22
Appendix A THE GREEN'S IDENTITIES A.l The two-dimensional Green's identity Given two continuous and twice differentiable functions P(x,y) and Q(x,y) defined in terms of a cartesian coordinates sytem over domain Q and its boundary r, with continuous first and second derivatives, the two-dimensional Green's theorem can be written as follows: Ip(X,Y)dX r + Q(x,y)dy I (_a_Q_:_: '-y-)- Q ap(x,y) ) --dQ ay A.2 The Generalised Rayleigh-Green identity for plates Given a plate with domain Q and boundary r defined in terms of a cartesian coordinates system, the strain energy density can be written as follows: E(w,u)= D a 2 w a 2 u 2----+ axay axay where w is the plate deflection, u a weighting function, D the plate rigidity and the Poisson ratio of the plates's material. Integrating the above expression by parts twice, using equations that express the equivalent shear V n , bending moment Mn and twisting moment M in terms of w or u, and accounting for corner ns points of the plate we obtain:

Appendix A THE GREEN'S IDENTITIES - Home - Springer978-3-642-84… ·  · 2017-08-28Appendix A THE GREEN'S IDENTITIES ... Behaviour of Elastic Structures", Advances in Applied Mech.,

  • Upload
    vokhue

  • View
    220

  • Download
    1

Embed Size (px)

Citation preview

Appendix A

THE GREEN'S IDENTITIES

A.l The two-dimensional Green's identity

Given two continuous and twice differentiable functions P(x,y) and

Q(x,y) defined in terms of a cartesian coordinates sytem over

domain Q and its boundary r, with continuous first and second

derivatives, the two-dimensional Green's theorem can be written as

follows:

Ip(X,Y)dX

r

+ Q(x,y)dy I (_a_Q_:_: '-y-)-

Q

ap(x,y) ) --dQ

ay

A.2 The Generalised Rayleigh-Green identity for plates

Given a plate with domain Q and boundary r defined in terms of a

cartesian coordinates system, the strain energy density can be

written as follows:

E(w,u)= D a2w a2u

2----+ axay axay

where w is the plate deflection, u a weighting function, D the

plate rigidity and ~ the Poisson ratio of the plates's material.

Integrating the above expression by parts twice, using equations

that express the equivalent shear Vn , bending moment Mn and

twisting moment M in terms of w or u, and accounting for corner ns points of the plate we obtain:

186

N

J uV4w d!i2 - J (UVn(W) a ] c

[Mns(W)

+

E(w,u)= D - a: ttn(w) dr - LU !i2 !i2 i=l

N

J wv4u J (wVn(U) a ] c

(Mns(U)

+

E(u,w)= D d!i2 - - a: ttn(u) dr - LW

!i2 !i2 i=1

where N is the number of corners, n the direction normal to c boundary and s the boundary tangential direction. The term

+

(M is the corner jump of the twisting moment. Substracting the ~ ns

the last two equations from each other, we obtain the generalised

Rayleigh-Green identity for plates:

o J [uv"v - vv"u ]dO = L h (v) - :: Hn (v) - vVn (u) + :: Hn (u) ]dr !i2

Appendix H

FUNCTIONS OF THE FUNDAMENTAL SOLUTIONS

In what follows:

r is the magnitude of vector PO where P is the source point and 0

the field point.

a is the counter-clockwise angle from vector PO to the normal to

the boundary at P.

e is the counter-clockwise angle from the x-axis to PO.

~ is the counter-clockwise angle from vector PO to the normal to

the boundary at O.

~ is the counter clockwise angle from the x-axis to the normal to

the boundary at O.

(u2 is only used when source point P is on the boundary).

