14
Appendices Appendix A Transmission Lines Power systems main power corridor: Transmission lines and transformers with a two-port network. Referring to Fig. A.1a approximated two port transmission network and (b) phasor diagram: V receiving end phase voltage E sending end phase voltage P single-phase real power Q single-phase reactive power BC j j¼ XI cosu ¼ E sind Hence I cosu ¼ E X sind AC j j¼ XI sinu ¼ Ecosd V Hence I sinu ¼ E X cosd V X Real power, P ¼ VI cosu ¼ EV X sind ) P d ðÞ¼ EV X sind power-angle characteristics d is known as the load angle or power angle Since the real power P depends on the product of phase voltages and the sine of the angle d between their phasors. In power networks, node voltages must be within a small percentage of their nominal values. Hence such small variations cannot inuence the value of real power. Large changes of real power, from negative to positive values, correspond to changes in the sin d. The system can operate only in that part of the characteristic which is shown by a solid line in Fig. A.1c. The angle © Springer Nature Singapore Pte Ltd. 2018 T. Bambaravanage et al., Modeling, Simulation, and Control of a Medium-Scale Power System, Power Systems, https://doi.org/10.1007/978-981-10-4910-1 159

Appendices Appendix A Transmission Lines - Springer978-981-10-4910...Appendices Appendix A Transmission Lines Power system’s main power corridor: Transmission lines and transformers

  • Upload
    ngotruc

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

AppendicesAppendix ATransmission Lines

Power system’s main power corridor: Transmission lines and transformers with atwo-port network.

Referring to Fig. A.1a approximated two port transmission network and(b) phasor diagram:

V receiving end phase voltageE sending end phase voltageP single-phase real powerQ single-phase reactive power

BCj j ¼ XIcosu ¼ E sind

Hence Icosu ¼ EX sind

ACj j ¼ XIsinu ¼ Ecosd� V

Hence Isinu ¼ EX cosd� V

XReal power, P ¼ VIcosu ¼ EV

X sind

) P dð Þ ¼ EVX

sind power-angle characteristics

d is known as the load angle or power angle

Since the real power P depends on the product of phase voltages and the sine ofthe angle d between their phasors. In power networks, node voltages must be withina small percentage of their nominal values. Hence such small variations cannotinfluence the value of real power. Large changes of real power, from negative topositive values, correspond to changes in the sin d. The system can operate only inthat part of the characteristic which is shown by a solid line in Fig. A.1c. The angle

© Springer Nature Singapore Pte Ltd. 2018T. Bambaravanage et al., Modeling, Simulation, and Control of a Medium-ScalePower System, Power Systems, https://doi.org/10.1007/978-981-10-4910-1

159

d is strongly connected with system frequency f; hence the pair ‘P and f’ is alsostrongly interrelated.

Reactive power,

Q ¼ EVX

cos d� V2

X

cos d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1� sin2 d

p

Q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiEVX

� �2

�P2

s

� V2

X

Due to stability considerations, the system can operate only in that part of thecharacteristic which is shown by a solid line. The smaller the reactance X, thesteeper the parabola; even for small changes in V, cause large changes in reactive

(a)

(b)

(c)

Fig. A.1 a Two-port p equivalent circuit corresponding to an approximated transmission line.b Corresponding phasor diagram. c Real power and reactive power characteristics

160 Appendix A: Transmission Lines

power. Obviously the inverse relationship also takes place: a change in reactivepower causes a change in voltage.

Hence the three factors that can affect the stability of PS can be identified as:

• Load angle, d• Frequency, f• Nodal voltage magnitude, V

Appendix A: Transmission Lines 161

Appendix BComposite Loads

Usually each composite load represents a relatively large fragment of the systemtypically comprising

• low- and medium-voltage distribution networks,• small power sources operating at distribution levels,• reactive power compensators,• distribution voltage regulators,• a large number of different component loads such as motors, lighting and

electrical appliances [6].

In the steady state the demand of the composite load depends on the bus-barvoltage V and the system frequency f. The functions describing the dependence ofthe active and reactive load demand on the voltage and frequency P(V, f) and Q(V,f) are called the static load characteristics.

The characteristics P(V) and Q(V), taken at constant frequency, are called thevoltage characteristics while the characteristics P(f) and Q(f), taken at constantvoltage, are called the frequency characteristics. The slope of the voltage or fre-quency characteristic is referred to as the voltage (or frequency) sensitivity of theload. Figure B.1, illustrates this concept with respect to voltage sensitivities.

Voltage sensitivities kPV and kQV and the frequency sensitivities kPF and kQF areusually expressed in per units with respect to a given operating point:

kPV ¼ DP=P0

DV=V0

kQV ¼ DQ=Q0

DV=V0

kPf ¼ DP=P0

Df =f0

© Springer Nature Singapore Pte Ltd. 2018T. Bambaravanage et al., Modeling, Simulation, and Control of a Medium-ScalePower System, Power Systems, https://doi.org/10.1007/978-981-10-4910-1

163

kQf ¼ DQ=QP0

Df =f0

where,P0, Q0, V0, f0, DP and DQ, are: real power, reactive power, voltage, frequency,

real power change, and reactive power change at a given operating point.A load is considered to be stiff, if at a given operating point, its voltage sensi-

tivities are small.If,

• kPV ’ 0kQV ’ 0, the load is considered to be ideally stiff. The power demand of thatload does not depend on the voltage.

