22
University of Victoria Mechanical Engineering Department Mech495/535 – Computational Fluid Dynamics and Heat Transfer ANSYS Project: Using a commercial CFD package to solve fluid flow problems Material prepared by T.C. Wu Email solution to [email protected] Due date: Mar 27, 2012 Date: Tuesday, March 6, 13, 20, 27 Time: 12:30 pm 1:20 pm Location: ELW B238 Problem Description 1) Fluid Flow and Heat Transfer in a Mixing Elbow This tutorial illustrates using ANSYS FLUENT fluid flow systems in ANSYS Workbench to set up and solve a threedimensional turbulent fluidflow and heat transfer problem in a mixing elbow. This tutorial is designed to introduce you to the ANSYS Workbench tool set using a simple geometry. In this tutorial you will create the elbow geometry and the corresponding computational mesh using the geometry and meshing tools within ANSYS Workbench. You will use ANSYS FLUENT to set up (D1 = 1 in and 1.5 in)

ANSYS Tutorial Guidelines_final

Embed Size (px)

Citation preview

Page 1: ANSYS Tutorial Guidelines_final

University  of  Victoria  Mechanical  Engineering  Department  

 Mech495/535  –  Computational  Fluid  Dynamics  and  Heat  Transfer  

 ANSYS  Project:    

Using  a  commercial  CFD  package  to  solve  fluid  flow  problems    

Material  prepared  by  T.C.  Wu  Email  solution  to  [email protected]    

Due  date:  Mar  27,  2012    Date:  Tuesday,  March  6,  13,  20,  27  

Time:  12:30  pm  -­‐  1:20  pm    Location:  ELW  B238  

   Problem  Description    1)  Fluid  Flow  and  Heat  Transfer  in  a  Mixing  Elbow  

 This   tutorial   illustrates   using   ANSYS   FLUENT  fluid   flow   systems   in   ANSYS  Workbench  to   set  up  and   solve  a   three-­‐dimensional   turbulent   fluid-­‐flow  and  heat-­‐transfer  problem  in  a  mixing  elbow.  This  tutorial  is  designed  to  introduce  you  to  the  ANSYS  Workbench  tool  set  using  a  simple  geometry.   In  this   tutorial  you  will  create  the  elbow  geometry  and  the  corresponding  computational  mesh  using  the  geometry  and  meshing  tools  within  ANSYS  Workbench.  You  will  use  ANSYS  FLUENT  to  set  up  

(D1  =  1  in  and  1.5  in)  

Page 2: ANSYS Tutorial Guidelines_final

and  solve  the  CFD  problem,  and  then  visualize  the  results  in  both  ANSYS  FLUENT  and  in   the   CFD-­‐Post  postprocessing   tool.   Some   capabilities   of   ANSYS   Workbench  (for  example,   duplicating   fluid   flow   systems,   connecting   systems,   and   comparing  multiple  data  sets)  are  also  examined  in  this  tutorial.  

   2)  Steady  Flow  Pass  a  Cylinder  

 Consider  the  steady  state  case  of  a  fluid  flowing  past  a  cylinder  as  illustrated.  Obtain  the  velocity  and  pressure  distributions  when  the  Reynolds  number   is  chosen  to  be  20  and  200.  In  order  to  simplify  the  computation,  the  diameter  of  the  pipe  is  set  to  1  m,  the  x  component  of  the  velocity  is  set  to  1  m/s  and  10  m/s,  also  the  density  of  the  fluid  is  set  to  1  kg/m^3.  Thus,  the  dynamic  viscosity  must  be  set  to  0.05  kg/m*s  in  order  to  obtain  the  desired  Reynolds  number.      Deliverables    1)  Fluid  Flow  and  Heat  Transfer  in  a  Mixing  Elbow  

A. D1  =  1  in,  compute  and  save:  • Velocity  contour  along  a  symmetry  plan  • Temperature  contour  along  a  symmetry  plan  

B. D1  =  1.5  in,  compute  and  save:    • Display  velocity  contour  along  a  symmetry  plan  for  D1  =  1  in  and  1.5  in  • Display  temperature  contour  along  a  symmetry  plan  for  D1  =  1  in  and  1.5  

in  C. D1  =  1.5  in,  Uy  =  2.4  m/s.  Compute  and  save:  

• Velocity  contour  along  a  symmetry  plan  • Temperature  contour  along  a  symmetry  plan  

