42
Announcements I will go over homework assignments for the semester during the next two classes. TODAY: Writing assignment options + assignment lists WEDNESDAY: Lab experiment demonstrations by TAs FRIDAY: Lab experiment kits distributed I am in need of three notetakers for students in the course. If you would be willing to do this, please see me after class or during office hours. You will

Announcements I will go over homework assignments for the semester during the next two classes. TODAY: Writing assignment options + assignment lists WEDNESDAY:

Embed Size (px)

Citation preview

Announcements

I will go over homework assignments for the semester during the next two classes.

TODAY: Writing assignment options + assignment lists

WEDNESDAY: Lab experiment demonstrations by TAs

FRIDAY: Lab experiment kits distributed

I am in need of three notetakers for students in the course. If you would be willing to do this, please see me after class or during office hours. You will receive recognition for doing this from the DRC.

Summary of Lecture 5

The three modes of heat transfer are conduction, convection, and radiation. Radiation is energy propagated by electromagnetic waves and is emitted by all objects so long as they have a temperature.

The type of radiation an object emits is dependent on its temperature. The smaller the wavelength of radiation, the greater the energy and the higher the temperature. The entire range of radiation types is given by the EM spectrum.

The total radiant energy emitted by an object is described by the Stefan-Boltzmann law.

The wavelength of maximum radiation emission is described by Wien’s law.

Solar radiation, or shortwave radiation, is that which comes from the sun and is most intense in the visible part of the spectrum.

Terrestrial radiation, or longwave radiation, is that which comes from the Earth and is most intense in the infrared part of the spectrum.

1st Review question from last lecture

Given that the sun’s temperature is around 6000 K, approximately what is the wavelength of maximum radiation emission?

A) 5 × 10-3 m

B) 5 × 10-4 m

C) 5 × 10-5 m

D) 5 × 10-6 m

E) 5 × 10-7 m

2nd Review question from last lecture

How much more energy per unit area is emitted from an object at 200 K vs. an object at 400 K?

A) About 2 times more

B) About 4 times more

C) About 8 times more

D) About 16 times more

E) About 32 times more

NATS 101Section 6: Lecture 6

The Greenhouse Effect and

Earth-Atmosphere Energy Balance

Survey questionThinking about the issue of global warming, sometimes called the 'greenhouse effect,' how well do you feel you understand this issue? Would you say very well, fairly well, not very well, or not at all?

A) Very Well

B) Fairly Well

C) Not Very Well

D) Not at All

E) I don’t understand the question.

Gallup PollMarch 13-16, 2006

Thinking about the issue of global warming, sometimes called the 'greenhouse effect,' how well do you feel you understand this issue? Would you say very well, fairly well, not very well, or not at all?

Very Well 21%

Fairly Well 53%

Not Very Well 20%

Not at All 6%

My comments as an atmospheric scientist:

Are the greenhouse effect and global warming really the same thing?

If not, then NOBODY understands much of anything “well”—including whoever wrote this question!!

FOUR POSSIBLE FATES OF RADIATION:

1.Transmitted

2. Reflected

3. Scattered

4. Absorbed

The atmosphere does ALL of these…

Transmitted: Radiation passes through object

SUNLIGHT GL

AS

S W

IND

OW

TRANSMITTEDSUNLIGHT

Reflected: Radiation turned back

MIR

RO

R

SUNLIGHT

REFLECTEDSUNLIGHT

Scattered: Path of radiation deflected

SUNLIGHTF

RO

ST

ED

G

LA

SS

SCATTERED SUNLIGHT

Absorbed: Radiation transferred to object

Blackbody: a perfect absorber and emitter of radiation in equilibrium, with no reflection or scattering.B

LA

CK

B

OX

SUNLIGHT

Radiative equilibrium: Absorption = Emission (Kirchoff’s Law)

SUNLIGHT(SHORTWAVE)

INFRARED (LONGWAVE)

EMISSION

BL

AC

K

BO

X

A “Grey Body” = Not all radiation absorbedHow the atmosphere behaves

SUNLIGHT(SHORTWAVE)

INFRARED (LONGWAVE)

EMISSION

GR

EY

B

OX

SOMETRANSMISSIONOF SUNLIGHT

THROUGH BOX

Internal energy increases by changes on the molecular and atomic levels

ENERGY TRANSITIONS:

Translational

Rotational

Vibrational

Electronic: molecular

Electronic: atomic

Less Energy requiredChanges on molecular level

Longer wavelength of radiation

More energy requiredChanges on the atomic level

Shorter wavelength of radiation

What Happens When Radiation is “Absorbed”?