• A load is voltage sensitive if kPV and kQV are high• For a small DV change cause high change in the demand, DP .• Usually kPV\kQV

Fig. B.1 Illustration of thedefinition of voltagesensitivity

164 Appendix B: Composite Loads

Appendix CGeneration Characteristic

In the steady state, the idealized power–speed characteristic of an ith generating unitcan be written as:

Dxxn¼ �qDPm

Pn

DPm

Pn¼ �K Dx

xn

Dffn¼ �qi

DPmi

Pni

DPmi

Pni¼ �Ki

Dffn

In the steady state, all the generating units operate synchronously at the samefrequency. When,

Dx fraction of rated speedxn rated speedx turbine speedDf fraction of frequencyf system frequencyDPT the overall change in the total power generatedNG no. of generator unitsPm turbine powerPn nominal power output;

DPT ¼XNG

i¼1DPmi

�KiDffn¼ DPmi

Pni

© Springer Nature Singapore Pte Ltd. 2018T. Bambaravanage et al., Modeling, Simulation, and Control of a Medium-ScalePower System, Power Systems, https://doi.org/10.1007/978-981-10-4910-1

165

)DPT ¼ �Dffn

XNG

i¼1KiPni

) DPT ¼ �DfXNG

i¼1

KiPnifn

� �ðC:1Þ

Figure C.1, illustrates how the characteristics of individual generating units canbe added according to Eq. (C.1) to obtain the equivalent generation characteristic.This characteristic defines the ability of the system to compensate for a powerimbalance at a situation of a system frequency deviation from its rated value. For apower system with a large number of generating units, the generation characteristicis almost horizontal such that even a relatively large power change only results in avery small frequency deviation. This is one of the benefits due to combininggenerating units into one large system.

To obtain the equivalent generation characteristic of Fig. C.2, it has beenassumed that the speed–droop characteristics of the individual turbine-generatorunits are linear over the full range of power and frequency variations. In practice theoutput power of each turbine is limited by its technical parameters. The speed–droop characteristics of a turbine with an upper limit is shown in Fig. C.2.

If a turbine is operating at its upper power limit then a decrease in the systemfrequency will not produce a corresponding increase in its power output. At thelimit q = ∞ or K = 0 and the turbine does not contribute to the equivalent systemcharacteristic. Consequently the generation characteristic of the system will bedependent on the number of units operating away from their limit at part load; thatis, it will depend on the spinning reserve, where the spinning reserve is thedifference between the sum of the power ratings of all the operating units andtheir actual load.

Fig. C.1 Generation characteristic as the sum of speed–droop characteristics of all the generationunits

166 Appendix C: Generation Characteristic

The allocation of spinning reserve is an important factor in power systemoperation as it determines the shape of the generation characteristic. This isdemonstrated in Fig. C.3, with two generating units.

In Fig. C.3a, the spinning reserve is allocated proportionally to both units (whichoperate at a frequency off0) and the maximum power of both generators is reachedat the same operating frequencyf1. The sum of both characteristics is then a straightline (as given in Eq. (C.1)), up to the maximum powerPMAX ¼ PMAX1þ PMAX2.

Figure C.3b shows a situation where the total system reserve is the same (equalto the amount of the previous case), but it is allocated solely to the second gen-erator. That generator is loaded up to its maximum at the operating point (fre-quencyf2). The resulting total generation characteristic is nonlinear and consists oftwo lines of different slopes. The first line is formed by adding both inverse droops,KT1 6¼ 0 and KT2 6¼ 0, in Eq. (C.3). The second line is formed noting that the firstgenerator operates at maximum load and KT1= 0, so that only KT2 6¼0 appears in thesum in Eq. (C.3). Hence the slope of that characteristic is higher (Fig. C.3).

Generally, the number of units operating in a real system is large. Some of themare loaded to the maximum but others are partly loaded, generally in a non-uniformway, to maintain a spinning reserve. Adding up all the individual characteristicswould give a nonlinear resulting characteristic consisting of short segments withincreasingly steeper slopes. That characteristic can be approximated by a curve asshown in Fig. C.4. The higher the system load, the higher the droop until itbecomes infinite qT = ∞, and its inverse KT = 0, when the maximum power PMAX

is reached. If the dependence of a power station’s auxiliary requirements on fre-quency were neglected, that part of the characteristic would be vertical (shown as adashed line in Fig. C.4).

The total system power generation is equal to the total system load (PL),including transmission losses.

