19
A. Introduction VII-745 B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain Acyclic Carbon Polymers VII-746 1.1. Poly(dienes) VII-746 1.2. Poly(alkenes) VII-747 1.3. Poly(acrylic acid) and Derivatives VII-747 1.4. Poly(methacrylic acid) and Derivatives VII-748 1.5. Poly(acrylic acid) Derivatives with Mesogenic Side Groups VII-748 1.6. Poly(methacrylic acid) Derivatives with Mesogenic Side Groups VII-749 1.7. Vinyl Polymers VII-750 1.8. Poly(vinyl) Derivatives with Mesogenic Side Groups VII-751 1.9. Copolymers, Graft and Block Copolymers VII-751 Table 2. Main-Chain Carbocyclic Polymers VII-752 Table 3. Main-Chain Heteroatom Polymers VII-752 3.1. Poly(oxides) VII-752 3.2. Poly(esters) VII-752 3.3. Poly(amides) VII-755 3.4. Poly(peptides) and Nucleic Acids VII-755 3.5. Poly(phosphazenes) VII-755 3.6. Poly(siloxanes) VII-756 Table 4. Main-Chain Heterocyclic Polymers VII-756 4.1. Poly(imides) VII-756 4.2. Poly(pyrromellitimides) VII-756 4.3. Poly(quinoxalines) VII-757 4.4. Poly(benzimidazoles), Poly(benzoxazoles) VII-757 4.5. Poly(saccharides) VII-758 C. References VII-760 A. INTRODUCTION Segmental anisotropy (a i a2) of a chain molecule may be determined experimentally from measurements of flow birefringence in the solution of a polymer with a sufficiently high molecular weight, so that the conformation of its molecules would correspond to that of a Gaussian coil. For calculating (^ 1 OL 1 ) , Kuhn's equation was used (Ref. 1): (Al) where Ar is the tangential flow stress (shearing stress), An is the observed flow birefringence of the solution, g is the velocity gradient, c and 77 are the concentration and the viscosity of the solution, respectively, [77] and [n] are intrinsic values of viscosity and flow birefringence of the solution, and 770 and n are the viscosity and the refractive index of the solvent. The value A n / A r = [n]/[rj\ may be called the shear optical coefficient. Another method of determining segmental anisotropy (which is seldom used) is through the measurement of stress birefringence in swollen polymers (74). The stress optical coefficient e = An/Ap (where Ap is the normal stress in the sample) determined experimentally is equal to AnjlAr (2), where An/Ar is also related to (a 1 - a 2 ) * according to Eq. (Al). Data obtained by this method are marked in the table with the symbol sw. p. (swollen polymer). If the refractive indices of the polymer and the solvent are not equal, the experimental value of (OLi-Oi 1 ) includes not only the intrinsic segmental (a\ -OL 1 ), but also a part produced by the form effect (3,4). In this case the value a ] -OL 1 may be calculated using (a 1 -OL 1 ) and the theoretical equation for macro- and micro-form effects (3,4). Anisotropy of S e g m e n t s a n d M o n o m e r Units of P o l y m e r M o l e c u l e s V. N. Tsvetkov, L. N. Andreeva, N. V. Tsvetkov Institute of High Molecular Weight Compounds, Russian Academy of Sciences, St. Petersburg, Russian Federation

Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

A. Introduction VII-745B. Tables of Anisotropy of Segments and

Monomer Units of Polymer Molecules Vli-746Table 1. Main-Chain Acyclic Carbon

Polymers VII-7461.1. Poly(dienes) VII-7461.2. Poly(alkenes) VII-7471.3. Poly(acrylic acid) and

Derivatives VII-7471.4. Poly(methacrylic acid) and

Derivatives VII-7481.5. Poly(acrylic acid) Derivatives

with Mesogenic Side Groups VII-7481.6. Poly(methacrylic acid)

Derivatives with MesogenicSide Groups VII-749

1.7. Vinyl Polymers VII-7501.8. Poly(vinyl) Derivatives with

Mesogenic Side Groups VII-7511.9. Copolymers, Graft and Block

Copolymers VII-751Table 2. Main-Chain Carbocyclic Polymers VII-752Table 3. Main-Chain Heteroatom Polymers VII-752

3.1. Poly(oxides) VII-7523.2. Poly(esters) VII-7523.3. Poly(amides) VII-7553.4. Poly(peptides) and Nucleic

Acids VII-7553.5. Poly(phosphazenes) VII-7553.6. Poly(siloxanes) VII-756

Table 4. Main-Chain Heterocyclic Polymers VII-7564.1. Poly(imides) VII-7564.2. Poly(pyrromellitimides) VII-7564.3. Poly(quinoxalines) VII-7574.4. Poly(benzimidazoles),

Poly(benzoxazoles) VII-7574.5. Poly(saccharides) VII-758

C. References VII-760

A. INTRODUCTION

Segmental anisotropy (a i — a2) of a chain molecule maybe determined experimentally from measurements of flowbirefringence in the solution of a polymer with asufficiently high molecular weight, so that the conformationof its molecules would correspond to that of a Gaussiancoil.

For calculating (^1 — OL1) , Kuhn's equation was used(Ref. 1):

(Al)

where A r is the tangential flow stress (shearing stress), Anis the observed flow birefringence of the solution, g is thevelocity gradient, c and 77 are the concentration and theviscosity of the solution, respectively, [77] and [n] areintrinsic values of viscosity and flow birefringence of thesolution, and 770 and n are the viscosity and the refractiveindex of the solvent. The value A n / A r = [n]/[rj\ may becalled the shear optical coefficient.

Another method of determining segmental anisotropy(which is seldom used) is through the measurement ofstress birefringence in swollen polymers (74). The stressoptical coefficient e = An/Ap (where Ap is the normalstress in the sample) determined experimentally is equal toAnjlAr (2), where An/Ar is also related to (a 1 - a2) *according to Eq. (Al). Data obtained by this method aremarked in the table with the symbol sw. p. (swollenpolymer).

If the refractive indices of the polymer and the solventare not equal, the experimental value of (OLi-Oi1)includes not only the intrinsic segmental (a\ -OL1), butalso a part produced by the form effect (3,4). In this case thevalue a ] -OL1 may be calculated using (a 1 -OL1) and thetheoretical equation for macro- and micro-form effects(3,4).

A n i s o t r o p y o f S e g m e n t s a n d M o n o m e r

U n i t s o f P o l y m e r M o l e c u l e s

V . N . T s v e t k o v , L. N . A n d r e e v a , N . V . T s v e t k o vInstitute of High Molecular Weight Compounds, Russian Academy of Sciences,

St. Petersburg, Russian Federation

Page 2: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

For determining a\ — Ot2, it is preferable to use the"matching" solvent in which the increment of index of thepolymer, dn/dc, is equal to zero

The tables give the intrinsic segmental anisotropy,a i — a 2 , obtained directly from measurements in the"matching" solvent, as well as the (a\-a2)* valuesincluding the form effect. The corresponding figures aremarked with the symbol *.

In some of the reviewed works in which measurementswere carried out in "nonmatching" solvents, the segmentalanisotropy was calculated on the basis of the theory of theform effect (3,4). In these cases the figures are marked withthe symbol **.

Intrinsic segmental anisotropy of the polymer chain invarious solvents, even in the absence of the form effect,may differ owing to a "specific" effect of the solvent (see,e.g., poly(vinyl acetate)) (5-11). "Specific" effect mayprobably includes phenomena such as a change in the typeof rotation of the side groups (5,6,8,12), a change in thepolarizability of its bonds, and the short-range ordering ofthe solvent molecules (11).