H.1 Fundamental Solution u1

r2 ln r

8nD

aU1 r --- (2ln r + 1) cos~ an 8nD

aU1 r --= (21n r + 1) sin~

as 8nD

188

1 1-v Vn (u1 )= - [2+ (l-v)cos2~1 cos~ + -- cos2~

4nr 4nr

l+v I-v Mn (u1 )= - (In r + 1) - -- cos2/3

4n 8n

I-v M (u1 )= sin2/3 ns

an

iU1

1 (1 + In r)

2nD

an 2nDr

B.2 Fundamental Solution u2

--= an

r - -- (21n r + l)cos 0:

8nD

1 1 - -- (21n r + 1)cos(j3-0:) - -- cosl3 coso:

8nD 4nD

1

as anD (2ln r + l)sin(j3-o:) + -- coso: sinl3

4nD

1 1-v I-v V n (u2 )=---2 [2+( 1-v)cos2131 cos (13+0:)- -----zsin2/3sino:+--2sino:cos/3sin213

4~ 2~ 2~

l+v I-v Mn (u2)= -- coso: + -- sin213 sino:

4nr 4nr

1-'\) Mns (u2)= -- sinet cos2/3

4nr

v'lu2 COSet

2nDr

av'lu2 cos( /3+et)

an 2nD/

B.3 Fundamental Solution Uxx

au 1

[cos xx /3 - sin

an 4nDr

v'lu cos 29

xx 2nDr2

av'luxx cos (29-/3)

an nDr3

B.4 Fundamental Solution u xy

sin 29

anD

sin /3 cos 29

4nDr

189

2 cos 9

4nD

/3 sin 29)

190

v'luxy sin 28

2nDr2

av'lu x;l

sin (2EHn

an nDr3

8.5 Fundamental Solution uyy

1 ( ) sin2e 8 nD 2ln r + 1 + -4-nD--

1 (cos 13 + sin 13 sin 29) 4nDr

cos 28

2nDr2

cos (29-13)

nDr3

Appendix C

TRIGONOMETRIC DEFLECTION FUNCTION5

In what follows:

s is the coordinate axis (either x or y)

L is the dimension of plate in direction s (either a or b)

k=2m-l

m-l z=(-l) (z=-l for even m, z=1 for odd m)

1. 55-55 :

Boundary Conditions: f(O)=O.,f"(O)=O.,f(L)=O.,f"(L):O.

mns f(s)= sin (m=1,2,3, ... )

L

2. 55-CL :

Boundary Conditions: f(O)=O.,f"(O)=O.,f(L)=O.,f'(L)=O.

ns mns f(s)= cos -- sin (m=1,2,3, ... )

2L L

3. 55-FR :

Boundary Conditions: f(O)=O.,f"(O)=O.,f"(L)=O.,f"'(L)=O.

2 [kns kns kns f(s)=- 3 + cos-- + O.5z sin-- - 4 cos-- + 4z sin

17 L L 2L ~]

2L

(m=1,2,3, •.• ) (k=1,3,5, •.• )

192

4. CL-SS :

Boundary Conditions: f(O)=O.,f'(O)=O.,f(L)=O.,f"(L)=O.

ns mns f(s)= sin -- sin

L L (m=1,2,3, ... )

5. CL-CL :

Boundary Conditions: f(O)=O.,f'(O)=O.,f(L)=O.,f'(L)=O.

f(s)= 1

2

6. CL-FR :

(m-1)ns

L

(m+1)ns 1 -cos-

L (m=1,2,3, ... )

Boundary Conditions: f(O)=O.,f'(O)=O.,f"(L)=O.,f"'(L)=O.

2 [17 1 kns z kns kns kns 1 f(s)=- - - -cos-- + --sin-- - 4cos-- - z sin--

17 4 4 L 2 L 2L 2L

(m=1,2,3, ... ) (k=1,2,3, ... )

7. FR-SS :

Boundary Conditions: f"(O)=O.,f"'(O)=O.,f(L)=O.,f"(L)=O.

f(S)=-=-[3 _ cos kns + ~in kns + 4cos 17 L 2 L

kns

2L kns 1 4zsin --2L

(m=1,2,3, ... ) (k=1,3,S, ..• )

193

8. FR-CL :

Boundary Conditions: f"(O)=O.,f"'(O)=O.,f(L)=O.,f'(L)=O.

1 f(s)=

2

9. FR-FR :

[ 1 _ z (13 _ cos 14

kns

L

_kns ] ) sin

2L (m=1,2,3, ... ) (k=1, 3,5, ... )

Boundary Conditions: f"(O)=O.,f"'(O)=O.,f"(L)=O.,f"'(L)=O.

