22
A NNALES DE L ’I. H. P., SECTION A NAKAO H AYASHI TOHRU O ZAWA Scattering theory in the weighted L 2 (R n ) spaces for some Schrödinger equations Annales de l’I. H. P., section A, tome 48, n o 1 (1988), p. 17-37 <http://www.numdam.org/item?id=AIHPA_1988__48_1_17_0> © Gauthier-Villars, 1988, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

ANNALES DE L’I. H. P., SECTION A

NAKAO HAYASHI

TOHRU OZAWAScattering theory in the weighted L2(Rn) spacesfor some Schrödinger equationsAnnales de l’I. H. P., section A, tome 48, no 1 (1988), p. 17-37<http://www.numdam.org/item?id=AIHPA_1988__48_1_17_0>

© Gauthier-Villars, 1988, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » impliquel’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématiqueest constitutive d’une infraction pénale. Toute copie ou impression de cefichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programmeNumérisation de documents anciens mathématiques

http://www.numdam.org/

Page 2: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

17

Scattering theory in the weighted L2(Rn) spacesfor some Schrödinger equations

Nakao HAYASHI

Tohru OZAWA

Hongo 2-39-6, Bunkyoku, Tokyo 113, Japan

Research Institute for Mathematical Sciences,Kyoto University, Kyoto 606, Japan

Ann. Inst. Henri Poincaré

Vol. 48, n° 1,1988,] Physique theorique

ABSTRACT. - In this paper we shall study the scattering problem forthe following Schrodinger equation :

lution in ~. = ~ v E L2(~n); ~ ~ v ~ (1 + ~ x 12)s/2(I - oo },

We show that (1) all solutions of (**) are asymptoticallyfree in L2(~"), (2) 4, (3/2) ~ yl, Y2, Y3 2, ~eH~, all solutionsof (**) are asymptotically free in (3) if 03BB1 = 0, n &#x3E;_ 3, (4/3) 72.73 2,

the wave operators and the scattering operator are welldefined in and homeomorphisms from to

l’Institut Henri Poincaré - Physique theorique - 0246-0211Vol. 48/88/01/17/21/$4,10/CQ Gauthier-Villars

Page 3: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

18 N. HAYASHI AND T. OZAWA

RESUME. - Dans cet article nous etudions Ie probleme de diffusionpour 1’equation de Schrodinger :

et * est la convolution dans [R".

Nous montrons que (1) si ~ E toutes les solutions de (**) sont asymp-totiquement libres dans L2(~n), (2) 4, (3/2) ~ yl, Y2, Y3 2,~eH~toutes les solutions de (* *) sont asymptotiquement libres dans (3) si~,1 = 0, n &#x3E;__ 3, (4/3) y2, y3 2, S E I~J, ~ E les operateurs d’onde etl’opérateur de diffusion sont bien définis dans et sont des homeomor-

phismes de

1. INTRODUCTION

In this paper we shall study the scattering problem for the followingSchrodinger equation :

where " VI = V1(X) = (~,1 &#x3E;_ 0, 1 y 1 min (2, n/2)),

* denotes the convolution in [R".

Throughout the paper we use the following notations and function spaces :

Annales de Henri Poincaré - Physique " -theorique "

Page 4: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

19SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

LP denotes the Lebesgue space or (8) en with the norm

l~~~oo;~’~=!!’!!2;(.,.) denotes the L2 scalar product; denotes the

weighted Sobolev space with the norm ~03C8~m,s,p=~ (1+ ~.se~l~~oo;~’ !!~~=!!’ !!~~,2. denotes the homogeneous Besovspace with the semi-norm

s = [5] + 6, 0 1, t/J(x + k); [s] denotes the largest integerless than s; C(I; E) denotes the space of continuous functions from an inter-val I c IR to a Frechet space E; Ck(I; E) denotes the space of k-times conti-nuously differentiable functions from I to B) denotes thespace of measurable functions u from I to a Banach space B such that

with the norm III 6) _ ~ u E C(I; L2) n La~~&#x3E;&#x3E;g~~; ~~~ u IIlð(0"),8/0" 00 },

5((7) = 4n/(2n - (y), ~ 2n, I = [ - a, a ], a &#x3E; 0 ; the dilation operatorthe Fourier transform

different positive constants might be denoted by the same letter C. If

necessary, by C(*, ... , *) we denote constants depending on the quan-tities appearing in parentheses.We note that

imply the following relations :

and

We shall prove the following theorems.