Principal values which effect the intrinsic segmentalanisotropy of the chain are the anisotropy of the monomerunit and the equilibrium rigidity of the chain.

The Kuhn segment with the length A is the measure ofthe equilibrium rigidity of the chain. If the chain adopts theconformation of the Gaussian coil, then we haveA = (r2)/L, where L is the complete length of the extendedchain and (r2) is the mean square end-to-end distance.

Also, a\\—a± is the difference between the polariz-abilities of the monomer unit in the parallel andperpendicular directions of the chain. Values of a ̂ —a^presented in the table were calculated from

(A2)

where A is the length of the monomer unit in the chaindirection. For cellulose esters, a\\ —a\_ and correspond-ingly, a i — a 2 depend on the degrees of substitution (DS),which are also given in the table.

For heterocyclic polycondensation polymers, the term"monomer unit" means the repeat unit of the polymerchain.

Many rigid-chain polymers have been investigated in themolecular-weight range in which their molecules exhibit aconformation intermediate between the rodlike conforma-tion and the Gaussian coil. The best model for thesepolymers is the wormlike chain. Under these conditions theshear optical coefficient An/Ar varies with the molecularweight M of the polymer and is given by the equation (100)

(A3)

where B = (4n/45kT)(n2 4- I)1Jn, (71 - 72) is the meanvalue of the wormlike chain optical anisotropy, (h2) and(Zi4) are the mean square and fourth degree end-to-enddistance of the wormlike chain.

For the wormlike chain, the value of (71 - 7 2 ) as afunction of the reduced chain length x = 2L/A is given bythe equations

(A4)

According to Eqs. (A3) and (A4) the limit values of An/Arfor wormlike chains are as follows: at x —* 0, (An/Ar)0 =B(^i — 7I)JC —> 0 as for a thin rod, and at x —> 00,(An/Ar)^ x = B(a\ — Ct2) as for a kinetically flexibleGaussian coil.

The dependence of An/Ar on M for the wormlikechains given by the Eqs. (A3) and (A4) may beapproximated (100,101) by a linear relationship (A5)between the inverse values {An/Ar)" and M~[\

(A5)

where MQ is the molecular weight of the repeat unit of thechain. If the experimental dependence of {An/Ar) ~ on\/M is plotted, the slope of the straight line obtained makesit possible to calculate Aa = a^ —a±, and its interceptwith the ordinate gives ct\ -Qt2.

B. TABLES OF ANISOTROPY OF SEGMENTS AND MONOMER UNITS OF POLYMER MOLECULES

TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS

(a Il - a ;) (fljj - a )Polymer Solvent x l0 2 s cm 3 x l0 2 5 cm 3 Refs.

1.1. POLY(DIENES)

Poly (butadiene) \A-cis Benzene, sw. p. 61.3-63 30.8 52-54Carbon tetrachloride, sw. p. 53.5* 31.7* 53sw. p. 55.2* 54Cyclohexane, sw. p. 57.3 33.9 53Toluene, sw. p. 72 42.6 53/;-Xylene, sw. p. 86.9 51.4 53

Page 3: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 1. cont'd

(«-I - « i ) («|| ~«±)Polymer Solvent x 1025 cm3 x 102S cm3 Refs.

Poly(butadiene) \A-trans Benzene 71 37.4 52sw. p. 70.4 53Carbon tetrachloride, sw. p. 58.1* 55sw. p. 61.1* 36.3* 53Cyclohexane, sw. p. 57.3 33.1* 53Toluene, sw. p. 81.6 48.6 53/>Xylene, sw. p. 101 60.2 53

Poly(chloroprene) a-Bromonaphthalene 110* 11Carbon tetrachloride 33 11Chlorobenzene 64 11Dichloroethane 39 11cx-Methylnaphthalene 99 * 11Tetrachloroethylene 46 11Toluene 67 11p-Xylene 88 11

Poly(isoprene) cis Benzene 48 30.5 52Squalene, sw. p. 53.1 56

trans Benzene 49 31 52

1.2. POLY(ALKENES)

PoIy(I-butene) atactic Toluene 33.4 13isotactic Toluene 25.2 13

PoIy(I-decene) isotactic Toluene -82.5 13PoIy(I -dodecene) Toluene - 120 13Polyethylene) Tetralin, xylene 60 14

Decalin 30 14PoIy(I-heptene) isotactic Toluene -24.5 13PoIy(I-hexadecene) isotactic Toluene -205 t o - 2 1 3 13Poly(l-hexene) atactic Toluene 12.1 13

isotactic Toluene -6 .5 13Poly(isobutene) Benzene, chlorobenzene, 45-59 11,14,15

tetrachloroethylene, m-xyleneCarbon tetrachloride 35 11Decalin 30 14/7-Xylene 69 11

Poly( 1-octadecene) isotactic Toluene -257 13PoIy(I-octene) isotactic Toluene - 3 9 13PoIy(I-pentene) isotactic Toluene 8.0 13

9.3 13Poly(diphenylpropylene) Bromoform 80 16Polypropylene) atactic Benzene, xylene 45 14

Carbon tetrachloride 30 3.5 17Decalin 30 14Toluene 55 13

isotactic Carbon tetrachloride 30 3.5 17Poly(l-tetradecene) isotactic Toluene -176 13

-171 13

1.3. POLY(ACRYLIC ACID) AND DERIVATIVES

Poly(acrylic acid) Dioxane ~ - 0 . 5 * * ^ - 0 . 1 * * 18- , sodium salt 0.0012MNacl, pH 7 20**

Water, pH 6.1 - 4 * * t o - f l O * * 19Poly(H-butyl acrylate) Benzene - Ii - 1-5 20

Decalin -17.8 -1 .9 21Toluene -10.1 -1 .1 21

-6 .5 -0 .9 20

Poly(cetyl acrylate) Decalin -141 -6 .5 22Toluene -164 -7 .5 21

Poly(cholesteryl acrylate) Benzene - 360 - 16 23

References page VII/760

Page 4: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 1. cont'd

(aH - « ± ) (a\\ ~ « i )Polymer Solvent x 102S cm 3 x 102S cm 3 Refs.

Poly(decyl acrylate) Decalin - 7 4 - 3 . 7 21Toluene - 9 5 - 4 . 7 21

Poly (ethyl acrylate) Benzene, sw. p. 3.0 0.36 24Bromobenzene, sw. p. 10** 1.2** 24Bromoform, sw. p. - 3 7 * * 4.5** 24Dibromoethane, sw. p. - 1 4 ** ~ 1.7** 24Dimethylformamide, sw. p. - 1 1 * * - 1 . 7 * * 24

Poly(methyl acrylate) Benzene 17 2.5 20Toluene 16 1.9 21

26 3.6 20Poly(octadecyl acrylate) Decalin - 190 - 6.6 21

Toluene - 2 3 2 - 8 . 0 21Poly(octyl acrylate) Decalin - 57.4 - 4.3 21

Toluene - 4 7 . 9 - 3 . 6 21

1.4. P O L Y ( M E T H A C R Y L I C ACID) AND DERIVATIVES

Poly(«-butyl methacrylate) atactic Benzene - 1 4 —2.1 25isotactic Benzene - 2 . 0 - 0 . 3 26

