeterskilograms/sq meter 3.281 × 10−3 feet of water at 39.2◦Fkilograms/sq meter 0.1 grams/sq centimeterskilograms/sq meter 2.896 × 10−3 inches of mercury at 32◦Fkilograms/sq meter 0.07356 mm of mercury at 0◦Ckilograms/sq meter 0.2048 pounds/square footkilograms/sq meter 0.00142234 pounds/square inchkilograms/sq mm. 106 kg/square meterkilojoule 0.947 BTUkilojoules/kilogram 0.4295 BTU/poundkilolines 1000.0 maxwellskiloliters 103 literskilometers 105 centimeterskilometers 3281 feetkilometers 3.937 × 104 incheskilometers 103 meterskilometers 0.53961 miles (nautical)kilometers 0.6214 miles (statute)kilometers 106 millimeterskilometers 1093.6 yardskilometers/hr 27.78 cm/seckilometers/hr 54.68 feet/minutekilometers/hr 0.9113 ft/seckilometers/hr 0.5396 knotkilometers/hr 16.67 meters/minutekilometers/hr 0.2778 meters/seckilometers/hr 0.6214 miles/hourkilometers/hour/sec 27.78 cms/sec/seckilometers/hour/sec 0.9113 ft/sec/seckilometers/hour/sec 0.2778 meters/sec/seckilometers/hour/sec 0.6214 miles/hr/seckilometers/min 60 kilometers/hourkilonewtons/sq m 0.145 psikilowatts 56.88 BTU/minkilowatts 4.425 × 104 foot-pounds/minkilowatts 737.6 ft-lb/seckilowatts 1.341 horsepowerkilowatts 14.34 kg-cal/minkilowatts 103 watts

Page 23: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 937

Multiply by to obtain

kilowatt-hrs 3413 BTU (mean)kilowatt-hrs 3.600 × 1013 ergskilowatt-hrs 2.6552 × 106 foot-poundskilowatt-hrs 859,850 gram-calorieskilowatt-hrs 1.341 horsepower hourskilowatt-hrs 3.6 × 106 jouleskilowatt-hrs 860.5 kg-calorieskilowatt-hrs 3.6709 × 105 kilogram-meterskilowatt-hrs 3.53 pounds of water evaporated from

from and at 212◦Fkilowatt-hrs 22.75 pounds of water raised

from 62◦ to 212◦Fknots 6080 feet/hrknots 1.689 feet/secknots 1.8532 kilometers/hrknots 0.5144 meters/secknots 1.0 miles (nautical)/hourknots 1.151 miles (statute)/hourknots 2,027 yards/hrlambert 2.054 candle/in2

lambert 929 footlambertlambert 0.3183 stilblangley 1 15◦ gram-calorie/cm2

langley 3.6855 BTU/ft2

langley 0.011624 Int. kw-hr/m2

langley 4.1855 joules (abs)/cm2

leagues (nautical) 3 miles (nautical)leagues (statute) 3 miles (statute)light years 63,274 astronomical unitslight years 9.4599 × 1012 kilometerslight years 5.8781 × 1012 mileslignes (Paris lines) 1/12 ponces (Paris inches)lines/sq cm 1.0 gausseslines/sq in 0.1550 gausseslines/sq in 1.550 × 10−9 webers/sq cmlines/sq in 10−8 webers/sq inlines/sq in 1.550 × 10−5 webers/sq meterlinks (engineer’s) 12.0 incheslinks (Gunter’s) 0.01 chains (Gunter’s)links (Gunter’s) 0.66 feetlinks (Ramden’s) 0.01 chains (Ramden’s)links (Ramden’s) 1 feetlinks (surveyor’s) 7.92 inchesliters 8.387 × 10−3 barrels (U.S.)

Page 24: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

938 L. K. Wang

Multiply by to obtain

liters 0.02838 bushels (U.S. dry)liters 1000.028 cubic centimetersliters 0.035316 cubic feetliters 61.025 cu inchesliters 10−3 cubic metersliters 1.308 × 10−3 cubic yardsliters 270.5179 drams (U.S. fl)liters 0.21998 gallons (Br.)liters 0.26417762 gallons (U.S.)liters 16,894 minims (Br.)liters 16,231 minims (U.S.)liters 35.196 ounces (Br. fl)liters 33.8147 ounces (U.S. fl)liters 2.113 pints (liq.)liters 1.0566828 quarts (U.S. liq.)liter-atmospheres (normal) 0.096064 BTU (mean)liter-atmospheres (normal) 24.206 calories, gram (mean)liter-atmospheres (normal) 1.0133 × 109 ergsliter-atmospheres (normal) 74.735 foot-poundsliter-atmospheres (normal) 3.7745 × 10−5 horsepower hoursliter-atmospheres (normal) 101.33 joules (abs)liter-atmospheres (normal) 10.33 kilogram-metersliter-atmospheres (normal) 2.4206 × 10−2 kilogram caloriesliter-atmospheres (normal) 2.815 × 10−5 kilowatt-hoursliter/cu m-sec 60.0 cfm/1000 cu ftliters/minute 5.885 × 10−4 cubic feet/secliters/minute 4.403 × 10−3 gallons/secliter/person-day 0.264 gpcdliters/sec 2.119 cu ft /minliters/sec 3.5316 × 10−2 cu ft /secliters/sec 15.85 gallons/minuteliters/sec 0.02282 MGDlog10 N 2.303 logeN or ln Nloge N or ln N 0.4343 log10 Nlumens 0.07958 candle-power (spherical)lumens 0.00147 watts of maximum visibility radiationlumens/sq. centimeters 1 lambertslumens/sq cm/steradian 3.1416 lambertslumens/sq ft 1 foot-candleslumens/sq ft 10.764 lumens/sq meterlumens/sq ft/steradian 3.3816 millilambertslumens/sq meter 0.09290 foot-candles or lumens/sqlumens/sq meter 10−4 photslux 0.09290 foot-candles

Page 25: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 939

Multiply by to obtain

lux 1 lumens/sq meterlux 10−4 photsmaxwells 0.001 kilolinesmaxwells 10−8 webersmegajoule 0.3725 horsepower-hourmegalines 106 maxwellsmegohms 1012 microhmsmegohms 106 ohmsmeters 1010 angstrom unitsmeters 100 centimetersmeters 0.5467 fathomsmeters 3.280833 feet (U.S.)meters 39.37 inchesmeters 10−3 kilometersmeters 5.396 × 10−4 miles (naut.)meters 6.2137 × 10−4 miles (statute)meters 103 millimetersmeters 109 millimicronsmeters 1.09361 yards (U.S.)meters 1.179 varasmeter-candles 1 lumens/sq metermeter-kilograms 9.807 × 107 centimeter-dynesmeter-kilograms 105 centimeter-gramsmeter-kilograms 7.233 pound-feetmeters/minute 1.667 centimeters/secmeters/minute 3.281 feet/minutemeters/minute 0.05468 feet/secondmeters/minute 0.06 kilograms/hourmeters/minute 0.03238 knotsmeters/minute 0.03728 miles/hourmeters/second 196.8 feet/minutemeters/second 3.281 feet/secondmeters/second 3.6 kilometers/hourmeters/second 0.06 kilometers/minmeters/second 1.944 knotsmeters/second 2.23693 miles/hourmeters/second 0.03728 miles/minutemeters/sec/sec 100.0 cm/sec/secmeters/sec/sec 3.281 feet/sec/secmeters/sec/sec 3.6 km/hour/secmeters/sec/sec 2.237 miles/hour/secmicrofarad 10−6 faradsmicrograms 10−6 gramsmicrograms/cu ft 10−6 grams/cu ft

Page 26: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

940 L. K. Wang

Multiply by to obtain

micrograms/cu ft 35.314 × 10−6 grams/cu mmicrograms/cu ft 35.314 microgram/cu mmicrograms/cu ft 35.314 × 10−3 milligrams/cu mmicrograms/cu ft 2.2046 × 10−6 pounds/1000 cu ftmicrograms/cu m 28.317 × 10−9 grams/cu ftmicrograms/cu m 10−6 grams/ cu mmicrograms/cu m 0.02832 micrograms/cu ftmicrograms/cu m 0.001 milligrams/cu mmicrograms/cu m 62.43 × 10−9 pounds/1000 cu ft

micrograms/cu m0.02404

molecular weight of gasppm by volume (20◦C)

micrograms/cu m 834.7 × 10−6 ppm by weightmicrograms/liter 1000.0 micrograms/cu mmicrograms/liter 1.0 milligrams/cu mmicrograms/liter 62.43 × 10−9 pounds/cu ft

micrograms/liter24.04

molecular weight of gasppm by volume (20◦C)

micrograms/liter 0.834.7 ppm by weightmicrohms 10−12 megohmsmicrohms 10−6 ohmsmicroliters 10−6 litersmicrons 104 angstrom unitsmicrons 1 × 10−4 centimetersmicrons 3.9370 × 10−5 inchesmicrons 10−6 metersmiles (naut.) 6080.27 feetmiles (naut.) 1.853 kilometersmiles (naut.) 1.853 metersmiles (naut.) 1.1516 miles (statute)miles (naut.) 2027 yardsmiles (statute) 1.609 × 105 centimetersmiles (statute) 5280 feetmiles (statute) 6.336 × 104 inchesmiles (statute) 1.609 kilometersmiles (statute) 1609 metersmiles (statute) 0.8684 miles (naut.)miles (statute) 320 rodsmiles (statute) 1760 yardsmiles/hour 44.7041 centimeter/secondmiles/hour 88 feet/minmiles/hour 1.4667 feet/secmiles/hour 1.6093 kilometers/hourmiles/hour 0.02682 km/min

Page 27: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 941

Multiply by to obtain

miles/hour 0.86839 knotsmiles/hour 26.82 meters/minmiles/hour 0.447 meters/secmiles/hour 0.1667 miles/minmiles/hour/sec 44.70 cms/sec/secmiles/hour/sec 1.4667 ft/sec/secmiles/hour/sec 1.6093 km/hour/secmiles/hour/sec 0.4470 m/sec/secmiles/min 2682 centimeters/secmiles/min 88 ft/secmiles/min 1.609 km/minmiles/min 0.8684 knots/minmiles/min 60 miles/hourmiles-feet 9.425 × 10−6 cu inchesmillibars 0.00987 atmospheresmillibars 0.30 inches of mercurymillibars 0.75 millimeters of mercurymilliers 103 kilogramsmillimicrons 1 × 10−9 metersmilligrams 0.01543236 grainsmilligrams 10−3 gramsmilligrams 10−6 kilogramsmilligrams 3.5274 × 10−5 ounces (avdp)milligrams 2.2046 × 10−6 pounds (avdp)milligrams/assay ton 1 ounces (troy)/ton (short)milligrams/cu m 283.2 × 10−6 grams/cu ftmilligrams/cu m 0.001 grams/cu mmilligrams/cu m 1000.0 micrograms/cu mmilligrams/cu m 28.32 micrograms/cu ftmilligrams/cu m 1.0 micrograms/litermilligrams/cu m 62.43 × 10−6 pounds/1000 cu ft

milligrams/cu m24.04

molecular weight of gasppm by volume (20◦C)

milligrams/cu m 0.8347 ppm by weightmilligrams/joule 5.918 pounds/horsepower-hourmilligrams/liter 0.05841 grains/gallonmilligrams/liter 0.07016 grains/imp. galmilligrams/liter 0.0584 grains/U.S. galmilligrams/liter 1.0 parts/millionmilligrams/liter 8.345 lb/mil galmilligrams/sq cm 0.929 grams/sq ftmilligrams/sq cm 10.0 grams/sq metermilligrams/sq cm 104 kilograms/sq km