THEOREM 1. - For there exist unique M+ E L 2 such that

Vol. 48, n° 1-1988.

Page 5: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

20 N. HAYASHI AND T. OZAWA

where u is a unique solution of (1.1)-(1. 2) satisfying u E C(!RB {0 }; H1,-I)

THEOREM 2. - 4, (3/2) ~ yl, 72~3 2. For any ~ E Ho,2, thereexist unique M+ E such that

.

where u is a unique solution of ( 1.1 )-( 1. 2) satisfying u E H2,-2)

THEOREM 3. - Let 03BB1 = 0, n ~ 3, (4/3) y2, y3 2, For anythe wave operators W± and the scattering operator

are well defined in and homeomorphisms from to

REMARK 1. - (1) For any ~eH~(= 1,2), the existence and uniquenessof solutions for ( 1.1 )-( 1. 2) have been proved by N. Hayashi-T. Ozawa [10][77].

(2) When ~, = 0 N. Hayashi-Y. Tsutsumi [7] showedTheorem 1 by using the pseudoconformal conservation law and the trans-form x)=(1/it)n/2 exp (i| x |2/2t)v(1/t,x/t) (see also Y. Tsut-sumi-K. Yajima [17 ]). In Section 3 we prove Theorems 1-2 by using a moredirect method than that of [7] ] [17 ].

(3) When y2 = 73. ~ H~, ~ 2, SE N, Theorem 3 was shown in [7].In Section 4 we prove Theorem 3 by making use of the space-time esti-mates of the Schrodinger evolution with the operators Jand J la.

2. PRELIMINARY ESTIMATES

LEMMA 1.1. - (The Gagliardo-Nirenberg inequality). Let q, r be anynumbers satisfying 1 ~ q, r ~ oo, and let j, m be any integers satisfying0 ~ 7 m. If u E n Lq, then

where ( 1 /p) _ ( j/n) + a(( 1 /r) - (m/n)) + ( 1 - a)/q for all a in the interval(//~) ~ ~ ~ 1, where C is a constant depending only on n, m, j, q, r, a, withthe following exception : if m - j - (n/r) is a nonnegative integer, then (2.1)holds for any (//~) ~ ~ 1.For Lemma 2.1 see, e. g., A. Friedman [3 ].

LEMMA 2 . 2. - Let 1 pqoo, and Then we have

Henri Poincaré - Physique theorique

Page 6: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

21SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

where

3, then we have

For (2 . 2) and (2 . 3) see, e. g., E. M. Stein [13 ], and for (2 . 4) see, e. g.,N. Hayashi-T. Ozawa [9 ].We put

LEMMA 2 . 3. - Let 0 ~ r 2, ~)=4~/(2~-~) and 1/5(7)+1/~)=1.Then there exist positive constants C independent of 1= [ - a, a ], a &#x3E;-_ 0such that

(2 . 5) has been proved by T. Kato [72] and K. Yajima [18 ]. (2 . 5) playsan important role to prove Theorem 3. For Lemma 2. 3, see, e. g.,K. Yajima [18 ].