Poly(terf-butyl methacrylate) atactic Benzene 2.1 0.3 20isotactic Benzene 19.3 3.0 20

Poly(p-te/t-butylphenyl methacrylate) Bromobenzene - 90 - 7.5 22,28Poly(p-carbethoxy-Af-phenylmethacrylamide) o-Toluidine - 2 3 0 - 2 3 40Poly(p-carboxyphenyl methacrylate) Dioxane 180 * 8.0* 35

0.1 M NaCl 3 7 0 * 35Poly(cetyl methacrylate) Benzene - 160 - 8.9 29Poly(p-chloro-/V-phenylmethacrylamide) 0-Toluidine — 160 — 20 40Poly(glycol methacrylate) Dimethylformamide 1.0 0.18 30

Ethyl alcohol - 6.0 ** - 1 . 1 * * 30Water - 6 . 0 * * - 1 . 1 * * 30

Poly(hexyl methacrylate) Benzene - 4 0 - 4 . 6 31Carbon tetrachloride - 9.7 - 1 . 1 31

Poly(methacrylic acid) Methanol 50 * 320.002 M HCl 150* 32

-, sodium salt 0.012M NaCl, pH 7 150 * 330.0012 M NaCl, pH 7 400 33Water 56 *-300 * 34

Poly(p-methylcarboxy-phenyl methacrylate) Dibromoethane — 77 - 7 35Poly(methyl methacrylate) atactic Benzene 2.0 0.3 38

isotactic Benzene 25 3.5 38Poly(P-naphthyl methacrylate) Tetrabromoethane - 6 0 - 8 . 5 4Poly(octyl methacrylate) Benzene - 4 7 - 5 . 9 31

Carbon tetrachloride - 1 2 . 5 - 1.6 31Poly(Af-phenylmethacrylamide) o-Toluidine - 103 - 13 40Poly(phenyl methacrylate) Bromobenzene - 1 0 . 5 - 1 . 5 4

1.5. POLY(ACRYLIC ACID) DERIVATIVES WITH MESOGENIC SIDE GROUPS

Tetrachloroethane - 520 * 100

Tetrachloroethane - 5 2 0 * 100

Page 5: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 1. cont'd

C« H — « JL) (flu-ajPolymer Solvent x 102S cm3 x 102S cm3 Refs.

Tetrachloroethane -630* 100

Tetrachloroethane - 810 * 100

Tetrachloroethane -800* 100

Tetrachloroethane -450* - 1 9 * 100,102

Tetrachloroethane -510* - 2 1 100,102

Benzene - 300 * - 15 * 100,103

1.6. POLY(METHACRYLIC ACID) DERIVATIVES WITH MESOGENIC SIDE GROUPS

Carbon tetrachloride - 445 * - 18 * 100,105

Dimethylformamide - 240 * 100,106

Tetrachloroethane -500* 100

Dimethylformamide/

toluene (1/1) -320* 36,100

Benzene -370* 100,107

Dioxane - 1200* 100,106

Carbon tetrachloride - 600 * - 40 * 100,108

Carbon tetrachloride - 2700 * - 110 * 100,109

Carbon tetrachloride - 2350 * 100

References page VII/760

Page 6: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 1. cont'd

(«U ~ « i ) («i| ~ a L)Polymer Solvent x l 0 2 5 c m 3 1025cm3 Refs.

Benzene - 1600* 36Bromoform -1000* - 4 0 * 36Chloroform - 1400* 36Carbon tetrachloride - 2700* - 1 K)* 37,100Tetrahydrofuran - 8 9 0 * 36Benzene/heptene (52/48), (66/34) -4200* 36

Carbon tetrachloride -1050* - 4 4 * 100,93Carbon tetrachloride - 680 * - 28 * 100,93

Benzene -3000* - 1 5 0 * 100,111

Chloroform - 4900 * - 100 * 100,111

Carbon tetrachloride - 1 1 7 * 100,109

Dioxane - 9 0 * 100,109

Tetrachloromethane - 180* 153- 2 5 0 * 153

1.7. VINYL POLYMERS

Poly(acrylonitrile) Dimethylformamide - 23 - 1 . 8 4PoIyO?-chlorostyrene) Bromoform - 2 3 0 - 3 5 41Poly(2,5-dichlorostyrene) Bromoform - 2 6 5 - 3 0 41Poly(3,4-dichlorostyrene) Tetrabromoethane - 3 0 0 - 2 5 15Poly(a-methylstyrene) Tetrabromoethane - 1 3 3 - 1 7 128Poly(/>methylstyrene) atactic Bromoform — ) 47 — 20 42

isotactic Bromoform - 140 - 19 42Poly(2,5-dimethylstyrene) Bromoform - 1 8 0 - 2 5 41Poly(2-methyl-5-vinyl-/V-butylpyridinium bromide) 0.01 M NaCl - 900 * 43

0.1 M NaCl - 2 7 0 * 43Poly(2-methyl-5-vinyl-pyridine) Bromoform - 260 - 29 44Poly(2-methyl-5-vinyl-pyridinium chloride) 0.1 M HCl - 300 * 45Poly(styrene) atactic Bromoform - 145 - 18 46,41

isotactic Bromoform - 224 — 23 46Poly(vinyl acetate) Acetone - 2 0 * * - 5 . 3 * * 7

sw. p. _ 3 7 * * - 5 . 3 * * 10Benzene 4.0-5.9 0.5 to 0.8 6,8,9,11sw. p. 5.1** 0.75** 10Bromobenzene. sw. p. 9.4** 1.3** 10Bromoform - 20 ** 7sw. p. - 1 8 . 7 * * - 2 . 7 * * 10Carbon tetrachloride - 16 - 2.0 9,11

- 2 6 6sw. p. - 2 5 . 2 - 3 . 6 10Chlorobenzene 14** 1.75** 11Chloroform - 3 4 . 9 * * - 2 . 6 * * 6

- 2 4 - 3 . 0 9,11sw. p. - 17.9 10Cyclohexanone - 2 3 - 2 . 9 9,11Dichloroethane - 3 6 - 4 . 5 11

- 39 - 4.9 11

Copolymer with cetylmethacrylatemol% 70/30

50/50

Page 7: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 1. cont'd

( « 0 - a x ) (a\\~aL)Polymer Solvent x l0 2 S cm 3

f x l 0 2 5 c m 3 Refs.

