23
Anticipating urban mining Abstract In recent years there has been growing interest in urban mining from various environmental and economic perspectives. Materials hidden in buildings are attractive alternatives to raw ones, while building activities are responsible for a large share of waste. The paper is a summary of findings from an analysis of possibilities for urban mining in Amsterdam, focusing on prospecting for metals in residential buildings. Both global literature and interviews with Dutch demolition experts suggest that performance in metal recovery from buildings is as high as it can get. However, estimation of metal content in buildings and of waste processing rates is far from reliable, accurate and precise enough to support such claims or identify possibilities for further improvement, especially in relation to processes of urban and real-estate redevelopment and rejuvenation. To improve understanding and embedding of urban mining in these processes, we propose (a) a BIM-based information infrastructure that connects to municipal and owner information processes, so as to progressively collect all relevant information, allow for validation, verification and localization of valuable resources, as well as identify opportune moments for their extraction, and (b) policies that overcome the fragmented institutional character of the building sector, making information sharing a consequence of networking based on trust and shared values, driven by both demand and soft incentives relating to circularity. Keywords Urban mining; construction and demolition waste; building information modelling (BIM); policy formation; renovation; redevelopment; prospecting.

Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Anticipating urban mining

Abstract

Inrecentyearstherehasbeengrowinginterestinurbanminingfromvariousenvironmentaland

economicperspectives.Materialshiddeninbuildingsareattractivealternativestorawones,while

buildingactivitiesareresponsibleforalargeshareofwaste.Thepaperisasummaryoffindingsfrom

ananalysisofpossibilitiesforurbanmininginAmsterdam,focusingonprospectingformetalsin

residentialbuildings.BothgloballiteratureandinterviewswithDutchdemolitionexpertssuggest

thatperformanceinmetalrecoveryfrombuildingsisashighasitcanget.However,estimationof

metalcontentinbuildingsandofwasteprocessingratesisfarfromreliable,accurateandprecise

enoughtosupportsuchclaimsoridentifypossibilitiesforfurtherimprovement,especiallyinrelation

toprocessesofurbanandreal-estateredevelopmentandrejuvenation.Toimproveunderstanding

andembeddingofurbanminingintheseprocesses,wepropose(a)aBIM-basedinformation

infrastructurethatconnectstomunicipalandownerinformationprocesses,soastoprogressively

collectallrelevantinformation,allowforvalidation,verificationandlocalizationofvaluable

resources,aswellasidentifyopportunemomentsfortheirextraction,and(b)policiesthat

overcomethefragmentedinstitutionalcharacterofthebuildingsector,makinginformationsharing

aconsequenceofnetworkingbasedontrustandsharedvalues,drivenbybothdemandandsoft

incentivesrelatingtocircularity.

Keywords

Urbanmining;constructionanddemolitionwaste;buildinginformationmodelling(BIM);policy

formation;renovation;redevelopment;prospecting.

Page 2: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Urban mining

Importance for Amsterdam

ThepaperdepartsfromafeasibilitystudyforfurbanmininginAmsterdam,inparticularformetalsin

residentialbuildings.Recoveringresourcesfromtheanthroposphereinadenselypopulatedcityisa

complextask,whichisneverthelessjustifiedbythejointimperativeofreducingunprocessedwaste

andextractingvaluefromexistingstock.Moreover,citiesseemtobetherightplaceforit,asthe

largerthesizeofacommunity,thehigherthebuildinganddemolitionactivity[1],andalsobecause

higherwastegenerationrates(WGR)forconstructionanddemolitionwaste(C&DW)havebeen

observedincountrieswithhigherpopulationdensities[2].Theunderlyingreasonsforbothinclude

highereconomicactivity,populationmobility,higherlivingstandardsandstricterenvironmental

regulations:allcharacteristicofoldyetstilldynamicurbancentreslikeAmsterdam.

Thefocusonmetalswasopportunistic:giventhehighdemandonmetals,oneshouldexpectthat

thereissubstantialinterestintheirrecovery,resultingintoeitheradvancedexistingpracticesor

emergingopportunities.Therestrictiontoresidentialbuildings,ontheotherhand,directedresearch

towardsthearguablymostdifficultcaseamongbuildingstock.Residentialpropertieshavesmaller

sizes,distributedownershipandalongerlifethanothertypesofbuildings,aswellashigherdiversity

intheirconstructionandmaterials.Whenitcomestometalrecovery,theycannotbeconsideredthe

easiestproposition,sotheresultsofthisresearchcouldbegeneralizedtoalltypesofbuildingstock

withmorereliabilitythaniftheresearchconsidered,forexample,industrialbuildings.

Approach

Obtaininganoverviewoftheworldwidestateoftheartintherecoveryofmetalsfromthebuildings

wasbasedonexploratoryliteraturereview,startingwithjournalpapersinScopusbutnotrestricted

toit.Particularattentionwasgiventopapersthatincludedactualcasesassourceofquantitative

information,soastoestablishareliablepictureofwhatisavailableandhowitiscurrently

Page 3: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

processed.Thefindingswerecorroboratedbysemi-structuredinterviewswithDutchexpertsin

buildingdemolitionandwastemanagement.Theserevealedlocalpractices,experiencesand

performance,whichwereconsideredagainsttheoverviewofpossibilitiesfromtheliteraturereview,

soastoidentifyrelevantfactorsandpossibleimprovementsthatwouldstimulateurbanminingin

Amsterdam.Suchfactorsandimprovementswereassumedtorelatetostakeholderprocesses,for

example,plannedrenovationprojectsofhousingcorporations,whichcouldprovidestructural

opportunitiesforresourcerecovery.

Literature review

C&DW

Constructionanddemolition(C&D)arewidelyacknowledgedasoneofthemostimportantsources

ofwaste.C&DWintheNetherlandsin2010(aleanyearforthebuildingindustry)amountedto

24Mt,whileindustryproduced15Mtandconsumers9Mt[3].C&DWisgenerallydividedinto

wastegeneratedfromnewconstruction,renovationanddemolition.Demolitioncontributesupto

70%ofC&DWinsomecontexts[4].Inothersitiscalculatedat55%,withrenovationproducing29%

andnewconstruction16%,whiledemolitionis8%ofthetotalbuildingandconstructionactivity,

renovation40%andnewconstruction52%[5].Wastegenerationpergrossfloorarea(WGA)at

demolitionisreportedasbeingtwentytimesmore[5]orevenfiftytimesmorethannew

construction[4].RenovationWGAisestimatedatfivetimesmorethannewconstruction[5].