Page 28: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

942 L. K. Wang

Multiply by to obtain

milligrams/sq cm 104 milligrams/sq metermilligrams/sq cm 2.048 pounds/1000 sq ftmilligrams/sq cm 89.21 pounds/acremilligrams/sq cm 28.55 tons/sq milemilligrams/sq meter 92.9 × 10−6 grams/sq ftmilligrams/sq meter 0.001 grams/sq metermilligrams/sq meter 1.0 kilograms/sq kmmilligrams/sq meter 0.0001 milligrams/sq cmmilligrams/sq meter 8.921 × 10−3 pounds/acremilligrams/sq meter 204.8 × 10−6 pounds/1000 sq ftmilligrams/sq meter 2.855 × 10−3 tons/sq milemillihenries 0.001 henriesmilliters 1 cubic centimetersmilliliters 3.531 × 10−5 cu ftmilliliters 6.102 × 10−2 cu inmilliliters 10−6 cu mmilliliters 2.642 × 10−4 gal (U.S.)milliliters 10−3 litersmilliliters 0.03381 ounces (U.S. fl)millimeters 0.1 centimetersmillimeters 3.281 × 10−3 feetmillimeters 0.03937 inchesmillimeters 10−6 kilometersmillimeters 0.001 metersmillimeters 6.214 × 10−7 milesmillimeters 39.37 milsmillimeters 1.094 × 10−3 yardsmillimeters of mercury 1.316 × 10−3 atmospheresmillimeters of mercury 0.0394 inches of mercurymillimeters of mercury (0◦C) 0.5358 inches of water (60◦F)

millimeters of mercury 1.3595 × 10−3 kg/sq cmmillimeter of mercury (0◦C) 133.3224 newton/meter2

millimeters of mercury 0.01934 pounds/sq inmillimeters/sec 11.81 feet/hourmillion gallons 306.89 acre-ftmillion gallons 3785.0 cubic metersmillion gallons 3.785 mega liters (1 × 106)

million gallons/day (MGD) 1.547 cu ft/secMGD 3785 cu m/dayMGD 0.0438 cubic meters/secMGD 43.808 liters/secMGD/acre 9360 cu m/day/haMGD/acre 0.039 cu meters/hour/sq meter

Page 29: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 943

Multiply by to obtain

mils 0.002540 centimetersmils 8.333 × 10−5 feetmils 0.001 inchesmils 2.540 × 10−8 kilometersmils 25.40 micronsmils 2.778 × 10−5 yardsminer’s in. 1.5 cu ft/minminer’s inches (Ariz., Calif. 0.025 cubic feet/second

Mont., and Ore.)miner’s in. (Colorado) 0.02604 cubic feet/secondminer’s inches (Idaho, Kan., Neb., Nev., 0.020 cubic feet/second

N. Mex., N. Dak.,S. Dak. and Utah)

minims (British) 0.05919 cubic centimeterminims (U.S.) 0.06161 cubic centimetersminutes (angles) 0.01667 degreesminutes (angles) 1.852 × 10−4 quadrantsminutes (angles) 2.909 × 10−4 radiansminutes (angle) 60 seconds (angle)months (mean calendar) 30.4202 daysmonths (mean calendar) 730.1 hoursmonths (mean calendar) 43805 minutesmonths (mean calendar) 2.6283 × 106 secondsmyriagrams 10 kilogramsmyriameters 10 kilometersmyriawatts 10 kilowattsnepers 8.686 decibelsnewtons 105 dynesnewtons 0.10197 kilogramsnewtons 0.22481 poundsnewtons/sq meter 1.00 pascals (Pa)noggins (British) 1/32 gallons (British)No./cu.cm. 28.316 × 103 No./cu ftNo./cu.cm. 106 No./cu meterNo./cu.cm. 1000.0 No./literNo./cu.ft. 35.314 × 10−6 No./cu cmNo./cu.ft. 35.314 No./cu meterNo./cu.ft. 35.314 × 10−3 No./literNo./cu. meter 10−6 No./cu cmNo./cu. meter 28.317 × 10−3 No./cu ftNo./cu. meter 0.001 No./literNo./liter 0.001 No./cu cmNo./liter 28.316 No./cu ft

Page 30: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

944 L. K. Wang

Multiply by to obtain

No./liter 1000.0 No./cu meteroersteds (abs) 1 electromagnetic cgs units of

magnetizing forceoersteds (abs) 2.9978 × 1010 electrostatic cgs units of

magnetizing forceohms 109 abohmsohms 1.1126 × 10−12 statohmsohms 10−6 megohmsohms 106 microhmsohms (International) 1.0005 ohms (absolute)ounces (avdp) 16 drams (avoirdupois)ounces (avdp) 7.2917 drams (troy)ounces (avdp) 437.5 grainsounces (avdp) 28.349527 gramsounces (avdp) 0.028350 kilogramsounces (avdp) 2.8350 × 104 milligramsounces (avdp) 0.9114583 ounces (troy)ounces (avdp) 0.0625 pounds (avoirdupois)ounces (avdp) 0.075955 pounds (troy)ounces (avdp) 2.790 × 10−5 tons (long)ounces (avdp) 2.835 × 10−5 tons (metric)ounces (avdp) 3.125 × 10−5 tons (short)ounces (Br. fl) 2.3828 × 10−4 barrels (U.S.)ounces (Br. fl) 1.0033 × 10−3 cubic feetounces (Br. fl) 1.73457 cubic inchesounces (Br. fl) 7.6860 drams (U.S. fl)ounces (Br. fl) 6.250 × 10−3 gallons (Br.)ounces (Br. fl) 0.07506 gallons (U.S.)ounces (Br. fl) 2.84121 × 10−2 litersounces (Br. fl) 480 minims (Br.)ounces (Br. fl) 461.160 minims (U.S.)ounces (Br. fl) 28.4121 mLounces (Br. fl) 0.9607 ounces (U.S. fl)ounces (troy) 17.554 drams (avdp)ounces (troy) 8 drams (troy)ounces (troy) 480 grains (troy)ounces (troy) 31.103481 gramsounces (troy) 0.03110 kilogramsounces (troy) 1.09714 ounces (avoirdupois)ounces (troy) 20 pennyweights (troy)ounces (troy) 0.068571 pounds (avdp)ounces (troy) 0.08333 pounds (troy)ounces (troy) 3.061 × 10−5 tons (long)ounces (troy) 3.429 × 10−5 tons (short)

Page 31: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 945

Multiply by to obtain

ounces (U.S. fl) 2.48 × 10−4 barrels (U.S.)ounces (U.S. fl) 29.5737 cubic centimetersounces (U.S. fl) 1.0443 × 10−3 cubic feetounces (U.S. fl) 1.80469 cubic inchesounces (U.S. fl) 8 drams (fluid)ounces (U.S. fl) 6.5053 × 10−3 gallons (Br.)ounces (U.S. fl) 7.8125 × 10−3 gallons (U.S.)ounces (U.S. fl) 29.5729 millilitersounces (U.S. fl) 499.61 minims (Br.)ounces (U.S. fl) 480 minims (U.S.)ounces (U.S. fl) 1.0409 ounces (Br. fl)ounces/sq inch 4309 dynes/sq cmounces/sq. inch 0.0625 pounds/sq inchpaces 30 inchespalms (British) 3 inchesparsecs 3.260 light yearsparsecs 3.084 × 1013 kilometersparsecs 3.084 × 1016 metersparsec 19 × 1012 milesparts/billion (ppb) 10−3 mg/Lparts/million (ppm) 0.07016 grains/imp. gal.parts/million 0.058417 grains/gallon (U.S.)parts/million 1.0 mg/literparts/million 8.345 lbs/million gallons

ppm by volume (20◦C)molecular weight of gas

24.04micrograms/liter

ppm by volume (20◦C)molecular weight of gas

0.02404micrograms/cu meter

ppm by volume (20◦C)molecular weight of gas

24.04milligrams/cu meter

ppm by volume (20◦C)molecular weight of gas

28.8ppm by weight

ppm by volume (20◦C)molecular weight of gas

385.1 × 106pounds/cu ft

ppm by weight 1.198 × 10−3 micrograms/cu meterppm by weight 1.198 micrograms/literppm by weight 1.198 milligrams/cu meter

ppm by weight28.8

molecular weight of gasppm by volume (20◦C)

ppm by weight 7.48 × 10−6 pounds/cu ftpecks (British) 0.25 bushels (British)pecks (British) 554.6 cubic inches

Page 32: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

946 L. K. Wang

Multiply by to obtain

pecks (British) 9.091901 literspecks (U.S.) 0.25 bushels (U.S.)pecks (U.S.) 537.605 cubic inchespecks (U.S.) 8.809582 literspecks (U.S.) 8 quarts (dry)pennyweights 24 grainspennyweights 1.555174 gramspennyweights 0.05 ounces (troy)pennyweights (troy) 4.1667 × 10−3 pounds (troy)perches (masonry) 24.75 cubic feetphots 929.0 foot-candlesphots 1 lumen incident/sq cmphots 104 luxpicas (printers’) 1/6 inchespieds (French feet) 0.3249 meterspints (dry) 33.6003 cubic inchespints (liq.) 473.179 cubic centimeterspints (liq.) 0.01671 cubic feetpints (liq.) 4.732 × 10−4 cubic meterspints (liq.) 6.189 × 10−4 cubic yardspints (liq.) 0.125 gallonspints (liq.) 0.4732 literspints (liq.) 16 ounces (U.S. fluid)pints (liq.) 0.5 quarts (liq.)planck’s constant 6.6256 × 10−27 erg-secondspoise 1.00 gram/cm secpoise 0.1 newton-second/meter2

population equivalent (PE) 0.17 pounds BODpottles (British) 0.5 gallons (British)pouces (Paris inches) 0.02707 meterspouces (Paris inches) 0.08333 pieds (Paris feet)poundals 13,826 dynespoundals 14.0981 gramspoundals 1.383 × 10−3 joules/cmpoundals 0.1383 joules/meter (newton)poundals 0.01410 kilogramspoundals 0.031081 poundspounds (avdp) 256 drams (avdp)pounds (avdp) 116.67 drams (troy)pounds (avdp) 444,823 dynespounds (avdp) 7000 grainspounds (avdp) 453.5924 gramspounds (avdp) 0.04448 joules/cmpounds (avdp) 4.448 joules/meter (newtons)

Page 33: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 947

Multiply by to obtain

pounds (avdp) 0.454 kilogramspounds (avdp) 4.5359 × 105 milligramspounds (avdp) 16 ounces (avdp)pounds (avdp) 14.5833 ounces (troy)pounds (avdp) 32.17 poundalspounds (avdp) 1.2152778 pounds (troy)pounds (avdp) 4.464 × 10−4 tons (long)pounds (avdp) 0.0005 tons (short)pounds (troy) 210.65 drams (avdp)pounds (troy) 96 drams (troy)pounds (troy) 5760 grainspounds (troy) 373.2418 gramspounds (troy) 0.37324 kilogramspounds (troy) 3.7324 × 105 milligramspounds (troy) 13.1657 ounces (avdp)pounds (troy) 12.0 ounces (troy)pounds (troy) 240.0 pennyweights (troy)pounds (troy) 0.8229 pounds (avdp)pounds (troy) 3.6735 × 10−4 tons (long)pounds (troy) 3.7324 × 10−4 tons (metric)pounds (troy) 4.1143 × 10−4 tons (short)pounds (avdp)-force 4.448 newtonspounds-force-sec/ft2 47.88026 newton-sec/meter2

pounds (avdp)-mass 0.4536 kilogramspounds-mass/ft3 16.0185 kilogram/meter3

pounds-mass/ft-sec 1.4882 mewton-sec/meter2

pounds of BOD 5.882 population equivalent (PE)pounds of carbon to CO2 14,544 BTU (mean)pounds of water 0.0160 cu ftpounds of water 27.68 cu inpounds of water 0.1198 gallonspounds of water evaporated at 212◦F 970.3 BTUpounds of water per min 2.699 × 10−4 cubic feet/secpound-feet 13,825 centimeter-gramspound-feet (torque) 1.3558 × 107 dyne-centimeterspound-feet 0.1383 meter-kilogramspounds-feet squared 421.3 kg-cm squaredpounds-feet squared 144 pounds-inches squaredpounds-inches squared 2926 kg-cm squaredpounds-inches squared 6.945 × 10−3 pounds-feet squaredpounds/acre 0.0104 grams/sq ftpounds/acre 0.1121 grams/sq meterpounds/acre 1.121 kg/hapounds/acre 112.1 kilograms/sq km