For m=O

f(s)=1.

For m=1,3,5, ... i.e. k=1,5,9, ...

1 [1 kns kns kns 1 kns knS] f(s)=- -(2cos- - sin-) + sin- - -(4 + cos-)cos-

3 8 L L 2L 9 L 2L

For m=2,4,6, ... i.e. k=3,7,11, ...

1 [1 kns kns kns 1 kns knS] f(s)=- -(2cos- - sin-) + sin- - -(9 - cos-)cos-

3 8 L L 2L 4 L 2L

Alfutov,

Solving

N.A.

Plate

REFERENCES

& Balabukh, L.I. (1967); "On the Possibility of

Stability Problems without

Determination

pp.716-722

of the Initial State of Stress",

a Preliminary

PMM Vol. 31, No 4,

Berger, H.M. (1955); "A New Approach to an Analysis of Large

Deflections of Plates", J. appl. mech., ASME Vol. 22, pp.465.

Bezine, G. (1983); "Etude du Flambage des Plaques Minces par la

Methode des Equations Integrales de Frontiere", IIIe Congres

International sur les Methodes Numeriques, Pluralis, Paris,

pp.723-729.

Brebbia, C.A. (1980); "The Boundary Element Method for Engineers",

Pentech Press, 2nd edition.

Brebbia, C.A. and Nardini, D. (1982); "Dynamic Analysis in Solid

Mechanics by an Alternative Boundary Element Procedure", Int. J.

Soil Dynamics and Earthquake Eng'g, Vol. 2, pp.228.

Budiansky, B. (1974); "Theory of Buckling and Post-Buckling

Behaviour of Elastic Structures", Advances in Applied Mech., C.S.

Yih Ed., Vol.14, Academic Press, NY, 1974, pp. 1-65.

Bulson, P.S. (1970); "The Stability of Flat Plates", Chatto & Vindus, London.

Clebsh, A. (1862); "Theorie de Elasticitat fester Korper", Leipzig,

B.G. Teubner.

Costa

Plates

195

Jr., J.A. and Brebbia C.A. (1985);

using the Boundary Element Method",

"Elastic Buckling of

Proceedings of the 7th

International Conference on Boundary Element Methods, Villa Olmo,

Italy, pp. 429-442, SpringIer Verlag.

Cruse, T.A. (1969); "Numerical Solutions in Three Dimensional

Elastostatics", Int. J. of Solids Struc., Vol. 5, pp.1259-1274.

Elzein, A. and Syngellakis, S. (1989); "High-Order Elements for the

boundary element method stability analysis of imperfect plates",

Advances in Boundary Elements, Proc. of the 11th Int. Conf. on

Boundary Element Methods, Vol. 3, Ed. Brebbia C.A. and Connor J.J.,

pp.269-284.

Dym, C.L. and Shames, LH. (1973); "Solid Mechanics. A Variational

Approach", McGraw Hill.

Fredholm, I. (1903); "Sur une Classe d'Equations Fonctionelles",

Acta Math., Vol. 27, pp.365-390.

Hambly, E.C. (1976); "Bridge Deck Behaviour", Chapman & Hall.

Hoff, N.J. (1938); "Instability of Monocoque Structures in Pure

Bending", Journal of the Royal Aeronautical Society, Vol. 42,

pp.291-346.

Hoff, N.J., Boley, B.A. and Coan, J.M. (1948); "The Development of

a Technique for Testing Stiff Panels in Edgewise Compression",

Proc. Soc. Exper. Stress Analysis, Vol. 5, pp.68-74, 1948.

Jagger, L.G. (1980); "Elementary Theory of Elastic Plates",

Pergamon Press.

Jaswon, M.A. and Symm, G.T. (1977); "Integral Equation Methods in

Potential Theory and Elastostatics", Academic Press, London.

196

Kamiya, N. and Sawaki, Y. (1982); "An Integral Equation Approach to

Finite Deflection of Elastic Plates", J. Non-Linear Mechanics, Vol.

17, pp.187-194.