Metals from anthropocentric stock

Giventhehighpricesformetalsintherecentpast,interestinrecyclingmetalsfromwasteishardly

surprising.30%ofcopperconsumedinEuropeand50%ofironintheUSAoriginatesfromsecondary

sources[6],whileinAustralia65%ofsteelisrecycled,includingupscalingofoldcastiron[7].

Ambitionsforthefutureremainhigh:inChina,copper,iron,aluminiumandleadsubstitutionrates

in(replacementofprimarymetalsourcesbysecondaryones)throughurbanminingcanbeupto

Page 4: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

50%by2030[8,9].Recyclingofmetalsisalsosignificantwithinthewasteindustryitself,asit

significantlyreducesitsnetcarbonfootprint[10].

Withtheworldwidepopularityofreinforcedconcreteasbuildingmaterialandtheincreasing

quantitiesofwiringandpipinginbuildings,itisevenlesssurprisingthatbuildingscontain50%or

possiblymoreofallmetalsinuse[11].ThismakesC&DWimportantincomparisontootherwaste

sources.Forcopperrecoveryitisoneofthemostpromisingsources,togetherwithelectricaland

electronicequipment(theclearleader)andend-of-lifevehicles,especiallyintermsofmassflow,

whereitcompeteswithindustrialandmunicipalsolidwaste[2].Metalsingenerallyrepresent3%of

allC&DWaccordingtomostsources[2,12],althoughsomeestimatesgoupto13,5%[13]–

somethingthatcanbeattributednotonlytoregionaldifferencesandvarietyinconstructiontypes

butalsotohowwastegenerationisestimated(discussedfurtherbelow).Distinctionbetweentypes

ofC&Disimportanthere,too.InNorwayitisestimatedthatrenovationproduceseighttimesmore

metalwastethannewconstruction,whiledemolitiongoesuptoeightytimesmore[5].

Residential buildings

Indemolition,non-residentialbuildingsdominateintermsoffloorareainmostEuropeancountries.

Furthermore,thedemolishednon-residentialbuildingsaremuchlargerandnewerthanresidential

ones[1].IntermsofWGA,therearerelativelysmalldifferencesbetweenresidentialandnon-

residentialbuildings,exceptforrenovation,wherenon-residentialbuildingproducefourtimesmore

C&DW[14].

Current performance

Thecombinationofhighmetalprices,thetheoretical100%recyclabilityofmetals,theirpotentially

endlesslifecycleandtheirhighefficiencyofseparationfromotherwaste,aswellasmeasureslike

landfillbansforrecyclablewaste,expectationsarehigh:100%recyclingofmetalsisakeygoalinthe

globalC&DWindustry[10].Ofmetalsembeddedinconcrete,90%isexpectedtoberecoveredand

recycled[9].

Page 5: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

SuchexpectationsarenotoutoftonewithgeneralrecyclingperformanceinC&D:annually94%of

C&DWintheNetherlandsissuccessfullyrecycled[3],albeitmostlyindowngradedforms,e.g.as

materialsforroadbuilding[15].Bycomparison,thetargetsetbytheEuropeanCommissionin2008

is70%recyclingofC&DWby2020[16].Metalrecyclingisamajorcontributortothissuccess:it

performssowellthatassessmentsofC&DWmanagementsuggestthatfurtherimprovementisnot

expectedtohaveaneffectonoverallperformance[13,17].

Estimation approaches

Therearetwofundamentalapproachestoestimatingthequantitiesandcompositionofmetalsin

use[18]:

1. Topdown:estimationsfromthebalancebetweentheamountofmetalsenteringuseand

theamountofmetalsexitinguseinend-of-lifeproductsorotherwaste.Thisapproach

requiresreliabledataoverseveraldecades.

2. Bottomup:estimationsbasedoninventoriesofallmetalproductsinuseandtheapplication

ofproxyindicatorstocovergapsandsimplifycounting.Thisapproachispopularbecauseof

theavailabilityofdataonproxyindicatorslikebuildingsormotorvehicles[11].Themain

problemliesinthereliabilityofestimatingthemetalcompositionofsuchindicators[19].

Estimatingthemetalcontentofabuildingcanbedoneinanumberofcomplementarymanners,

rangingfromconstructioninformationinconjunctionwithsitevisitstolifetimeanalyses(top-down

approach)toend-of-lifeinvestigationsthroughinspectionspriortodemolitionandgeneralization

fromprecedents[20,21].Typically,combinationsoftheaboveareappliedtoarriveatreliable

results.However,whatholdsforonebuildingmaynotapplytoanother:withbuildingsitismore

difficulttogeneralizethanwithe.g.motorvehiclesbecausebuildingsareseldommassproducedin

anindustrializedmanner[22].Still,commoncharacteristicsandcomponentsleadtotherecognition

offairlystandardizedtypesatsomeabstractionlevel.Atsuchlevelswearetemptedtoapplyrulesof

thumbliketheonesfoundintechnicaltextbooksonconstructiontoarriveatsomebasicestimates

Page 6: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

acrossarangeofbuildings.Asaresult,C&DWliteratureaboundswithgenericcategorieslike

residentialversusnon-residentialorsmallversuslargebuildings.Themostusefulcategorizations

involvebasicfeatureslikethetypeofload-bearingstructure(steelframe,reinforcedconcrete,wood

frameetc.),whichhavebearingonthematerialcompositionofabuilding.Asaresult,literature

containsawiderangeofvariousestimatesforthemetalcontentofbuildings:

• 14-75kg/m2ofsteelinChineseresidentialbuildings,dependingontheperiodandtypeof

construction[23]

• 606kg/cofironinresidentialbuildingsinNewHaven,CT;forcopperinthesame

municipalitywehaveamoreanalyticalbreakdown[18]:

o 28kg/cinplumbing(asopposedto32onaverageintheUSA)

o 25kg/cinwiring(28intheUSA)

o 3.1kg/cinairconditioningandrefrigeration(16intheUSA)

• 195kgofcopperpersinglefamilyhouseinAustraliaor110kgpersharedlivingcomplexand

• 290kgofzincpersinglefamilyhouseinAustraliaor188kgpersharedlivingcomplex[11]

• 80kg/cofcopperinSwitzerland(40%intheroofand30%inpowersystems),witha

comparable60kg/cinStockholm,whileinCapeTownits5-10%ofEuropeancities,outof

whichonethirdisinsanitationandtwothirdsinpowersystems[24]

Probablythebestillustrationofthefuzzinesscanbefoundinacomparisonbetweenestimationsof

astudyonanumberofGermanbuildingswiththeresultsofprecedentresearch[20]:

• steel:study0,1-8,6kg/m3–others2,08-37

• aluminium:study0,03-0,5kg/m3–others0,013

• copper:study0,002-0,5kg/m3–others0,05-0,24

IntermsofC&DW,similarvariationcanbeobserved:

• MetalwasteinFlorida[12]:

o Residentialconstructionorextension:0,30kg/m2(woodframe)or1,5(concrete)

Page 7: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

o Residentialdemolition:10kg/m2(woodframe)or15(concrete)

o Residentialalterations:0,75kg/m2–butroofreplacement:6,8

• Metalwasteinresidentialrenovation:0,4-6,8kg/m2[14]

• SteelC&DW[25]:

o ConstructionwasteinChina:4kg/m2but5,1accordingtotransportationrecords,

whileinotherresearchithasbeenreportedas6kg/m2

o IntheUSA:0,9kg/m2

o InNorway:0,48kg/m2

o InKorea4,53kg/m2

Interview results

InterviewswithDutchexpertsfromsmallandlargedemolitionandwasteprocessingfirmssupport

thefindingsfromtheliteraturereview.AccordingtotheDutchAssociationofWasteCompanies

[26],basedonresearchofStatisticsNetherlands(CBS),EurostatandRijkswaterstaat(theDutch

Agencyfornationalinfrastructureconstructionandmaintenance),about40%ofwasteinthe

NetherlandsisgeneratedbytheC&Dindustry.C&DWisthelargestcontributortothewaste

productionofthecountry.C&DWconsistofmultiplewastetypes.90%ofthetotalweightis

concrete,brickorasphalt.Theother10%containsplastics,woodandmetals[27].

Motivatedbyeaseofextraction,value,regulationsandsocialinvolvement,metalsappeartobeina

closed-loopwastesystem.Asavaluablecommodity,theyreceiveparticularattention,evenin

residentialbuildings,eventhoughtheconcentrationofwiringandpipingislowerthaninnon-

residentialbuildingslikefactoriesandoffices,whichmoreoveremployhigherquantitiesofmetalsin

theirconstructionandouterenvelope.Estimatesfrominterviewedspecialistsvaryfrom5m3ofiron

(primarilyheatingservicesandconstructionsteel)and1,5m3ofallothermetals(excludingiron)to

150kgofferrousmetalspersingle-familyhouse.Aluminiumisnotwidelyusedforwindowframesin

Page 8: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

residentialbuildings;theestimationsgivenwere5to10%ofallwindowframesinresidential

buildings.

Concerningperformance,interviewssuggestthatmetalsarepracticallyalwaysrecoveredatsome

pointintheprocessingchainandmostlyrecycled.Indemolitionprojects,themetalspresentare

identifiedbyvisualinspectionsbeforehand,mostlybasedonexperienceratherthandocumentation.

Demolitionexpertscanbeconsideredexpertsonvaluerecognition,too.Theyarequiteawareofthe

potentialvalueofmaterialsingeneralandinmanycasesofthevalueofparticularmaterialsand

componentstospecificpotentialbuyers.Demolitionfirmsarewellconnectedandcapableof

recognizingorevenanticipatingmarketdemandformaterialsfromsecondarysources.

Mostoftheeasytoremovemetalsneedtobeextractedquicklybydemolitionworkers,beforepetty

criminalsgettothem.Dependingonthetimeframeoftheproject,theexperienceofthedemolition

firmandcurrentdemand,thehardertoreachmetalsmayalsoextractedonsite.Whentimeor

experienceislimitedordemandlagsbehind,mixedwasteisdeliveredtowasteprocessingfacilities

andmetalsareextractedoffsite.

Wasteseparationatthesource,asrequiredbyDutchnationalbuildingregulations[28],mainly

concernshazardoussubstancesbutC&DWfirmsappearwillingtogobeyondtheirlegalobligations.

Incaseofmetals,thereisaclearfinancialdrivebutcorporateresponsibility,including

environmentalawareness,isalsobecomingafactor.Somedemolitionfirmsinitiatefar-reaching

agreementswithmanufacturerssoastoreducetheneedformaterialsfromprimarysources,e.g.on

howtosupplyC&DWfordirectre-entryinproductionprocesses.

Theoverallchainseemshighlyvariableanddependentontime,opportunityandpersonal

preferencesbutintermsofrecoveryintervieweesthoughttherewaslittleimprovementpossible.

Theindustryappearsawareofopportunities,skilledandknowledgeable.Whatseemsvariableand

adhoccouldalsobeviewedasadaptabilitytosituationsandconditions,allowingtotakeinto

accountfinancial,timeandotherconstraints.

Page 9: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Demolitionandwasteprocessingexpertsalsoappearsawareofdangers,inparticularconcerning

pollutantsthatmayrenderC&DWrecyclingunfeasible.IntheNetherlands,thisprimarilyrefersto

asbestos,whichcanbepresentinpiping,plating(especiallyaroundheatingboilers),façade

elementsand,mostdisturbinglyformetalrecovery,pastesandsealants.Proximitytoasbestos

meansthatmetalcomponentsarecurrentlyexcludedfromfurtherprocessing,atleastuntil

decontamination.

The state of the art: findings and directions

Estimation

Anacknowledgedprobleminliteratureisthatgrossestimatesinvolvingabstractproxiescannotbe

easilyvalidatedduetoregional,typologicandothervariations[19].BuildingsinSwitzerlandand

SwedenmaybesimilarbutthoseinCapeTownhaveflatroofsandnoheating,resultinginto

differentmetalcontent[24].Equallyimportanttoenvironmentalandtypologicfactorsandfeatures

arethedynamicsofbuildings,whichmakeestimationsratherhard,e.g.throughrenovationsthat

resultintohibernatingmetalstocklikeoldpiping[20]orunreportedorpoorlydocumentedchanges

likedetailsmodifiedbycontractorsduringconstruction[15].

ConcerningC&DW,weoftenlackactualdataandopportunitiesforverification[21].Whileweknow

thatmetalsarepresent,confidenceinestimationstendstobeweak,sowiderangesareappliedto

compensateforthelowreliability[14].Furthermore,thereisvariationduetothetypeofC&D

activity:newconstructionprojectsmaybepreciselyreported,whilerenovationanddemolitionare

generallyinsufficientlydocumented[5].Intheend,allwehaveisestimatesthatareusefulinthe

absenceofpreciseandaccuratedata,primarilyforhighabstractionlevelsthatpaintavaguepicture

ofpotentialratherthansupportforpolicy,planning,designormanagement.Itistherefore

questionablewhetheritmakessensetocontinuewiththerefinementofsuchindicativeestimations.