Tetrabromoethane - 2 5 * * - 3 . 1 * * 11- 3 3 * * 7

sw. p. -46.4** -6.6** 10Toluene 10 1.25 9,11

13.5 2.0 819 6

sw. p. 9.4** 1.3** 10o-Xylene 2.0 0.25 9,11sw. p. 9.8** 1.4** 10

Poly(vinyl butyral) Chloroform 81 11,47Toluene/phenol (79/21) 173 11,47

Poly(vinyl butyrate) Benzene - 8.0 11,47Carbon tetrachloride - 36 11,47Chloroform - 4 8 11,47

Poly(vinyl chloride) Tetrahydrofuran 40 48Poly(vinyl cinnamate) Bromoform - 420 - 35 49Poly(p-vinylnaphthalene) Tetrabromoethane — 430 — 30 4

Bromoform - 440 - 20 to - 30 39Poly (vinyl propionate) Benzene —4.4 11,47

Carbon tetrachloride —31 11,47Chloroform - 4 0 11,47Toluene 1.3 11,47

Poly(4-vinylpyridine) Bromoform -240 - 2 2 50Poly(4-vinylpyridiniurn chloride) 0.1 M HCl - 260 * 50

0.05 M HCl - 4 4 0 * 50Poly(vinylpyrrolidone) Benzyl alcohol — 75 - 10 4Poly(vinyl stearate) Carbon tetrachloride —130 —4.7 51

1.8. POLY(VINYL) DERIVATIVES WITH MESOGENIC SIDE GROUPS

Poly[4-(4-nonyloxy-benzamido)styrene] Benzene -2500* -100* 100,104

1.9. COPOLYMERS, GRAFT AND BLOCK COPOLYMERS

Poly(acryl amide-comethacrylic acid ether)

R = -C2H5;X- = - C rnmol%= 0 0.001 M NaCl 2.5* 157

6 1530 35 *69 90 *80 80 *

100 Water 40 *Poly(p-(4-cetoxybenzoxy)-phenyl

methacrylate-co-cetylmethacrylate) Carbon tetrachloride 93mol% 81/19 -2000*

60/40 -920*59/41 540*22/78 -400*15/85 -277*8/92 -180*4/96 -16*

References page VII/760

Page 8: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 1. cont'd

(a!I - « ± ) («-:| ~~«±)Polymer Solvent x 102S cm 3 x 1025 cm3 Refs.

Poly(methyl methacrylate-a>/?-r<?rf-butylphenylmethacrylate) mol% 91/9 Chlorobenzene 1.5 94

80/29 - 7 . 450/50 - 30.425/75 - 44

Poly(phenylbutyl isocyanate-co-chloral) mol% 50/50 Carbon tetrachloride 12 * 60Poly(styrene-co-chlorostyrene) mol% 89.7/10.3 Bromoform - 1 6 5 95

83.2/16.8 - 17268.7/31.3 - 1 9 8

55/45 - 20239.5/60.5 - 2 2 6

Poly(styrene-co-A/-methylcitraconimide) mol% 54/46 Bromoform — 26 6348/52 - 34

Poly (styrene-co-methyl methacrylate) mol% 70/30 Bromobenzene ~ 88 9650/50 - 6830/70 Chlorobenzene - 34

Poly(styrene-/?/oc&-propylene), atactic mol% 64/36 Chlorobenzene - 8 97Poly(n-butyl methacrylate-gra/ir-styrene) mol% 8/92 Bromoform 1190 98Poly(ter?-butyl methacrylate-gra/f-styrene) mol% 8/92 Bromoform 540 98Poly(methyl methacrylate-graft-styrene) mol% 10/90 Bromoform 700-7000 98,99

87/13 30 98(70-90)/(30-10) 100-1100 16

Poly(propylene-gra/f-atactic styrene) mol% 30/70 Chlorobenzene 22 93Poly(vinyl chloride-gra/f-styrene) wt.% 5.2/94.8 Benzene 330 48

5.6/94.4 18012.1/87.9 15530.7/69.3 110

TABLE 2. MAINCHAIN CARBOCYCLIC POLYMERS

(*||-«±) («|| -«±)Polymer Solvent x l0 2 5 cm 3 x l0 2 5 cm 3 Refs.

Poly(acenaphthylene) helix 4! Bromoform - 300 ** - 13.6** 39trans Bromoform - 300 ** - 20 ** 39

PoIy(1,2,3-trimethyl-2,3-dihydro-1,6-indendiyl) Bromoform 78 92Poly( 1,2,3-trimethyl-2,3-dihydro-1,6-

indendiyl-l,4-phenylene-ethylene) Bromoform 142 92

TABLE 3. MAIN-CHAIN HETEROATOM POLYMERS

((XH-(X1) (aH - f l j . )Polymer Solvent x l0 2 5 cm 3 x l0 2 5 cm 3 Refs.

3.1. POLY(OXIDES)

Poly(oxypropylene) Cyclohexanone 18 6 57

3.2. POLY(ESTERS)

Poly(oxycarbonyloxy-1,4-phenylene-cyclohexylidene-1,4-phenylene)

Bromoform -114 - 7 6 58

Dichloroethane/phenol (1/1) 70 59Dichloroacetic acid 48.7* 33.7* 89

Poly(oxyethyleneoxyterephthaloyl)

Page 9: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 3. cont'd

(«||-a±) (fl||-«i)Polymer Solvent x 102S cm3 x 102S cm3 Refs.

Dichloroacetic acid 280 * 89Dichloroacetic acid 250 * 89Dichloroacetic acid 200 * 132 * -165 * 89

Dichloroacetic acid 1800 * 158Tetrachloroethane 1800 * 158

Dichloroacetic acid 3000 * 159

Dichloroacetic acid 1600 * 160Dioxane 1600 * 160

Dichloroacetic acid 600 * 161

Dichloroacetic acid 18.2* 162

Dioxane 375* 163

Dioxane 185* 163

Tetrachloroethane 153* 315 * 164

Tetrachloroethane 150* 136 * 165

Tetrachloroethane 200* 365 166

References page VII/760

Poly(oxy-tt-methyleneoxycarbonyl-1,4-phenylene-oxyterephthaloyloxy-1,4-phenylene-carbonyl)

Poly[ 1,4-phenylene (phenylterephthalate)]

n = 4n = 5n=\0

Poly[(phenyl( 1,4-phenylene)-terephthalate]

Page 10: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 3. cont'd

(«l|-«±) («|| - « i )Polymer Solvent x 1025 cm3 x 1025 cm3 Refs.

260* 513* 167

186* 168270* 168254* 168256* 168

268* 169594*221*396*249*187*179*188*196*

380* 170

228* 170

57.5* 170

259* 144* 171

139* 146* 171

353* 196* 171

2120* 172Dichloroacetic acid

Tetrachloroethane

Tetrachloroethane

Tetrachloroethane

Tetrachloroethane

Tetrachloroethane

Tetrachloroethane

Dichloroacetic acidTrifluoroacetic acidTetrachloroethaneTrifluoroacetic acidTetrachloroethaneTetrachloroethaneTetrachloroethaneTetrachloroethaneTetrachloroethane

TetrachloroethaneChloroformDioxaneTetrachloroethane

Dioxane

Page 11: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 3. cont'cl

Polymer Solvent x 1025 cm3 x 1025 cm3 Refs.

N T DN : T: D (moWc) = 0 : 1 : 1 Tetrachloroethane 229 * 91

0.1:1:0.9 250*0.2:1:0.8 335*0.3:1:0.7 410*0.4:1:0.6 510*0.5:1:0.5 630*0.6:1:0.4 740*0.7:1:0.3 UOO* 280* 91

3.3. POLY(AMIDES)

Poly(/i-butyliminocarbonyl) (Poly(butylisocyanate)) Carbon tetrachloride 4100 11 60,100Carbon tetrachloride/

pentafluorophenol (0.9/0.1) 800 1) 100Poly(chlorohexyliminocarbonyl) Carbon tetrachloride 3000 60Poly(hydrazocarbonyl-1,4-phenylene iminoterephthaloyl)

Dimethylsulfoxide 3630* 85* 100,123Poly(iminocarbonyl-cyclohexylene) Sulfuric acid 390* 100,115Poly(iminocarbonyl-1.4-phenylene) Sulfuric acid 10500* 103* 100.117,118Poly[imino-(4,6-dicarboxyisophthaloyl Dimethylacetamide 75* 100