XNG

i¼1Pmi ¼ PL

Fig. C.2 Speed–droop char-acteristic of a turbine with anupper limit

Appendix C: Generation Characteristic 167

Equation (C.1)/PL gives:

DPT

PL¼ �KT

Dffn

orDffn¼ �qT

DPT

PLðC:2Þ

(a)

(b)

Fig. C.3 Influence of the turbine upper power limit and the spinning reserve allocation on thegeneration characteristic

Fig. C.4 Static system gen-eration characteristic

168 Appendix C: Generation Characteristic

where,

KT ¼PNG

i¼1 KiPnið ÞPL

ðC:3Þ

qT ¼1KT

Equation (C.2) describes the linear approximation of the generation character-istic calculated for a given total system demand. Further, the coefficients inEq. (C.3) are calculated with respect to the total demand, not the sum of the powerratings, so that qT is the local speed-droop, of the generation characteristic anddepends on the spinning reserve and its allocation in the system as demonstrated inFig. C.4.

Appendix C: Generation Characteristic 169

Appendix D

Generation and transmission network of Sri Lanka as at 2011.

1130

PO

LPI-

1

132.

9

1170

SA

MA

N-1

134.

6

1210

BO

WA

T-1

131.

4

1770

KIR

IB-1

2220

KO

TMA

-2

224.

8

2230

VIC

TO-2

226.

8

2240

RA

ND

E-2

227.

3

2250

RA

NTE

-2

227.

3

32.9

32.8

3620

BA

DU

L-3

33.4

12.6

4252

RA

NTE

-G2

1790

RA

TMA

-1

130.

8

1300

KE

LAN

-1

130.

9

130.

8

4760

CO

L_F

-11

11.0

4750

CO

L_E

-11

129.

7

3500

KO

SG

A-3

33.3

33.3

3670

MA

TAR

A-3

133.

3

33.1

133.

4

3520

NU

WA

R-3

33.3

1520

NU

WA

R-1

132.

3

1620

BA

DU

L-1

131.

8

3540

OR

UW

A-3

32.7

1670

MA

TAR

A-1

132.

6

130.

5

1660

EM

BIL

-1

1100

LAX

-1

133.

3

130.

4

3200

UK

UW

E-3

3530

THU

LH-3

33.2

33.1

2300

KE

LAN

-2

217.

4

1540

OR

UW

A-1

130.

6

1530

THU

LH-1

130.

2

133.

7

217.

1

33.0

3860

MA

DA

M-3

133.

8

221.

2

1705

NE

WA

NU

-1

133.

2

1700

AN

UR

A-1

1850

PA

NA

D-1

127.

8

1800

MA

TUG

-1

129.

8

130.

4

1240

VA

VU

N-1

3240

VA

VU

N-3

3

33.3

33.1

32.8

134.

5

3400

HA

MB

A-3

3

32.5

3660

EM

BIL

-3

33.1

32.8

33.1

1160

ING

IN-1

127.

2

3160

ING

IN-3

125.

7

33.3

3700

AN

UR

A-3

A

217.

4

33.1

33.3

1710

TRIN

C-1

33.1

130.

6

32.9

33.0

134.

4

33.1

3690

HA

BA

R-3

33.1

1740

RA

TNA

P-1

133.

533

.0

1595

KH

D -

1

132.

4

132.

0

1600

BO

LAW

-1

131.

633

.4

132.

8

33.3

1840

JPU

RA

_1

130.

513

0.4

129.

9

129.

8

11.0

4435

CO

L_A

_11

3890

DE

HIW

_3

33.2

3800

MA

TUG

-3

33.2

134.

6

33.3

12.

0

0.8

12.

0

0.8

29.4

5.1 29.4

5.1

28.9 3.6

28.9 3.6

11.2

8.0

11.2

8.0

29.7

2.7

29.4

4.5

4.1 4.5

4.1

10.4

1.5

49.5

3.0

1.0

2.8

36.2

19.0

12.3

39.0

25.1

15.0

10.5

30.0

13.6

1.6

7.2

1.6

7.2

7.5

2.7 7.5

2.7

18.0

29.7

29.4

1.8

5.9

8.0

21.1

19.1 3.9

19.1 3.9

19.4

5.1

19.

2

7.3

28.8

11.2 28.8

17.0

72.8

38.4

47.

0

24.

347

.0

24.3

60.5

35.0

60.

5

5.9

8.0

12.0

11.0

14.0

4.3

0.6

10.8 0.6

10.8

0.0

0.0

0.0

0.0

81.9

77.2

81.2

85.7

81.9

77.2

81.2

85.7

7.1

1.5

7.1

1.5

17.3

0.3

17.

2

2.0

59.

1

44.

7

59.

1

44.

7

19.9

14.8

14.8

2.0

0.3

1.8

24.

8

20.

7 2

4.8

20.

7

49.5

41.3

11.0

3.6

3.3

1.0

0.0

0.0

0.0

5.2

0.0

0.0

6.9

14.

16.

9

14.

1

0.0

0.5

0.0 0.0

81.4

79.9

10.

911

.0

11.6

3.0

5.2

9.0

1.7

3.0

5.2

24.0

16.1

25.2

13.340.0

125.4

51.7

125.9

125.4

51.7

125.9

54.1

32.2

4.3

21.

6

21.