Page 10: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Fromamethodologicalviewpoint,theunitsappliedtoC&DWmeasurementareamatterfor

concern[29].Forwaste,mass(kg)seemsasafechoice,certainlyformetaltoberecycled.Forthe

sourcesofthewaste,leavinggrandtotalsandestimationspercapitaaside,thereistoomuch

emphasisonthegrossfloorareaofbuildings(m2),whichseemsapoorproxy,asitbearsan

uncertainrelationtothe‘solids’ofarchitecture:thewalls,floors,roofsetc.thatcontainthemetals

thatinterestthisstudy.Itseemsthatestimationmethodsarebasedontheavailabilityratherthan

therelevanceofdata.

Validation, verification and localization

Abstractprojectionsmakeurbanmininginitiallyquiteattractivebutcloserinspectionofexisting

practicesandpossibilitiessuggeststhatexpectationsmayhavetobeloweredbecauseof

uncertainty.Realopportunitiesrequirepreciseandcomprehensiveprocessesofdatacollection,

estimation,validationandverification.ThesecanbebeneficialtoC&DWmanagement,atboth

projectandpolicylevel,providedtheygobeyondstaticestimationstotakeintoaccountthelifecycle

dynamicsofabuildingandprovideapermanentlyup-to-datepictureoftruepossibilities.The

problemisthatinformationonthestructureandmaterialcontentofbuildingsisphysically

widespread,i.e.inhandsofvariousstakeholdersandinvariousforms,includingdifferentversionsof

thesamedocuments.Especiallyduringuse,abuildingmaybemodifiedandrefurbishedmanytimes,

withoutadequatedocumentationfortheplanningorregistrationofthechanges.

Manyowners(particularlyinstitutionalones)andlocalauthoritieshavebeenpropagatingtheneed

tocollectandorganizeexistinginformationtowardsacomplete,coherentandconsistent

informationsystemthatdescribesthebuildingdynamically(i.e.includingitshistory).Tocollect

existinginformationinanefficientandeffectivemanner,oneneedstwothings.Thefirstis

connectionstoexistinginformationprocesses,fromdesignandfacilitiesmanagementtoweather

dataandbuildingpermitapplications.Suchconnectionsprovideaccesstovaluableinformation,

suchasprecisedescriptionsofzincorleadontheroofofaprotectedmonument.Theyalsoallow

Page 11: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

stakeholderstoexplicitlyincluderecoveryofmaterialsintheirpoliciesandactivities,e.g.inthe

demolitionplanofabuilding.

Thesecondthingistointegratethisinformationinacomprehensivehierarchicalrepresentationthat

coversallnecessaryabstractionlevels,soastonotonlyfacilitatecorrespondinglevelsofdecision

making(frompolicydevelopmenttositeplanning)butalsodealwithquestionsofincompleteness

anduncertainty.Oneshouldexpectthatinitiallyinformationwillbelacking,vagueorconflictingbut

evenatlaterstagesitisoftennotpossibletoascertaincriticaldetailswithoutdestructiveresearch

intotheactualbuilding.Allowingformissingandvagueinformationintherepresentationis

thereforeapragmaticnecessity,whichcanbecounterbalancedbythehierarchicalstructureand

mechanismsofinheritance,parameterizationandconstraintpropagationitsupports.

Acomprehensiverepresentationthatcanaccommodatedetailsofthebuildingwhenrelevantisalso

usefulforthelocalizationofmetals.Knowingwithgrowingprecisionandaccuracywherespecific

metalcomponentscanbefoundinabuildingsupportsbetterplanningindemolitionactivitiesand

helpsidentifypossibilitiesforthebuildingstockofacityingeneral.Currentestimatesbasedon

proxiesfailtoaddressissuesoflocalizationsandhencealsoofe.g.selectivedemolition.

Opportunities for urban mining

Thereisalsoaquestionofscopeforurbanmining:ifbothliteratureandtheinterviewsagreethat

metalrecoveryfromC&DWisashighasitcanbe,whatcanprospectingformetalsinAmsterdam

addintermsofefficiencyorperformance?Isthereroomforurbanminingformetalsnexttowhat

alreadyhappensinthedemolitionandwasteprocessingchain?Historycanbehelpfulinthis

respect,asenthusiasmforurbanminingisnotnew;itisarecurringthemeintimesofextremeneed

likewar.Analysesofwartimeurbanminingsuggestthatthereareinherentlimitationsthatcannot

beignored.Forexample,duringthefirstworldwarinAustria,upto80%ofcopperforthemunitions

industrycamefromsecondarysourcesbutperhapsaslittleas10%ofthetotalamountofcopperin

usewasamenabletoextractionduetoreasonslikehighcostorsignificanceforothercriticaluses

Page 12: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

[6].Moreover,theinitialdriveandperformanceappeartohavewanedafterthefirstyear,perhaps

becausethelow-hangingfruithadbeenalreadypicked.Onecouldthereforeputforwardthaturban

miningtodaycouldbecomeasimilarlyshort-livedbandwagonunlessstructurallyembeddedin

urbanandreal-estatere-developmentandrenovationprocesses,whereitseconomiccontribution,

howeversmallcannotbenegligible.

Renovation and refurbishment

ConnectivitytoAECOprocessesisthereforeimportantforsustainingandpossiblyamplifyingurban

miningwithinexistingAECOprocesses.Currentinterestinmetalrecoveryisclearlylinkedtodemand

andthehighpricesitcauses.However,evenafterademandpeak,theaccumulatedamountsof

urbansecondaryresourcesremainamajorenvironmentalandeconomicissue[23].Thereductionof

newconstructionactivityincombinationwiththepreservationtendencyinarchitecture[1]is

makingdemolitionandrenovationincreasinglyimportantinAECO.Inmanycases,renovationis

alreadyoutweighinginvaluenewconstructionwork[17],evenforresidentialbuildings[9],where

somerenovationtypeshaveaWGRnearingthatofthedemolition[12].

Renovationandrefurbishmentareattractivetargetsformetalrecoveryinawaythatcontrastswith

thefrequentemphasisonnovelwaysofdesigningandconstructingbuildingssothattheyfacilitate

recoveryandcircularity.Withoutdetractingfromthevalueoftheseattemptsatinnovation,one

shouldacknowledgethatanyresultstobeexpectedfromthemwillbeinafewdecadesfromnow–

andeventhentheywillrepresentasmallpercentageoftheproblemsandpotentialofthebuilt

environment:thevastmajorityofthecurrentbuildingstockwillstillbepresent,stillinthevast

majority.Ifwefailtoaddresstheissuesoftoday’sstock,theseissueswillpersistdespiteany

improvementstonewbuildings.

