23
A Precise 3D Beam Dynamics Model of the PSI Injector II 12 th September 2016 Anna M. Kolano 21 st International Conference on Cyclotrons and their Applications

Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

A Precise 3D Beam Dynamics Model of the PSI Injector II

12th September 2016

Anna M. Kolano

21st International Conference on Cyclotrons and their Applications

Page 2: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 2

In this talk …

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

Delivers 2.4 mA CW 1.416 MW proton beam

Chain of accelerators: 870 keV 72 MeV 590 MeV

Planned upgrade to 3 mA will involve both accelerators

ETH Zurich 12 September 2016

Page 3: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 3

In this talk …

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 4: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 4

What are the true intensity limits of Injector II?

To understand the machine after the upgrade

Can an Injector II-type machine be used for future

projects ?

The big picture

3D beam dynamics model of Injector II with space charge

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 5: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 5

Injector II

4 separate sector isochronous cyclotron

Hill field of 2 T

72 MeV in 83 turns in the production mode

Injected beam current ~ 11 mA DC2.2 mA CW

Accelerator Frequency 50.63 MHz

Quasi-stationary distribution formed over first

several turns due to space charge forces

combined with strong radial-longitudinal coupling

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

RIZ1

ETH Zurich 12 September 2016

Page 6: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 6

Injector II

Courtesy: Richard Kan, PSI

Extraction septum

Radial probes

RIZ1 time structure measurement

4 m radius

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 7: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 7

Injector II

Courtesy: Richard Kan, PSI

Injected uncoupled 11 mA DC beam

Cleaned with 14 collimators (8 in the model)

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

Page 8: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 8

How do we do it?

OPAL

Initial conditions (matched distribution* linear space-charge model)

Accelerated bunch for 0.5 – 10 mA (non-linear model)

We consider 2 configurations: Production and Upgraded

The Goal: minimize halo at the

extraction minimise losses in HIPA

** C. Baumgarten,“Transverse-Longitudinal coupling by Space charge in Cyclotrons”, Phys. Rev. ST Accel. Beams 14, 114201, 2011.

*C. Baumgarten, “A Symplectic Method to Generate Multi-variate Normal Distributions”, arXiv:1205.3601v.

OPAL

(Object Oriented Particle Accelerator Library)

• C++ framework for general particle

accelerator simulations

• Open source

• 3D Space charge

• Massively parallel

• Particle-matter interaction

• Multi-objective optimisation.

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 9: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 9

Models of collimation

3 models* under 2 configurations: Production and Upgraded

- Continuous 4 sigma cut

- 6-turn 4 sigma cut

- Physical Collimator

Radial data comparable accross all models

2 mA beam in 83 turns

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

*A.M. Kolano. A precise 3D beam dynamics model of the PSI

Injector II. PhD Thesis,The University of Huddersfield, 2016.

ETH Zurich 12 September 2016

Page 10: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 10

Models of collimation

3 models under 2 configurations: Production and Upgraded

- Continuous 4 sigma cut

- 6-turn 4 sigma cut

- Physical Collimator

Radial data comparable accross all models

3 mA beam in 60 turns

The same central/extraction region

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 11: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 11

Configurations of Injector II

20-25 mm

40 mm

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 12: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 12

Production set-up with collimators

Space charge simulation with collimators over the first 9 turns

9.5 mA 2 mA

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 13: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 13

Space charge is not all that bad!