Page 7: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

22 N. HAYASHI AND T. OZAWA

Proof 2014 For (2 . 8) and (2 . 9), see N. Hayashi-Y. Tsutsumi [7]. We onlyprove (2.10) and (2.11). We note that

.

where r is the Gamma function. We have by using Holder’s inequalityand Lemma 2.1

We again use Holder’s inequality and Lemma 2.1 to obtain for 03C3 ~ n - 2

Since II I ( - 0) - (n - ~)/4 y/r ~ 1211 ~ CP(~) 1 ~ 2, (2.12) and (2.13) imply (2.10).By the relation = S( - t20)°‘~2S-1 we have

Holder’s inequality gives for a (2n - (7)/4

From this, (2.15) and Lemma 2.1 we have

Annales de Henri Poincaré - Physique " theorique "

Page 8: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

23SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

By Theorem 6 . 3 .1 ([2]), II fliDs ~C II ( - 0394)s/2f ~p for s E IR, 1 ~ p _ 00.Hence we have from (2.16)

p,oo

Similarly we obtain

Similarly we have

From Lemma 2.1 and Holder’s inequality we have for

In the same way as (2 . 21 ) we obtain

Vol. 48, n° 1-1988.

Page 9: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

24 N. HAYASHI AND T. OZAWA

Collecting everything, we have

3. PROOF OF THEOREMS 1, 2

In [70] ] [11 ] we have obtained the following results.

PROPOSITION 1. - Let Then for each j there exists

a unique u~ such that

/Li/()x~ 1+ 1/./T.

PROPOSITION 2. - Let 03C6 E HO, 1. Then there exists a unique M such that

PROPOSITION 3. - Let (~ E HO,2. Then there exists a unique u satisfying(3 . 2) with U- lu E C((1~; Ho~2),

PROPOSITION 4. - Let { ~; ~ be a sequence in ~(!R") such that ~; -~ ~in as j --+ oo. Let u~ be the solution of (3 .1) constructed in Proposition 1,and let u be the solution of (3 . 2) constructed in Proposition 2. Then we have

Annales de l’Institut Henri Poincare - Physique ’ theorique ’

Page 10: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

25SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

PROPOSITION 5. - Let { ~~ ~ be a sequence in such that ~ -. ~in as j ~ oo. Let uj be the solution of (3.1) constructed in Proposi-tion 1, and let u be the solution of (3.2) constructed in proposition 3. Let~4, (3/2) ~ Yi, Y3 2. Then we have

where

Proof of T heorem 1. 2014 Let u~ be the solution of (3 .1 ) constructed inProposition 1, and let u be the solution of (3 . 2) constructed in Proposition 2.Let w(t)=S(t)U( -t)u(t), t ~ 0. We restrict ourattention to the case t &#x3E; 0, since the other case can be treated analogously.We first prove that there exists M+ E L2 satisfying w(t) -+ M+ in L2 as t -+ oo .It suffices to show that { w(t) ; t &#x3E; 1} is Cauchy in L2. Let t &#x3E; L &#x3E; 1. Since

~0, we have

We estimate the R. H. S. of the above equality.From (3 .1 ) we have

Vol.48,1~1-1988.

Page 11: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

26 N. HAYASHI AND T. OZAWA

A direct calculation shows

where V~ = ~ x 1-)12, V~3) = ~,3 J x 1-)13. Thus we have the identity

where

11 is estimated by

12 is estimated by

13 is estimated by

Annales de l’Institut Henri Physique theorique

Page 12: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

27SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

Since 00, the L. H. S. of (3.13) tends to

In view of (3 . 4), the R. H. S. of (3.13) is bounded uniformly in j ~ N by

This proves that converges in L2 as t -+ oo. Now

~ 00. Q.E.D.

Proof of Theorem 2. - Let uj be the solution of (3.1) constructed inProposition 1, and let M be the solution of (3.2) constructed in Proposition 3.We already know that there exist U:t E L 2 such that

From now on we consider only the case t &#x3E; 0. We first claim that for any~eL~ {(~U(-~)~);~&#x3E;0} is Cauchy in C. Indeed, we have, for

(8 &#x3E; 0) such that ~ 03C8 in L2 as ~ ~ + 0.

so that our claim follows from (3.12) and (3.14). Thus andxU( - t)u(t) ~ xu+ weakly in L2 as t ~ oo. This gives S(t)xU( - t)u(t) ~ xu+weakly in L2 as t ~ oo, since the operator tends to I strongly in L2as t ~ ± oo. We now prove that S(t)xU(- t)u(t) ~ xu+ in L2 as t -~ oo.