Arelatedissueisthatapproachestonewwaysofdesigningandconstructingbuildingstendto

advocatesummarylabellingofelements(“passports”)concerningtheabilitytoremove,replaceor

otherwiseprocessthem.Judgingfromtheexperiencesmentionedintheinterviews,oneshouldnot

Page 13: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

presumethatsuchstraightforwardsolutionscouldcovertherichnessandcomplexityofrealityand

thedatathatdescribeit.Relationswithotherelementsandmaterials,weatheranduse,andother

contextualmattersformsignificant,dynamicaffectingfactorsthatcannotbecapturedbystatic

properties.Suchfactorsareoftenkeydeterminantsoftechnicalfeasibilityoreconomicviabilityin

recoveryandshouldthereforenotbeneglected.

Towards an inclusive framework

Theproposedsolutionisnotafiniteonebutaframeworkthatbringstogetherdifferentpartsofa

sustainablefutureforurbanminingwithinpragmatictolerances.Thisframeworkisbuilton

acceptanceofthecomplexityoftheexistingsituationratherthanreductionistattemptsat

simplification.Itisthereforeinclusive:itattachesvaluetoallstakeholdersandactors,andtotheir

information.Theorganizationofsuchinformationintoacomprehensiveandcoherentdata

infrastructureisoneofthetwomaincomponentsoftheframework.Nexttothistechnical

component,asocialoneconnectsthedecisionmakingbyAECOpartiestopublicpolicymakers.

Publicpolicyandregulatorygovernancerepresentsocialandculturalaspectsthatoverlapwithand

enrichtheworkingofmarketforces;inconjunctionwithAECOprivateinitiatives,theydefine

possibleC&DWprocessingapproachesandperformance.

Information processing design

Materialresourcesinbuildingsrelatetotheinterestsofanumberofstakeholders:real-estate

owners,designers,engineers,managers,demolitionfirms,wasteprocessingenterprises,building

contractors,localauthoritiesandcitizens.Eachoftheseisaproducer,consumerorcustodianof

relevantinformation.Itcouldbearguedthatthenumberofstakeholderscanbereducedthrough

delegation:localauthoritiescanbeassumedtorepresenttheinterestsofcitizens,demolitionfirms

couldbeseenasthefrontendofaC&DWprocessingchainthatincorporateswasteprocessing

enterprisesetc.However,therelationbetweenauthoritiesandcitizensissignificantintermsof

Page 14: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

transparencyinpolicymakingandgovernance,andcitizenscanbeanimportantsourceof

informationonthebackgroundsofpolicy,includingquestionsofintangiblevalue,whichcanhave

directinfluenceonC&DWtreatmentchoices.Similarly,therelationbetweendemolitionandwaste

processingshouldbemadeastransparentaspossiblebothforeconomicreasonsandbecauseit

contributestotechnicalandoperationalaspects,includingthechoicebetweenre-use,

remanufacturing,recyclingetc.Followingtheprincipleofinclusivenessandforsuchtransparency

reasons,thenetworkshouldcoverallstakeholdersandshouldremainalsoopeninthisrespect.The

mainconsequenceisthatitmakesinformationgatheringquiteextensive,beyondtheusualscopeof

e.g.ademolitionproject.

BuildingInformationModelling(BIM)isthecurrentlypreferredchoiceconcerninginformation

integrationinAECO.BIMpromisesaunifiedmodelasbasisforallactors,actionsandtransactionsin

adesignorconstructionprocess,aswellasadynamicenvironmentforinformationprocessing

throughoutthelifecycleofabuilding,withsignificantbenefitstoownersandoperators[30].In

urbanminingstudies,BIMhasalreadybeenidentifiedasanappropriateframeworkforinformation

management.ExistingattemptshaveextendedBIMwithwastemanagementfacilitiesthatcanbe

usedtoimprovebuildingdesignandmakewastepredictions[17,31],aswellasthroughtheaddition

ofRFIDandstresssensordatathatfacilitatebetterestimationofstresspropertiesovertheworking

life,disassembly,take-backandre-useofstructuralsteelcomponents[7].

BIMcanintegrateallinformationfromrelevantdocuments,includingtheconstruction

documentationandon-siteinvestigationsthatareessentialformetalextraction[20],aswellas

documentationfromAECOprocessesthatoccurinthelifecycleofabuilding(e.g.buildingpermitfor

aloftconversion).Theendresultisacomprehensive,coherentandconsistentmodelthatmakes

extensiveuseofthepotentialofcomputerizationforwastemanagement[21]andservesavarietyof

purposesforowners,occupants,authoritiesandAECOprofessionals,allowingthemtoaccessthe

informationtheyneed.

Page 15: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Theproposedapproachistobuildthehierarchicalrepresentationdiscussedaboveusingvariable

abstraction,dependingontheavailabilityofinformationandcorrespondingtodifferentproxies.

Whenthereislittleifanyinformationonabuilding,itcanberepresentedbyanabstractvolumetric

description–evenasymbolicone(asinamap)–denotingagenericcommodity.Suchabstract

descriptionsinheritinformationfromgeneraltypes,e.g.residential,officeorindustrialbuildings;

wood,metalorconcretestructures;high,middleorlowrisebuildings,etc.

Intermediatelevelsinthehierarchicalrepresentationareoccupiedbybuildingelementslike

reinforcedconcretecolumnsandbeams:intermediateproxies,whicharemoreeffectiveasbasisfor

decisionsandpolicies[22].Theseelementscanalsobeabstractorsymbolic,evengeneratedby

probabilisticreasoning:atypicallow-riseAmsterdamrowhousenormallyhaspartywallsthat

separateitfromadjacentbuildings,exteriorwallsandapitchedroof.Ifrelevantdocumentationis

available,theelementscanbecomespecific,withaparticularformandstructure.

Whetherabstractorspecific,suchelementsactasplaceholdersofre-usablematerialslikerebar,

wiringandpiping(includinghibernatingstock),againderivedfromprobabilisticandtypologic

processesorfromdocumentation.Ifthedocumentationsuffices,itispossibletodevelopthelower

levelsoftherepresentation,theonescontainingspecificmanufacturedcomponents,usuallywitha

preciseformandmaterialcomposition.Suchcomponentscanthereforeprovideaccurateand

preciseinformationthateliminatestheneedforproxies,facilitateslocalizationofresourcesand

henceplanningofextraction,andpavesthewayforadvancedextractionandprocessingapproaches

andtechnologieslikeRFIDtagging.