 2)  Steady  Flow  Pass  a  Cylinder  

A. Re  =  20,  using  the  laminar,  compute  and  save:    • Velocity  vector  plot  around  the  cylinder  • Velocity  contour  plot  around  the  cylinder    • Stream  lines  contour  plot  around  the  cylinder    

B. Re  =  200,  using  turbulent  k-­‐epsilon  model,  compute  and  save:    

Page 3: ANSYS Tutorial Guidelines_final

• Velocity  vector  plot  around  the  cylinder  • Velocity  contour  plot  around  the  cylinder    • Stream  lines  contour  plot  around  the  cylinder    

C. Re  =  200,  select  a  different  turbulence  model  (k-­‐omega,  for  example),  compute  and  save:    

• Velocity  vector  plot  around  the  cylinder  • Velocity  contour  plot  around  the  cylinder    • Stream  lines  contour  plot  around  the  cylinder  

 Finally,  create  a  file  with  your  name  and  with  the  headers  1A,  1B,  1C,  2A,  2B  and  2C  (indicating   choice   of   turbulence   model).   Under   each   heading   insert   the   required  plots.        Send  the  aforementioned  files  by  e-­‐mail  to  [email protected].    

   Introduction    The  basic  steps  involved  in  any  computational  analysis  such  as  a  CFD  analysis  are:    

• Pre-­‐processing  • Solution  • Post-­‐processing  

 The  pre-­‐processing  stage   is   the  most  time  consuming  part   for   the  user.   It   involves  the  generation  and  discretization  of  the  solution  domain,  the  specification  of  the  properties  of  our  domain  and,  finally,  the  specification  of  the  boundary  conditions.    The   solution   involves   specification   of   the   numerical  method   to   be   used   and   patience  because  a  fluid  flow  problem  can  take  a  long  time  to  converge.  As  an  example,  today  it  is   computationally  not   feasible   to   solve   the   fluid   flow  problem  around  an  airfoil   at  Re  higher   than   200,000   using   the   full   Navier-­‐Stokes   equations.   As   a   result,   various  turbulence  models  are  used  to  simplify  the  numerical  procedure.    Finally,  an  essential  step  when  using  computational  methods  is  the  post-­‐processing.  At  this  stage  we  have  to  use  the  engineering  criteria  to  analyze  the  solution  and  determine  if  it  is  correct  or  if  some  parameters  at  the  pre-­‐processing  stage  need  to  be  adjusted.      Procedure:    Fluid  Flow  and  Heat  Transfer  in  a  Mixing  Elbow  

Page 4: ANSYS Tutorial Guidelines_final

 Open  ANSYS  Workbench  by  going  to  Start  >  ANSYS  13.0  >  Help  >  ANSYS  Help.    Select   FLUENT   >   Tutorial   Guide   >   1.   Introduction   to   Using   ANSYS   FLUENT  in   ANSYS  Workbench:  Fluid  Flow  and  Heat  Transfer  in  a  Mixing  Elbow    Follow  each  step  from  1.4.2  (step  1)  to  1.4.12  (step  11)  for  deliverables  1A  and  1B.    Change  flow  inlet  conditions  and  solve  for  1C.          

Page 5: ANSYS Tutorial Guidelines_final

Steady  Flow  Pass  a  Cylinder  Problem  Specification  Consider  the  steady  state  case  of  a  fluid  flowing  past  a   cylinder   as   illustrated.   Obtain   the   velocity   and  pressure  distributions  when   the  Reynolds  number   is  chosen   to   be   20.   In   order   to   simplify   the  computation,  the  diameter  of  the  pipe   is  set  to  1  m,  the   x   component  of   the  velocity   is   set   to  1  m/s  and  the  density  of  the  fluid   is  set  to  1  kg/m^3.  Thus,  the  dynamic  viscosity  must  be  set  to  0.05  kg/m*s  in  order  to  obtain  the  desired  Reynolds  number.      

Part  1  1. Pre-­‐analysis  and  start-­‐up  Prior   to   opening   ANSYS   FLUENT,   we   must   answer   a   couple   of   questions.   We   must  determine  what  our  solution  domain  is  and  what  the  boundary  conditions  are.    

Solution  domain  For   an   external   flow   problem   like   this,   one   needs   to  determine   where   to   place   the   outer   boundary.   A   circular  domain  will  be  used   for   this   simulation.  The  effects   that   the  cylinder  has  on  the  flow  extend  far.  Thus,  the  outer  boundary  will   be   set   to   be   64   times   as   large   as   the   diameter   of   the  cylinder.   That   is,   the   outer   boundary   will   be   a   circle   with   a  diameter   of   64   m.   The   solution   domain   discussed   here   is  illustrated.    