Page 34: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

948 L. K. Wang

Multiply by to obtain

pounds/acre 0.01121 milligrams/sq cmpounds/acre 112.1 milligrams/sq meterpounds/acre 0.023 pounds/1000 sq ftpounds/acre 0.32 tons/sq milepounds/acre/day 0.112 g/day/sq mpounds/cu ft 0.0160 g/mLpounds/cu ft 16.02 kg/cu mpounds/cu ft 16.018 × 109 micrograms/cu meterpounds/cu ft 16.018 × 106 micrograms/literpounds/cu ft 16.018 × 106 milligrams/cu meter

pounds/cu ft385.1 × 106

molecular weight of gasppm by volume (20◦C)

pounds/cu ft 133.7 × 103 ppm by weightpounds/cu ft 5.787 × 10−4 lb/cu inpounds/cu ft 5.456 × 10−9 pounds/mil-footpounds/1000 cu ft 0.35314 grams/cu ftpounds/1000 cu ft 16.018 grams/cu mpounds/1000 cu ft 353.14 × 103 micrograms/cu ftpounds/1000 cu ft 16.018 × 106 microgram/cu mpounds/1000 cu ft 16.018 × 103 milligrams/cu mpounds/cubic inch 27.68 grams/cubic cmpounds/cubic inch 2.768 × 104 kgs/cubic meterpounds/cubic inch 1728 pounds/cubic footpounds/cubic inch 9.425 × 10−6 pounds/mil footpounds/day/acre-ft 3.68 g/day/cu mpounds/day/cu ft 16 kg/day/cu mpounds/day/cu yd 0.6 kg/day/cu mpounds/day/sq ft 4,880 g/day/sq mpounds/ft 1.488 kg/mpounds/gal 454 g/3.7851L = 119.947 g/literpounds/1000-gal 120 g/1000-literspounds/horsepower-hour 0.169 mg/joulepounds/in 178.6 g/cmpounds/mil-foot 2.306 × 106 gms/cu cmpounds/mil gal 0.12 g/cu mpounds/sq ft 4.725 × 10−4 atmospherespounds/sq ft 0.01602 ft of waterpounds/sq ft 0.01414 inches of mercurypounds/sq ft 4.8824 × 10−4 kgs/sq cmpounds/sq ft 4.88241 kilograms/square meterpounds/sq ft 47.9 newtons/sq mpounds/sq ft 6.944 × 10−3 pounds/sq inchpounds/1000 sq ft 0.4536 grams/sq ft

Page 35: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 949

Multiply by to obtain

pounds/1000 sq ft 4.882 grams/sq meterpounds/1000 sq ft 4882.4 kilograms/sq kmpounds/1000 sq ft 0.4882 milligrams/sq cmpounds/1000 sq ft 4882.4 milligrams/sq meterpounds/1000 sq ft 43.56 pounds/acrepounds/1000 sq ft 13.94 tons/sq milepounds/sq in 0.068046 atmospherespounds/sq in 2.307 ft of waterpounds/sq in 70.307 grams/square centimeterpounds/sq in 2.036 in of mercurypounds/sq in 0.0703 kgs/square cmpounds/sq in 703.07 kilograms/square meterpounds/sq in 51.715 millimeters of mercurypounds/sq in 6894.76 newton/meter2

pounds/sq in 51.715 millimeters of mercury at 0◦Cpounds/sq in 144 pounds/sq footpounds/sq in (abs) 1 pound/sq in (gage) + 14.696proof (U.S.) 0.5 percent alcohol by volumepuncheons (British) 70 gallons (British)quadrants (angle) 90 degreesquadrants (angle) 5400 minutesquadrants (angle) 3.24 × 105 secondsquadrants (angle) 1.571 radiansquarts (dry) 67.20 cubic inchesquarts (liq.) 946.4 cubic centimetersquarts (liq.) 0.033420 cubic feetquarts (liq.) 57.75 cubic inchesquarts (liq.) 9.464 × 10−4 cubic metersquarts (liq.) 1.238 × 10−3 cubic yardsquarts (liq.) 0.25 gallonsquarts (liq.) 0.9463 litersquarts (liq.) 32 ounces (U.S., fl)quarts (liq.) 0.832674 quarts (British)quintals (long) 112 poundsquintals (metric) 100 kilogramsquintals (short) 100 poundsquires 24 sheetsradians 57.29578 degreesradians 3438 minutesradians 0.637 quadrantsradians 2.063 × 105 secondsradians/second 57.30 degrees/secondradians/second 9.549 revolutions/minradians/second 0.1592 revolutions/sec

Page 36: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

950 L. K. Wang

Multiply by to obtain

radians/sec/sec 573.0 revs/min/minradians/sec/sec 9.549 revs/min/secradians/sec/sec 0.1592 revs/sec/secreams 500 sheetsregister tons (British) 100 cubic feetrevolutions 360 degreesrevolutions 4 quadrantsrevolutions 6.283 radiansrevolutions/minute 6 degrees/secondrevolutions/minute 0.10472 radians/secondrevolutions/minute 0.01667 revolutions/secrevolutions/minute2 0.0017453 radians/sec/secrevs/min/min 0.01667 revs/min/secrevs/min/min 2.778 × 10−4 revs/sec/secrevolutions/second 360 degrees/secondrevolutions/second 6.283 radians/secondrevolutions/second 60 revs/minuterevs/sec/sec 6.283 rads/sec/secrevs/sec/sec 3600 revs/min/minrevs/sec/sec 60 revs/min/secreyns 6.8948 × 106 centipoisesrod .25 chain (gunters)rods 16.5 feetrods 5.0292 metersrods 3.125 × 10−3 milesrods (surveyors’ means) 5.5 yardsroods (British) 0.25 acresscruples 1/3 drams (troy)scruples 20 grainssections 1 square milesseconds (mean solar) 1.1574 × 10−5 daysseconds (angle) 2.778 × 10−4 degreesseconds (mean solar) 2.7778 × 10−4 hoursseconds (angle) 0.01667 minutesseconds (angle) 3.087 × 10−6 quadrantsseconds (angle) 4.848 × 10−6 radiansslugs 14.59 kilogramslugs 32.174 poundsspace, entire (solid angle) 12.566 steradiansspans 9 inchesspheres (solid angle) 12.57 steradiansspherical right angles 0.25 hemispheresspherical right angles 0.125 spheresspherical right angles 1.571 steradians

Page 37: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 951

Multiply by to obtain

square centimeters 1.973 × 105 circular milssquare centimeters 1.07639 × 10−3 square feet (U.S.)square centimeters 0.15499969 square inches (U.S.)square centimeters 10−4 square meterssquare centimeters 3.861 × 10−11 square milessquare centimeters 100 square millimeterssquare centimeters 1.196 × 10−4 square yardssquare centimeters-square 0.024025 square inch-square inch

centimeter (moment of area)square chains (gunter’s) 0.1 acressquare chains (gunter’s) 404.7 square meterssquare chains (Ramden’s) 0.22956 acressquare chains (Ramden’s) 10000 square feetsquare feet 2.29 × 10−5 acressquare feet 1.833 × 108 circular milssquare feet 144 square inchessquare feet 0.092903 square meterssquare feet 929.0341 square centimeterssquare feet 3.587 × 10−8 square milessquare feet 1/9 square yardssquare feet/cu ft 3.29 sq m/cu msquare foot-square foot 20,736 square inch-square inch

(moment of area)square inches 1.273 × 106 circular milssquare inches 6.4516258 square centimeterssquare inches 6.944 × 10−3 square feetsquare inches 645.2 square millimeterssquare inches 106 square milssquare inches 7.71605 × 10−4 square yardssquare inches-inches sqd. 41.62 sq cm-cm sqdsquare inches-inches sqd. 4.823 × 10−5 sq feet-feet sqdsquare kilometers 247.1 acressquare kilometers 1010 square centimeterssquare kilometers 10.76 × 106 square feetsquare kilometers 1.550 × 109 square inchessquare kilometers 106 square meterssquare kilometers 0.3861006 square miles (U.S.)square kilometers 1.196 × 106 square yardssquare links (Gunter’s) 10−5 acres (U.S.)square links (Gunter’s) 0.04047 square meterssquare meters 2.471 × 10−4 acres (U.S.)square meters 104 square centimeterssquare meters 10.76387 square feet (U.S.)square meters 1550 square inches

Page 38: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

952 L. K. Wang

Multiply by to obtain

square meters 3.8610 × 10−7 square miles (statute)square meters 106 square millimeterssquare meters 1.196 square yards (U.S.)square miles 640 acressquare miles 2.78784 × 107 square feetsquare miles 2.590 sq kmsquare miles 2.5900 × 106 square meterssquare miles 3.098 × 106 square yardssquare millimeters 1.973 × 103 circular milssquare millimeters 0.01 square centimeterssquare millimeters 1.076 × 10−5 square feetsquare millimeters 1.550 × 10−3 square inchessquare mils 1.273 circular milssquare mils 6.452 × 10−6 square centimeterssquare mils 10−6 square inchessquare rods 272.3 square feetsquare yard 2.1 × 10−4 acressquare yards 8361 square centimeterssquare yards 9 square feetsquare yards 1296 square inchessquare yards 0.8361 square meterssquare yards 3.228 × 10−7 square milessquare yards 8.361 × 105 square millimetersstatamperes 3.33560 × 10−10 amperes (abs)statcoulombs 3.33560 × 10−10 coulombs (abs)statcoulombs/kilogram 1.0197 × 10−6 statcoulombs/dynestatfarads 1.11263 × 10−12 farads (abs)stathenries 8.98776 × 1011 henries (abs)statohms 8.98776 × 1011 ohms (abs)statvolts 299.796 volts (abs)statvolts/inch 118.05 volts (abs)/centimeterstatwebers 2.99796 × 1010 electromagnetic cgs units of magnetic fluxstatwebers 1 electrostatic cgs units of magnetic fluxstilb 2919 footlambertstilb 1 int. candle cm−2

stilb 3.142 lambertstoke (kinematic viscosity) 10−4 meter2/secondstones (British) 6.350 kilogramsstones (British) 14 poundstemp. (degs. C.) + 273 1 abs. temp. (degs. K.)temps (degs. C.) + 17.8 1.8 temp. (degs. Fahr.)temps. (degs. F.) + 460 1 abs. temp. (degs. R.)temps. (degs. F.) − 32 5/9 temp. (degs. Cent.)

Page 39: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 953

Multiply by to obtain

toises (French) 6 paris feet (pieds)tons (long) 5.734 × 105 drams (avdp)tons (long) 2.613 × 105 drams (troy)tons (long) 1.568 × 107 grainstons (long) 1.016 × 106 gramstons (long) 1016 kilogramstons (long) 3.584 × 104 ounces (avdp)tons (long) 3.267 × 104 ounces (troy)tons (long) 2240 pounds (avdp)tons (long) 2722.2 pounds (troy)tons (long) 1.12 tons (short)Tons (metric) (T) 1000 kilogramsTons (metric) (T) 2204.6 poundsTons (metric) (T) 1.1025 tons (short)tons (short) 5.120 × 105 drams (avdp)tons (short) 2.334 × 105 drams (troy)tons (short) 1.4 × 107 grainstons (short) 9.072 × 105 gramstons (short) 907.2 kilogramstons (short) 32,000 ounces (avdp)tons (short) 29,166.66 ounces (troy)tons (short) 2000 pounds (avdp)tons (short) 2.430.56 pounds (troy)tons (short) 0.89287 tons (long)tons (short) 0.9078 Tons (metric) (T)tons (short)/sq ft 9765 kg/sq metertons (short)/sq ft 13.89 pounds/sq inchtons (short)/sq in 1.406 × 106 kg/sq metertons (short)/sq in 2000 pounds/sq inchtons/sq mile 3.125 pounds/acretons/sq mile 0.07174 pounds/1000 sq fttons/sq mile 0.3503 grams/sq metertons/sq mile 350.3 kilograms/sq kmtons/sq mile 350.3 milligrams/sq metertons/sq mile 0.03503 milligrams/sq cmtons/sq mile 0.03254 grams/sq fttons of water/24 hours 83.333 pounds of water/hrtons of water/24 hours 0.16643 gallons/mintons of water/24 hours 1.3349 cu ft/hrtorr (mm Hg, 0◦C) 133.322 newton/meter2

townships (U.S.) 23040 acrestownships (U.S.) 36 square milestuns 252 gallonsvolts (abs) 108 abvolts