For this purpose we compute

Vol. 48, n° 1-1988.

Page 13: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

28 N. HAYASHI AND T. OZAWA

where

I4 is estimated by

In order to estimate I5, we write

and therefore

since (see [70] ] [77].)

Thus Is is estimated by

Annales de Henri Poincare - Physique " theorique "

Page 14: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

29SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

For Ie, we write

the first two terms are estimated by

and the last two terms are estimated by

Combining these estimates with (3.6)-(3.12), we conclude that

This yields

Vol. 48, n° 1-1988.

Page 15: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

30 N. HAYASHI AND T. OZAWA

Thus

as desired.

REMARK 2. - In the case of nonlinear Schrödinger equation (NLS eq.)

such that i~tu + ! Au = M + M with M(0) = 4&#x3E; E Hi.!, Y. Tsut-

sumi-K. Yajima [17] showed Theorem 1 if 1+(2/n)p1=p203B1(n). wherefor n=1,2, 03B1(n)= (n+ 2)/(n- 2) for n ~ 3. For any we can apply

our method of Theorem 1 to the NLS eq. if l+(2/~)~i ~2 1+(4/~).Indeed, we can prove Theorem 1 in the case of the NLS eq. as follows: we put

where I = [ - a, a ], a &#x3E; 0. By the existence theorem of solutions for theNLS eq. obtained by T. Kato [12 ], the NLS eq. has a unique solution suchthat u, Ju E X(a, p2) for any a &#x3E; 0.

Also we have from the pseudoconformal conservation law and u,

Ju E X(a, p2)

for t ~ 0, where C is a positive constant depending only on ~ E (seealso [7] ] [3] ] [7~] ] [16 ]). From this and the same argument as Theorem 1we have the desired result.

4. PROOF OF THEOREM 3

Proof of T heorem 3. 2014 For simplicity we let y2 &#x3E;_ 7s and we suppressthe subscript j of u~ in (3 .1 ). By (3 .1 ) we have

We first prove that the solutions of (4.1) form a bounded sequencein X(oo, Y2).

Annales de l’Institut Henri Physique theorique

Page 16: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

31SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

We apply Lemma 2.3 and Lemma 2.4 to (4.1) to obtain

We put III M Then we have

Let ~-min{l,(50C2Ci!~,~)-~-~}. Then we have by (4 . 4)and Lemma 3 . 7 of [7~] ]

We have by (4.5) and the fact that III M 1112,00 = II

In the same way as in the proof of (4.3) we obtain

from which we get for a sufficiently small.By using (3 . 4), we iterate this process to get JuX(la,03B32) ~ C(!! inductively. Thus,

Vol. 48, n° 1-1988.

Page 17: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

32 N. HAYASHI AND T. OZAWA

We let T = 00. By virtue of Lemma 2 . 3, Lemma 2 . 4 (2 . 8), (4 . 3) andProposition 4 we have

Proposition 4, (4.6) and (4.7) imply

Thus we have from (4.10) and (4 .11 )

We choose b large enough to ensure that 1/2.Finally we get

Annales de l’Institut Henri Poincaré - Physique theorique

Page 18: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

33SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

as required. We continue the proof of the theorem and treat the cases n ~ 4and n = 3 separately. We first consider the case n ~ 4. In the same way asin the proof of (4.13) we obtain by Lemma 2 . 4 (2.10) if 4/3 72.73 n - 2

Letj oo in (4.13) and (4.14). We have

We now consider the following integral equation for any

(4.16) is the integral version of the initial value problem (1.1) with theinitial data given at + oo and ~,1 = 0. In the same way as in the proof ofTheorem 5 of [70], we can prove that there exists a unique solution u of(4.16) such that u, Ju E C(tR; L2) n L8~y2(f~ ; for any u+ E Let ube the solution of (4.16) mentioned above. In the same way as in the proofof (4. 8) we have for sufficiently large T