Boundary  Conditions  First,  we  will  specify  a  velocity   inlet  boundary  condition.  We  will  set  the  left  half  of  the  outer  boundary  as  a  velocity   inlet  with  a  velocity  of  1  m/s   in   the   x   direction.   Next,   we  will   use   a  pressure   outlet   boundary   condition   for   the  left   half   of   the   outer   boundary  with   a   gauge  pressure  of  0  Pa.  Lastly  we  will  apply  a  no  slip  boundary   condition   to   the   cylinder   wall.   The  aforementioned   boundary   conditions   are  illustrated.  

Page 6: ANSYS Tutorial Guidelines_final

2. Geometry  

Strategy  for  geometry  creation  In  order  to  create  the  desired  geometry  we  will  first  create  a  surface  body  for  the  cylinder.  Next,  we  will  create  a  surface  body  for  the  outer  boundary  as  a  frozen,  so  that  it  doesn't  merge  with  the  first  surface  body.  Then,  we  will  use  a  Boolean  operation  to  subtract  the  small  surface  body  from  the  large  surface  body.  At  this  point,  we  will  have  the  surface  body  of  the  outer  boundary  with  a  hole  in  the  middle  where  the  cylinder  is.  Lastly,  we  will  project  a  vertical  line  on  to  the  geometry,  so  that  radial  edge  sizing  can  be  implemented  in  the  meshing  process.  

Open  ANSYS  Workbench  and  select  FLUENT  project  Open  ANSYS  Workbench  by  going  to  Start  >  ANSYS  13.0  >  Workbench.  This  will  open  the  start  up  screen.      Drag  (or  Double  Click)  Fluid  Flow(FLUENT)  into  the  Project  Schematic  window.      

   To  open  the  Files  view,  select  View  →  Files.    

Analysis  Type  (Right  Click)  Geometry  >  Properties,  Set  Analysis  Type  to  2D  

Page 7: ANSYS Tutorial Guidelines_final

Saving  It  would  be  of  best   interest   to   save   the  project   at   this  point.  Click  on   the   "Save  As…"  button,  which  is  located  on  the  top  of  the  Workbench  Project  Page.  Save  the  project  as  "SteadyCylinder"  in  your  working  directory.  When  you  save  in  ANSYS  a  file  and  a  folder  will   be   created.   For   instance   if   you   save   as   "SteadyCylinder",   a   "SteadyCylinder.wbpj"  file  and  a  folder  called  "SteadyCylinder_files"  will  appear.  In  order  to  reopen  the  ANSYS  files  in  the  future  you  will  need  both  the  ".wbpj"  file  and  the  folder.  If  you  do  not  have  BOTH,  you  will  not  be  able  to  access  your  project.    

Launch  DesignModeler    Double  click  Geometry.  In  the  pop-­‐up  window  choose  Meter  for  the  desired  length  unit.    

Create  a  sketch  for  the  inner  circle  and  dimension  Click  on  the  +Z  axis  on  the  bottom  right  corner  of  the  Graphics  window  to  have  a  normal  look  of  the  XY  Plane.    

Under  Tree  Outline,   select  XYPlane,   and   click  New   Sketch   button,    .   Then   click  on  Sketching  right  before  Details  View.  This  will  bring  up  the  Sketching  Toolboxes.   In  the  Sketching   toolboxes,   select  Circle.  Click  on  the  origin  of   the  sketch,  making  sure  the  P  symbol   following   with   the   mouse   is   showing.   Just   create   a   rough   circle,   and   its  dimension  will  be  defined  later.    Under   Sketching   Toolboxes,   select   Dimensions   tab,   use   Diameter   to   dimension   the  circle  that  just  been  created  as  shown  below.  

   Under  the  Details  View  table  (located  in  the  lower  left  corner),  set  D1  =  1  m  as  shown  below.  

 

Inner  circle  surface  body  creation  At  first,  you  might  want  to  room  into  the  circle  to  have  a  better  field  of  view.  In  order  to  create  the  surface  body,  first  click  Concept  >  Surfaces  From  Sketches  as  shown  below.  

Page 8: ANSYS Tutorial Guidelines_final

 This  will  create  a  new  surface  SurfaceSK1.  Under  Details  View,  select  Sketch1  (located  underneath  XYPlane  in  the  Tree)  as  Base  Objects  and  click  Apply.  Finally,  click  Generate,  

.  A  gray   inner  circle  surface  body   is  created  and  the  Tree  Outline   is  shown  below.    