Last turns The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 14: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 14

Halo and tail cleaning with KIP4 collimator

Long longitudinal tail due to mismatch and/or misplaced collimators

Eventually couples to the radial plane

We can tag last step halo and track it back to its origins

Successfully removed with KIP4 collimator

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 15: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 15

Measurements: radial profile

Orbit pattern changes with intensity in Injector II

KIP2 collimator cuts away large parts of the

beam changing the betatron oscillations

Trim coils are also used to force pattern that

keeps the last valley in the same place

Off-centered injection

νr is kept at 1.3 over the last few turns

Parameters

Objectives Design Variables

Fixed peak position

at extraction

Voltage offset

Min Δ peaks Radius

~2 ~2

Optimizing python script to reproduce in simulations:

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

measurements

ETH Zurich 12 September 2016

Page 16: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 16

Radial peak positions

Injector II radial intensity peak ranges

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 17: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 17

Radial peak positions

Run the same initial conditions with full space charge

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 18: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

KIP2 KIVU KIVO KIP3 KIR1L KIR1R KIG1O KIG1U KIG3O KIG3U KIR3L KIR3R KIP4L KIP4R

4000

3500

3000

2500

2000

1500

1000

500

0

Anna Kolano (PSI, IIAA) 18

Validation

Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot

Ensure correct Injector II parameters : turn number , energy, injection/extraction radius, radial turn

pattern, current on collimators and their positions, cyclotron and RF frequency

Benchmark with probe measurements: extracted current, RIE1 probe for radial intensity pattern,

RIZ1 beamsize

Central region collimators at

energies between 0.87 and 2.5 MeV

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

Cur

rent

(μA

) Measurements

1.8 mA Prod

2.2 mA Prod

ETH Zurich 12 September 2016

Page 19: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 19

Intensity limits of Injector II

Following up on Joho`s scaling law** Imax ∝ V3 also for beamsize, with slightly better fit at power

of 4, that is particularly good at higher intensities

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

ETH Zurich 12 September 2016

Page 20: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 20

Intensity limits of Injector II

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

Following up on Joho`s scaling law** Imax ∝ V3 also for beamsize, with slightly better fit at power

of 4, that is particularly good at higher intensities

ETH Zurich 12 September 2016

Page 21: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 21

Intensity limits of Injector II

3 mA limit

6σ of 20 mm

*R. Baartman. Space charge limit in separated turn cyclotrons. In Proc. 21st Int. Conf. on Cyclotrons and their Applications, Vancouver, Canada, 2013

**W. Joho, in Proc. 9th Int. Conf. on Cyclotrons and their Applications ,Caen, 1981, p. 337.

The big picture

Injector II

Approach

Models

Physical collimator

model

Validation

Intensity limits

Summary

Following up on Joho`s scaling law** Imax ∝ V3 also for beamsize, with slightly better fit at power

of 4, that is particularly good at higher intensities

Simplified models say approx 2.2 mA* (we already know 2.7 mA was extracted) strong

transverse-longitudinal coupling combined with space charge sets higher limits

Our models/fits predict new 3mA limit with existing configuration

After the upgrade even up to 5mA could be possible

ETH Zurich 12 September 2016

Page 22: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Summary

Anna Kolano (PSI, IIAA) 22

NGA

CDT

Currents higher than 2.7 mA should be achievable

Thanks to space charge and tuning of collimator positions

New RF cavities will set the limits even higher

I would like to express my sincere gratitude to

Prof Roger Barlow (IIAA), Dr Andreas Adelmann (PSI),

Dr Christian Baumgarten (PSI) and colleagues

from PSI and the University of Huddersfield

for their support, guidance and expertise during this research

ETH Zurich 12 September 2016

Page 23: Anna M. Kolano - CERN · 2017. 2. 16. · Anna Kolano (PSI, IIAA) 18 Validation Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot Ensure correct Injector

Anna Kolano (PSI, IIAA) 23

Joho‘s scaling law

- Is the motivation of improving the RF to get higher intensities

- at PSI the maximum attainable current indeed scales with the third power of the turn

number

- maximum energy gain per turn is of utmost importance in this type of high

intensity cyclotron

Ref: W. Joho, in Proc. 9th Int. Conf. on Cyclotrons and their

Applications (Caen, 1981), p. 337.

- with constant losses at the extraction electrode the maximum attainable current scales

as:

I max ∝ turn# -3

Loss ∝ turn# 3