EN

ER

GY

RE

QU

IRE

D

Translational Energy

Gross movement of atoms and molecules through space.

The translational energy reflects the kinetic energy—and thus the temperature.

Rotational Energy

(Gedzelman 1980, p 105)

Energy associated the rotation of the molecule. Takes on discrete values (or quanta) dependent on the type of molecule.

Corresponds to energy changes shorter than 1 cm (far infrared).

Rotation of water molecules

Infrared photon

(Hartmann 1994)

Molecules have rotational energy only if they have a permanent dipole moment, or asymmetric charge distribution.

Rotational Energy of Common Gases in the Atmosphere

Vibrational Energy

Molecular energy stored in the vibrations (or stretching and bending) of atomic bonds. Takes on discrete values (or quanta) dependent on the type of molecule.

Corresponds to energy changes in the infrared spectrum.

Vibration of water molecules

(Gedzelman 1980, p 105)

Infrared photon

Vibrational Energy for Common Gases in the Atmosphere

Most effective absorbers are molecules that have a dipole moment and/or are bent.

Carbon dioxide creates a dipole moment as a result of its vibrational transitions, so has rotational energy as well. (Hartmann 1994)

Electronic energy: Photodissociation(Molecular level)

Energy associated with breaking of atomic bonds of molecules. Takes on discrete values (or quanta) dependent on the type of molecule. Corresponds mainly to energy changes in the ultraviolet spectrum.

O

O

UV PHOTON

O

O

Oxygen molecule (O2) Oxygen atoms (O)

Electronic energy: Excitation(Atomic Level)

Energy associated with excitation of electrons in the outer shell of an atom. Takes on discrete values (or quanta) dependent on the type of molecule.Corresponds to energy changes mainly in the ultraviolet.

p+

e-

UVPhoton

p+

e-

Hydrogen atomExcited hydrogen atom

Electronic energy: Ionization(Atomic level)

Energy associated with removal of electrons from an atom. Takes on discrete values (or quanta) dependent on the type of molecule. Corresponds to energy changes mainly higher than ultraviolet.

p+

e-

Short wavelength UV or X-Ray photon

p+

e-

Hydrogen atom Ionized hydrogen atom

inversion

isothermal

6.5oC/km

THERMOSPHERE: Warming because of ionization of gases.

STRATOSPHERE: Warming because of photodissociation of ozone and oxygen.

Flashback: Why is there warming in Thermosphere and Stratosphere?

Aurora Borealis or Aurora Australis

Caused by ionization of gases in the Earth’s atmosphere from the solar wind, which appears as visible light. Occur only at the poles because of the properties Earth’s magnetic field

Absorption of Radiation by Common Atmospheric “Greenhouse” Gases

SOLAR TERRESTRIAL

λmax Sun λmax Earth

The “greenhouse gases” are called such because they absorb and emit very effectively in the infrared band (5-20 µm) at selective wavelengths.

Water and CO2 are good greenhouse gases

Oxygen (O2) and ozone (O3) are absorbed in the UV.

Little or no absorption in some places

Total Radiation Absorption Spectrum by all Atmospheric Gases

SOLAR TERRESTRIAL

Little or no absorption.

A lot of absorption because of greenhouse gases, except in an atmospheric window of 8-11 µm.

Ab

sorp

tio

n %

Since there is little or no absorption of radiation in the most intense part of the solar radiation band, the heat supplied comes from the Earth itself.

SOLAR RADIATION

TERRESTRIALRADIATION

LATENT HEATING

AtmosphericHeating From

Below

Is the presence of the greenhouse gases in our atmosphere good or bad?

The Importance of the Greenhouse Effect

The presence of the gases in our atmosphere that absorb and emit infrared radiation help maintain the Earth’s average temperature at about 59 °F.

Without these gases, ALL infrared radiation from the Earth’s surface would be lost to space and the Earth would be a frozen ice ball!

The Greenhouse EffectDOES NOT EQUAL

Global Warming or Climate Change!

Global warming: The increase in Earth’s mean temperature that would result because of the increase in greenhouse gases due to human activities. This would enhance the greenhouse effect.

Climate change: Long-term change in global, regional, or local climate resulting from both enhanced greenhouse gases and/or other human activities.