 If  any  step   is  messed  up,  simply  click  the   item  in  Tree  Outline  and  try  again.  The   item  might  have  a  different  number  but  won’t  affect   the  result.  Also   it  can  be  started  over  from  beginning  by  File  →  Start  Over.  

Create  a  sketch  for  the  outer  circle  and  dimension  In   this   step  we  will   create   a   new   sketch   for   outer   circle   in   the   XY   Plane.   This   step   is  required  for  the  Boolean  operation  that  we  will  carry  out  later  in  the  geometry  process.  It  allows  us  to  create  two  distinguishable  geometries,  in  the  xy  plane.    Click   on   XYPlane   in   the   Tree   Outline.   Click   on   the   New   Sketch   button.   Use   similar  procedure  aforementioned  for  inner  circle.  Now,  create  a  circle  centered  at  the  origin  in  Sketch2.  Set  the  diameter  of  the  circle  to  64m.      

Outer  circle  surface  body  creation  In   this   step   the   surface  body  will   be   created  as  a   frozen,   such   that   it   does  not  merge  with  the  inner  circle  surface  body.    Concept  >  Surfaces  From  Sketches  Set  the  Base  Object  to  Sketch  2.  Then  set  Operation  to  Add  Frozen  as  shown  below.  

Page 9: ANSYS Tutorial Guidelines_final

 Then,  click  Generate.    The  Tree  Outline  is  now  similar  to  the  image  as  shown  below.  

 The  first  surface  body  is  the  inner  circle  surface  body.  The  second  one  is  the  outer  circle  surface  body.    

Boolean  operation:  subtraction  In  this  step,  the   inner  circle  will  be  subtracted  from  the  outer  circle   in  order  to  obtain  the  desired  geometry.    Create  >  Boolean  First,  set  Operation  to  Subtract.  Apply  the  outer  circle  surface  body  (by  click  the  second  Surface  Body  underneath  2  Parts,  2  Bodies   in  Tree  Outline)  as  the  Target  Body.  Then,  apply  the  inner  circle  surface  body  as  the  Tool  Body.  Lastly,  click  Generate.  At  this  point  if  you  zoom  into  the  centre  of  the  circle  you  should  see  the  1m  diameter  hole,  as  shown  below.  

Page 10: ANSYS Tutorial Guidelines_final

 At  this  point,  the  Tree  Outline   is  shown  below.  Note  that  only  one  surface  body  is   left  after  Boolean  subtraction.    

 

Create  a  bisecting  line  The   purpose   of   this   step   and   the   following   two   steps   is   to   imprint   a   line   onto   the  geometry  that  will,  allow  for  radial  edge  sizing  in  the  meshing  step.    Click   on  XYPlane   in   the   tree   and   it   should   highlight   blue.   Then,   click   the   new   sketch  button.   In   the   new   sketch   draw   a   line   on   the   Y   axis   that   goes   through   both   of   the  concentric   circles.   Make   sure   that   it   is   coincident   to   the   Y   axis.   Then   trim   the   line  segments  that  lay  inside  of  the  inner  circle  and  the  line  segments  that  lay  outside  of  the  outer  circle.  This  is  carried  out  by  using  the  Trim  feature  located  in  the  Modify  portion  of  Sketching.    

Line  body  creation  Concept  >  Lines  From  Sketches  Set  the  Base  Object  to  Sketch  3  (located  underneath  XYPlane  in  the  Tree  Outline).  Click  Generate.    

Page 11: ANSYS Tutorial Guidelines_final

After  this  step,  there  are  two  Line  Body  as  shown  below.  Click  either  one  should  reveal  a  yellow  line.    

 

Projection  Tools  >  Projection  Hold  down  Ctrl  key  to  select  these  two  lines  you  just  created  above,  and  apply  to  Edges.  Then   apply   the   surface   body   to   Target.   You   must   do   these   steps   by   using   the   edge  selection  filter,    ,  and  the  surface  selection  filter,   .  Lastly,  click  Generate.  

Save  project  and  close  DesignModeler  This  will  go  back  to  Workbench.    

3. Mesh  In  this  section  the  geometry  will  be  meshed  with  18,432  elements.  The  geometry  will  be  given  192  circumferential  divisions  and  96  radial  divisions.  Mapped  face  meshing  will  be  used  and  biasing  will  be  used  in  order  to  significantly  increase  the  number  of  elements  located  close  to  the  cylinder.  