6

9.8

18.8

12.0

18.7

13.0

0.1

0.9

0.1

0.9

0.2

6.1

89.

0

63.

8

89.3

89.

0

63.

8

89.3

63.3

63.0

0.0

0.0

46.

0

42.

1

26.0

12.0

25.

7

12.

926

.0

12.0

51.0

35.6

12.7

129.

6

47.8

129

.2

46.

312

9.6

47.8

129

.2

46.

3

97.6

23.7

97.6

23.7

21.1

28.

0

12.

0 2

8.0

12.

0

6.5

22.8

16.4

28.

6

49.3

34.5

28.6

8.3

28.

6

0.0

10.1

0.0

78.0

36.7

117.

1

58.2

25.9

26.0

13.9 1

2.0

1.1

9.2

9.3

1.6

18.4

6.6

33.9

7.4

33.0

28.0

6.0

18.

6

5.6

18.7

3.6

37.0

14.5

18.5

7.3

18.5

7.3

1.0000

49.5

2.4

30.3

30.2

32.4

5.8

17.3

0.6

17.3

0.6

3.3

8.6

5.3 8.6

5.3

47.2

35.2

47.2

37.2

47.2

35.2

47.2

37.2 97.5

5.5

5.5

2.5

3.7

4.5

11.

7

1 27.1

12.4R

32.3

17.0H

1

40.0

2.5R

1

2.0

1

2.7

1 38.0

13.0

1

1

15.0

2.9R

1

38.0

17.4

1

46.0

36.0

1 15.0

10.0

1 39.0

22.0

1 15.0

5.0

1 18.0

7.0

1

1

51.0

1

11.0

4.4

1

14.0

1

0.0

1

30.0

12.0

2.0

0.3

1

49.5

37.1

1

1 0.0

0.0

1 36.2

19.0

1 45.8

1 11.0

3.2

SW

0.0

1 3.3

1

0.0

1

18.4

6.1

27.1

12.4R

2 32.0

2

40.0

2.5R

28.5

3.0

L

2

22.5

2.0

L

1

25.0

0.0L

1

11.0

48.0

20.0

H

2

1

20.0

10.0

H

2

1

47.0

30.0

SW

9.9

1 24.0

14.9

1

29.0

13.0

1

0.2

6.0

SW

1 63.0

1 48.61 0.0

0.01

51.0

31.6

1

63.3

39.2

1

1 21.1

13.1

1

11.7

5.7

1

60.5

35.0

H

1

25.0

H

1

16.5

7.3

1

28.6

15.2

1

39.0

17.8

1

49.3

19.9

1

26.0

12.6

2

12.0

H

1

1

26.0

12.0

H

1

33.9

21.3

SW

1 33.0

15.0

1

30.0

H

1 37.0

1

1

5.8

1

32.2

20.0

1

8.0

1

80.3

SW

5.1

0.0

33.0

4.0

33.0

6.8

1.0

0.0

3121

WIM

AL-

3B

1.5

8.6

3780

VA

LAC

H_3

32.9

132.

0

1780

VA

LAC

H_1

6.5

15.

2

1.0

11.0

131.

4

54.1

41.

7

15.1

3560

PA

NN

I-3

26.0

1590

SA

PU

GA

-1

13.4

3830

VE

YA

N-3

3

1250

RA

NTE

-1

40.

3

105

.8

40.

3

12.3

0.8

3.9

2.6

20.6

0.8

1.8 2.4

2.2

29.0

1

5.1

70.4

35.8

26.

3

70.4

24.

7

16.

5

3600

BO

LAW

-3

1

1

1

SW

10.1

5.3

28.9 28.2

6.6

12.

0

1.1

11.7 11

.6R

22.2

R

33.4

48.6

13.7

13.7

1

7.6

1

1

1

1

1

28.0

10.

2

3.7

1

128.

4

129.

6

3880

AM

BA

LA

32.8

19.8

11.2

9.9

5.6

9.9

1

19.8

10.4

1 33.8

9.5

10.1

1900

PN

NA

LA

13.9

24.4

7.9

9.4

19.

2

1910

AN

IYA

3910

AN

IYA

33.8

18.

0

30.

0

1

30.0

18.0

133.

0

32.8

1 40.0

24.8

SW 0.0

SW

0.0

38.0

6.0

15.0

6.8

2.1

0.0

9.0

2.7

5.4

3710

TRIN

C-3

SW

16.0

H90

.0

50.0

H

135.

0

42.5

135.

0

42.5

9.8

3630

BA

LAN

-3

0.0

33.2

57.5

14.2

2.0

19.4

3565

PA

NN

I-C

23.0

10.

1

43.2

39.

2

33.0

132.

7

5.8

1.6

1

5.8

1.5

33.5

3.1

3.1

1.3

42.3

133.

5

49.5

23.7

49.5

23.7

3440

KA

TUN

A-3

33.3

1

19.8

21.8

SW

0.0

1

11.0

0.0

90.0

50.0

H

3811

CE

ME

NT

33.1 11

.0

130.

3

16.1

11.4

11.4

122

.1

49.