Greenhouse Effect: Venus, Earth, and Mars

VENUS(Same size as Earth) EARTH

MARS(Half size of Earth)

Pressure = 90 Atm.Atmosphere composed of 96% CO2

Temperature = 482 °C

Pressure = 1 Atm.Atmosphere composed of less than 1% CO2

Temperature = 15 °C

Pressure = 0.01 Atm.Atmosphere composed of 95% CO2

Temperature = -63 °C

GREENHOUSE EFFECTON STERIODS!

GREENHOUSE EFFECTJUST RIGHT

VIRTUALLY NO ATMOSPHERE TO HAVE A GREENHOUSE EFFECT

We’ve talked so far about absorption and emission of radiation in the atmosphere.

This process is most important for terrestrial radiation.

Reflection and scattering are more important for solar radiation.

Scattering: Radiation deflected

Atmospheric gases: Molecules preferentially scatter the smaller wavelengths of visible light.

Cloud drops: Scatter all wavelengths of visible light equally.

Rayleigh Scattering Mie Scattering

Why is the sky blue?

Air molecules preferentially scatter smaller wavelengths of visible light, which are blue!

Reflection: Radiation turned back In meteorology the reflectivity is called the albedo.

Albedo = 1 All radiation reflectedAlbedo = 0 All radiation absorbed

Snow : 0.7

Water: 0.1

Vegetation: 0.1 to 0.3

Sand: 0.15 to 0.45

Clouds: Depends on type and location

NET ALBEDO OF EARTH = 0.3

Important Aside:Clouds are a big part of the

radiation budget too!

ABSORPTION AND ABSORPTION AND REFLECTION OF REFLECTION OF

SOLAR SOLAR RADIATIONRADIATION

VERY EFFECTIVE VERY EFFECTIVE ABSORBERS AND ABSORBERS AND

EMITTERS OF EMITTERS OF TERRESTRIAL TERRESTRIAL

RADIATIONRADIATION

Now that we know what happens to radiation in the atmosphere,

we’re ready to look at

the Earth’s average energy budget

Energy Budget: Shortwave RadiationEnergy Budget: Shortwave Radiation

EARTH’S ALBEDOEARTH’S ALBEDO

ATMOSPHERIC ATMOSPHERIC ABSORPTIONABSORPTION

SURFACE SOLAR ABSORPTIONSURFACE SOLAR ABSORPTION(ABOUT HALF OF TOTAL INCOMING)(ABOUT HALF OF TOTAL INCOMING)

INCOMING INCOMING SOLAR AT TOASOLAR AT TOA

Energy Budget: Longwave radiation and Sensible and Latent Heating

SURFACE SOLAR ABSORPTION

SURFACE LONGWAVEABSORPTION:

GREENHOUSE EFFECTSUM OF SHORTWAVE + LONGWAVE

ABSORPTION ( > 100)

SURFACE LONGWAVE EMISSION

SENSIBLE AND LATENTHEATING

ATMOSPHERIC ENERGY GAINED FROM SURFACE

ATMOSPHERICLONGWAVEEMISSION

TO SURFACE

ATMOSPHERICLONGWAVEEMISSION TO SPACE

( = 1- ALBEDO)

Summary of Lecture 6

Radiation in the atmosphere has four possible fates: transmitted, reflected, scattered, or absorbed. A perfect absorber and emitter of radiation is called a blackbody.

The atmosphere selectively reflects, scatters and absorbs radiation at certain wavelengths, which depend on the specific gas constituents.

Absorbed radiation increases the internal energy by changes on the molecular and atomic level. Terrestrial radiation is associated with translational, rotational, and vibrational energy transitions on the molecular level. Solar radiation is associated with electronic energy transitions on the atomic level.

Greenhouse gases are those which absorb and emit very effectively in the infrared, like water and CO2. Because of them the atmosphere is very opaque to terrestrial radiation and the Earth’s surface temperature is maintained. Reviewed the atmospheric energy budget to prove the point.

Though the atmosphere is fairly transparent to solar radiation, scattering and reflection of solar radiation is important. Scattering of visible light is why the sky is blue!

Reading Assignment and Review Questions

Ahrens, Chapter 3, pp. 55-63

Chapter 2 Questions

Questions for Review: 11,12,13,14,17,18,19,21

Questions for Thought: 7,9,10,11,12,13