Kamiya, N. and Sawaki, Y. (1988); "The Plate Bending Analysis by

the Dual-Reciprocity Boundary Elements", Engineering Analysis, Vol.

5, No 1, pp.36-40.

Karman, T. (1910); "Festigkei t im Maschinenbau", Encykl. Math.

Wiss., Vol. 4' pp.311.

Katsikadelis, J.T. and Nerantzaki, M.S. (1988); "Large Deflections

of Thin Plates by the Boundary Element Method", Boundary Elements

X, Ed. Brebbia C.A., pp.435-456, SpringIer Verlag.

Lord Kelvin and Tait, P.G. (1883); "Treatise

Philosophy", Vol. 1, part 2, pp. 203.

on Natural

Khan, M.Z. and Walker, A.C. (1972); "Buckling of Plates Subjected

to Localised Edge Loading", The Structural Engineer, No 6, Vol. 50,

pp.225-232.

Khan, M. Z.,

Plates with

pp.547-557.

Kenneth, C.J. and Hayman, B.

Partially Loaded Edges", J.

(1977); "Buckling of

of Struc. Division,

Kirchhoff, G.R. (1850); "Uber das Gleichgewicht und die Bewegung

einer elastischen Scheibe, J. Math., Crelle, Vol. 40, pp. 51-58.

Kirchhoff, G.R. (1877), "Mechanik", 2nd edition.

Kupradze, O.D. (1965); "Potential Methods in the Theory of

Elasticity", Daniel Davey & Co., NY.

197

Kutt, H.R. (1975); "Quadrature Formulae for Finite-Part Integrals",

National Research Institute for Mathematical Sciences. CSIR Special

Report YISK 178, Pretoria, September.

Mikhlin, S.G. (1957); "Integral Equations", Pergamon Press, NY.

Mindlin, R.D. (1951); "Influence of Rotary Inertia and Shear on

Flexural Motions of Isotropic Elastic Plates", J. Appl. Mech. 18,

pp.31-38.

Muskhelishvili, N.I (1953); "Some Basic Problems of the

Mathematical Theory of Elasticity", P. Nordhoff Ltd, Groningen.

Niwa, Y. Kobayashi, S. and Fukui, T. (1974); "An Application of the

Integral Equation Method to Plate Bending", Memo, Faculty of

Engineering, Kyoto University, Japan, Vol. 36, Part 2, pp.140-158.

Nowinski, J.L. and Ohnabe, H. (1958); "On Certain Inconsistencies

in Berger Equations for Large Deflections of Elastic Plates", Int.

J. Mech. Sc., Vol. 14, pp.165.

Poisson, S.D. (1829); "Memoire sur l' Equilibre et Ie Mouvement des

Corps Solides", Vol. 12, part 8.

Reissner, E. (1944); "On the Theory of Bending of Elastic Plates",

J. Math. and Phys., Vol 23, pp. 184.

Reissner, E. (1985); "Reflections on the Theory of Elastic Plates",

Appl. Mech. Rev., Vol. 38, no 11, pp.1453-1464.

Richards, T.H. (1977); "Energy Methods in Stress Analysis", Ellis

Horwood Series in Eng'g Science.

198

Rhodes, J., Harvey, J.M. and Fok, V.C. (1975); "The Load-Carrying

Capacity of Initially Imperfect Eccentrically Loaded Plates", Int.

J. Mech. Sc., Vol. 17, pp.161-175.

Rizzo, F.J. (1968); "An Integral Equation Approach to Boundary

Value Problems of Classical Elastostatics", Quart. Appl. Math.,

Vol. 25, pp.41-52.

Sheid, F. (1968); "Theory and Problems of Numerical Analysis",

Schaum's Outline Series, McGraw Hill.

Shulesko, P. (1957); "Buckling of Rectangular Plates with Two

Unsupported Edges", J. of Applied Mechanics, December.

Smirnov, V.J. (1964); 'Integral Equations and Partial Differential

Equations', Course in Higher Mathematics, Vol. 4, Addison-Vesley,

London.

Spencer A.J.M., Parker D.F., Berry D.S., England A.H., Faulkner

T.R., Green V.A., Holden J.T., Middleton D., Rogers T.G. (1980);

"Engineering Mathematics- Volume 1", von Nostrnd Reinhold Company.