By (4.15) we can take T = - oo in(4.17). We put

This and (4.17) with T = 0 imply that there exists the wave operatorW+ : M+ )-~ in In the same way for there exists aunique such ~ o This implies that there exists the inverse wave operator WJ~: ~ )2014~ M-.Therefore the inverse of the scattering operator W::1W+ exists in In the case s = 1, Theorem 3 follows from the same argument as in the proofof Corollary 5.1 in [7 ]. We prove the case ~ 2. In the same way as inthe proof of (4.8) we have by Lemma 2.4 (2.9)

From (4.15) and Lemma 2.1 we get

Vol. 48, n° 1-1988.

Page 19: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

34 N. HAYASHI AND T. OZAWA

In the similar way as in the proof of (4.15) we obtain by using (4.18),(4.19) and Lemma 2.4 (2.9) in place of Lemma 2.4 (2. 8)

In the case n ~ 4, Theorem 3 follows from (4.20) and the same argu-ment as in the case s = 1. We next consider the case n = 3. In the same wayas in the proof of (4.9) we have

By Lemma 2 . 4 (2 .11 )

Let GI = 1 , &#x3E; 0, (1 ~ l _ 4), 85 = £6 = ~(Yk) - 2q2 &#x3E; 0 Ibe " sufficiently small and ’ = b2. Since P(M) ~ u by Lemma 2 . 2,we have " from (4.22) and o (4.8)

Holder’s inequality and Lemma 2.1 give

where

Annales de l’Institut Henri Poincaré - Physique " theorique ’

Page 20: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

35SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

In the same way as in the proof of (4.8) we obtain by (4.21) and (4.26)

We have by (4. 22) and Proposition 4

In the same way as in the proof of (4.14), we have by (4. 27), (4. 28) and(4 . 21 ) with T = 00

since }’2 ~ }’3 &#x3E; 4/3. By the conditions of Theorem 3, we can see that (4. 29)holds valid for any a such that 0 a 1/2. We get by Lemma 2 .1 and (4 . 29)

(4.30) is the same estimate as (4.19). The proof for n = 3 now proceedsfrom (4. 30) in the same way as that 4 from (4.19). This completesthe proof of Theorem 3. Q. E. D.

REMARK 3. - When V2M = ! ~ !’~, Theorem 3 holds valid for n = 2.Indeed, by Lemma 2 . 4 (2 . 8) and Proposition 1 we have (4.19), from whichwe get (4.20). This yeilds Theorem 3.

REMARK 4. - In the case of the NLS eq. (see Remark 2), Y. Tsut-sumi [16], N. Hayashi-Y. Tsutsumi [7] showed that Theorem 3 holds valid inthe H ~ space if y(n) /? i =/?2 where y(~) = (~ + 2 + ~/~+12~+4)/2~

is the same one as that in Remark 2. We can prove Theorem 3 in the

space in the case of the NLS eq. if ~i ~7?2 1 + (4/n). Indeed, thepseudoconformal conservation law (see Remark 2), Lemma 2.3 and thefact that u, Ju E X(a, p2) yield u, Ju E X(oo, p2) if 7M ~~2 1 +(4/n).From this we obtain the desired result (see [7d] ] [7]).

REMARK 5. - J. Ginibre-G. Velo [6] have proved Theorem 3 in theenergy space if 2 y2 y3 min (4, n), and in [5] they also proved Theo-rem 3 in the energy space in the case of the NLS eq. if 1 + (4/n) ~2

Vol. 48, n° 1-1988.

Page 21: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

36 N. HAYASHI AND T. OZAWA

Added Remark. 2014 The proof of Theorem 2 relies heavily on the estimates(3.7)-(3.12) in Proposition 5, which can be derived from a new identityfor ~3(t ) (see (3 . 87) of [7~] and (2 . 27) of [11 ]). Recently J. Ginibre gave asimple derivation of the identity for ~3(t) (see [19 ]).