-imino) biphenyl-4,4'-diyl]Polylimino (l-oxohexamethylene)J Sulfuric acid 63* 100.115

(PoIy(E-caprolactam))Poly[imino-1.4-phenyleneimino-(4,6- Dimethylacetamide 88* 100

dicarboxyisophthaloylimino)-1,4-phenyleneimino-terephthaloyl]

Poly(imino-1.3-phenyleneiminoisophthaloyl.) Sulfuric acid 360* 100* 100,121,122Poly (imino- 1,4-phenyleneiminoterephthaloyl) Sulfuric acid 5250* 206* 100,119,120Poly( imino-1,4-phenyleneimino-terephthaloyl), Sulfuric acid 4380* 110,119

copolymer with poly(iminocarbonyl-l,4-phenylene)(ratio 1/9)

Poly(iminio-terephthaloylimino-l,4- Sulfuric acid 130* 100.127phenylenediphenylmethyl-1,4-phenylene)

Poly(/Molyliminocarbonyl) Bromoform - 3 9 - 5 60,100

3.4. POLY(PEPTIDES) AND NUCLEIC ACIDS

Poly("-benzyl-L-glutamate) helix Dichloroethane 25000* 25* 86,87,100coil Dichloroacetic acid 230* 25* 88,100

Poly(S-carbobenzoxyniethyl-i.-cystein) Dichloroacetic acid 22* 86Poly(s,/V-carbobenzoxy-L-lysine) helix Dimethylformamide 3600* 12* 86

coil Dichloroacetic acid <-f 86Poly(L-glutamic acid) Phosphate buffer

helix 0.1 M, pH 4.2 1900* 86coil 0.1 M, pH 12.5 136* 86

DNA aqueous 0.2 M NaCl - 30000 * - 67 * 100< 2MNaCl -33000* 154,157>3MNaCl -41000* 154,157

3.5. POLY(PHOSPHAZENES)

PoIy(Muoroalkoxy phosphazene)-PR2 - N-R^-OCH2-CF., Ethyl acetate 160 155

-OCHn-(CFOv-H Ethyl acetate 145 156-OCHr-(CF2)^-H Ethyl acetate 106 156

References page VII/760

Page 12: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 3. cont'd

(«l|-ai) (fly-fli)Polymer Solvent x 1025 cm3 x 1025 cm3 Refs.

3.6. POLY(SILOXANES)

Poly(oxydimethylsilylene) Petroleum ether 4.7 0.96 77Poly(oxyethylphenylsilylene) 14:86 Benzene - 230 * - 29.5 173Poly(oxymethylphenylsilylene) 90:10 Petroleum ether - 2.3 - 0.47 77

87.5:12.5 Decalin - 1 0 - 2 . 0 7875:25 Benzene -13 .6 -2 .7 79

Decalin - 2 1 - 4 . 0 7862.5:37.5 Decalin - 36 ** - 7.2 ** 7850:50 atactic Benzene - 25.5 - 5.1 79

Decalin, tetralin - 52 ** - 10 ** 78isotactic Decalin, tetralin - 8 2 * * - 1 6 * * 78

Poly(oxyphenylsilylene) Benzene - 8 5 - 1 7 79

LADDER POLYMERS

Poly(isobutylphenyl-silsesquioxane) (1 : 1) Benzene - 8 4 0 - 2 2 80,100Poly(isohexylphenyl-silsesquioxane) (1 : 1) Benzene - 9 8 0 -19.5 80,100Poly(m-chlorophenyl-silsesquioxane) Carbon tetrachloride -4700 * - 40 * 100,80Poly(dichloropheny 1-silsesquioxane) Bromoform - 4450 - 50 100,112

Tetrabromoethane -4700 - 5 3 100,112Poly(3-methyl-l-butene-silsesquioxane) Benzene - 5 7 0 * - 6 . 5 * 81,100

Butylacetate - 4 0 0 * - 4 . 2 * 81,82,100Poly(phenyl-silsesquioxane) Bromoform - 1060 to - 1800 - 23 to - 31 83-85,

100

TABLE 4. MAIN-CHAJN HETEROCYCLIC POLYMERS

Ca1J-ax) « J | - « J LPolymer Solvent x 102S cm3 x 1025 cm3 Refs.

4.1. POLY(IMIDES)

Poly(/V-2,4-dimethylphenylmaleimide) Bromoform - 2 0 0 -12.5 61,100Poly(iV-isobutylmaleimide) Chlorobenzene 160 10 62,100Poly(Af-methylcitraconimide) Bromoform 150 16.7 63Poly(Af,A^piperazindiyl-2,5-diketo-l,3-pyrrolidindiyl- Benzyl alcohol 56 31 64

hexamethylene-2,5-diketo-l,3-pyrrolidindiyl) Bromoform/cyclohexanol (60:40) 30 64Poly(/?-tolylmaleimide) Bromoform - 160 - 10 65

H2SO4, 101% 500 * 50 * 110

4.2. POLY(PYRROMELLITIMIDES)

Poly[l,3,5,7-tetraoxo-2,3,6,7-tetrahydro-lH,5H-benzo-[l,2-c,4,5-c'dipyrrol-2,6-diyl)-1,4-phenylene] H2SO4 2500 * -4400 * 100

Poly[(l,3,5,7-tetraoxo-2,3,6,7-tetrahydro-lH,5H-benzo[l,2-c,4,5-c' dipyrrol-2,6-diyl)-1,4-phenyleneimino-terephthaloyl-imino-1,4-phenylene]

H2SO4 3400 * 100

Page 13: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 4. cont'd

(«U-«i) («|| -fli)

Polymer Solvent xlD2 5cm3 x l0 2 5 cm 3 Refs.

Tetrachloroethane, chloroform 1750 * 100,116

Tetrachloroethane, chloroform 1060 * 100,116

Tetrachloroethane, chloroform 650 * 100,116

5080* 360* 100,124

4900* 100

3625* 150

1250* 150

1250* 150

750* 150

5940* 360* 100,125

5940* 320* 100,126

2340* 300* 100,126

4100* 152

1750* 80* 100,114

References page VII/760

4.3. POLY(QUINOXALINES)

Rl = nought, R2 -

Rl = nought, R2 =

Rl = - O - , R2 =

4.4. POLY(BENZIMIDAZOLES), POLY(BENZOXAZOLES)

Poly(benzimidazole-2,6-diyl-iminoterephthaloylimino-l,4-phenylene)

Poly(benzoxazole-2,6-diyl-iminoterephthaloyliminio-l,4-phenylene)

Poly(benzoxazole-2,6-diyl-iminoterephthaloylimino-1,4-(3-hydroxyphenylene))

Poly(benzoxazole-2,4-diyl-iminoterephtaloylimino-1,3-(4-hydroxyphenylene))

Poly(benzoxazole-2,6-diyl-iminocarboxy-1,4-phenylene-iminoterephthaloy limino-1,4-phenylene-carboxyimino-1,4-phenylene)

Poly(oxadiazole-2,5-diyl~ 1,4-phenylene)

Page 14: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 4. cont'd

(a j - a _) (a | — r/ L)Polymer Solvent x K)2S cm3 x 102? cm3 Refs.

