23
MONITORING CYANOBACTERIA IN INLAND MONITORING CYANOBACTERIA IN INLAND WATERS BY REMOTE SENSING WATERS BY REMOTE SENSING Antonio Antonio Ruiz Ruiz Verdú Verdú , , Centre for Hydrographic Studies, CEDEX. Madrid. Spain Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 30 th th Congress of the International Association of Theoretical and Applied Congress of the International Association of Theoretical and Applied Limnology. 12-18 August 2007. Montreal, Canada Limnology. 12-18 August 2007. Montreal, Canada

Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

MONITORING CYANOBACTERIA IN MONITORING CYANOBACTERIA IN INLAND WATERS BY REMOTE SENSINGINLAND WATERS BY REMOTE SENSING

Antonio Antonio RuizRuiz VerdúVerdú,,

Centre for Hydrographic Studies, CEDEX. Madrid. SpainCentre for Hydrographic Studies, CEDEX. Madrid. Spain

3030thth Congress of the International Association of Theoretical and Applied Congress of the International Association of Theoretical and Applied Limnology. 12-18 August 2007. Montreal, CanadaLimnology. 12-18 August 2007. Montreal, Canada

Page 2: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

1. Reflectance spectra of Spanish inland waters

2. Phycocyanin (PC) as an indicator of cyanobacterial biomass

3. Approaches for PC estimation from remotely sensed data

4. Validation of algorithms in Spain5. Examples of applications (thematic

maps)

SUMMARY

Page 3: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

0

0.001

0.002

0.003

0.004

400 450 500 550 600 650 700 750 800 850 900

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

CASI-2

MERIS

TM

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

0

0.001

0.002

0.003

0.004

400 450 500 550 600 650 700 750 800 850 900

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

CASI-2

MERIS

TM

9

6

3

Re

fle

cta

nce

(%

)

Wavelength (nm)

12

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

0

0.001

0.002

0.003

0.004

400 450 500 550 600 650 700 750 800 850 900

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

CASI-2

MERIS

TM

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

0

0.001

0.002

0.003

0.004

400 450 500 550 600 650 700 750 800 850 900

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

CASI-2

MERIS

TM

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

0

0.001

0.002

0.003

0.004

400 450 500 550 600 650 700 750 800 850 900

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

CASI-2

MERIS

TM

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900

Longitud de onda (nm)

Ref

lect

anci

a (R

rs, s

r-1)

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

0

0.001

0.002

0.003

0.004

400 450 500 550 600 650 700 750 800 850 900

0

0.001

0.002

0.003

0.004

400 500 600 700 800 900

CASI-2

MERIS

TM

9

6

3

Re

fle

cta

nce

(%

)

Wavelength (nm)

12

Reflectance spectra: Optical signature of natural waters

Page 4: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Reflectance spectra of Spanish inland waters

Page 5: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Examples of reflectance spectra for waters dominated by a single phytoplankton group (>90% of biovolume)

0

1

2

3

4

5

400 600 800

Wavelength (nm)

R(

) / R

(67

5)

0

1

2

3

4

5

400 600 800

Wavelength (nm)

R(

) / R

(67

5)

0

1

2

3

4

400 600 800

Wavelength (nm)

R(

) / R

(67

5)

0

1

2

3

4

400 600 800

Wavelength (nm)

R(

) / R

(67

5)

Chlorophyceae Bacillariophyceae

Cryptophyceae CYANOBACTERIA

Chl-a

Phycocyanin

Page 6: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Reflectance spectra of cyanobacterial blooms (July 2007, Spain)

Page 7: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

• Phycocyanin (PC) is a characteristic pigment of Cyanobacteria

• PC could be used as a proxy for cyanobacterial biomass

• PC absorption is noticeable in reflectance spectra (at around 625 nm)

• If adequate spectral bands are present, algorithms could be developed for PC retrieval from spaceborne sensors

• Envisat-MERIS (ESA) is currently the only operational spaceborne sensor capable of retrieving PC