Stein, M. (1959); "Loads and Deformations of Buckled Rectangular

Plates", Technical Report R-40, NASA, Langley Research Center.

Syngellakis, S. and Kang, M. (1987); "A Boundary Element Solution

of the Plate Buckling Problem", Engineering Analysis, Vol. 4, No 2,

pp.75-81.

Tan, H.K.V. (1984); "Elastic Buckling of Isotropic Flat Plates by

Finite Elements", Proc. Instn. Civ. Engnrs, Part 2, Vol. 77, pp.

13-21.

199

Tanaka, M. (1983); "Integral Equation Approach to Small and Large

Displacement of Thin Elastic Plates", Boundary Element Methods in

Engineering: Proc. of the 4th Int. Seminar, ed. Brebbia, C.A.,

pp.526-539, SpringIer Verlag, Berlin.

Tang, V. (1987); "A Generalised Approach for Transforming Domain

Integrals Into Boundary Integrals in Boundary Element Methods", PhD

Thesis, Computational Mechanics Institute.

Telles, J.C.F. (1987); "A Self Adaptive Coordinate Transformation

for Efficient Numerical Evaluation of General Boundary Element

Integrals", Intern. J. Numer. Methods in Eng'g, Vol. 24, pp. 1-15.

Timoshenko, S.P. (1953); "History of Strength of Materials",

McGraw-Hill, London.

Timoshenko, S.P. and Gere, J.M. (1961); "Theory of Elastic

Stability", Second Edition, McGraw Hill.

Timoshenko, S.P. and Goodier, J.N. (1970); "Theory of Elasticity",

Third edition, McGraw Hill.

Timoshenko, S. P. and Voinowsky-Kreiger, S. (1970); "Theory of

Plates and Shells", Second Edition, McGraw Hill.

Uemura, M. and Byon, 0-1 (1978); "Secondary Buckling of a Flat

Plate under Uniaxial Compression Part 2. Analysis of Clamped Plate

by F.E.M. and Comparison with Experiments", Int. J. Non-Linear

Mechanics, Vol.13, pp.1-14.

Valker, A.C. (1964); "Thin Valled Structural Forms under Eccentric

Compressive Load Actions", Ph.D. Thesis, University of Glasgow.

Vinter, G. (1947); "Strength of Thin Steel Compression Flanges",

Trans. ASCE, Vol. 112, pp.527-554.

200

Vrobel, L.C. Brebbia C.A. and Nardini, D. (1986); "The

Dual-Reciprocity Boundary Element Formulation for Transient Heat

Conduction", Finite Element in Vater Resources VI, Brebbia et al

eds, SpringIer Verlag.

Vrobel, L.C. Telles, J.C.F. and Brebbia, C.A. (1986); "A Dual

-Reciprocity Boundary Element Formulation

Ditiusion Problems", Proc. 8th Int. Cont. on

Brebbia eds, SpringIer Verlag, pp.59.

for Axisymmetric

BEM, Tanaka and

Yamaki, N. (1961); "Experiments on the Postbuckling Behavior of

Square Plates Loaded in Edge Compression", Trans. ASME, Journal of

Applied Mechanics, Vol. 28, pp.238-244.

Zienkiewics, o.c. (1977); "The Finite Element Method", Third

Edition, McGraw-Hill.

SUBJECT INDEX

Automatic discretization 47-48,72-73,76,86, 116,180,182

Bifurcation 3,9-11,13,26,118,133-134,139-141 Buckling load 1,3,5,12-14,23-24,26,35,54, 59,73,77,81,83-84,151,171-172,179- 181

Cell boundary nodes 63,72 Circular plates 24,47,72,75,81-82,84-85 Concentrated forces 47,50-51,55,182 Corners 9,42,56,59,60-61,83-84,145,162,181

Dirac delta function 40 Dirichlet conditions 94 Discontinuous elements 43-44,59-60,62-63, 66-67,70,74,76-83,156,162,181