4.5. POLY(SACCHARIDES)

CELLULOSE ESTERSBenzyl cellulose, DS = 2.5 Dioxane 294* 5 * 67,100Carboxymethyl cellulose, DS = 0.9 Cadoxene 310 * 147

2MNaOH 450* 1470.5MNaOH 560* 147

Cellulose acetate, DS-2 .4 Aniline 260* 5.3* 136Dioxane 39* 0.78* 136Pyridine 0 0 100Trichloromethane - 8.4* - 0.21 * 136Tetrachloroethane - 57 * - 1.6 * 136

Cellulose acetate benzoate, DS= 55/245 Dioxane - 1330 * - 26.6* 137Cellulose acetate benzhydroxamate, DS = 15/285 Dioxane - 870 * - - 17.4 * 137

60/240 Dioxane - 5 7 5 * -11.5* 13790/170 Dioxane - 3 5 0 * - 7 * 137

Cellulose acetate cinnamate, DS = 60/200 Dioxane -1900* - 3 8 * 137,138160/140 Dioxane -1300* - 2 6 * 137,138250/50 Dioxane - 4 5 0 * - 9 * 137,138

Cellulose acetate diphenylacetate, DS = 10/290 Dioxane 1280* 25.6* 137,13840/150 Dioxane 1200* 24.0* 137,13820/130 Dioxane 1345* 26.9* 137,138

130/115 Dioxane 1020* 20.4* 137,138270/30 Dioxane 405* 8.1* 137,138

Cellulose acetate myristate, DS= 10/290 Benzene - 110* - 2.2* 137oDichlorobenzene - 1 6 4 * - 3 . 1 * 136Dichloromethane - 1 9 0 * - 3 . 8 * 136Trichloromethane - 2 1 0 * - 4 . 2 * 136Tetrachloromethane - 2 2 3 * - 4 . 5 * 136Pentachloroethane -194* - 4 . 5 * 136/;«ra-Chlorotoluene - 1 7 1 * - 3.6 * 136a-Bromonapthaline 142* 3.6* 136

DS= 25/275 Tetrachloromethane - 2 2 8 * - 4 . 6 * 13650/250 Tetrachloromethane - 2 1 7 * - 4 . 3 * 136

100/200 Tetrachloromethane - 2 4 0 * - 4 . 8 * 136150/150 Dioxane - 7 2 * - 1 . 4 * 136

Tetrachloroethane - 1 5 0 * - 4 . 3 * 136200/100 Tetrachloroethane - 1 0 0 * - 3 . 0 * 136245/55 Tetrachloroethane - 6 6 * - 1 . 8 * 136290/10 Tetrachloroethane - 2 5 * - 0 . 6 * 136

Cellulose acetate monophenylacetate, DS = 40/260 Dioxane 365* 7.3* 137100/150 Dioxane 250* 5.0* 137200/70 Dioxane 90* 1.8* 137246/32 Dioxane 50* 1.0* 137285/5 Dioxane 65* 1.3* 137

Cellulose acetate a-naphthylacetate, DS = 250/50 Dioxane 70 * 1.4* 137275/25 Dioxane 70* 1.4* 137290/10 Dioxane 55* 1.1* 137

Cellulose acetate nitrobenzoate, DS = 275/25 Dioxane - 115 * - 2.3 * 137Cellulose acetate triphenylmethylate, DS = 110/145 Dioxane 1100* 22 * 137Cellulose benzoate, DS = 3.0 Dimethylformamide - 6 1 7 * -10 .4* 66,100

Chloroform - 7 6 3 * -16 .4* 66,100Bromobenzene - 9 1 4 * -19 .6* 66.100Dimethylphthalate - 8 3 0 * -17 .8* 66,100Dioxane - 447 * 67

2.16 Dioxane -1350* - 2 7 * 137Cellulose butyrate, DS = 3.0 Tetrachloroethane - 34 - 2 6 72,100

Bromoform 35* 2.7* 72,100Dioxane 61* 1.0* 67Methyl ethyl ketone 144* 5.6* 72,100

2.75 Dioxane 90* 1.8* 136Trichloromethane < 111 * < |0.03| 136Tetrachloroethane - 4 7 . 3 * - 1 . 6 * 136

Page 15: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

TABLE 4. cont'd

(«H~«i) («||-«±)Polymer Solvent x 1025 cm3 x 102S cm3 Refs.

Cellulose dimethylphosphonocarbamate 0.Oi M NaCl 710 * 16 * 68DS = 2.0 0.2 M NaCl 640 * 16 * 68

Cellulose diphenylacetate Acetophenone 1360 22 69Dioxane 1030 * 22 * 67

DS = 2.9 Dioxane 1760* 35.2* 137,138Cellulose diphenylphosphonocarbamate DS = 2.2 Dioxane 626 *-640 10*-13.7* 100,129Cellulose hydroxypropylacetate, DS = 3.3, 2.3 Tetrachloroethane 400 12 144,145Cellulose hydroxypropylbutyrate, DS = 3.3, 2.2 Tetrachloroethane 270 8.3 145,146

DS = 3.3, 0.6 Tetrachloroethane 490 12 145,146Cellulose hydroxypropylcaprinate, DS = 3.3, 2.0 Tetrachloroethane 230 145Cellulose hydroxypropylstearate, DS = 3.3, 0.9 Tetrachloroethane 230 145Cellulose monophenylacetate Bromobenzene 600 13 100,129

DS = 2.8 Bromoform 478 10.3 100,129Cellulose nitrate, DS = 2.8 Cyclohexanone - 8 2 0 - 1 4 70,100

2.7 Cyclohexanone - 5 4 0 -9 .0 100,130Amyl acetate - 320 * - 5.4* 100,130Acetone - 1 1 5 * - 1 . 9 * 100,130Butyl acetate - 300 * - 5.0 * 100,130Ethyl acetate - 140 * - 2.3* 100,130

2.3 Cyclohexanone - 3 3 0 -8 .4 100,1311.9 Cyclohexanone - 6 2 -2 .0 100,132

Dioxane 149 4.8 100,132Cellulose phenylcarbamate Acetophenone -1100 ~ 18 69

DS = 3.0 Benzophenone 55° - 7 4 2 7180° -572 71

Dioxane 21° - 1830 * -45 .8* 100,13465° - 8 7 2 * 100,134

Ethyl acetate - 5 6 0 * -15 .2* 100,1342.2 Dioxane - 1 8 8 0 * -47 .0* 100,1332.3 Dioxane - 1700 * - 34 * 140

Ethyl acetate/dioxane (0.017/1) - 1440 * - 45 * 140(0.034/1) - 1 6 6 4 * - 5 2 * 140(0.063/1) -1440 * - 4 5 * 140(0.091/1) - 1 3 6 0 * - 4 0 * 140(0.224/1) - 1 2 6 0 * - 3 5 * 140(0.469/1) - 9 6 2 * - 2 6 * 140

2.7 Dioxane - 2 0 3 0 * - 4 0 * 141Ethyl acetate -1216 * - 32 * 141Cyclohexanone - 1254 * - 38 * 141Dimethylacetamide - 1280 * - 4 0 * 141

Cellulose stearate DS = 2.0 Tetrachloroethane - 500 72Cyanoethyl cellulose DS = 2.6 Cyclohexanone 900 17.8 100,135

2.66 Cyclohexanone 970 * 1392.37 Cyclohexanone 715 * 139

Cyanoethylacetyl cellulose Cyclohexanone, sw. p. -1-15 0.4 73,74Acetone 390 * 17.0* 73,100Dimethylformamide 90 3.9 73,100