ACKNOWLEDGMENTS

The authors are grateful to Professor Jean Ginibre for several helpfulcomments, as well as for generous communication of recent material.

[1] J. E. BARAB, Nonexistence of asymptotic free solutions for a nonlinear Schrödingerequation. J. Math. Phys., t. 25, 1984, p. 3270-3273.

[2] J. BERGH and J. LÖFSTRÖM, Interpolation Spaces. Berlin, Heidelberg, New York,Springer, 1976.

[3] A. FRIEDMAN, Partial Differential Equations. Holt-Rinehart and Winston, New York,1969.

[4] J. GINIBRE and G. VELO, On a class of nonlinear Schrödinger equations I, II. J. Funct.Anal., t. 32, 1979, p. 1-32, 33-71; III. Ann. Inst. Henri Poincaré, Physique Théorique,

t. 28, 1978, p. 287-316.

[5] J. GINIBRE and G. VELO, Scattering theory in the energy space for a class of non-linear Schrödinger equations. J. Math. pures et appl., t. 64, 1985, p. 363-401.

[6] J. GINIBRE and G. VELO, Private communication.

[7] N. HAYASHI and Y. TSUTSUMI, Scattering theory for Hartree type equations. Ann.Inst. Henri Poincaré, Physique Théorique, t. 46, 1987, p. 187-213.

[8] N. HAYASHI and Y. TSUTSUMI, Remarks on the scattering problem for nonlinear Schrö-dinger equations, to appear in the Proceedings of UAB conference on DifferentialEquations and Mathematical Physics, Springer-Verlag, New York, 1986.

[9] N. HAYASHI and T. OZAWA, Time decay of solutions to the Cauchy problem fortime-dependent Schrödinger-Hartree equations. Commun. Math. Phys., t. 110,1987, p. 467-478.

[10] N. HAYASHI and T. OZAWA, Smoothing effectfor some Schrödinger equations, preprintRIMS-583, 1987.

[11] N. HAYASHI and T. OZAWA, Time decay for some Schrödinger equations, preprintRIMS-554, 1987.

[12] T. KATO, On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, PhysiqueThéorique, t. 46, 1987, p. 113-129.

[13] E. M. STEIN, Singular Integral and Differentiability Properties of Functions. PrincetonUniv. Press, Princeton Math. Series 30, 1970.

[14] W. A. STRAUSS, Decay and asymptotic for ~u = F(u). J. Funct. Anal., t. 2, 1968,p. 409-457.

[15] W. A. STRAUSS, Nonlinear scattering theory at low energy: Sequel. J. Funct. Anal.,t. 43, 1981, p. 281-293.

Annales de l’Institut Henri Physique " theorique "

Page 22: ANNALES DE L SECTION - Numdamarchive.numdam.org/article/AIHPA_1988__48_1_17_0.pdf · 2019-05-10 · 18 N. HAYASHI AND T. OZAWA RESUME. - Dans cet article nous etudions Ie probleme

37SCATTERING THEORY FOR SOME SCHRODINGER EQUATIONS

[16] Y. TSUTSUMI, Scattering problem for nonlinear Schrödinger equations. Ann. Inst.Henri Poincaré, Physique Théorique, t. 43, 1985, p. 321-347.

[17] Y. TSUTSUMI and K. YAJIMA, The asymptotic behavior of nonlinear Schrödingerequations. Bull. (New Series), Amer. Math. Soc., t. 11, 1984, p. 186-188.

[18] K. YAJIMA, Existence of solutions for Schrödinger evolution equations. Commun.Math. Phys., t. 110, 1987, p. 415-426.

[19] J. GINIBRE, A remark on some papers by N. Hayashi and T. Ozawa, preprint Or say,1987.

(Manuscrit reçu le 26 mai 1987)( Version revisee, reçue ’ le 18 septembre 1987)

Vol. 48, n° 1-1988.