Launch  mesher  In  Project  Schematic  window,  (Double  Click)  Mesh  If  two  error  messages  showing  "PlugIn  Error:  No  valid  bodies  ...."    Skip  this  by  click  ok.  

Mapped  face  meshing  (Right  Click)  Mesh  >  Insert  >  Mapped  Face  Meshing  Set  Geometry  to  both  portions  of  the  surface  body.  You  will  have  to  hold  down  Ctrl  key  in  the  selection  process  in  order  to  highlight  both  halves.  Click  Update.  

Circumferential  edge  sizing  (Right  Click)  Mesh  >  Insert  >  Sizing  Set  Geometry  to  both  edges  of  the  surface  body.  You  will  have  to  use  the  edge  selection  filter    and  hold  down  Ctrl  in  the  selection  process  in  order  to  highlight  both  halves.  Set  Type   to  Number   of   Divisions,   set  Number   of   Divisions   to   96   and   set  Behavior   to  Hard.  Click  Update  to  generate  the  new  mesh.  

Page 12: ANSYS Tutorial Guidelines_final

   

Radial  edge  sizing  1  (top  half)  (Right  Click)  Mesh  >  Insert  >  Sizing  Set  Geometry  to  the  top  half  of  the  bisecting  line.  Set  Type  to  Number  of  Divisions,  set  Number   of   Divisions   to  96  and   set  Behavior   to  Hard.   Then,   set  Bias   Type   to   the   first  option  and  set  Bias  Factor  to  460.  These  selections  are  shown  in  the  image  below.      

 

Radial  edge  sizing  2  (bottom  half)  (Right  Click)  Mesh  >  Insert  >  Sizing  Set  Geometry  to  the  bottom  half  of  the  bisecting  line.  Set  Type  to  Number  of  Divisions,  set  Number  of  Divisions  to  96  and  set  Behavior  to  Hard.  Then,  set  Bias  Type  to  the  second  option  and  set  Bias  Factor  to  460.  These  selections  are  shown  in  the  image  below.  

Page 13: ANSYS Tutorial Guidelines_final

 Then,  click  Update  to  generate  the  new  mesh.  You  should  obtain  the  mesh  which  is  shown  below.    

       

Verify  mesh  size  (Click)  Mesh  >  (Expand)  Statistics  You  should  have  18,624  nodes  and  18,432  elements.                  

 

Page 14: ANSYS Tutorial Guidelines_final

Create  named  selections  In  this  section  the  various  parts  of  the  geometry  will  be  named  according  to  the  image.      

   In  Outline  window,  click  Model  (A3)  then  use  edge  selection  filter  to  select  the  left  half  of   the   outer   boundary.   Then   right   click   and   select   create   named   selection.   Name   it  "farfield1".    Similar  procedure,  create  a  named  selection  for  the  right  half  of  the  outer  boundary  and  call   it   "farfield2".   Lastly,   create   a   named   selection   for   both   sides   of   the   inner   circle  (cylinder)  and  call  it  "cylinderwall".  When  creating  the  third  named  selection,  make  sure  that   you   included  both   halves   of   the   circle.   You  will   have   to   hold   down  Ctrl   to   select  both  edges.  It  was  shown  in  below.      

   

Save  project  and  close  meshing  In  Workbench  Project  schematic  window.  Right  click  Mesh  →  Update.    

4. Setup  (Physics)    

Launch  FLUENT  (Double  Click)  Setup  in  the  Project  Schematic  window.    Select  Double  Precision  

Page 15: ANSYS Tutorial Guidelines_final

 

Check  mesh  (Click)  Mesh  >  Info  >  Size  You   should   now   have   an   output   in   the   command   pane   stating   that   there   are   18,432  cells.  (Click)  Mesh  >  Check  You  should  see  no  errors  in  the  command  pane.  

Specify  material  properties  Problem  Setup  >  Materials  >  Fluid  >  Create/Edit....  Then  set  the  Density  to  1  kg/m^3  and  set  Viscosity  to  0.05  kg/m*s  so  that  set  the  Re=20  specifically.  Click  Change/Create  then  click  Close.    Specify  models  Problem  Setup  >  Models  >  Viscous  By  default,   it   is   set   to  Viscous   –   Laminar,   and  all  others  options  are  off.   If  not,   (Click)  Viscous  >  Edit  and  set  to  laminar.  Also  if  the  Reynolds  number  is  changed  to  turbulent  regime  in  the  future,  you  will  need  to  adjust  the  model  from  laminar  to  turbulent  model  (k-­‐epsilon,  for  example)  accordingly.      