Page 16: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Figure1.Indicativelevelsofabstractioninbuildingdocumentationandcorrespondinginformation(includingproxies)

Thehierarchicalstructureoftherepresentationallowsustotackleproblemsofuncertaintyand

incompletenessbysupportinginheritancebetweenwholeandpart,whilebuilt-inBIMconstraints

definenon-hierarchicalrelations,e.g.betweenadjacentelementsofdifferentkinds.Ifinformation

onpartsoraspectsofabuildingismissing,itispossibletouseproxieslikegenericdefaultproperties

fortheparticularpartoraspect,orpreferablydatafromprecedents:documentedbuildingsofthe

sameperiodortype.TheorganizedhousingdevelopmentoftheNetherlandsholdssignificant

advantageswithrespecttosuchreasoning.

Page 17: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

Reversely,abstractingdetailedinformationintomorecompactestimatesbecomessignificantly

easier,transparentandreliable,aswellasrelevant:metalcontentcanbedescribedinamanner

appropriatetotheC&Dactivity,e.g.volumeofreinforcedconcreteelements,areaofaroof,wall

lengthinadwelling.Findingtheappropriateunit(buildingdwelling,kg/m2,kg/m3)foranactivity

(renovationofabathroomorkitchen,rewiringorreplacingthecentralheatingsystem)becomesan

explorationofeasy-to-generatealternativesfromthesamemodel.

Policy development

TheprospectinganalysisofurbanminingformetalsinresidentialbuildingsinAmsterdamreturned

twosignificantfindings:

• BothliteratureandinterviewssuggestedthatexistingAECOpracticesmanagetorecover

resourcestoadegreethatmaybehardtoimprove

• Estimationsofmetalcontentinbuildingsseemlessreliable,completeorprecisethan

requiredforvalidationandverification,orformakingexpensivedecisionstointensifyurban

mining

Thefirstfindingisinlinewithviewsthatconfineurbanminingtothehibernatingstocks,whichfor

somereasonarenotpartoftraditionalwastehandlingprocesses[32].Ananswertothelatteristhe

developmentofaninclusive,comprehensiveinformationinfrastructurethatbringstogetherthe

informationprocessesofallstakeholders(startingwithreal-estateownersandlocalauthorities).

Thisinfrastructurefacilitatessmoothtransitionfromexistingseparatepracticestoconnected,

collaborativeandyetdistributedprocessestowardscommonaims.

Together,thesefindingsraisethequestionconcerningpolicyrelevance.Towhatextentarethere

urban,hibernatingstocksofmetalandhowcantheybecomepartofthevaluechain?Andwhatis

theroleofpublicandprivatestakeholders,includingindividualbuildingownersandhomeowners,in

this?Preciseinformationiskeytothisdebate.Establishingtheproposedframeworkwillencounter

Page 18: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

significantchallenges,likeanytransitionprocess,havingtodowithovercominglock-insofcurrent

institutionsstructuringdecision-making[33,34].

Anumberofchallengeshavealreadybeenreferredtointhisarticle,inlinewithobservationson

processesofchangeinotherarticles.Thesechallengeshavetheirorigininthefragmented

institutionalcharacterofAECO,operatinginmultiplemarketsandindistributedprojectteams[35].

Thesupplychainswithinconstructionarecharacterizedbymanysmallandmedium-sized

enterprises,whichlacktheresources,willingnessorcapacitytouseBIMfornovelapplications

requiringcollaboration[36,37].Likewise,therelevantinformationexchangeamongstanindefinite

numberofactors,publicandprivate,notjustinvolvesachallengeofdevelopinganinteroperable

platformtofacilitateinformationexchange,butalsopresupposesawillingnessofactorsto

collaborate,involvingtrustandreciprocity.Thedevelopmentandcaptureofjointvaluesthroughout

thechainfromalifecycleperspective,presupposesstandardizedinformationandprocedures[38].

However,relationsamongsttheactorsarecharacterizedasadversarial,shorttermandlackingin

trustandareconsiderednotstrongenoughtodevelopanetworkoforganizationsbasedontrust

andsharedvalues[38].Also,morecomplexsupplychainshavemoretiers,moreparticipantsand

moretransactionsbetweenthestakeholdersinthedifferenttiers.Thismakesthecreationofshared

valuesmoredifficult.Moreover,actorsaretemptedtopasstherisksandcostsofcontributingto

thesesharedvaluesontootheractorsupwardordownwardthechain,withpowerfulplayers

capturingthemarginswithinthechain[39].Thus,AECOlackstheincentivestobuildtrustanda

conceptionofsharedvaluesuchassustainability(thetopiconwhichmostofthestudiesintothe

valueofsupplychainmanagementisbased)orre-useofwaste,letalonetorecognizethepotential

valueofmininghibernatingstockofre-usablesandrecyclables.

TheproposedframeworkisthereforenotlogicallytobeexpectedtocomefromwithinAECO,

especiallysincethesectoralreadyperformsverywellintermsofresourceextractionandwilllacka

senseofurgency.Ademand-drivenapproachismorelikelytopushtheindustrytowardssuch

sharingofinformation.Regulatoryrequirementsandeconomicvalueofthemetalstobecaptured

Page 19: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

arethefirmestexternalincentivesthatcanbringaboutchangeinthesector[34]thatisknownfor

itsresponsivenesstoexternalevents[38].However,regulatoryrequirementsrequireasolid

informationbasetogivetherightincentive,andpricesdonotincentivizeduetotheabsenceofa

recognizedmarketforthesehibernatingstocks.Moreover,addressingtheexistingbuildingstock,in

whichthehibernatingstockistobefound,isfarmorecomplicatedthandevelopingand

implementingambitionsfornewlydevelopedbuildings,eventhoughalsofornewbuildingsitisfar

fromcommontotakeend-of-lifestagesintermsofre-useandrecyclingintoaccount–usuallyend-

of-lifeattentionisdirectedatwastehandling.

Moreinternal,softincentivesarethereforeexpectedtobemoreeffective.Thepushfromlocal

governments,settingambitionswithregardstocirculareconomyandtheclosingofresourceloops,

isafirststep.IntheNetherlands,moreandmorecitieshaveembracedthecirculareconomy

conceptandhavedevelopedwhitepapersstatingambitions,sometimessupportedbythenational

government,isaplatformthroughwhichpublicandprivateforerunnersandknowledgeinstitutes

exchangeexperiencesandbestpracticeswithregardstocircularity[40].Theseinitiativesare

embeddedwithininternationalpolicyframeworksinwhichlocalgovernmentscollaborateandshare

knowledgeandbestpractices.Combinedwiththeconstructionindustry’sownsustainability

programmes,suchasthesustainabilitycertificationschemes,andthegeneralpushtowards

extendedproducerresponsibilityandcirculareconomy,thesemightgivetheincentivestostepby

stepcreateanichemarket,tobeupscaledandmainstreamedatalaterstage[34].Eventhoughthe

conceptsofcircularityandcirculareconomy,towhichre-useofmaterialsiskey,arestilldeveloping,

theseinitiativesandpolicyplansalreadyincentiveactorstothinkabouttheimplicationsofthis

conceptfortheirorganisation.Developers,contractorsandfinanciersallhavestartedpilotprojects

todevelop,tryandtestcircularconcepts,underliningtheneedforinnovation[41].