Page 40: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

954 L. K. Wang

Multiply by to obtain

volts (abs) 3.336 × 10−3 statvoltsvolts (internationalof 1948) 1.00033 volts (abs)volt/inch .39370 volt/cmwatts (abs) 3.41304 BTU (mean)/hourwatts (abs) 0.0569 BTU (mean)/minwatts (abs) 0.01433 calories, kilogram (mean)/minutewatts (abs) 107 ergs/secondwatts (abs) 44.26 foot-pounds/minutewatts (abs) 0.7376 foot-pounds/secondwatts (abs) 0.0013405 horsepower (electrical)watts (abs) 1.360 × 10−3 horsepower (metric)watts (abs) 1 joules/secwatts (abs) 0.10197 kilogram-meters/secondwatts (abs) 10−3 kilowattswatt-hours 3.415 British Thermal Unitswatt-hours 3.60 × 1010 ergswatt-hours 2655 foot-poundswatt-hours 859.85 gram-calorieswatt-hours 1.34 × 10−3 horsepower-hourswatt-hours 3.6 × 103 joulewatt-hours 0.8605 kilogram-calorieswatt-hours 367.1 kilogram-meterswatt-hours 10−3 kilowatt-hourswatt (international) 1.0002 watt (absolute)watt/(cm2)(◦C/cm) 693.6 BTU/(hr)(ft2)(◦F/in)

wave length of the red 6.43847 × 10−7 metersline of cadmium

webers 103 electromagnetic cgs unitswebers 3.336 × 10−3 electrostatic cgs unitswebers 105 kilolineswebers 108 lineswebers 108 maxwellswebers 3.336 × 10−3 statweberswebers/sq in 1.550 × 107 gausseswebers/sq in 108 lines/sq inwebers/sq in 0.1550 webers/sq cmwebers/sq in 1,550 webers/sq meterwebers/sq meter 104 gausseswebers/sq meter 6.452 × 104 lines/sq inwebers/sq meter 10−4 webers/sq cmwebers/sq meter 6.452 × 10−4 webers/sq inweeks 168 hoursweeks 10,080 minutes

Page 41: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 955

Multiply by to obtain

weeks 604,800 secondsyards 91.44 centimetersyards 3 feetyards 36 inchesyards 9.144 × 10−4 kilometersyards 0.91440 metersyards 4.934 × 10−4 miles (naut.)yards 5.682 × 10−4 miles (stat.)yards 914.4 millimetersyears (sidereal) 365.2564 days (mean solar)years (sidereal) 366.2564 days (sidereal)years (tropical, mean solar) 365.2422 days (mean solar)years (common) 8760 hoursyears (tropical, mean solar) 8765.8128 hours (mean solar)years (leap) 366 daysyears (leap) 8784 hoursyears (tropical, mean solar) 3.155693 × 107 seconds (mean solar)years (tropical, mean solar) 1.00273780 years (sidereal)

Page 42: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

956 L. K. Wang

2. BASIC AND SUPPLEMENTARY UNITS

A meter (m) is 1,650,763.73 wavelengths in vacuo of the radiation corresponding to thetransition between the energy levels 2p10 and 5d5 of the krypton 86 atom.

A kilogram (kg) is the mass of the international prototype in the custody of the BureauInternational des Poids et Mesures at Sevres in France.

A second (sec) is the interval occupied by 9,192,631,770 cycles of the radiation correspond-ing to the transition of the cesium-133 atom when unperturbed by exterior fields.

An ampere is the constant current that if maintained in two parallel rectilinear conductorsof infinite length of negligible circular cross section and placed at a distance of one meterapart in vacuo would produce between these conductors a force equal to 2 × 10−7 newtonper meter length.

A kelvin (◦K ) is the degree interval of the thermodynamic scale on which the temperatureof the triple point of water is 273.16 degrees.

A candle is such that the luminance of a full radiator at the temperature of solidification ofplatinum is 60 units of luminous intensity per square centimeter.

A mole (mol) is the amount of substance which contains as many elementary units as thereare atoms in 0.012 kg of carbon-12. The elementary unit must be specified and may be anatom, an ion, an electron, a photon, etc., or a given group of such entities.

A radian is the angle subtended at the center of a circle by an arc of the circle equal inlength to the radius of the circle.

A steradian is the solid angle that, having its vertex at the center of a sphere, cuts off an areaof the surface of the sphere equal to that of a square with sides of length equal to the radiusof the sphere.

Page 43: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 957

3. DERIVED UNITS AND QUANTITIES

The liter was defined in 1901 as the volume of 1 kilogram of pure water at normalatmospheric pressure and maximum density equal therefore to 1.000028 dm3. This 1901definition applied for the purpose of the 1963 Weights and Measures Acts.

By a resolution of the 12th Conference General des Poids et Mesures (CGPM) in 1964 theword liter is now recognized as a special name for the dm3, but is not used to express highprecision measurements. It is used widely in engineering and the retail business, where thediscrepancy of 28 parts in 1 million is of negligible significance.

A newton (N) is the force that, when applied to a body of mass of one kilogram, gives it anacceleration of one meter per second per second.

Stress is defined as the resultant internal force per unit area resisting change in the shape orsize of a body acted on by external forces, and is therefore measured in newtons per squaremeter (N/m2).

A bar is a pressure equivalent to 100,000 newtons acting on an area of one square metor.

A joule (J) is the work done when the point of application of a force of one newton isdisplaced through a distance of one meter in the direction of the force.

A watt is equal to one joule per second.

Dynamic viscosity is the property of a fluid whereby it tends to resist relative motion withinitself. It is the shear stress, i.e., the tangential force on unit area, between two infinitehorizontal planes at unit distance apart, one of which is fixed while the other moves withunit velocity. In other words, it is the shear stress divided by the velocity gradient, i.e.,(N/m2) ÷ (m/sec/m) = N sec/m2.

Kinematic viscosity is the dynamic viscosity of a fluid divided by its density, i.e.,(N sec/m2)/(kg/m3) = m2/sec.

Density of heat flow rate (or heat flux) is the heat flow rate (W) per unit area, i.e., W/m2.

Coefficient of heat transfer is the heat flow rate (W) per unit area per unit temperaturedifference, i.e., W/m2◦

C.

Thermal conductivity is the quantity of heat that will be conducted in unit time through unitarea of a slab of material of unit thickness with a unit difference of temperature betweenthe faces; in other words, the heat flow rate (W) per unit area per unit temperature gradient,i.e., W/m2(◦C/m) = W/m◦C.

The heat capacity of a substance is the quantity of heat gained or lost by the substance perunit temperature change, i.e., J/◦C.

Specific heat capacity is the heat capacity per unit mass of the substance, i.e., J/kg◦C.

Internal energy is the kinetic energy possessed by the molecules of a substance due totemperature and is measured in joules (J).

Specific internal energy (u) is the internal energy per unit mass of the substance, i.e., J/kg.When a small amount of heat is added at constant volume the increase in specific internal

Page 44: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

958 L. K. Wang

energy is given by: du = cv dT , where cv is the specific heat capacity at constant volume,and dT is the increase in absolute temperature.

Specific enthalpy (h) is defined by the equation: h = u + pv, where p is the pressure and vis the specific volume. Specific enthalpy is measured in J/kg. When a small amount of heatis added to a substance at constant pressure, the increase in specific enthalpy is given by:−dh = cp dT , where cp is the specific heat capacity at constant pressure.

The specific latent heat of a substance is the heat gained per unit mass without an accom-panying rise in temperature during a change of state at constant pressure. It is measuredin J/kg.

The entropy (S) of a substance is such that when a small amount of heat is added, theincrease in entropy is equal to the quantity of heat added (d Q) divided by the absolutetemperature (T ) at which the heat is absorbed; i.e., d S = d Q/T , measured in J/◦K.

The specific entropy (s) of a substance is the entropy per unit mass, i.e., J/kg◦K.

A volt is the difference of electric potential between two points of a conductor carrying aconstant current of one ampere when the power dissipated is one watt.

A weber (Wb) is the magnetic flux through a conductor with a resistance of one ohm whenreversal of the direction of the magnetic flux causes the transfer of one coulomb in theconductor loop.

Tesla: The magnetic flux density is the normal magnetic flux per unit area and is measuredin teslas.

A lumen, the unit of luminous flux, is the flux emitted within unit solid angle of one steradianby a point source having a uniform intensity of one candle.

A lux is an illumination of one lumen per square meter.

Luminance is the luminous intensity per unit area of a source of light or of an illumination.It is measured in candles per square meter.

Page 45: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Conversion Factors 959

4. PHYSICAL CONSTANTS

Standard temperature and pressure (S.T.P.)

⎧⎪⎨

⎪⎩

= 273.15◦K and 1.013 × 105 N/m2

= 0◦C and 1.013 bar

= 0◦C and 760 mm HgMolecular volume of = 22.41liters/mol

ideal gas at S.T.P.Gas constant (R) = 8.314 J/mol◦KRT(273.15◦K) = 2.271 × 103 J/molAvogadro constant = 6.023 × 1023/molBoltzmann constant = 1.3805 × 10−23 J/KFaraday constant = 9.6487 × 104 ◦C/mol (= A s/mol)Planck constant = 6.626 × 10−34 J secStefan-Boltzman constant = 5.6697 × 10−8 W/m2 K

4

Ice point of water = 273.15◦K (0◦C)

Triple point of water = 273.16◦K (0.01◦C)

Speed of light = 2.998 × 108 m/sec

Acceleration of gravity (standard) (Greenwich)

{= 9.80665 m/s2

= 9.81188 m/s2

[take g as

9.81 m/s2

]

Universal constant of gravitation = 6.670 × 10−11 Newton m2/kg2

Mass of hydrogen atom = 1.6734 × 10−27 kg

5. PROPERTIES OF WATER Dynamic Kinematic Surface BulkSpecific Mass viscosity, viscosity, energy, Vapor modulus,

Temperature weight, density, μ × 105 ν × 105 σ × 103 pressure, E × 10−3

(◦F) γ (lb/ft3) ρ(lb-sec2/ft4) (lb-sec/ft2) (ft2/sec) (lb/ft) ρ(lb/in.2) (lb/in.2)

32 62.42 1.940 3.746 1.931 5.18 0.09 29040 62.43 1.938 3.229 1.664 5.14 0.12 29550 62.41 1.936 2.735 1.410 5.09 0.18 30060 62.37 1.934 2.359 1.217 5.04 0.26 31270 62.30 1.931 2.050 1.059 5.00 0.36 32080 62.22 1.927 1.799 0.930 4.92 0.51 32390 62.11 1.923 1.595 0.826 4.86 0.70 326

100 62.00 1.918 1.424 0.739 4.80 0.95 329110 61.86 1.913 1.284 0.667 4.73 1.24 331120 61.71 1.908 1.168 0.609 4.65 1.69 333130 61.55 1.902 1.069 0.558 4.60 2.22 332140 61.38 1.896 0.981 0.514 4.54 2.89 330150 61.20 1.890 0.905 0.476 4.47 3.72 328160 61.00 1.896 0.838 0.442 4.41 4.74 326170 60.80 1.890 0.780 0.413 4.33 5.99 322180 60.58 1.883 0.726 0.385 4.26 7.51 318190 60.36 1.876 0.678 0.362 4.19 9.34 313200 60.12 1.868 0.637 0.341 4.12 11.52 308212 59.83 1.860 0.593 0.319 4.04 14.7 300

Page 46: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

1 H1.

0079

4H

ydro

gen

6. P

ER

IOD

IC T

AB

LE

OF

TH

E E

LE

ME

NT

S (

CO

MP

LIM

EN

TS

OF

T

HE

LE

NO

X IN

ST

ITU

TE

OF

WA

TE

R T

EC

HN

OL

OG

Y)

3 Li 6.94

1Li

thiu

m

4 Be

9.01

218

Ber

ylliu

m

11 N

a22

.989

7S

odiu

m

19 K39

.098

Pot

assi

um

37 Rb

85.4

68R

ubid

ium

55 Cs

132.

905

Ces

ium

87 Fr

(223

)F

ranc

ium

58 Ce

140.

116

Cer

ium

90 Th

232.

038

Tho

rium

91 Pa

(231

)P

rota

ctin

ium

92 U23

8.02

9U

rani

um

93 Np

(237

)N

eptu

nium

94 Pu

(244

)P

luto

nium

95 Am

(243

)A

mer

iciu

m

96 Cm

(247

)C

uriu

m

97 Bk

(247

)B

erke

lium

98 Cf

(251

)C

alifo

rniu

m

99 Es

(252

)E

inst

eini

um

100

Fm

(257

)F

erm

ium

101

Md

(258

)M

ende

levi

um

102

No

(259

)N

obel

ium

103

Lr (262

)La

wre

nciu

m

59 Pr

140.

91P

rase

ody-

miu

m

60 Nd

144.

24N

eody

miu

m

61 Pm

(145

)P

rom

ethi

um

62 Sm

150.

35S

amar

ium

63 Eu

107.

26E

urop

ium

64 Gd

157.

25G

adol

iniu

m

65 Tb

158.

925

Ter

bium

66 Dy

162.

50D

yspr

osiu

m

67 Ho

104.

930

Hol

miu

m

68 Er

167.

26E

rbiu

m

69 Tm

168.

934

Thu

lium

70 Yb

173.