Boundary  conditions  

FarField1  Problem  Setup  >  Boundary  Conditions  >  farfield1  Set   Type   to   velocity-­‐inlet.   Click   Edit....   Set   Velocity   Specification   Method   to  Components,  set  X-­‐Velocity  to  1  m/s,  and  set  Y-­‐Velocity  to  0  m/s.    

FarField2  Problem  Setup  >  Boundary  Conditions  >  farfield2  Set  Type  to  pressure-­‐outlet.    

Page 16: ANSYS Tutorial Guidelines_final

Cylinder  Wall  Problem  Setup  >  Boundary  Conditions  >  cylinderwall  Set  Type  to  wall.  

Reference  Values  Problem  Setup  >  Reference  Values  >  Compute  from  >  farfield1  Check   if   set   the  Density   to  1  kg/m^3,  Viscosity   to  0.05  kg/m-­‐s,  Velocity   to  1  m/s.  The  other  default  values  will  work  for  the  purposes  of  this  simulation.    

Save  project  In  FLUENT  click  File  >  Save  Project  

5. Solution  

Second  order  upwind  momentum  scheme  Solution  >  Solution  Methods  >  Spatial  Discretization  Set  Momentum  to  Second  Order  Upwind  

Convergence  criterion  Solution  >  Monitors  >  Residuals  >  Edit...  Set  the  Absolute  Criteria  for  continuity,  x-­‐velocity  and  y-­‐velocity  all  to  1e-­‐6.  Click  ok  

Initial  guess  Solution  >  Solution  Initialization  Set  Compute  From  to  farfield1.  Alternately,  you  can  simply  set  X  Velocity  to  1  m/s.  Then,  click  Initialize.  

Iterate  until  convergence  Solution  >  Run  Calculation  Set  the  Number  of  Iterations  to  2000.  Then,  click  Calculate.  (You  may  have  to  hit  Calculate  twice.)  Now,  have  a  cup  of  coffee.  The  solution  should  converge  after  approximately  1647  iterations  as  shown  below.      

Page 17: ANSYS Tutorial Guidelines_final

 

Save  Project  In  FLUENT  click  File  >  Save  Project  

6. Results  

Velocity  vectors  Results  >  Graphics  and  Animations  >  Vectors  >  Set  Up...  The  Scale  was  set  to  2,  as  shown  below.  Then  click  Display.      

Page 18: ANSYS Tutorial Guidelines_final

 The  vector  plot  will  be  similar  to  the  image  as  shown  below  when  zoom-­‐in  around  the  cylinder.      

 (Click)  File  >  Save  Picture  Pick  JPEG  and  Color.  Unclick  White  Background.  Then  Save…  Make  sure  the  file  location.  The  saved  image  will  be  the  first  deliverable  of  this  tutorial.    

Velocity  contours  Results  >  Graphics  and  Animations  >  Contours  >  Set  Up...  Set  the  options  as  shown  below.    

Page 19: ANSYS Tutorial Guidelines_final

   The  velocity  contour  will  be  similar  to  this.  

 Save  this  picture  for  second  deliverable.    

Stream  lines  Results  >  Graphics  and  Animations  >  Contours  >  Set  Up...  Set  the  options  as  shown  below.    

Page 20: ANSYS Tutorial Guidelines_final

   The  stream  lines  will  be  similar  to  this.  

 Save  this  picture  for  third  deliverable.      Close  FLUENT.          

Part  2  In  Workbench  Project  Schematic  window,  right  click  the  title  cell  A  of  Fluid  Flow  (FFLUENT)  and  select  Duplicate,  a  new  cell  B  will  be  duplicated.  Double  click  the  Solution  to  start  a  new  simulation  using  different  flow  conditions.    

Page 21: ANSYS Tutorial Guidelines_final

   

1. Increase  velocity  to  10  m/s,  so  that  the  Re  =  200.  Use  turbulent  k-­‐epsilon  model  and  run  the  calculation.  Note:  Whenever  the  flow  conditions  changed,  the  solution  need  to  be  initialized  again  when  you  start  the  calculation.    

2. Use  k-­‐omega  or  different  model  and  calculate  for  Re  =  200.      

                                               

Page 22: ANSYS Tutorial Guidelines_final

Appendix  A  picture  of  flow  around  a  cylinder  at  Re  =  26  (picture  reproduced  courtesy  of  An  Album  of  Fluid  Motion  assembled  by  Milton  Van  Dyke).