Eccentric loads 36,172,175-177 Effective width 2,26,36 Elastic foundations 7

Field point 39-40,55,112 Finite difference method 6,35-36,158 Finite element method 6,11,35-36,65,79,86-88,171,174,180,813 Flexural rigidity 2,4,22,42,55,153 Free boundary 6,9,29-31,36,50-51,55,67-70,73-75,84-85,87-88,99-104,114,117,122,129-132,136-140,142,145,149,152,164,172,176-177,181-182 Fundamental solution 6-8,38-42,52,55-56,59, 89,116,129,133,151,154,162-163,182- 184

Green's theorems 40-41,58 Grillage analogy method 100

Hook's law 18-19

In-plane boundary conditions 9,26,31-36, 38,42,153,171-172,177,184

Mesh nodes 35-36,44,48,59,63,72

Navier's equation 2-4,23,54

Parallelogram plates 83-85 Plate bending 1,2,4,7-8,17,22,24,31,55,151 Post-buckling 1,3,10-11 ,13-14,26,35, 151, 172,178

Rayleigh method 5 Rayleigh-Green equation 9-10,38,40-41, 56,90,92,109,112,124,179-180

Secondary buckling 36,172,175,178 Second-order terms 10,152,167 Shear deformations 4,16 Snap load 13-14 Source point 39-43,45-46,55,67-70,73,84, 104,107,109,112,114,117,125,149,162- 163 Stress function 2,9,21,25,31-35,38-39,48, 52,152-153,179-180 Stretching strains 4,9,16-17,22,24,26

Top-of-the-knee approach 26 Traction boundary conditions 9,31-35,46,153 Triangular plates 74-75,81-83,85,144-145

Von Karman's equations 2-5,9-11,25-26,38,152

SYMBOLS

a

h

n

s

s1' s2' s3

u1,u2'Uxx'Uxy'Uyy

ux,uy,uz

uxs,uys

uxb,uyb

w

aw

as

LIST OF SYHBOLS

depth of plate

width of plate

width of load strip

discontinuity jump of a fUnction f at corners

thickness of plate

direction normal to the boundary

incremental membrane stress resultants

distance between source and field points

direction tangential to the boundary

local coordinates of a domain cell

fundamental solutions

displacements in the x, y and z directions

stretching components of Ux and uy

bending components of Ux and uy

Uz displacement of the mid-plane of the plate

initial w pr~or to loading

gaussian weight

total w

derivative of w with respect to a then ~

normal slope of deflection

tangential slope of deflection

x,y,z

BEM

D

E

F

FO' FI FI n' nm

FEM

IJ I

KO' KI KI n' nm

M xx,Mxy,Myy

M n

M ns

N c

Nbe

Nbu

Nde

Ndn

Nd , Ndu

Neb

Nfl' Nf2

Nfe

N g

Ngb

Ngd

N ne

Nz

203

cartesian coordinates system

Boundary Element Method

plate flexural rigidity

Young's modulus

Airy's stress function

Fourier trigonometric functions

Finite Element Method

jacobian

coefficients of Fourier transforms

bending moments

normal bending moment

transverse bending moment

number of corners

number of boundary elements

number of boundary unknowns

number of domain cells

number of domain nodes

number of domain unknowns

number of boundary equations for critical loads

order of Fourier analysis in the x and y directions respectively

number of elements on free boundaries

number of Gaussian points

number of Gaussian points for boundary integrals

number of Gaussian points for domain integrals

number of nodes per element

number of fictitious domain nodes

P

Q

Ot

t. 1

"

C1XX ' C1yy ' C1ZZ

'xy' 'XZ ' 'YZ

r

INTEGRALS

204

source point

field point

shear force

radius of circular plate

normal and tangential boundary tractions

equivalent shear

angle between vector r and normal n to boundary

initial rotation of a rigid bar

direct strains in the x, y and Z directions

corner angle

ith interpolation function

shear strains

load factor

critical load factor

Poisson ratio

domain of plate

extended Fourier domain

critical stress resultant

direct stresses in the x, y and z directions

shear stresses

boundary of plate

Poisson operator

biharmonic operator

boundary integral of equation for critical loads

boundary integral of bending equation for large deflections

I~ J

ARRAYS

{b f }

{bw}

lew]

{Fw}

{n}

{Nail}

{T f }

{Ub}

{Ud}

{w}

{w Q} ,a ....