Remote sensing of Cyanobacteria

Main facts:

Page 8: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

0.1

1.0

10.0

100.0

1000.0

10000.0

0.00 0.01 0.10 1.00 10.00 100.00 1000.00

Cyanobacte ria l chlorophyll a (mg m-3)

PC

AV

G (m

g m

-3)

y = 2.1412x

R2 = 0.9027

1 0

0.1

1.0

10.0

100.0

1000.0

10000.0

0.00 0.01 0.10 1.00 10.00 100.00 1000.00

Cyanobacte ria l chlorophyll a (mg m-3)

PC

AV

G (m

g m

-3)

y = 2.1412x

R2 = 0.9027

1 0

PC as a proxy for cyanobacterial biomass

• Intracellular PC content in Cyanobacteria is typically higher than Chl-a

• BUT, PC:Chl-a ratios are not constant

• If Cyanobacteria are not dominant, the variability of PC:Chl-a ratios is higher

• HOWEVER, in the studied reservoirs in Spain, PC:Chl-a ratios are relatively constant for [Chl-a] > 2 mg m-3

Page 9: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

0

2

4

6

8

10

12

14

16

18

400 500 600 700 800

0.00

0.05

0.10

0.15

0.20

0.25

400 500 600 700 800

Abso

rpti

on c

oeffi

cient

(m-

1)

Reflect

ance

Chl-Chl-aa

PCPCCarotenoidCarotenoid

ss

Chl-Chl-aa

Particle scatteringParticle scattering

Retrieving PC absorption from reflectance at 620 nm

• PC absorption can be detected in R spectra• BUT, other pigments absorb as well (mainly Chl-a and Chl-b)

Chl-a

Chl-b

Chl-cPC

Relative pigment absorption

• Absorption of CDOM and detritus at 620 nm is often low but not negligible

Page 10: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Approaches for algorithm development

1. BAND RATIO

0.00

0.05

0.10

0.15

0.20

0.25

400 500 600 700 800

R(2)R(1)

R(1) = Reflectance at absorption band

R(2) = Reflectance at reference band (no PC absorption)

[PC] = f [R([PC] = f [R(11) / R() / R(22)])]

Page 11: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Approaches for algorithm development

2. BASELINE

R(1) = Reflectance at absorption band

R(2) = Reflectance at reference band 1 (no PC absorption)

R(3) = Reflectance at reference band 1 (no PC absorption)

0.00

0.05

0.10

0.15

0.20

0.25

400 500 600 700 800

R(2)R(1)

R(3)

[PC] = f {0.5 x [R ([PC] = f {0.5 x [R (11) + R () + R (33)] - R ()] - R (22)})}

Page 12: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Approaches for algorithm development

3. NESTED BAND RATIO (Simis et al., 2005)

• Developed for MERIS bands

0.00

0.05

0.10

0.15

0.20

0.25

400 500 600 700 800

M6 M7 M9 M12

• Backscattering is calculated from band 12

• Chl-a absorption is calculated from the ratio of bands 7 and 9

• PC absorption is calculated from the ratio of bands 6 and 9 and corrected with the estimated chl-a absorption at 620 nm

• [PC] is calculated from PC absorption

Simis, S. G. H., S. W. M. Peters, & H. J. Gons. (2005). Limnology and Oceanography, 50, 237-245.

Page 13: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Validation of PC algorithms• 65 reservoirs and lakes sampled in the period 2001-2007 in Spain (200 sampling points)

• Concurrent field measurements:

• Optical (reflectance, absorption…)• Pigment quantification• Taxonomic• Image processing

Page 14: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Validation of PC algorithms

1

10

100

1000

1 10 100 1000

PC measured (PCREF mg m-3)

PC r

etri

eved

(PC

RA

D ,

mg

m-3

)

Simis et al. (2005) algorithm

R2=0.94p<0.001

Page 15: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Validation of PC algorithms

• Simis algorithm has been validated with a common dataset from Spanish and Dutch inland water bodies

• The influence of other pigments in the algorithm has been investigated

• Comparison with other published algorithms is currently ongoing

Simis, S.G.H., A. Ruiz-Verdú, J.A. Domínguez-Gómez, R. Peña-Martinez, S.W.M. Peters, and H.J. Gons. (2007). Remote Sensing of Environment 106, 414–427.

