28
© IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels ANTENNA INTEGRATION FOR WIRELESS MODULES WALTER DE RAEDT STEVEN BREBELS IMEC – KAPELDREEF 75 – 3001 LEUVEN, BELGIUM ANSYS REGIONAL CONFERENCE, LA HULPE 25 OCTOBER 2011

Antenna integration for wireless modules ansys final · ANTENNA INTEGRATION FOR WIRELESS MODULES WALTER DE RAEDT STEVEN BREBELS IMEC – KAPELDREEF 75 – 3001 LEUVEN, BELGIUM

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    ANTENNA INTEGRATION FOR WIRELESS MODULES

    WALTER DE RAEDT

    STEVEN BREBELS

    IMEC – KAPELDREEF 75 – 3001 LEUVEN, BELGIUM

    ANSYS REGIONAL CONFERENCE, LA HULPE

    25 OCTOBER 2011

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OUTLINE

     Introduction  Design of active antenna package for 60 GHz ▸ Antenna performance ▸ Low interconnect loss between chip and antenna

    elements

    ▸ Shielding of chip and interconnect

     Conclusion

    SLIDE 2

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    INTRODUCTION WHY INTEGRATED RF SYSTEMS?

    Integrate miniaturised, truly autonomous systems for ambient intelligence ▸  Size reduction:

    -  Planar “as thin as possible” -  Cubic “small footprint”

    ▸  Hetero-integration -  Reduction of amount and size of passives -  Actives in different technologies

    ▸  ULP requirements ▸  Modularity ▸  Antenna integration

    5.2GHz WLAN Front-End SLIDE 3

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    INTRODUCTION 17 GHZ SYSTEM INTEGRATION

     Miniaturized 17 GHz wireless rf-front end module for a wireless autonomous sensor

      Project goals: •  Realize compact hybrid integration of

    microcontroler, radio chip and passive devices •  To be integrated with antenna patch, sensors,

    power and power-management components

    P. van Engen et al. “3D Si-level integration in wireless sensor node” SSI2009

    0° 15°

    30°

    45°

    60°

    75°

    90°

    105°

    120°

    135°

    150°

    165°±180°-165°-150°

    -135°

    -120°

    -105°

    -90°

    -75°

    -60°

    -45°

    -30°-15°

    -30

    -20

    -10

    0

    10

    Simulated Co-polarizationMeasured Co-polarizationMeasured X-polarization

    SLIDE 4

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    Set-top Digital video

    Digital Video

    Digital Audio/Video

    PC Audio/Video

    Game console

    Blu-ray

    Portable Digital

    INTRODUCTION

     60 GHz band for wireless HD ▸  Unlicensed band between 57 and 66 GHz ▸  Unidirectional link to High-Definition (HD) screen

    SLIDE 5

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    INTRODUCTION

     Characteristics of 60 GHz band ▸ Available bandwidth is large

    - High data rate applications ▸ Strong attenuation (e.g. by walls)

    - Frequency reuse - Antenna gain should be sufficiently large

    ▸ Wavelength about 5 mm - Phased array antenna possible to improve link budget

    SLIDE 6

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    PROBLEM STATEMENT

    Design of small active antenna package with integrated phased-array antenna and 60 GHz CMOS chip ▸ Good antenna performance

    - Bandwidth - Gain

    ▸ Low interconnect loss between chip and antenna elements

    ▸ Shielding of chip and interconnect SLIDE 7

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    LTCC ANTENNA PACKAGE (1)

     Cross-section

    SLIDE 8

    Microstrip to stripline transition

    Stripline fed waveguide antenna

    Antenna package

    Printed-Circuit Board

    60 GHz CMOS chip

    Solder ball

    Ground

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    LTCC ANTENNA PACKAGE (2)

     Top view for transmit module ▸ Size: 9.5 mm x 9.5 mm

    SLIDE 9

    60 GHz CMOS

    chip Base band (2 GHz)

    DC circuit

    Array of 4 waveguide antenna elements

    DC circuit

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    LTCC ANTENNA PACKAGE (3)

     Pictures of transmit module

    SLIDE 10

    Microstrip feed lines Open waveguide antennas

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    PROBLEM STATEMENT

     Design of small active antenna package with integrated phased-array antenna and 60 GHz CMOS chip ▸ Good antenna performance