8

122

.1

49.

8

123.

5

39.8

123.

5

39.8

7.7

1

1

15.3

2580

KO

TUG

-2

19.5

8.6

SW

0.0

1

218.

3

33.3

12.3

214.

9

33.2

3.9

14.8

1

4.0

12.0

7.4

1920

SU

B-C

130.

9

4920

SU

B C

-11

11.1

1

10.9

1760

CO

L_F

-1

24.2

33.3

0.0

6.2

0.0

0.024.2

14.5

11.0

1500

KO

SG

A-1

17.0

97.5

28.2

17.4

27.8

18.2

11.3

5.5

45.2

2.3

44.

1

2.4

2.3

20.1

1

275.

0

1.0000

247

.0

79.

6

4811

PU

TT C

OA

L-2

20.1

1

0.0

0.0

63.3

1

28.0

25.0

132.

6R

15.

2

19.7

13.0

1.6

26.

4

180

.0

46.

2

38.

7

90.

0

30.2

5.1

33.2

1

25.4

3.6

0.4

1

1

99.0

90.0

H

1

54.0

35.0

H

1

99.

0

76.

8

54.

0

29.

6

0.0

0.0

0.0

0.0

0.0

4310

SA

PU

G-P

11.0

1

12.5

8.0H

11.0

1

25.5

10.0

H

2

18.0

10.0

H 1

2.5

7.7

43.

5

16.

2

1.3

33.4

1 8.0

1.8

10.8

18.9

5.0

10.

8

6.4

8.0

2560

PA

NN

I-2

12.9

1550

KO

LON

-1

46.1

30.3

19.9

11.5

1650

GA

LLE

-1

39.4

32.2

1

5.4

3405

HA

MB

A-3

3

1400

HA

MB

A-1

134.

9

44.3

6.3

1.9

1340

BE

ATT

-1

18.8

4.4

33.1

133.

7

11.2

28.0

1150

AM

PA

-1

3150

AM

PA

-3

4251

RA

NTE

-G1

12.6

1120

WIM

AL-

1

3120

WIM

AL-

3

1110

N-L

AX

-1

19.5

6.4

6.8

133.

3

1640

DE

NIY

-1

3640

DE

NIY

-3

3740

RA

TNA

P-3

1630

BA

LAN

-1

133.

3

12.

8

1690

HA

BA

R-1

3245

VA

VU

N-3

3

3.3

2.4

1200

UK

UW

E-1

11.9

51.0

3770

KIR

IB-3

33.3

SW

127.

9

1.7

20.0

131.

8

129.

4 44.

1 2.4

2705

NE

WA

NU

-2

3810

PU

TTA

-3

11.0

4305

KE

RA

WA

LA-G

90.0

14.6

1680

KU

RU

N-1

3680

KU

RU

N-3

SW

105

.8

33.0

1860

MA

DA

M-1

130.

3

4810

PU

TT C

OA

L-1

1580

KO

TUG

-1

2830

VE

YA

N-2

1830

VE

YA

N-1

22.4

25.4

33.4

3701

AN

UR

A-3

B

SW

227.

7

1.0696

16.1

3581

KO

TU_N

EW

-3

3580

KO

TUG

-333

.4

3510

SIT

HA

-33

41.4

35.8

1440

KA

TUN

A-1

3900

PA

NN

AL

43.

0

17.5

63.3

45.3

3590

SA

PU

G-3

A

33.0

4311

SA

PU

G-P

213

10S

AP

UG

-1P

35.0

3870

K-N

IYA

-3

SW

0.0

3820

ATU

RU

-3

Pre

sen

t T

ran

smis

sio

n N

etw

ork

3.6

28.4

1420

HO

RA

NA

_112

7.3

3420

HO

RA

NA

_3

129.

8

1890

DE

HIW

_1

39.0

1435

CO

L_A

_1

8.2

7.8

16.5

3301

KE

LAN

-3A

31.3

0.0

14.8

3850

PA

NA

D-3

36.0

1560

PA

NN

I-1

10.8

17.5

12.7

1510

SIT

HA

-1

30.1

3550

KO

LON

-3A

33.3

3551

KO

LON

-3B

24.2

38.0

2570

BIY

AG

-2

2305

KE

RA

WA

LA_2

218.

6

14.5 43

06K

ER

AW

ALA

-S

0.98

33

142.

7

90.5

71.

4

* 22.9

0.98

33

1.00

001.

0667

142.

7

90.5

* 1

19.8

71.

4

* 22.9

12.5

12.5

* 1

19.8

1.01

67 1.00

00

2.7

30.0

0.0 * 1

0.0

2.0

1.01

67

1.00

001.

0000

* 40.0

2.7

30.0

0.0

* 1

0.0

2.0

133.

1

1.03

33

1.00

001.

0333

136.6

54.2

* 1

01.6

35.

8

* 35.0

1.00

001.

0333

136.6

54.2

* 1

01.6

35.

8

* 35.0

15.0

1.00

00

1.00

001.