205

boundary integral of stretching equation for large deflections

domain integral of equation for critical loads, with curvatures terms

domain integral of bending equation for large deflections

domain integral of stretching equation for large deflections

domain integral of equation for critical loads, with deflections

traction boundary integral of equation for cri tical loads

traction boundary integral of bending equation for large deflections

corner jump term of transverse moment in equation for critical loads

corner jump term of transverse moment in bending equation for large deflections

vector of stress function unknowns

vector of bending boundary unknowns

matrix relating curvatures to deflections

vector relating deflections to domain unknowns

vector of incremental membrane stresses

vector of membrane stresses

vector containing Fourier functions

vector of boundary unknowns in dual-reciprocity

vector of domain unknowns in dual-reciprocity

vector of domain deflections

vector of curvatures

Lecture Notes in Engineering Edited by CA Brebbia and SA Orszag

Vol. 40: R. Borghi, S. N. B. Murhty (Eds.) Turbulent Reactive Flows VIII, 950 pages. 1989

Vol. 41: W. J. Lick Difference Equations from Differential Equations X, 282 pages. 1989

Vol. 42: H. A. Eschenauer, G. Thierauf (Eds.) Discretization Methods and Structural Optimization -Procedures and Applications Proceedings of a GAMM-Seminar October 5-7,1988, Siegen, FRG XV, 360 pages. 1989

Vol. 43: C. C. Chao, S. A. Orszag, W. Shyy (Eds.) Recent Advances in Computational Fluid Dynamics Proceedings of the US/ROC (Taiwan) Joint Workshop in Recent Advances in Computational Fluid Dynamics V, 529 pages. 1989

Vol. 44: R. S. Edgar Field Analysis and Potential Theory XII, 696 pages. 1989

Vol. 45: M. Gad-el-Hak (Ed.) Advances in Fluid Mechanics Measurements VII, 606 pages. 1989

Vol. 46: M. Gad-el-Hak (Ed.) Frontiers in Experimental Fluid Mechanics VI, 532 pages. 1989

Vol. 47: H. W. Bergmann (Ed.) Optimization: Methods and Applications, Possibilities and Limitations Proceedings of an International Seminar Organized by Deutsche Forschungsanstalt fUr Luft- und Raumfahrt (DLR), Bonn, June 1989 IV, 155 pages. 1989

Vol. 48: P. Thoft-Christensen (Ed.) Reliability and Optimization of Structural Systems '88 Proceedings of the 2nd IFIP WG 7.5 Conference London, UK, September 26-28, 1988 VII, 434 pages. 1989

Vol. 49: J. P. Boyd Chebyshev & Fourier Spectral Methods XVI, 798 pages. 1989

Vol. 50: L. Chibani Optimum Design of Structures VIII, 154 pages. 1989

Vol. 51: G. Karami A Boundary Element Method for Two-Dimensional Contact Problems VII, 243 pages. 1989

Vol. 52: Y. S. Jiang Slope Analysis Using Boundary Elements IV, 176 pages. 1989

Vol. 53: A. S. Jovanovic, K. F. Kussmaul, A. C. Lucia, P. P. Bonissone (Eds.) Expert Systems in Structural Safety Assessment X, 493 pages. 1989

Vol. 54: T. J. Mueller (Ed.) Low Reynolds Number Aerodynamics V, 446 pages. 1989

Vol. 55: K. Kitagawa Boundary Element Analysis of Viscous Flow VII, 136 pages. 1990

Vol. 56: A. A. Aldama Filtering Techniques for Turbulent Flow Simulation VIII, 397 pages. 1990

Vol. 57: M. G. Donley, P. D. Spanos Dynamic Analysis of Non-Linear Structures by the Method of Statistical Quadratization VII, 186 pages. 1990

Vol. 58: S. Naomis, P. C. M. Lau Computational Tensor Analysis of Shell Structures XII, 304 pages. 1990

For information about Vols. 1·39 please contact your bookseller or Springer-Verlag.