Page 16: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Obtaining maps for Chl-a and PC

• PC and Chl-a algorithms have been applied to MERIS and Chris/Proba imagery

• Chris/Proba: Experimental ESA satellite

- 18 bands (similar to MERIS) - 17 m spatial resolution (MERIS=300 m) - Limited number of images

• Major requirement: An accurate atmospheric correction method is needed

Page 17: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

MERIS IMAGERY OVER ALBUFERA DE VALENCIA LAKE

Visible bandsVisible bands IR / VIS bandsIR / VIS bands

Obtaining maps for Chl-a and PC

Page 18: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

CHRIS/PROBA IMAGERY OVER ALBUFERA DE VALENCIA LAKE

Obtaining maps for Chl-a and PC

Visible bandsVisible bands

Page 19: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Obtaining maps for Chl-a and PC

[PC] (mg/m3)0 50 100 150 250 <255

[PC] (mg/m3)0 50 100 150 250 <255

[PC] (mg/m3)0 50 100 150 250 <255

PCPC March 1 March 1stst 2007 2007

[Cla] (mg/m3)0 50 100 150 250 <255

[Cla] (mg/m3)0 50 100 150 250 <255

[Cla] (mg/m3)0 50 100 150 250 <255

Chl-aChl-a March 1 March 1stst 2007 2007

0 20 60 100 140 180 220 >250 mg m-30 20 60 100 140 180 220 >250 mg m-3

CHRIS / PROBACHRIS / PROBA

Page 20: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

0 20 60 100 140 180 220 >250 mg m-30 20 60 100 140 180 220 >250 mg m-3

Obtaining maps for Chl-a and PC

Chl-aChl-a June 24 June 24thth 2007 2007 PCPC June 24 June 24thth 2007 2007

MERISMERIS

Page 21: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

Obtaining maps for Chl-a and PCEVOLUTION OF MEASURED AND ESTIMATED PHYCOCYANIN (SAMPLING POINT B )

0

50

100

150

200

250

300

350

22/04/2004 22/05/2004 21/06/2004 21/07/2004 20/08/2004 19/09/2004 19/10/2004 18/11/2004

DATE

PC

(m

g m

-3)

MEASURED PCESTIMATED PC

Monitoring a eutrophic reservoir: Rosarito

Page 22: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

• Cyanobacterial biomass can be monitored from spaceborne sensors, by detecting the pigment Phycocyanin (PC)

• MERIS and CHRIS/PROBA imagery have been used successfully in Spanish lakes and reservoirs

• Algorithms are less accurate for low PC concentrations (i.e. early bloom stages)

MAIN CONCLUSIONS

Page 23: Antonio Ruiz Verdú, Centre for Hydrographic Studies, CEDEX. Madrid. Spain 30 th Congress of the International Association of Theoretical and Applied Limnology

MONITORING CYANOBACTERIA IN MONITORING CYANOBACTERIA IN INLAND WATERS BY REMOTE SENSINGINLAND WATERS BY REMOTE SENSING

Antonio Antonio RuizRuiz VerdúVerdú, Ramón Peña Martínez and Caridad De Hoyos , Ramón Peña Martínez and Caridad De Hoyos AlonsoAlonso

Centre for Hydrographic Studies, CEDEX. Madrid. SpainCentre for Hydrographic Studies, CEDEX. Madrid. Spain

3030thth Congress of the International Association of Theoretical and Applied Congress of the International Association of Theoretical and Applied Limnology. 12-18 August 2007. Montreal, CanadaLimnology. 12-18 August 2007. Montreal, Canada