04Y

tterb

ium

71 Lu17

4.96

7Lu

tetiu

m

88 Ra

(226

)R

adiu

m

89 Ac

(227

)A

ctin

ium

105

Ha

(262

)D

ubni

um

106

Sg

(263

)S

eabo

rgiu

m

107

Ns

(262

)B

ohriu

m

108

Hs

(265

)H

assi

um

109

Mt

(266

)M

eitn

eriu

m

110

112

104

Rf

(261

)R

uthe

r-fo

rdiu

m

56 Ba

137.

327

Bar

ium

57 La13

8.90

6La

ntha

num

72 Hf

178.

49H

afni

um

73 Ta

180.

948

Tan

talu

m

74 W18

3.85

Tun

gste

n

75 Re

186.

207

Rhe

nium

76 Os

190.

2O

smiu

m

77 Ir19

2.22

Irid

ium

78 Pt

195.

08P

latin

um

79 Au

196.

97G

old

80 Hg

200.

59M

ercu

ry

81 TI

204.

383

Tha

llium

82 Pb

207.

2Le

ad

83 Bi

208.

98B

ism

uth

84 Po

(209

)P

olon

ium

85 At

(210

)A

stat

ine

86 Rn

(222

)R

adon

38 Sr

87.6

2S

tron

tium

39 Y88

.905

9Y

ttriu

m

40 Zr

91.2

24Z

ircon

ium

41 Nb

92.9

064

Nio

bium

42 Mo

95.9

4M

olyb

denu

m

43 Tc

(98)

Tec

hnet

ium

44 Ru

101.

07R

uthe

nium

45 Rh

102.

906

Rho

dium

46 Pd

106.

42P

alla

dium

47 Ag

107.

868

Silv

er

48 Cd

112.

411

Cad

miu

m

49 In11

4.82

Indi

um

50 Sn

118.

710

Tin

51 Sb

121.

75A

ntim

ony

52 Te

127.

60T

ellu

rium

53 I12

6.90

Iodi

ne

54 Xe

131.

29X

enon

20 Ca

40.0

78C

alci

um

21 Sc

44.9

559

Sca

ndiu

m

22 Ti

47.8

8T

itani

um

23 V50

.941

5V

anad

ium

24 Cr

51.9

96C

hrom

ium

25 Mn

54.9

38M

anga

nese

26 Fe

55.8

47Ir

on

27 Co

58.9

33C

obal

t

28 Ni

58.6

9N

icke

l

29 Cu

63.5

46C

oppe

r

30 Zn

65.3

9Z

inc

31 Ga

69,7

23G

alliu

m

32 Ge

69.5

61G

erm

aniu

m

33 As

74.9

216

Ars

enic

34 Se

78.9

6S

elen

ium

35 Br

79.9

04B

rom

ine

I H1.

0079

4H

ydro

gen

5 B10

.811

Bor

on

13 AI

26.9

815

Alu

min

um

14 Si

28.0

855

Sili

con

15 P30

.973

8P

hosp

horu

s

16 S32

.066

Sul

fur

17 CI

35.4

527

Chl

orin

e

18 Ar

39.9

48A

rgon

6 C12

.011

Bor

on

7 N14

.006

7N

itrog

en

8 O15

.999

4O

xyge

n

9 F18

.998

4F

luor

ine

10 Ne

20.1

79N

eon

2 He

4.00

260

Hel

ium

36 Kr

83.8

0K

rypt

on

12 Mg

24.3

05M

agne

sium

I IAG

roup

sP

erio

ds &

sub-

shel

ls I IS 22s

2p 33s

3p

44s

3d4p

55s

4d5p

66s

4f5d

6p

77s

5f6d

6 4f 7 5f

2 IIA

3III

B4

IVB

5 VB

6V

IB7

VIIB

18

09

VIII

11 IB12 IIB

13 IIIA

14 VIA

15 VA

16 VIA

17 VIIA

18 O

Page 47: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index

Abiotic environment, 121, 122, 124, 125, 127,138

Acclimated biomass, 843Acetogenic dehydrogenation reactions, 400Achromobacter, 261, 275Activated Biofilter (ABF), 623Activated sludge, 24, 295, 440, 624–628, 673,

721, 749, 782, 816, 890–892operation, 890wastewater treatment plant, 749, 842,

844Active and Inert Fractions of VSS, 508Advanced Life Support Research, 529Advanced Life Support Systems Integration

Bed (ALSSIT), 527, 528Advanced Life Support System Test Bed

(ALSSTB), 522, 524Aerated forcefully and mixed, 307–309Aerated forcefully and not-mixed,

304–305Aerated lagoons, 847, 892Aerated mixed liquor recirculation

optimization, 502–506Aerated static piles, 381, 838Aeration basin, 624, 628, 629, 632, 645, 646,

654, 656, 658, 748–750, 758,760–765, 767–770, 773, 774, 782,783, 786, 828, 839, 891

Aeration basin volume, 632, 761Aeration detention time, 626, 628–630,

632–634, 638, 758Aeration system, 333, 495, 624, 627–629, 637,

654, 656–658, 724–727, 735, 736,758, 766, 795, 845, 849

Aerobic degradation, 63, 127, 194, 220–222,224, 230, 232–234, 240, 242, 249,251–254, 896

Aerobic digestion, 31, 63, 64, 66, 230, 288,300, 378, 395–434, 596, 691, 739,

790, 791, 795, 805, 814, 835, 836,845, 846

Aerobic floated sludge, 774Aerobic packed bed reactor, 692–702Aerobic treatment of gaseous wastes, 6–7Aerobic treatment of liquid wastes, 6Aerobic treatment of solid wastes, 4–5Aeroponic cropping, 265Air dissolving, 748, 750, 752–754, 756, 757,

766, 768, 769Air dissolving tube and friction valve, 753–754Air preparation system, 333–334Air requirement, 757, 758Algae, 2, 9, 21, 23, 26, 27, 30, 35, 36, 39, 78,

82, 95, 106, 154, 155, 166, 169, 195,212, 213, 217, 219, 231, 240, 242,254, 259–261, 263, 265, 272, 281,282, 367, 521, 522, 536, 543,545–547, 556, 569–571, 580, 593,599, 600, 711

biocenosis, 261Algal-bacterial cenosis, 261, 262Algal cultivator compartment, 548Algal harvesting, 599–600Allochthonous, 261, 262

microorganisms, 158Amensalism, 32, 36Anaerobic baffled reactor ABR, 412–414, 432,

434Anaerobic biodegradability, 409Anaerobic digester retention times, 420Anaerobic digestion, 31, 63, 64, 66, 230, 288,

300, 378, 395–434, 596, 691, 790,795, 805, 814, 835, 836, 846

solid wastes, 396, 415, 431sweet sorghum, 430

Anaerobic digestion units, 433Anaerobic fermenter, 263Anaerobic fermenting bacteria, 8, 64

961

Page 48: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

962 Index

Anaerobic microorganisms, 4, 7–9, 164, 214,378, 397, 400, 409, 895

Anaerobic packed bed reactor, 692–694Anaerobic respiration, 7, 8, 19, 20, 22, 50, 57,

61, 62, 65, 67–69, 111, 194, 205, 214,222–223, 227–229, 239, 240, 242,248, 250, 254, 255

Anaerobic sludge digestion, 426–427Anaerobic treatment of wastes, 7–9Anammox reaction, 209, 236Annual mass loadings, 884Anoxic fraction, 440, 479, 490, 495, 501, 502,

506, 510Anoxygenic photosynthesis, 49, 68, 71, 110,

194, 203, 210, 217–219Anoxygenic phototrophs, 64, 214, 217, 219,

240Antagonism, 32, 36, 142Antagonistic relationships, 266Antibiotic production, 370, 384, 902, 905Antibiotics, 30, 33, 36, 47, 48, 72, 76, 93, 106,

109, 112, 147, 150, 267, 269, 274,276, 348, 369, 370, 860, 862, 896,899–901

Antiseptics, 47A/O process

attainability of effluent limits, 795Biological Phosphorus Removal, 784–786cost for process retrofit, 788, 791–792operating conditions, 792oxygen requirements for nitrification, 795process description, 786–788process design, 792–795process performance, 736–738retrofitting existing activated sludge plants,

788–792theory, 781–784

A2/O processbardenpho process, 797, 799, 800dual phosphorus and nitrogen removals,

795–804modified phostrip process, 801–804University of Capetown (UCT) Process,

800–801Application of biotechnology in waste

treatment, 3–4

Aquaculture, 552, 554, 568–575, 858Artificial ecological systems, 518Assimilatory metabolism, 112, 194, 196, 200,

207, 216Asymptotic trend, 456–458Atmosphere as extreme habitat, 160–161Attached growth systems, 845Attainability of Effluent Limits, 795Autochthonous, 158, 159, 162, 261, 267Autochthonous organisms, 158Autotrophic fixation of CO2, 201, 202, 208,

218, 249Autotrophs, 74, 126, 128, 195, 209, 211, 213,

215, 218, 230, 236, 249, 381, 484,486, 505, 511, 544

Availability of nutrients, 408, 410Average soil infiltration rate, 606

Bacteria, 2, 20, 82, 122, 194, 258, 301, 345,441, 571, 633, 679, 733, 749, 782,832, 871

Bacterial taxonomy, 84, 86, 88, 89, 99, 123Bacteriological code, 83, 88, 95–97, 105, 115,

116Bacteriophages, 21, 36, 93Bacteroids, 35, 36, 269BAF system, 655, 702–705Bardenpho process, 783, 786, 797, 799, 800,

806Bergey’s manual of Systematic bacteriology,

26, 84, 98, 101, 111Binomial system, 83, 95Bioconversion of food processing waste,

346Bioconversion of organic wastes into fertilizer,

383Biodegradation/detoxication of hazardous

substances, 2Biodegradation of organic matter, 8, 66Biodegradation technologies, 263Biodestructive bacteria, 271Biogas collection and exploitation, 422Biogas composition, 398, 403, 430Biogas production, 397, 403, 408, 413, 414,

420, 427–431

Page 49: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 963

Biogas production from sweet sorghum,430–431

Biogenerative technology, 520Bioinformatics, 857–858Biological aerated filter, 687, 702–709Biological denitrification, 462, 485, 770,

796–798, 801Biological filtration plant, 712Biological flotation, 770, 815, 832–833Biological growth, 443, 673, 692, 710, 759,

893Biological life support systems, 519, 542, 543Biological methods of cell enumeration, 28Biological phosphorus processes

sludge characteristics, 804sludge generation rates, 804–805sludge management, 805–806

Biological product extraction, 864–865, 868,889

Biological wastewater treatment plant(BWWTPs), 840–844, 847, 848

Biooxidation of the hazardous substance, 6Bio-Plex Facility, 530Biopulping of wood chips, 298Bioreactor, 290, 295, 297, 299–339, 349, 350,

356, 357, 378, 385, 395–434,439–514, 525, 527, 552, 553, 713, 798

Bioregenerators, 259–266Biosensors, 3, 14–15Biosphere, 20, 29, 62, 122–125, 158, 160, 214,

230, 264, 265, 276, 283, 518, 519,521, 522, 530–539, 541–542,545–547, 558–561

closed ecological facility, 542design requirements, 532–537

Biospherics, 517–561laboratories, 538–539scale, 530, 531, 537systems, 521–522, 536, 537, 539, 558

Biotechnological agents used in environmentalbiotechnology, 2

Biotechnological products, 343–388Biotechnological transform, 344Biotechnological treatment of wastes, 3Biotechnology companies by primary focus,

856

Biotechnology industry, 855–908Biotechnology information, 60, 585Biotechnology materials, 856, 858Biotechnology waste characteristics, 411, 861,

863, 868–869Biotransformation, 4, 9, 288, 291, 297, 344,

349, 360, 364Boundaries of unicellular organism, 30Boundary between an ecosystem and its

surrounding environment, 30BPT Regulation, 888Breadbroad project, 523Bubbling orifices, 591Bulking agents, 4, 837

Cake solids, 817–820, 822, 823Capillary suction time (CST), 847Capital cost of flotation, 775CAPTOR Pad Cleaner, 645, 646CAPTOR process, 644, 645, 647, 648,