    - Bandwidth - Gain

    ▸ Low interconnect loss between chip and antenna elements

    ▸ Shielding of chip and interconnect SLIDE 11

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OPTIMIZED ANTENNA SUBSTRATE

     Material: Ferro A6-M ▸  Low dielectric loss: tanδ@60 GHz

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OPEN WAVEGUIDE ANTENNA SINGLE ELEMENT

    SLIDE 13

    1.4

    mm

    3.4 mm

    X

    Y Z

    Inductive posts

    Microstrip feed of open waveguide antenna

    Waveguide aperture

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    SETUP FOR WAFER PROBED ANTENNA MEASUREMENTS IN V-BAND

    SLIDE 14

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OPEN WAVEGUIDE ANTENNA SINGLE ELEMENT

    SLIDE 15

     Antenna matching ▸  Coplanar contact pad deembedded from measurement

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OPEN WAVEGUIDE ANTENNA SINGLE ELEMENT

    SLIDE 16

     Radiation pattern at 61 GHz (E-plane = XZ) ▸  Ripple due to diffraction at edges of small test sample

    (9.8 mm x 9.8 mm)

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OPEN WAVEGUIDE ANTENNA SINGLE ELEMENT

    SLIDE 17

     Radiation pattern at 61 GHz (H-plane = YZ) ▸  Ripple due to diffraction at edges of small test sample

    (9.8 mm x 9.8 mm)

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    OPEN WAVEGUIDE ANTENNA ARRAY 4 ANTENNAS FED IN-PHASE

    SLIDE 18

    9.8 mm

    9.8

    mm

    X

    Y

    Z

    1.84

    mm

    1.92 mm

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels SLIDE 19

     Antenna matching ▸  Coplanar contact pad deembedded from measurement

    OPEN WAVEGUIDE ANTENNA ARRAY 4 ANTENNAS FED IN-PHASE

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels SLIDE 20

     Radiation pattern at 63 GHz (E-plane = YZ) ▸  Ripple due to diffraction at edges of small test sample

    (9.8 mm x 9.8 mm)

    OPEN WAVEGUIDE ANTENNA ARRAY 4 ANTENNAS FED IN-PHASE

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels SLIDE 21

     Radiation pattern at 63 GHz (H-plane = XZ) ▸  Ripple due to diffraction at edges of small test sample

    (9.8 mm x 9.8 mm)

    OPEN WAVEGUIDE ANTENNA ARRAY 4 ANTENNAS FED IN-PHASE

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    PROBLEM STATEMENT

     Design of small active antenna package with integrated phased-array antenna and 60 GHz CMOS chip ▸ Good antenna performance

    - Bandwidth - Gain

    ▸ Low interconnect loss between chip and antenna elements

    ▸ Shielding of chip and interconnect SLIDE 22

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    INTERCONNECT LOSS BETWEEN CHIP AND ANTENNA

    SLIDE 23

     Picture of test sample ▸  TRL structures for microstrip and stripline

    136 μm wide microstrip lines

    80 µm wide striplines

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels SLIDE 24

     136 μm wide microstrip lines (Zc≈50 Ohm) ▸  Extracted line loss: 0.08-0.12 dB/mm

    INTERCONNECT LOSS BETWEEN CHIP AND ANTENNA

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    PROBLEM STATEMENT

     Design of small active antenna package with integrated phased-array antenna and 60 GHz CMOS chip ▸ Good antenna performance

    - Bandwidth - Gain

    ▸ Low interconnect loss between chip and antenna elements

    ▸ Shielding of chip and interconnect SLIDE 25

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels SLIDE 26

     Electrical field intensity (dB) in E-plane Maximum

    -40 dB

    -20 dB

    -60 dB

    Minimum

    Z

    X

    microstrip feed

    Low field intensity at backside of antenna (except at feed)

    Radiated field

    SHIELDING OF CHIP AND INTERCONNECT FROM RADIATION

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels SLIDE 27

     Electrical field intensity (dB) in H-plane Maximum

    -40 dB

    -20 dB

    -60 dB

    Minimum

    Z

    X

    Low field intensity at backside of antenna (except at feed)

    Radiated field

    SHIELDING OF CHIP AND INTERCONNECT FROM RADIATION

    (Ansoft/HFSS simulation)

  • © IMEC 2011 / 25 October 2011 Ansys Conf. La Hulpe, W. De Raedt - S. Brebels

    CONCLUSION

     An active phased array antenna is realized in a 9.5 x 9.5 x 0.8 mm3 LTCC package

     The antenna package has ▸ good antenna performance ▸  low interconnect loss between chip and antenna ▸ excellent shielding of chip and interconnect

    SLIDE 28