Thebottom-upwaysofdevelopingandtestingconceptsthatmaypossiblycontributetoacircular

economyareverypromising.Theyofferthebreedinggroundforthedevelopmentofsharedvalues,

andonaprojectbasis,theyemphasizetheneedfordataexchange.Moreover,theseprojectscreate

Page 20: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

dedicatedambassadorsoftheconcept.Thepeoplewhohaveworkedontheseprojects,inthe

projectteams,starttospreadtheword,duetotheinvolvementofthehighestlevelinthe

organisationsinvolvedintheseshowcaseprojects.Suchambassadorshipisalsoconsideredtobe

oneofthekeyaspectsfornichedevelopment[33].Whenthesepoliciesarecontinuedandgradually

helptoshapeamoretangibleimageofurbanmining,thiswillsupportthecreationofawarenessfor

developingtheinformation-sharingframeworkassuggestedinthisarticle.Tomatchsupplyand

demandofconstructionmaterialsforre-useandrecycling,afine-grainedunderstandingofthe

potentialvalueofhibernatingstockisneeded.Inthisway,softpoliciesmayindeedcreateaneedfor

informationsharingessentialforprospectingtheurbanmine

Conclusions

• TheNetherlandsareontopoftheirgamewhenitcomestore-useandrecyclingofC&DW

waste,comparedtoothersectorsandcomparedtoEUtargets.Ingeneral,80%oftheDutch

wasteisrecycled,whereas94%ofC&DWisrecycled.Europeantargetsfor2020areseton70%

forC&DW.

• Metalsareinanalmostclosed-loopcycle.Theycanberecycledindefinitelywithoutlossof

performance.Furtherimprovementisnotexpectedtohaveaneffectongeneralrecycling

performance.OthertypesofC&DWaremoreoftenrecycledintodowngradedforms,e.g.as

materialsforroadbuilding.

• Althoughsomeinformationonquantitiesisrecovered,thedatahavealargevariationanddata

foundintheliteraturereviewarenotdirectlyapplicabletotheNetherlands.Moreresearchinto

thetracingofmetals,andpossiblyothermaterials,isneededtoimproveestimationson

quantities.

• Re-useandrecyclingofC&DWisdrivenbybothregulations,andfinancialandsocietal

motivations.Thisseemstobeafairlyhealthysituation.However,thereseemstobelittlestate

Page 21: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

encouragementtodoevenbetter.Thankfully,thereareprivatedevelopmentsonsustainable

demolitionmanagementthatencouragere-useandrecycling.

• Atthispoint,giventheperformanceofrecyclinginC&D,thebuiltenvironmentisalreadyinuse

asanurbanmine.Thedifferencewitha‘true’mineisthefactthatthereis,sofar,noplanned

approachforexploitationinthelongerterm.Thismightnotbeadrawbackasthecurrent

systemisadaptableandextractedmaterialsseemtofindtheirwayeventually.Aconceivable

disadvantageontheotherhandisthatmaterialsaresometimesprocessedabroadresultingin

highercostsfortransportationandCO2emissions.

References

[1] S.HuuhkaandJ.Lahdensivu,"Statisticalandgeographicalstudyondemolishedbuildings,"BuildingResearch&Information,vol.44,pp.73-96,2016/01/022016.

[2] M.Bertram,T.E.Graedel,H.Rechberger,andS.Spatari,"ThecontemporaryEuropeancoppercycle:wastemanagementsubsystem,"EcologicalEconomics,vol.42,pp.43-57,8//2002.

[3] Rijkswaterstaat_Leefomgeving,"Nederlandsafvalincijfers:gegevens2006-2010,"Rijkswaterstaat,MinisterievanInfrastructuurenMilieu,Utrecht2013.

[4] H.Wu,H.Duan,L.Zheng,J.Wang,Y.Niu,andG.Zhang,"DemolitionwastegenerationandrecyclingpotentialsinarapidlydevelopingflagshipmegacityofSouthChina:Prospectivescenariosandimplications,"ConstructionandBuildingMaterials,vol.113,pp.1007-1016,6/15/2016.

[5] H.Bergsdal,R.A.Bohne,andH.Brattebø,"ProjectionofConstructionandDemolitionWasteinNorway,"JournalofIndustrialEcology,vol.11,pp.27-39,2007.

[6] M.KlinglmairandJ.Fellner,"UrbanMininginTimesofRawMaterialShortage,"JournalofIndustrialEcology,vol.14,pp.666-679,2010.

[7] D.Ness,J.Swift,D.C.Ranasinghe,K.Xing,andV.Soebarto,"Smartsteel:newparadigmsforthereuseofsteelenabledbydigitaltrackingandmodelling,"JournalofCleanerProduction,vol.98,pp.292-303,7/1/2015.

[8] Z.Wen,C.Zhang,X.Ji,andY.Xue,"UrbanMining'sPotentialtoRelieveChina'sComingResourceCrisis,"JournalofIndustrialEcology,vol.19,pp.1091-1102,2015.

[9] T.Wang,X.Tian,S.Hashimoto,andH.Tanikawa,"ConcretetransformationofbuildingsinChinaandimplicationsforthesteelcycle,"Resources,ConservationandRecycling,vol.103,pp.205-215,10//2015.

[10] M.Kucukvar,G.Egilmez,andO.Tatari,"LifeCycleAssessmentandOptimization-BasedDecisionAnalysisofConstructionWasteRecyclingforaLEED-CertifiedUniversityBuilding,"Sustainability,vol.8,p.89,2016.

Page 22: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

[11] D.vanBeersandT.E.Graedel,"Spatialcharacterisationofmulti-levelin-usecopperandzincstocksinAustralia,"JournalofCleanerProduction,vol.15,pp.849-861,//2007.

[12] K.Cochran,T.Townsend,D.Reinhart,andH.Heck,"Estimationofregionalbuilding-relatedC&Ddebrisgenerationandcomposition:CasestudyforFlorida,US,"WasteManagement,vol.27,pp.921-931,//2007.

[13] H.Dahlbo,J.Bachér,K.Lähtinen,T.Jouttijärvi,P.Suoheimo,T.Mattila,etal.,"Constructionanddemolitionwastemanagement–aholisticevaluationofenvironmentalperformance,"JournalofCleanerProduction,vol.107,pp.333-341,11/16/2015.