651–653Carbon assimilation, 201, 211–213Carbon cycle, 240–242, 559Case studies, 11, 734, 735, 766–770CAST process, 652Cast study, 645–653Catabolic substrates, 128, 129Cell cycle, 40, 41, 154Cell death under heat treatment, 46Centripress, 815, 820–821Characteristics of major pharmaceutical

wastewater streams, 871Characteristics of wastewater streams, 905Chemical conditioning, 819Chemical content of microbial biomass, 39Chemical methods for microbial biomass

measurement, 27–28Chemical synthesis, 354, 358, 374, 860, 861,

865–866, 868, 869, 871, 873, 874,889, 896, 900

Chemical treatment, 74, 384, 635, 661, 766,770, 790, 805

Chemoautotrophs, 110, 111, 207, 208, 212,219, 240, 248, 249

Chemoheterotrophic bacteria, 220

Page 50: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

964 Index

Chemoorganotrophic microorganisms, 203,205

Chemostat, 43, 132, 143, 144, 146, 147, 154,172, 423

Chemotrophy, 21, 49Chlorella, 259–263, 522, 549, 550Ciliata, 749Clarification load, 748Clarified water, 752, 753, 755, 766, 774Clarifiers, 624, 630, 640, 641, 643, 650, 657,

728, 729, 734, 738, 740, 749, 750,758, 773, 775, 782, 889, 890, 893

Classification of bioreactors, 304–309Classification of membrane processes, 450Classification of process types, 299–301Classification of prokaryotes, 82, 84, 88–95,

98, 99, 111Closed ecological experimentation

facility, 556Closed ecological systems

life supportNASA, 522–530

Closed Equilibrated Biological AquaticSystems, 522, 552–554

Closed habitats, 267, 270–272, 275, 276COD removal and HRT, 429Co-existence between man and microbes, 278Collections of strains and clones, 26Combined anaerobic/aerobic biotreatment, 8Cometabolism, 6, 73Commensalism, 32, 33, 138Commercial membrane, 443Complete mix activated sludge, 626, 761, 765,

788Complete-mix activated sludge treatment

plant, 761, 765Composition of food processing waste, 345Composition of lignocellulosic raw materials,

377Composting, 2, 4, 5, 22, 76, 77, 265, 300–302,

305–310, 380–383, 431, 432, 536,542, 568, 814, 830, 833–840, 900

Concept of life strategy, 139–143, 145Conditioning, 805, 815, 817, 819, 826, 828,

847Configurations for membrane bioreactors, 459

Conserved substrates, 129Constituent materials, 443, 446Constructed wetlands, 265, 571, 572, 574, 575Construction cost index, 670, 808Construction costs for rapid rate systems, 583Construction costs of overland flow system,

739Construction costs of slow rate system, 589Contact stabilization, 625, 630, 632–633, 738,

750, 890Content and composition of selected dietary

fiber, 369Control and optimization, 403, 423–426Controlled environmental life support systems,

520–521Control of microbial death, 46Control strategies, 337, 443, 465–469Conventional activated sludge process

schemes, 759Conventional anaerobic digesters, 411, 412Conventional systems, 411–412, 419–421, 429Coordination of cell cycle events, 40Core technologies, 855–856COSPAR, 258, 283Costs, 3, 27, 123, 213, 297, 350, 411, 440,

519, 573, 625, 674, 729, 748, 784,814, 857

Critical flux concept, 440, 467–469Critical flux determination by flex-stepping

method, 469Cross-section of Zenon hollow fiber

membrane, 472Crustaceans, 749Cultivation of microorganisms, 25, 44Cultivation of oysters, 366Cultivation process, 287–339Culture collections of prokaryotes, 98Cybersphere, 542Cylinder Infiltrometer, 605

Daily-night CO2 Oscillation, 535Daily oxygen consumption, 495, 498,

507Daily sludge production, 443, 488, 491–492,

498, 503, 507, 514Dead end filtration and crossflow filtration, 444

Page 51: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 965

Denitrificationfilter

coarse filter, 680–681Depth filters and screen filters, 444Design and operating variables, 319, 322, 326,

327, 331, 338Design evaluations, 507–514Design of bioreactors, 310–333Design of group I bioreactors, 316–319Design of group II bioreactors, 319–325Design of group III bioreactors, 326–333Design of group IV bioreactors, 331–333Design of the biological tank for COD and

nitrogen removal, 477–514Design parameters optimization, 497Design procedures, 488–497, 605Design sludge age, 488–490Determination of Dimensions of Field

Application Data, 617Determining Flow Rate Over Field

Application, 619Development of life support systems, 526Dewatering, 641, 691, 750, 765, 791, 805, 814,

815, 817, 818, 820–825, 827, 828,830–832, 838, 840, 847, 877

Dietary fiber production from organic waste,368–369

Differences between Bacteria and Archaea,106–109

Differences between screen filters and depthfilters, 444

Differential Speed, 820, 823Diffused air systems, 624Direct and indirect pharmaceutical wastewater

discharges, 884Direct discharge, 834, 869, 871–873, 878,

888–890Disadvantages of activated sludge processes,

479, 497, 643–653, 673, 806, 890, 891Disadvantages of biotechnological methods, 3Disinfectants, 47, 48, 272Disinfection, 24, 47–49, 64, 74, 78, 451, 586,

588, 592, 595, 691, 698, 712, 739, 741Dissimilatory iron and manganese reduction,

227–228Dissimilatory process, 194–196, 202, 222, 252

Dissimilatory sulfate reduction, 82, 228–229,240

Dissolved acceptors of electrons, 12Dissolved air flotation (DAF)

clarifier, 641, 643, 749, 750, 774degree of clarification, 749floor space requirement, 749operational cost, 749volume requirement, 749

Dissolved air flotation clarifiers, 748–750, 893Dissolved oxygen

concentration, 487–488, 493, 510, 511, 514,639

Distribution manifold design, 602, 605, 609Distribution of operating costs, 425Ditch loops, 639DNA-DNA hybridization, 85–87, 89, 95, 114Drug development, 857, 858Drug therapy, 227, 857Dual phosphorus removal and nitrogen

removal, 795–804Dumping station, 833–835Dynamics of E. coli, 263

Ecological engineering, 518, 560Ecological succession, 138Ecosystem concept, 125–132Ecosystem response, 280–281Effect of osmotic pressure on growth, 45Effect of oxygen on growth, 44–45Effect of pH on growth, 45Effect of starvation on microorganisms, 44Effect of temperature on growth, 45Effects of nutrients on growth rate, 44Effects of nutrients on yield, 44Effects of wastewater constituents on crops,

587Effluent ammonia and total nitrogen

concentration, 505Effluent COD, 427, 488, 492, 501, 843Effluent TKN, 488, 492–493, 503, 507Effluent total nitrogen, 488, 494, 503, 507,

512, 796, 800Effluent transport system, 602, 604, 605, 608Elemental composition of biomass, 25, 38Endergonic process, 201

Page 52: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

966 Index

End-of-pipe treatment, 874, 875, 882,888–900, 903

processes, 904Endogenous or decay coefficient, 759, 761,

776Energy generation by organotrophes, 50Energy yield, 197, 198, 200, 201, 208, 222,

249, 378Enhancement of biotechnological treatment of

wastes, 10–14Environmental microflora, 271, 273Equalization, 425, 426, 477, 580, 600, 633,

690, 722, 728–730, 733, 734, 739,741, 814, 834, 835, 840, 845, 846,889, 903

facilities, 842, 873Estimate immune responsiveness, 279–280Estimation of microbial numbers, 151–153Eukaryotic cell cycle, 40Eukaryotic phototrophs, 203European research on closed ecological

systems, 551–559Eutrophic lakes, 167Evapotranspiration System, 576–578Evenness index, 31, 32Evolutionary distances, 54–56Exergonic reaction, 198, 201Experimental ecology, 538–539Experimental values of the kinetic and

stoichiometric parameters, 498Exponential growth and proliferation, 42Expressor belt press, 816Expressor press, 815–817Ex situ bioremediation, 5, 298Extended aeration, 624, 628, 634, 637–640,

656, 658, 726, 727, 738, 758, 793,794, 802, 890, 896

Factors affecting membrane processes,452–456

Factors of pathogenicity, 37Factory profile, 901Facultative anaerobes, 7, 33, 239, 409Facultative lagoons, 599–600Facultative ponds, 600FA/O. See Flotation anoxic/oxic (FA/O)

FA2/O. See Flotation anaerobic/anoxic/oxic(FA2/O)

FBS. See Flotation biological systems (FBS)FCS. See Flotation contact stabilization (FCS)Feed characteristics applicability of anaerobic

digestion, 408–411Feed composition, 407, 454, 456, 460Fermentation, 7, 20, 128, 197, 345–350, 396,

555, 785, 832, 860Fermentative microorganism, 224, 233FFB. See Flotation fluidized bed (FFB)Field Set-up for Determining Slope, 616Final sedimentation clarifier, 760, 763, 775Fine media denitrification filter, 679–680Flat sheet module of Huber VRM R©, 477Flavobacterium, 72, 173, 261, 275, 276Floated biological sludge, 774Flocculating chemicals, 748Flotation activated sludge (FAS), 769

process using secondary flotation, 762–765recycle sludge volume, 750solids and hydraulic loading rates, 750

Flotation anaerobic/anoxic/oxic (FA2/O), 750Flotation anoxic/oxic (FA/O), 750Flotation biological systems (FBS), 747–776Flotation cell, 755, 765–770, 773–775Flotation chamber, 750, 753–755, 757, 758Flotation clarifier, 748–750, 768, 769, 773,

882, 891, 893Flotation contact stabilization (FCS), 750Flotation fluidized bed (FFB), 750Flotation nitrification-denitrification (FND),

750Flotation oxygen activated sludge

(FOAS), 750Flotation principles and process description,

750–758Flotation Rotating Biological Contactors

(FRBC), 750Flotation sequencing batch reactor (FSBR),

750Flotation stabilization ponds (FSP), 750Flotation System Configurations, 756–758Flotation trickling filter (FTF), 750Flotation vertical shaft (FVS), 750Flow chart of Hill model, 406

Page 53: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 967

Flow chart of Mosey and Pullammanappallilet al. models., 407

Flow cytometry enumeration, 27Flow-rate variations, 410–411Fluidized bed reactor, 5, 6, 357, 679, 687–692,

696, 896F/M, 463, 502, 506, 507, 626, 628, 629,

632–634, 637, 638, 645, 654, 731,758, 759, 773, 776, 792, 843

Food chains, 125–127, 130, 534Food processing waste production in different

countries, 344Food to microorganism ratio, 759Formulation/Mixing/Compounding, 861, 867Fouling in MBRs, 460–469Free energy, 196–198, 201, 203, 222, 226, 227,

231–233, 402, 553Free water surface, 571Full flow pressurization, 756, 766, 770Functional and regulator role of microbial

populations, 259–266Functional role of microbial populations,

259–266Functions of aerobic prokaryotes, 71–77Functions of anaerobic prokaryotes, 63–65Functions of anaerobic respiring prokaryotes,

65–68Functions of facultative anaerobic and

microaerophilic prokaryotes, 68–71Fundamentals of anaerobic bioprocesses,

397–408Fungi, 2, 21, 82, 124, 194, 258, 293, 345, 400,

534, 749, 838, 864Future perspectives, 337–338FVS. See Flotation vertical shaft (FVS)

Gated surface pipe, 591G+C content in DNA, 25Gene sequencing, 60, 99, 114, 857–858Genetic engineering, 13, 36, 854, 857Genotypic classification, 25Genotypic properties used in prokaryote

classification, 90–92Greenhouse environmental management

systems, 830Greenhouse Svet, 544

Ground experimental complex, 543Growth factors, 11, 34, 35, 39, 129, 173, 348,

870Growth kinetics of the microorganism,

315–316Growth of filamentous organisms, 771Growth of individual cells, 40–42Growth of population, 42–43Growth yield, 43, 69, 129, 759, 761, 763Growth yield coefficient, 759, 761, 763

Half velocity coefficient, 759Hazardous waste treatment, 12, 14Heavy metal toxicity to SRB, 385Helminthes, 21, 24Hepatic-intestinal transformation, 266Heterotrophic microorganisms, 39, 127, 167,

211, 213, 272Heterotrophs, 74, 111, 126, 162, 196, 203,

209, 211, 213, 260, 484–486, 493,500, 505, 522, 523, 545, 556

Hi-compact method, 825High rate activated sludge, 628–629, 786High rate filter

rock media, 673–674, 676, 678High-rate systems, 408, 411–415High-strength wastewater, 713, 840Historical view on regulations, 873–874HIW screw press, 822, 824Homeostasis self-regulation, 130Hookers point WWTP, 700Huber VRM R© process, 476–478Human life-support systems, 518Human microbiocenoses, 270Human microflora, 267, 275Humboldt-Wedag, 820, 825Hyacinth system, 568–570Hybrid biological-activated carbon systems,