0167

14.5

* 61.0

5.3

* 0

.0

5.2

1.00

00

1.00

001.

0667

58.1

63.1

* 58.1

61.1

* 0.

0

5.2

61.0

4300

GT

07

2222

BA

RG

E-2

3300

KE

LAN

I-3

1.00

00

1.00

001.

0500

89.0

63.8

* 89.0

56.7

* 0.0

0.0

1.00

00 1.05

00

89.0

63.8

* 89.0

56.7

* 0.0

0.0

4302

KC

CP

ST

4301

KC

CP

GT

4303

AE

S G

T

4304

AE

S S

T

1820

ATU

RU

-1

3570

BIY

AG

-3

15.0

1.00

00

* 40.0

3705

NE

WA

NU

-3

1570

BIY

AG

-1

1.03

3370.030.0

32.9

118.

6

1.06

671.

0000

1.0300

4430

CO

L_I_

11

17.0H

45.2

22

25

UP

PE

R-K

OT

H-2

22

5.2

14

.1

1

60

.0

18

.4R

13

.8

1

42

26

UP

PE

R-K

OT

H

42

25

UP

PE

R-K

OT

H

1.0250

1.0000

60

.0

13

.2 1.0250

1.0000

0.0

0.0

30

.0

9.3

30

.0

30

.03

0.0

6.6

9.3

216.

6

1810

PU

TTA

-1

38

12

WIN

D

33

.7

1.0000

1.0000

0.4

1

33.3

13

0.8

1430

CO

L_I_

11

43

1C

OL

I D

UM

13

.6

1

42

21

KO

TH

GE

N2

13

.6

1

14

.267

.0

45

.0H

1

1.0400

0.0

0.0

0.0

1.0400

1.0000

0.0

1.0000

37

.8

1.0400

67

.0

3.2

2.7

132.

9

1140

CA

NY

O-1

1870

K_N

IYA

-1

132.

3

3302

KE

LAN

-3B

10.5

13

0.5

17

61

SU

B F

DU

M

1750

CO

L_E

-1

3250

RA

NTE

-3

42

30

VIC

GE

N-1

12

.9

1

35

.0

20

.2R

42

31

VIC

GE

N 2

12

.950

.0

21

.2R

1

42

32

VIC

GE

N 3

12

.9

1

35

.0

20

.2R

1.0300

1.0000

35

.0

17

.8

1.0300

1.0000

50

.0

16

.9

1.0300

1.0000

35

.0

17

.8

20.6 2.8

20.6

SW

5.0

17

20

KIL

INO

CH

-1

13

2.6

37

20

KIL

INO

CH

-3

33

.112

.4

1.1

1

6.2

2.7

6.2

0.7

6.2

2.7

6.2

0.7

1.3

12

.4

1410

KU

KU

LE-1

42

22

KO

TH

GE

N 3

3840

JPU

RA

_3

13

0.5

18

91

DE

HI

4.9

3790

RA

TMA

-3A

16.

80.

0

1.8

133.

8

3340

BE

LIA

TT-3

3651

GA

LLE

-3B

1651

GA

LLE

-213

3.6

1880

AM

BA

LA

3650

GA

LLE

-3

2810

PU

TTA

LAM

-PS

48

13

WIN

D N

OR

34

.2

1

0.0

0.0

13

0.8

2.8

1.00

00

8.2

6.6

1.0000

42

20

KO

TH

GE

N1

19

21

SU

B C

-DU

MM

Y

Bu

s -

VO

LT

AG

E (

kV)

Bra

nch

- M

W/M

var

Eq

uip

me

nt -

MW

/Mva

r

10

0.0

%R

AT

EA

1.0

50

OV

0.9

50

UV

kV: <

=6

0.0

00

<=

12

0.0

00

<=

20

0.0

00

>2

00

.00

0

© Springer Nature Singapore Pte Ltd. 2018T. Bambaravanage et al., Modeling, Simulation, and Control of a Medium-ScalePower System, Power Systems, https://doi.org/10.1007/978-981-10-4910-1

171

References

1. R.C. Dugan, M.F. McGranaghan, S. Santoso, H.W. Beaty, Electrical Power SystemsQuality, 2nd edn. (McGraw-Hill, 2004).

2. PUCSL, Investigation Report on Power System Failures on 9th October 2009, PublicUtilities Commision of Sri Lanka, 2010 February.

3. J. Barkans, D. Zalostiba, Protection Against Black-outs and Self-restoration of PowerSystems (RTU Publishing House, Riga, 2009)

4. P.M. Anderson, Power System Protection (IEEE press, Wiley-Interscience, 1999)5. Seimens, Technical assesment of Sri Lanka’s renewable resource based electricity

generation, Final Report, RERED Project, Project No. 108763-0001 (Seimens PowerTechnologies International Ltd, England, UK, 2005).

6. J. Machowski, J.W. Bialek, J.R. Bumby, Power System Dynamics, Stability and Control(Wiley, New York, 2008)

7. P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, Definition and classification of powersystem stability, IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans.Power Syst. 19(2), 1387–1401 (2004).