Cyanoethyl hydroxyethyi cellulose DS= 1.8 Cyclohexanone 900 148Cyanoethyl hydroxypropyl cellulose DS = 2.4 Cyclohexanone 660 148Cyanoethyltrityl cellulose Cyclohexanone, sw. p. 220 74Cyanoethyl nitrate cellulose DS = 248/26 Cyclohexanone 855 * 139,151

233/52 Cyclohexanone 890 * 139,151181/79 Cyclohexanone 470 * 139,151100/117 Cyclohexanone 165 * 139,15162/192 Cyclohexanone 35 * 139,15136/213 Cyclohexanone - 190 * 139,15134/226 Cyclohexanone - 1 1 5 * 139,15119/242 Cyclohexanone - 1 9 0 * 139,151

Ethyl cellulose Carbon tetrachloride 430 11 75DS = 2.5 Dioxane 512 4.6 100,129

Hydroxypropyl cellulose, DS = 2.5-3.8 Dimethylacetamide 450 * 9.9* 142,143Tetrachloroethane 505 11.3 142,143Water 12.4* 143

References page VII/760

Page 16: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

C. REFERENCES

1. W. Kuhn, H. Kuhn, HeIv. Chim. Acta, 20, 1394 (1943).2. A. Lodge, Trans. Faraday Soc, 42, 273 (1946).3. V. N. Tsvetkov, Chapter XIV in Bacon Ke (Ed.) "Newer

Methods of Polymer Characterization", Interscience, NewYork, 1964.

4. V. N. Tsvetkov, V. E. Eskin, S. Ya. Frenkel, "Structure ofMacromolecules in Solutions", National Lending Libraryfor Science and Technology, Boston Spa, Yorkshire, Eng-land, 1971.

5. V. N. Tsvetkov, J. Polym. SdL, 57, 727 (1962).6. E. V. Frisman, V. A. Andreichenko, Vysokomol. Soedin., 4,

1559 (1962).7. E. V. Frisman, A. B. Chzu, Vysokomol. Soedin., 4, 1564

(1962).8. V. N. Tsvetkov, N. N. Boitsova, M. G. Vitovskaja, Vyso-

komol. Soedin., 6, 267 (1964).9. E. V. Frisman, G. A. Dyuzev, A. K. Dadivanyan, Vysokomol.

Soedin., 6, 341 (1964).10. V. N. Tsvetkov, A. E. Grishchenko, L. E. De-Millo,

E. N. Rostovskii, Vysokomol. Soedin., 6, 384 (1964).11. E. V. Frisman, A. K. Dadivanyan, J. Polym. Sci. C, 16, 1001

(1967).12. V. N. Tsvetkov, Leningrad. Univ. Vestnik, Ser. Fiz. Khim,

N22, 39 (1961).13. W. Philippoff, E. G. M. Tornqist, J. Polym. Sci. C, N23, 881

(1968).14. T. I. Garmonova, Leningrad. Univ. Vestnik, Ser. Fiz. Khim,

N22, 72 (1961).15. V N . Tsvetkov, V. E. Bychkova, S. M. Savvon, I. K.

Nekrasov, Vysokomol. Soedin., 1, 1407 (1959).16. P. Gramain, J. Leray, H. Benoit, J. Polym. Sci. C, 16, 3983

(1968).17. V N. Tsvetkov, O. V. Kallistov, E. V. Korneeva, I. K.

Nekrasov, Vysokomol. Soedin., 5, 1538 (1963).18. V N. Tsvetkov, S. Ya. Ljubina, T. V Barskaya, Vysokomol.

Soedin., 6, 1806 (1964).19. W. Kuhn, H. Oswald, H. Kuhn, HeIv. Chim. Acta, 36, 1209

(1953).

20. V. N. Tsvetkov, N. N. Boitsova, M. G. Vitovskaja, Vyso-komol. Soedin., 6, 297 (1964).

21. V. N. Tsvetkov, L. N. Andreeva, E. V. Korneeva, P. N.Lavrenko, Dokl. Akad. Nauk SSSR, 205, 895 (1972).

22. V. N. Tsvetkov, L. N. Andreeva, E. V. Korneeva, P. N.Lavrenko, N. A. Plate, V. P. Shibaev, B. S. Petrukhin,Vysokomol. Soedin., 13A, 2226 (1971).

23. V. N. Tsvetkov, E. V Korneeva, I. N. Shtennikova, P. N.Lavrenko, G. F. Kolbina, D. Hardi, K. Nitrai, Vysokomol.Soedin., 14A, 427 (1972).

24. A. E. Grishchenko, E. P. Vorobjeva, Vysokomol. Soedin.,15A, 895 (1973).

25. V. N. Tsvetkov, S. Ya. Ljubina, Vysokomol. Soedin., 1, 577(1959).

26. V. N. Tsvetkov, M. G. Vitovskaja, S. Ya. Ljubina, Vysoko-mol. Soedin., 4, 577 (1962).

27. V. N. Tsvetkov, S. Ya. Magarik, Doki. Akad. Nauk SSSR,115,911 (1957).

28. V N. Tsvetkov, I. N. Shtennikova, Zh. Tekh. Fiz., 29, 885(1959).

29. V N. Tsvetkov, D. Hardi, I. N. Shtennikova, E. V Korneeva,G. F. Pirogova, K. Nitrai, Vysokomol. Soedin., HA, 349(1969).

30. A. E. Grishchenko, R. I. Esrielev, Vysokomoi. Soedin., 14A,521 (1972).

31. A. E. Grishchenko, M. G. Vitovskaja, V. N. Tsvetkov, L. N.Andreeva, Vysokomol. Soedin., 8A, 800 (1972).

32. V N. Tsvetkov, S. Ya. Ljubina, K. L. Bolevskii, Vysokomol.Soedin. Sb. Karbotsepnie Soedin., 4, 26 (1959).

33. V N. Tsvetkov, S. Ya. Ljubina, K. L. Bolevskii, Vysokomol.Soedin. Sb. Karbotsepnie Soedin., 4, 33 (1959).

34. W. Kuhn, O. Kuenzle, A. Katchalsky, HeIv. Chim. Acta, 31,1994 (1948).

35. E. N. Zakharova, P. N. Lavrenko, G. A. Fomin, I. I. Kon-stantinov, Vysokomol. Soedin., 13A, 1870 (1971).

36. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, G. F.Kolbina, I. I. Konstantinov, Ju. B. Amerik, B. A. Krentsel,Vysokomol. Soedin., HA, 2528 (1969).

TABLE 4. cont'd

Polymer Solvent x 102S cm3 x 1025 cm3 Refs.

Polymaltotriose Dimethylsulfoxide 33 to 39 7 149Water 109* 149

Sulfate cellulose, sodium salt Aqueous NaCl 0.2 M 634* 16 * 76, 100DS = 0.4 0.15M 645* 17* 76,100

0.10M 680* 16 * 76,1000.01 M 980* 16* 76,1000.005 M 1300* 16* 76,1000.001 M 1750* 16* 76,100

CHITINSChitozane Acetic acid 4- NaCl,

IS = 0.1 to 0.5 670* 174

Page 17: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

37. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, G. F.Kolbina, I. I. Konstantinov, Ju. B. Amerik, B. A. Krentsel,Vysokomol. Soedin., 15A, 2158 (1973).