710–714Hybrid systems, 408, 643, 644Hydraulic detention time, 632, 638, 654, 656,

759, 761, 765, 789, 904, 908Hydraulic detention time of aeration basin, 761Hydraulic detention time of sedimentation

clarifier, 761

Page 54: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

968 Index

Hydrogen as energy source, 238–239Hydroponic cropping, 265

Identification of microorganisms, 20, 25Immune responsiveness, 279, 280Immune system’s activity, 277Impact factors, 460–464Impact of environmental conditions, 482–488Impact on fouling, 461–463Improved activated sludge process, 762Incineration, 265, 527, 805, 814, 839, 881,

888, 900Indicator microorganisms, 48, 281Indirect discharge, 869, 873, 888Industrial classification of biotechnology

industry, 859–860Influent COD and TKN fractioning, 480–482Influent TKN fractionation, 482Information on nomenclature of prokaryotes

on the Internet, 97–98Inhibition and toxicity, 409–410Initial substrate concentration, 682, 759, 776In-plant control, 877–882In-plant treatment, 874, 875, 877, 878,

882–890Inputs required to support a person in space,

520Insect larvae, 749In situ bioremediation, 5, 290Insoluble metal salts, 422Interaction between man and microorganisms,

270, 278Interactions in microbial ecosystems, 32–38International committee on systematics of

prokaryotes, 81, 96, 98Interplanetary vehicles, 545Interspecific exchange of mass and

energy, 127Intestinal microflora, 266, 269, 270, 276In-vessel composting, 4, 265, 382Iron assimilation, 216Iron-reducing bacteria, 5, 22, 66, 386–388Isolation of pure culture, 24

Junction box design, 602, 605, 609, 621

Kennedy Space Center Biomass ProductionCenter, 525

Key heat and mass transfer mechanisms, 317Kinetic and stoichiometric parameters, 484,

498, 500Kinetics

conventional activated sludge process, 479,497, 626, 634, 657, 738, 749,758–762, 774, 775

flotation activated sludge (FAS), 750, 760,762–765

Kubotadouble deck module, 471flow scheme, 471

Laboratory biosphere, 522, 541, 542Lactic acid production from whey permeate,

355Lagoon disposal, 836Land application, 581, 833–840Land treatment

using overland flow system, 590–595using rapid rate systems, 580

Leading biotechnology states, 855Liebig’s law of minimum, 132–133Life support systems (LSS), 257–283, 441,

544–547Life support technologies, 525, 528, 529Liquid waste for production of hydrogen, 379Lithotrophy, 49Loading cycles for high infiltration systems,

582Low rate filter, rock media, 673–674Lunar–Mars life support test project, 524–526

Macronutrients, 10, 39Major rRNA phylogenetic divisions of

archaea, 51Major rRNA phylogenetic divisions of

bacteria, 51Man and microflora as a single ecosystem,

266–271Marine ecosystems, 168–170Marine environments, 168–169Mars on earth closed ecological system

project, 539–542

Page 55: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 969

Mastigophora, 749Materially closed ecospheres, 520Mathematical models for flux prediction,

456–458Maximal specific growth rate, 143Maximum rate of specific substrate utilization,

759Mean cell residence time, 636, 758, 760, 761,

763, 773Mechanical aeration, 627–628, 892Mechanical dewatering, 791, 814, 815, 840,

847Mechanical Surface Aeration, 892Medicine, 48, 170, 259, 344, 350, 363, 364,

369, 371, 853, 855, 858, 864MELISSA, 263, 264, 517, 522, 552, 554–556Membrane biological reactors for solid/liquid

separation, 458–477Membrane bioreactor (MBR), 439–443, 454,

458, 460–463, 465, 466, 468–470,473–476, 478, 479, 497, 498, 500,502, 507, 508

Membrane classification, 445–447Membrane filtration, 43, 74, 439, 441,

443–458, 464, 643Membrane hydrophilicity, 455Membrane process, 439, 441, 443, 445,

449–456, 460, 466, 476Membrane properties, 454–455Membrane structures, 445Membrane technologies, 449–452Memcor US filter, 440Mesophilic microorganisms, 348Metabiotic interactions, 127Metals from mining and industrial wastes,

383–384Metals from waste streams by sulfate-reducing

bacteria, 384–386Methane producing reactions, 401Methane production rate, 417, 426, 431, 432Methanogenesis, 131, 164, 194, 229–232, 234,

240, 248, 251, 398, 400, 404–409,415, 416, 420, 422, 896

Methanogens, 22, 27, 31, 54, 55, 63, 64, 67,110, 116, 127, 128, 173, 208, 209,212, 214, 230–234, 385, 397, 398,

400, 401, 404, 405, 407–410, 415,417, 534

Methods of microbial ecology, 147–158Methylene chloride removal in packed column

steam stripper, 903Michaelis-Menten enzymatic kinetics, 759Microalgal cultivator, 262Microalgal link, 261–264Microbial batch culture, 43Microbial biomass, 6, 25–29, 38, 39, 43, 76,

129, 151, 156, 176, 288, 357,384, 890

Microbial community, 26, 29, 114, 122, 125,139, 143, 153, 156–158, 175, 230,269, 402

Microbial concentration (VSS) in reactor, 759Microbial continuous culture, 43Microbial diagnostic methods, 279Microbial ecosystems, 29–38, 263Microbial granules, 14, 77Microbial loop, 130, 131, 169Microbial populations, 130, 131, 169Microbial resistance to drugs, 277, 279Microbial steps for anaerobic digestion, 399Microbiological methods used in

environmental engineering, 24–28Microbiology and anaerobic metabolism of

organic matter, 398–401Microbiology of environmental engineering

systems, 19–78Microecological risk, 266–278Microecosystem response, 280–281Microflora of skin, 270Micromycetic bacteria, 271Micronutrients, 10, 39Microorganisms, 1, 20, 82, 122, 194, 258, 288,

345, 397, 451, 543, 624, 672, 733,749, 782, 893

Microscopic enumeration, 27Microscopic examinations of floated sludge,

763Mir orbital station, 263, 270, 272–274Mixed liquor suspended solids, 439, 441, 624,

748, 750, 761, 770, 776Mixed liquor suspended solids concentration,

439, 511, 761

Page 56: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

970 Index

MLSS concentration, 461, 464, 470, 473–475,497, 498, 504, 507, 628, 642, 732, 898

Modeling of intermittently-agitatedpacked-bed bioreactors, 325

Modeling of rotating drum bioreactors, 330Modeling of the zymotis bioreactor, 323Models as tools, 313Modified aeration basins, 628Modified PhoStrip process, 801, 803Molecular-biological methods for microbial

biomass quantification, 28Moniliacea, 261Monitoring, 2, 14, 78, 162, 269, 278–282, 290,

312, 334–337, 395, 423, 468, 520,529, 530, 534, 537, 544, 569, 573,582, 584, 590, 723, 834, 846

Monitoring and control systems, 334–337Monod’s equation, 44Multicellular aggregate, 30Municipal effluent treatment, 767–770Mushroom production, 363–364Mutualism, 33–35, 138, 258

Naming of prokaryotes, 95–98Natural death of microorganisms, 45Natural systems, 122, 176, 395, 415–416Net specific growth rate, 761, 773Neutral competition between the biotic

elements, 36Ngau Tam Mei water works, 710, 711Nitrate ammonification, 252Nitrate-respiring bacteria, 8Nitrification, 9, 70, 82, 194, 252, 387, 479,

600, 629, 673, 722, 783, 890Nitrifiers, 14, 54, 74, 75, 212, 252, 440,

488–490, 500, 501, 507, 633–635,642, 698, 797, 798

Nitrifying fractions, 507, 508Nitrobacter, 54, 74, 95, 202, 212, 235, 252,

556, 633, 635Nitrogen assimilation, 213–215Nitrogen cycle, 242, 243, 552Nitrogen removal, 9, 236, 440, 470, 471, 474,

479, 489, 494, 509, 572, 587, 588,591, 599, 600, 657, 680, 696, 700,736, 783, 784, 795–801, 806

Nitrogen removal efficiency, 509, 680Nitrosomonas, 201, 202, 212, 235, 252, 556,

633, 635Nomenclature of prokaryotes, 83, 96, 97Nonmedical markets, 855, 858Noosphere, 518, 539, 560Normal functioning of LSS, 281–282NUR test, 485Nutrient removal for natural wetlands, 574Nutrient removal from constructed wetlands,

575

Objectives of advanced life support systems,524

Obligatory syntrophic associations, 232Odor control, 630, 833, 838–840Oligonucleotide probes, 15, 27, 67, 153Oligotrophic lakes, 167On-site bioremediation, 5Open systems, 5, 154, 266Operating parameters, 395, 416–417, 648, 660,

743Operational difficulties and remedy, 770–774Operational parameters, 32, 400, 413, 452,

456, 773, 804Operation and maintenance costs

overland flow system, 590rapid rate systems, 583, 584slow rate system, 589, 590

Opportunistic infections, 270, 277, 278Optimal conditions for nitrification, 633Optimization of the recirculation ratio, 506Organic loading rate (OLR), 402, 407, 413,

420, 421, 428, 429Organic priority pollutants from

pharmaceutical manufacturing, 872Organotrophy, 21, 49Overland flow system, 579, 590–595Overloaded conventional complete-mix

activated sludge treatment plant,765

Oxidation, 2, 19, 82, 129, 194, 248, 257, 383,397, 446, 491, 522, 556, 572, 591,624, 680, 722, 758, 773, 795,841, 882

Page 57: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 971

Oxidation ditch, 634, 638–640, 655, 656, 660,891

Oxygenated groundwater, 12Oxygen consumption rates, 11Oxygenic photosynthesis, 23, 50, 71, 110, 194,

217Oxygenic phototrophs, 109, 212, 217–219, 240Oxygen process, 630Oxygen requirements for nitrification, 795

Package treatment plants, 842, 843, 845Packed bed, 5, 6, 319, 321–323, 325, 335, 635,

687, 692–702Packed bed reactor, 692–702Packed column steam stripper, 886, 903PACT nitrification systems, 642Paper manufacturing effluent treatment, 770,

772Parallelism in evolution of genes, 60Parasites of human and animals, 37Parasitism, 32, 36, 258Partial flow pressurization without effluent

recycle, 756, 757Pathogenic enterobacteria, 48, 154, 270Pathogenic enzymes, 270Percentages of influent COD fractions, 481Periodic table of prokaryotes, 60–63Periods of exotrophy and endotrophy in cell

cycle, 40–41Petrochemical industry effluent treatment,

766–767pH, 5, 21, 88, 132, 197, 302, 349, 396, 446,

521, 571, 633, 730, 768, 791,836, 863

Pharmaceutical manufacturing, 859–861, 869,871, 872, 874–876, 881, 885

Pharmaceutical preparations by SSF, 370Pharmaceutical process wastes, 870Pharmaceuticals from organic waste, 369–371Pharmaceutical wastewater discharges, 877,

891–893, 897Phenotypic classification, 25, 26Phenotypic properties used in prokaryote

classification, 92–94Phosphate, 5, 9, 10, 45, 65, 66, 72, 77, 78, 195,

198, 200, 215, 216, 225, 227, 373,

386–388, 552, 660, 661, 782, 791,805, 870

Phosphorus assimilation, 215Phostrip construction costs, 663Phostrip electrical energy requirements, 664Phostrip operation and maintenance costs, 663PhoStrip process, 660–664, 782, 784, 786,

797, 801–806PhoStrip system, 661, 808Photoautotrophic growth, 210, 219, 220, 242Photoautotrophs, 109, 203, 205, 210, 219, 220,

240, 242, 556Photoheterotrophic bacteria, 264Photoheterotrophic growth, 205, 218–220Photosynthetic bacteria, 166, 169, 218, 264Phototrophic bacteria rhodobacter sphaeroides,

379Phototrophy, 49Phylogenetic classification, 53–60, 63, 64, 68,

100Phylogenetic distances, 53Phylogenetic marker, 99–106Phylogenetic taxonomy, 25, 26, 50Phylogenetic trees, 50, 86, 99, 100, 106Physical methods for microbial biomass

measurement, 27Physiological methods of microbial biomass

measurement, 28Phytotrons, 547, 548, 550Planetary outposts, 545Plant parasites, 36Polymer dose, 822Polyphasic approach toward prokaryote

classification, 94–95Polysaccharides, 15, 30, 31, 39, 44, 72, 144,

170, 176, 196, 361, 363, 368, 398, 416Population dynamics, 134–147Pore blocking, 134–147Positive interactions between animals and

microorganisms, 35Positive interactions between plants and

microorganisms, 35Potassium permanganate, 473, 865Potato waste bioconversion into pullulan, 362Powdered activated carbon treatment,