[14] M.Mália,J.deBrito,M.D.Pinheiro,andM.Bravo,"Constructionanddemolitionwasteindicators,"WasteManagement&Research,vol.31,pp.241-255,March1,20132013.

[15] E.Mulder,T.P.R.deJong,andL.Feenstra,"ClosedCycleConstruction:AnintegratedprocessfortheseparationandreuseofC&Dwaste,"WasteManagement,vol.27,pp.1408-1415,2007.

[16] "Directive2008/98/ECoftheEuropeanParliamentandoftheCouncilof19November2009onwasteandrepealingcertainDirectives,"ed.EuropeanUnion,2008.

[17] J.C.P.ChengandL.Y.H.Ma,"ABIM-basedsystemfordemolitionandrenovationwasteestimationandplanning,"WasteManagement,vol.33,pp.1539-1551,6//2013.

[18] K.Drakonakis,K.Rostkowski,J.Rauch,T.E.Graedel,andR.B.Gordon,"MetalcapitalsustainingaNorthAmericancity:IronandcopperinNewHaven,CT,"Resources,ConservationandRecycling,vol.49,pp.406-420,2//2007.

[19] R.Ortlepp,K.Gruhler,andG.Schiller,"MaterialstocksinGermany'snon-domesticbuildings:anewquantificationmethod,"BuildingResearch&Information,pp.1-24,2015.

[20] F.Kleemann,J.Lederer,P.Aschenbrenner,H.Rechberger,andJ.Fellner,"Amethodfordeterminingbuildings’materialcompositionpriortodemolition,"BuildingResearch&Information,vol.44,pp.51-62,2016/01/022016.

[21] Z.Wu,A.T.W.Yu,L.Shen,andG.Liu,"Quantifyingconstructionanddemolitionwaste:Ananalyticalreview,"WasteManagement,vol.34,pp.1683-1692,9//2014.

[22] M.D.GerstandT.E.Graedel,"In-UseStocksofMetals:StatusandImplications,"EnvironmentalScience&Technology,vol.42,pp.7038-7045,2008/10/012008.

[23] T.Huang,F.Shi,H.Tanikawa,J.Fei,andJ.Han,"MaterialsdemandandenvironmentalimpactofbuildingsconstructionanddemolitioninChinabasedondynamicmaterialflowanalysis,"Resources,ConservationandRecycling,vol.72,pp.91-101,3//2013.

[24] D.WittmerandT.Lichtensteiger,"DevelopmentofAnthropogenicRawMaterialStocks:ARetrospectiveApproachforProspectiveScenarios,"Minerals&Energy-RawMaterialsReport,vol.22,pp.62-71,2007/12/012007.

[25] J.Li,Z.Ding,X.Mi,andJ.Wang,"AmodelforestimatingconstructionwastegenerationindexforbuildingprojectinChina,"Resources,ConservationandRecycling,vol.74,pp.20-26,2013.

[26] Vereniging_Afvalbedrijven,"Afvalincijfers"June20152015.

[27] Vereniging_Afvalbedrijven,"Afvalforum:Sluitenvandekringloopvanbouw-ensloopafval,"2013.

[28] Ministerie_van_Binnenlandse_Zaken_en_Koninkrijksrelaties,"RegelingBouwbesluit.Hoofdstuk4:Scheidenbouw-ensloopafval,"ed,2012.

Page 23: Anticipating urban mining v4 - ERES Digital Library...surprising. 30% of copper consumed in Europe and 50% of iron in the USA originates from secondary sources [6], while in Australia

[29] I.MartínezLage,F.MartínezAbella,C.V.Herrero,andJ.L.P.Ordóñez,"EstimationoftheannualproductionandcompositionofC&DDebrisinGalicia(Spain),"WasteManagement,vol.30,pp.636-645,4//2010.

[30] A.Bosch,L.Volker,andA.Koutamanis,"BIMintheoperationsstage:bottlenecksandimplicationsforowners,"BuiltEnvironmentProjectandAssetManagement,vol.5,pp.331-343,2015.

[31] O.O.Akinade,L.O.Oyedele,K.Munir,M.Bilal,S.O.Ajayi,H.A.Owolabi,etal.,"Evaluationcriteriaforconstructionwastemanagementtools:towardsaholisticBIMframework,"InternationalJournalofSustainableBuildingTechnologyandUrbanDevelopment,pp.1-19,2016.

[32] J.KrookandL.Baas,"Gettingseriousaboutminingthetechnosphere:areviewofrecentlandfillminingandurbanminingresearch,"JournalofCleanerProduction,vol.55,pp.1-9,9/15/2013.

[33] D.Loorbach,"TransitionManagementforSustainableDevelopment:APrescriptive,Complexity-BasedGovernanceFramework,"Governance,vol.23,pp.161-183,2010.

[34] M.Eames,T.Dixon,T.May,andM.Hunt,"Cityfutures:exploringurbanretrofitandsustainabletransitions,"BuildingResearch&Information,vol.41,pp.504-516,2013/10/012013.

[35] E.VanBuerenandJ.DeJong,"Establishingsustainability:policysuccessesandfailures,"BuildingResearch&Information,vol.35,pp.543-556,2007/10/012007.

[36] K.Govindan,M.Kaliyan,D.Kannan,andA.N.Haq,"BarriersanalysisforgreensupplychainmanagementimplementationinIndianindustriesusinganalytichierarchyprocess,"InternationalJournalofProductionEconomics,vol.147,PartB,pp.555-568,1//2014.

[37] M.Khalfan,H.Khan,andT.Maqsood,"BuildingInformationModelandSupplyChainIntegration:AReview,"journalofEconomics,BusinessandManagement,vol.3,pp.912-916,2015.

[38] R.FulfordandC.Standing,"Constructionindustryproductivityandthepotentialforcollaborativepractice,"InternationalJournalofProjectManagement,vol.32,pp.315-326,2//2014.

[39] E.M.vanBueren,E.T.LammertsvanBueren,andA.J.vanderZijpp,"Understandingwickedproblemsandorganizedirresponsibility:challengesforgoverningthesustainableintensificationofchickenmeatproduction,"CurrentOpinioninEnvironmentalSustainability,vol.8,pp.1-14,10//2014.

[40] Gemeente_Amsterdam,"AmsterdamCirculaireMetropool,2014-2018,"2014.

[41] P.W.Newton,"Regeneratingcities:technologicalanddesigninnovationforAustraliansuburbs,"BuildingResearch&Information,vol.41,pp.575-588,2013/10/012013.