8. M.Q. Ahsan, A.H. Chowdhury, S.S. Ahmed, I.H. Bhuyan, M.A. Haque, H. Rahman,Technique to develop auto load shedding and islanding scheme to prevent power systemblackout. IEEE Trans. Power Syst. 27(1), 198–205 (2012).

9. E. Vaahedi, Practical Power System Operation (IEEE Press, Wiley, New York, 2014)10. M. Giroletti, M. Farina, R. Scattolini, A hybrid frequency/power based method for industrial

load shedding. Elsevier Int. J. Electr. Power Energy Syst. 35, 194–200 (2012)11. P. Kundur, Power System Stability and Control (McGraw-Hill Inc, New York, 1993)12. H. You, V. Vittal, J. Jung, C. Liu, M. Amin, R. Adapa, An Intelligent adaptive load shedding

scheme, in 14th PSCC, Sevilla, Spain, 24–28 June, 2002.13. A.J. Wood, B.F. Wollenberg, G.B. Sheble, Power Generation, Operation, and Control, 3rd

edn. (IEEE Press, Wiley, Hoboken, NJ, 2014)14. F. Saccomanno, Electric Power Systems, Analysis and Control (IEEE press,

Wiley-Interscience, 2003).15. M. Eremia, M. Shahidehpour, Hand book of Electrical Power System Dynamics: Modeling,

Stability and Control (IEEE Press, Wiley, 2013).16. Guide for grid interconnection of embedded generators, Part I: Application, evaluation and

interconnection procedure, Ceylon Electricity Board, December, 2000.17. Wikipedia, https://en.wikipedia.org/wiki/Photovoltaic_system. Accessed 2 Oct 2015.18. Guide for grid interconnection of embedded generators, Part 2: Protection and operation of

grid interconnection, Ceylon Electricity Board, December, 2000.19. CEB, Long term transmission development plan 2011–2020. Ceylon Electricity Board, July,

2011.

© Springer Nature Singapore Pte Ltd. 2018T. Bambaravanage et al., Modeling, Simulation, and Control of a Medium-ScalePower System, Power Systems, https://doi.org/10.1007/978-981-10-4910-1

173

20. J. Liang, G. Venayagamoorthy, R. Harley, Wide-area measurement based dynamic stochasticoptimal power flow control for smart grids with high variability and uncertainty. IEEEETrans. Smart Grid 3(1), 59–69 (2012).

21. CEB, http://www.ceb.lk/downloads/st_rep/stat2010.pdf. Ceylon Electricity Board. Accessed12 Oct 2015.

22. CEB, http://www.ceb.lk/downloads/st_rep/stat2013.pdf. Ceylon Electricity Board. Accessed12 Oct 2015.

23. T. Bambaravanage, A. Rodrigo, S. Kumarawadu, N.W.A. Lidula, Under-frequency loadshedding for power systems with high variability and uncertainty, in ISPCC 2013Proceedings of the IEEE international conferrence on Signal Processing, Computing andControl, Solan, India, 2013.

24. ABB, Load Shedding Controller, PML630 Product Guide, Vaasa, Finland: ABB, 2011.25. P. Mahat, Z. Chen, B. Bak-Jensen, Under frequency load shedding for an islanded

distribution system with distributed generators. IEEE Trans. Power Deliv. 25(2), 911–918(2010).

26. V.V. Terzija, Adaptive under-frequency load sheddig based on the magnitude of thedisturbance estimation. IEEE Trans. Power Syst. 21(3), 1260–1266 (2006).

27. M. Begovic, D. Novose, D. Karlsson, C. Henville, G. Michel, Wide-area protection andemergency control. Proc. IEEE 93(5), 876–891 (2005).

28. B. Delfino, S. Massucco, A. Morini, P. Scalera, F. Silvestro, Implementation and comparisonof different under frequency load-shedding schemes, in IEEE Power Engineering SocietySummer Meeting, 2001, pp. 307–312, 2001.

29. P. Anderson, M. Mirheydar, An adaptive method for setting under-frequency load sheddingrelays. IEEE Trans. Power Syst. 7(2), 647–655 (1992).

30. M. Gunawardena, C. Hapuarachchi, D. Haputhanthri, I. Harshana, Capacity limit of thesingle largest generator uni, to maintain power system stability through a load sheddingprogram. Department of Electrical Engineering, University of Moratuwa, December 2011.

31. J.R. Jones, W.D. Kirkland, Computer algorithm for selection of frequency relays for loadshedding. IEEE Comput. Appl. Power 1(1), 21–25 (1988).

32. H. Bentarzi, A. Quadi, N. Ghout, F. Maamri, N.E. Mastorakis, A new approach applied toadaptive centralized load shedding scheme, in CSECS'09 Proceedings of the 8th WSEASInternational Conference on Circuits, Systems, Electronics, Control & Signal Processing,Wisconsin, USA, 2009.

33. K. Wong, B. Lau, Algorithm for load-shedding operations in reduced generation periods.IEEE Proc. 139(6), 478–490 (1992).