640–643

Page 58: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

972 Index

Predation, 32, 36, 74, 78, 155, 158, 159, 171,507

Prefabricated construction, 775Pressure swing adsorption, 630Pretreatment, 11, 295, 297, 298, 349, 357, 366,

367, 375, 419, 431, 569, 573, 578,582, 584, 588, 590, 593, 595, 597,598, 628, 635, 638, 834–835,840–841, 873–875, 882, 887–889,896, 899, 900

Pretreatment pollutants standards, 899Primary clairfier, 650, 728, 729, 734Primary treatment, 24, 580, 586, 635, 672,

691, 698, 841–842, 844, 845,889–890, 900

Procedure to estimate volume of feedlotrunoff, 615

Process configurations, 458–460, 797Process control, 337, 395, 424, 674, 740Process efficiency, 32, 385, 647, 759Production of animal feed, 366Production of biodegradable plastics, 364–366Production of chemicals, 371–374Production of enzymes, 308, 350–353Production of flavors, 358–361Production of fuel, 64, 374–380Production of gibberellic acid, 371Production of glycerol, 372–374Production of hydrogen by chemotrophic

bacteria, 380Production of organic acids, 9, 64, 353–358Production of pectinases, 352Production of pharmaceutical preparations by

SSF, 370Production of pharmaceuticals from organic

waste, 369–371Production of polysaccharides, 361–362Production of solvents, 373Project MELISSA, 263Prokaryotic cell cycle, 40Prokaryotic photoautotrophs, 203Protozoa, 2, 21, 23, 24, 26, 35–37, 46–48, 74,

78, 82, 127, 128, 130, 138, 140, 154,155, 159, 169, 174, 194, 196, 258,267, 279, 400, 416, 507, 763

Pure oxygen for activated sludge, 629

Pure oxygen process, 630Pure starter cultures, 13

Quantification of microbial biomass, 26, 28

Rapid infiltration, 579, 581Rapid rate system, 578–584Rate of change of microorganism

concentration in reactor, 761, 762Raw materials and production process, 901Raw materials consumption for antibiotic

production, 905Reactor configurations, 411–416, 688Receiving station, 833–835Recombinant DNA techniques, 13Recommended effluent transport systems

design, 618Recovery of metals from mining and industrial

wastes, 383–384Recovery of metals from waste streams by

sulfate-reducing bacteria, 384–386Recovery of phosphate and ammonia by

iron-reducing and iron-oxidizingbacteria, 386–388

Recycle flow pressurization, 756–758, 766,768–771

Reduced iron and manganese as energy source,238

Reduced sulfur compounds as energy source,236–238

Reed bed, 815, 830–831Regulations for direct discharge, 871–873Regulations for indirect discharge, 873Regulator role of microbial populations,

259–266Regulatory environment, 858–859Relation to oxygen, 21, 22, 25, 45Removal efficiencies by membrane process,

451, 465Reno-Sparks WWTP, 691–693Research and development, 530, 539, 861,

867–868Retrofitting existing activated sludge plants,

788–792Return sludge concentration, 760, 761Return sludge flow, 761, 765, 801, 803, 804

Page 59: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 973

Return sludge pumping rate, 773Rhodotorula, 261, 275Rotating biocontactor, 635, 681–687, 845, 897Rotifers, 78, 749rRNA-based phylogenetic classification,

54–60, 66rRNA-based phylogenetic distances, 53rRNA sequences, 50, 51, 53, 54, 57Runoff field application area, 602–606, 617

Sacchromycetaceae, 261Salyut-6, 268, 272Salyut orbital stations, 263, 270, 272, 560Sand drying beds, 828, 830, 831, 847Sarcodina, 749Saskatchewan, Canada, Biological filtration

plant, 711Saturation concentration of dissolved oxygen,

496, 504Saturation constant, 403, 483, 486, 487, 908Schematic of Huber VRM R© process, 478Schematic of the Wehrle Werk process, 448Schematic representation of membrane

filtration process, 443Scheme for classifying solid-state processes,

290–291Scheme for nitrogen removal, 471, 494Schemes of depth filters and screen filters, 444Screen filters, 443, 444Screwpress, 815, 817, 819, 821–825Screw press dewatering system, 824Secondary clarifier, 441, 632, 643, 653, 654,

660, 674, 676, 678, 686, 687, 703,734, 738, 748, 782, 784, 794,808, 890

Secondary sedimentation, 748–750, 763,765–767, 769, 771, 773–775, 890

Sedimentation clarifier, 640, 641, 749, 758,760, 761, 763, 765–767, 769–771,773–775, 890, 893

Sedimentation clarifier operation, 773Sedimentation clarifier volume, 761, 763Selected flavors, 359Selection of enrichment culture, 24, 26Selectivity of pressure, 451Self-aggregated microbial cells, 14

Self-organizing principle of naturalecosystems, 558

Separate stage denitrification, 636–637, 796Separate stage nitrification, 630, 635–636,

678Septage, 578, 743, 813–848Septage addition, 841–844, 846Septage composting, 837, 838Septage odor control, 839Septic tank, 577, 578, 595–599, 814, 840, 841,

845Septic tank absorption field, 596Septic tank mound absorption field, 597Settled material, 766Settling basin components, 622Settling characteristics, 414, 421, 733, 805,

841, 845, 891Shallow oxidation ditch plants, 639Shannon-Weaver index, 31, 32Shelford’s tolerance law, 133–134Shiitake cultivation, 365SIC subcategory, 860–861Single ecosystem, 240, 266–271Single stage nitrification, 633, 634Sizing bioreactor, 419–422Sizing for full-scale unit, 767Slow rate land treatment system, 584–590Sludge age, 441, 463, 464, 488–490, 504, 505,

507–509, 782, 844, 845Sludge bulking, 77, 641, 714, 750, 766, 771,

773, 775, 891Sludge characteristics, 804Sludge consistency, 765–767, 770, 774Sludge freezing bed, 831–832Sludge generation rates, 804–805Sludge management, 805–806Sludge press function, 825Sludge production and MLSS concentration,

504Sludge production rate, 762Sludge recycle, 479, 633, 644, 651, 759–762,

890Sludge retention time, 629, 633, 634, 760, 763,

786Sludge rising, 750, 773, 775Sludge wasting rate, 842

Page 60: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

974 Index

Soil differentiation, 170Soil infiltration rate, 603, 605–606Solid residues, 291–300, 862Solids overloading, 771Solids recovery, 817, 819, 820, 822Solid-state cultivation process, 287–338Solid-state fermentation, 345–351, 354, 359,

361, 369–371Solid-state processes, 290–291Solid waste for production of ethanol, 376Solubility products for insoluble metal salts,

901Soluble 5-day BOD utilization rate, 762Soluble organics utilization rate, 759Solvents, 2, 6, 8, 14, 30, 47, 74, 349, 354,

360, 372, 373, 713, 861, 863–868,871, 873, 875–878, 882, 885–888,896, 900

Som-A-Press, 817, 818SOM-A system, 815, 817–819Spaceflight conditions, 277, 282, 523Special waste treatment systems for LSS,

263–266Specific clarification load, 748Specific substrate utilization rate, 404, 759,

763, 764Spiral scoops, 755–756Sporozoa, 749Stabilization, 23, 65, 176, 277, 300, 361, 383,

396, 397, 417, 426, 427, 545, 580,599, 625, 630, 632–633, 636, 738,750, 786, 802, 805, 814, 815, 835,837, 838, 840, 848, 890, 892, 900

Stainless steel and prefabricated construction,775

Starter cultures, 12, 13, 383Start-up and acclimation, 422–423Step aeration, 625, 630, 890Sterilization by radiation, 46–47Stoichiometry and energetics, 401–403Storage facilities, 662, 833–834, 836Strategy of waste management, 263, 874–875Strong form and weak form of critical

flux, 468Submerged turbine aeration systems, 627Submerged turbine aerator, 627

Substrate concentration, 43, 143–145, 172,403, 404, 419, 483, 682, 759, 763,764, 908

Substrate removal characteristics, 845Substrate utilization rate, 404, 759, 763, 764,

800, 908Subsurface flow system, 571Subsurface infiltration, 595–599Subsurface infiltration absorption fields, 599Suctoria, 749Sulfate-reducing bacteria, 5, 9, 208, 212, 214,

216, 223, 228–230, 233, 234,248–250, 254, 384–386

Sulfur assimilation, 215–216Sulfur cycle, 242, 244Sun sludge system, 815, 825–826Suspended growth anaerobic bioreactor

design, 416–423Suspended growth systems, 404, 635, 679,

680, 696, 842–845Suspended solids (SS) loading, 766Swelling biological flocs, 771Symbiotic mutualism, 35, 258Symbiotic mutualism of plants and

microorganisms, 35–36Symbiotic relationships, 65, 266, 397Synthesis of ATP, 198, 200, 226Synthrophic bacteria, 127Systematics of prokaryotes, 85, 96–98

Technosphere, 518, 530, 532, 536, 537, 560Terrestrial habitats, 130, 132, 169, 170, 175The MELISSA (Microecological Life Support

System Alternative) project, 263, 264,522, 552, 554–556

Thermophilic bacteria, 264, 555, 556The use of microecosystem, 280–281Total wastewater flow, 764, 896Toxic metabolites of oxygen, 12Trace elements in wastewater, 773Treatment of heavy metals-containing wastes,

9–10Trickling filter, 288, 289, 441, 591, 635, 653,

654, 671–679, 687, 698, 750, 845,892–894

Trickling filter, plastic media, 676–679

Page 61: Appendix: Conversion Factors for Environmental Engineers978-1-60327-… ·  · 2017-08-25Appendix: Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS

Index 975

Two stage systems, 415, 430, 432, 808Types of packaging of membranes, 447–449Type strain, 84, 85, 87, 97, 98, 115

UASBR. See Upflow anaerobic sludge blanketreactor

Ultrastructure of the cross section of twohollow fibers, 449

United States yearly cost index for utilities,614, 670, 720, 747

University of Capetown (UCT) process, 800,801, 806

Unsolved problems and prospects, 276–278Upflow anaerobic sludge blanket reactor

(UASBR), 295, 412, 421–422, 427Upflow fluidized bed biological GAC systems,

713US ACE Civil Works Construction Cost Index,

808Use of organic waste, 367–368US-Filter Memcor membranes, 474Utilization rate, 371, 404, 759, 762–764, 800,

908

Vacuum assisted bed, 815, 828–830Vacuum assisted sludge drying bed, 829Variation of the HRT of the hydolytic reactor,

431Various bioreactors classified in group, 305,

306, 308, 309Vegetated submerged bed, 571Vegetative filter systems, 600–607Vertical loop reactor, 655–660Viruses, 13, 15, 21, 26–28, 36–38, 47–49, 162,

169, 258, 267, 276, 279, 451, 599,711, 749, 857, 858, 864

Volume of aeration basin, 764, 768

Volume of final sedimentation, 764Volume of primary clarifier, 764Volume of secondary flotation, 764Volumetric loading, 626, 628, 629, 632–634,

638, 648, 651, 658, 698, 705, 706, 758Volumetric wastewater flow rate, 759VSS. See Volatile suspended solids (VSS)

Waste disposal, 173, 465, 868–871, 899–900Wasted sludge flow rate, 760Waste generation and characteristics, 901–903Waste management, 263, 271, 382, 397, 855,

874–875Waste recycling, 264, 265, 525, 531, 536, 877Waste sludge flow, 762Wastewater pH, 773Water-borne pathogens, 38Water hyacinth systems, 568–570, 572Wedgewater bed, 815, 826–828, 830Wedgewater drying bed, 827Wehrle Werk process, 448Wetlands, 67, 128, 159, 170, 174–176, 265,

536, 571–575Wetland system, 8, 570–575Wet oxidation, 265Winogradsky, 54, 95, 148, 149, 235, 237Working principle of Mitsubishi Rayon

SteraporeTM membrane, 476Working principle of spiral wound membranes,

449Worms, 24, 172, 173, 237, 238, 383, 536, 749WSW Centripress study, 821

X-Flow, 440, 474–475module, 475

Zenon cassette, 473