34. R. Maliszewski, R. Dunlop, G. Wilson, Frequency actuated load shedding and restoration,part I—philosophy. IEEE Trans. Power App. Syst. PAS-90(4), 1452–1459 (1971).

35. Network protection & automation guide: protective relays, measurements & control, AlstomGrid, May, 2011.

36. M.G. Simoes, B. Palle, S. Chakraborty, C. Uriarte, Electrical model development andvalidation for distributed resources. National renewable energy laboratory, Colorado, USA,April 2007.

37. C. Muller, User’s guide on the use of PSCAD (Manitoba HVDC Research Centre, Manitoba,2010)

38. P. Wilson, User’s guide: a comprehensive resource for EMTDC (Manitoba HVDC ReseaechCentre Inc., Manitoba, 2005)

39. Introduction to PSCAD/EMTDC (Manitoba HVDC Research Centre Inc., Manitoba, 2003).40. Y.S.M.I. Xi-Fan Wang, Modern Power System Analysis (Springer Science+Business Media,

LLC, NY, USA, 2008).41. ECB, Long term transmission development studies 2005–2014. Ceylon Electricity Board.42. Nexans, 60–500 kV High Voltage under ground power cables: XLPE insulated cables

(Nexans, Paris, France).

174 References

43. G.F. Moor,Electric cables handbook-Third Edition: BICC Cables (Blackwell Science,Oxford, UK, 1997)

44. E.B. Joffe, K.-S. Lock,Grounds for Drounding: A Circuit-to-System Handbook (IEEE Press;Wiley, NJ, USA, 2010)

45. T. Wildi, Chapter 10; Practical transformers, in Electrical Machines, Drives and PowerSystems, 5th edn. (Prentice Hall, New Jersey, 2002), pp. 197–224

46. A.V. Meier, Generators, in Electric Power Systems: A Conceptual Introduction (IEEE Press,Wiley-Interscience, New Jersey, USA, 2006), Chapter 4, pp. 85–126.

47. S.W. Smith, in The scientist and Engineer’s Guide to Digital Signal Processing, 2nd edn.(California Technical Publishing, California, USA, 1999), pp. 35–66.

48. K. Ogata, Modern Control Engineering, 4th edn. (Prentice-Hall, New Jersey, 2002)49. CEB, Long term transmission development plan 2011–2020. Ceylon Electricity Board, July,

2011.50. PUCSL, Generation performance in Sri Lanka 2014. Public utilities commission of Sri

Lanka, 2014.51 CEB, Generator Interconnection of Sri Lanka. Ceylon Electricity Board.52 C. Huang, S. Huang, A time-based load shedding protection for isolated power systems.

Electric Power Systems Research 52, 161–169 (1999)53 M. Eremia, M. Shahidehpour, Handbook of Electrical Power System Dynamics: Modeling,

Stability and Control (IEEE Press, Wiley, New York, 2013)54 SIEMENS, SIPROTEC Over Current Time Protection 7SJ80; V4.6 manual., SIEMENS.55 M.Q. Ahsan, A.H. Chowdhury, S.S. Ahmed, I.H. Bhuyan, Technique to develop auto load

shedding and islanding scheme to prevent power system blackout. IEEE Trans. Power Syst.27(1), 198–205 (2012).

56 http://en.wikipedia.org/wiki/Photovoltaic_system. Accessed 2 Oct 2015.57 CEB, http://www.ceb.lk/downloads/st_rep/stat2011.pdf. Ceylon Electricity Board. Accessed

12 October 2015.58 CEB, http://www.ceb.lk/downloads/st_rep/stat2012.pdf. Ceylon Electricity Board. Accessed

12 Oct 2015.59 H. Bevrani, A.G. Tikdari, T. Hiyama, Power system load shedding: key issues and new

perspectives. World Academy of Science, Engineering and Technology 65, 177–182 (2010)60 J. Ford, H. Bevrani, G. Ledwich, Adaptive load shedding and regional protection. Elsevier

Int. J. Electr. Power Energy Syst. 31, 611–618 (2009)61 S. Arnborg, G. Andersson, D.J. Hill, I.A. Hiskens, On under voltage load shedding in power

systems. Electr. Power Syst. 19(2), 141–149 (1997).62 CEB, Long term Generation expansion plan 2015–2034. Ceylon Electricity Board, July

2015.63 http://www.most.gov.mm/techuni/media/EP_03041_4.pdf. Accessed 10 March 2013.64 P. Mahat, Z. Chen, B. Bak-Jensen, Control and Operation of distributed generation in

distribution systems. ScienceDirect, Electr. Power Syst. Res. 81, 495–502 (2011)65 T. Bambaravanage, S.K.A. Rodrigo, N.W.A. Lidula, A new scheme of under frequency load

shedding and islanding operation. Annual Trans. IESL1 (Part B), 290–296 (2013).66 T. Bambaravanage, S.K.A. Rodrigo, Comparison of three Under-Frequency Load Shedding

Schemes referring to the Power System of Sri Lanka. Engineer: J Inst Eng Sri Lanka49 (1):41 (2016)

References 175