38. V. N. Tsvetkov, N. N. Boitsova, Vysokomol. Soedin., 2,1176(1960).

39. V. N. Tsvetkov, M. G. Vitovskaja, R N. Lavrenko, E. N.Zakharova. Vysokomol. Soedin., 13A, 2532 (1971).

40. V. N. Tsvetkov, V. E. Bychkova Vysokomol. Soedin., 6, 600(1964).

41. E. V. Frisman, A. M. Maztsinivsky, N. A. Domnicheva,Vysokomol. Soedin., 2, 1148 (1960).

42. V. N. Tsvetkov, N. N. Boitsova, Vysokomol. Soedin., 5,L263 (1963).

43. V. N. Tsvetkov, S. Ya. Ljubina, V. E. Bychkova, I. A.Strelina, Vysokomol. Soedin., 8, 846 (1966).

44. I. N. Shtennikova, E. V. Korneeva, V. E. Bychkova, G. M.Pavlov, G. S. Sogomonyants, Vysokomol. Soedin., 14B, 118(1972).

45. S. Ya. Ljubina, I. A. Strelina, G. S. Sogomonyants, S. I.Dmitrieva, O. Z. Korotkina, G. V. Tarasova, V. S. Skazka, VM. Jamschchikov, Vysokomol. Soedin., 12A, 1560 (1970).

46. V. N. Tsvetkov, S. Ja. Magarik, Dokl. Akad. Nauk SSSR,127, 840 (1959).

47. E. V. Frisman, A. K. Dadivanyan, G. A. Dyuzhev, Dokl.Akad. Nauk SSSR, 153, 1062 (1963).

48. S. P. Micengendler, K. I. Sokolova, G. A. Andreeva, A. A.Korotkov, T. Kadirov, S. I. Klenin, S. Ja. Magarik, Vyso-komol. Soedin., 9A, 1133 (1967).

49. V. N. Tsvetkov, E. N. Zakharova, G. A. Fomin, P. N.Lavrenko, Vysokomol. Soedin., 14A, 1956 (1972).

50. S. Ya. Ljubina, I. A. Strelina, G. V. Tarasova, V. S. Skazka,V. M. Jamschchikov, Vysokomol. Soedin., 14A, 1371 (1972).

51. V S . Skazka, G. A. Fomin, G. V Tarasova, I. G. Kirillova, V.M. Jamschchikov, A. E. Grishchenko, I. A. Shefer, I. S.Alekseeva, Vysokomol. Soedin., 15A, 2561 (1973).

52. I. Ja. Poddubnyi, E. G. Erenburg, M. A. Eruomina, Vyso-komol. Soedin., 10A, 1381 (1968).

53. M. Fukuda, G. L. Wilkes, R. S. Stein, J. Polym. Sci. A-2,1417 (1971).

54. T. Ishikava, K. Nagai, J. Polym. Sci. A-2, 1123 (1969).

55. T. Ishikava, K. Nagai, Polym. J. (Japan), 1, 116 (1970).

56. L. R. G. Treloar, Trans. Faraday Soc, 43, 234 (1947).

57. V. N. Tsvetkov, T. I. Garmonova, R. P. Stankevitch, Vyso-komol. Soedin., 8, 980 (1966).

58. T. I. Garmonova, M. G. Vitovskaja, P. N. Lavrenko, V N.Tsvetkov, E. V. Korovina, Vysokomol. Soedin., 13, 884(1971).

59. S. M. Savvon, K. K. Turoverov, Vysokomol. Soedin., 6, 205(1964).

60. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, Ju. P.Getmanchuk, Eur. Polym. J., 1, 767 (1971).

61. V N . Tsvetkov, G. V. Tarasova, E. L. Vinogradov, N. N.Kuprijanova, V. M. Jamshchikov, V. S. Skazka, V. S. Ivanov,V. K. Smirnova, I. I. Migunova, Vysokomol. Soedin., 10A,620 (1968).

62. V. N. Tsvetkov, G. A. Fomin, P. N. Lavrenko, I. N. Shten-nikova, T. V. Sheremeteva, Vysokomol. Soedin., 10A, 903(1968).

63. M. G. Vitovskaja, V. N. Tsvetkov, L. I. Godunova, T. V.Sheremeteva, Vysokomol. Soedin., 9A, 1682 (1967).

64. T. I. Garmonova, M. G. Vitovskaja, S. V. Bushin, T. VSheremeteva, Vysokomol. Soedin., 16A, 265 (1974).

65. V N. Tsvetkov, N. N. Kuprijanova, G. V. Tarasova, P. N.Lavrenko, I. I. Migunova, Vysokomol. Soedin., 12A, 1974(1970).

66. V. N. Tsvetkov, I. N. Shtennikova, Vysokomol. Soedin., 6,1041 (1964).

67. V. N. Tsvetkov, E. I. Rjumtsev, I. N. Shtennikova, T. V.Peker, N. V. Pogodina, Dokl. Akad. Nauk SSSR, 207, 1173(1972).

68. E. N. Zakharova, L. I. Kutsenko, V N. Tsvetkov, V. S.Skazka, G. V. Tarasova, V. M. Jamschikov, Leningrad. Univ.Vestnik, Ser. Fiz. Khim., N16, 55 (1970).

69. G. I. Okhrimenko, Thesis, Inst. Macromolecular Com-pounds Ac. Sci. SSSR, Leningrad, 1969.

70. V. N. Tsvetkov, I. N. Shtennikova, N. A. Megeritskaya,L. S. Bolotnikova, Vysokomol. Soedin., 5, 74 (1963).

71. H. Janeschitz-Kriegl, W. Burhard, Adv. Polym. Sci., 6, 170(1969).

72. V N. Tsvetkov, S. Ya. Ljubina, I. A. Strelina, S. I. Klenin,V. I. Kurljankina, Vysokomol. Soedin., 15A, 691 (1973).

73. V. N. Tsvetkov, A. E. Grischchenko, P. A. Slavetskaja,Vysokomol. Soedin., 6, 856 (1964).

74. V. N. Tsvetkov, A. E. Grischchenko, J. Polym. Sci. C, 16,3195 (1968).

75. V. N. Tsvetkov, I. N. Shtennikova, Vysokomol. Soedin., 2,808 (1960).

76. V. N. Tsvetkov, E. N. Zakharova, M. M. Krunchak, Vyso-komol. Soedin., 10A, 685 (1960).

77. V. N. Tsvetkov, E. V. Frisman, N. N. Boitsova, Vysokomol.Soedin., 2, 1001 (1960).

78. V. N. Tsvetkov, K. A. Andrianov, E. L. Vinogradov, S. E.Yakushkina, Ts. V. Vardasanidze, Vysokomol. Soedin., 9B,893 (967).

79. V. N. Tsvetkov, K. A. Andrianov, E. L. Vinogradov, V. I.Pakhomov. S. E. Yakushkina, Vysokomol. Soedin., 9A, 3(1967).

80. V N. Tsvetkov, Makromol. Chem., 160, 1 (1972).

81. V N . Tsvetkov, K. A. Andrianov, M. G. Vitovskaja, N. N.Makarova, E. N. Zakharova, S. V. Bushin, P. N. Lavrenko,Vysokomol. Soedin., 14A, 369 (1972).

82. V. N. Tsvetkov, K. A. Andrianov, M. G. Vitovskaja,N. N. Makarova, S. V. Bushin, E. N. Zakharova,P. N. Lavrenko, A. A. Gorbunov, Vysokomol. Soedin.,15A, 872 (1973).

83. V. N. Tsvetkov, K. A. Andrianov, E. L. Vinogradov, I. N.Shtennikova, S. E. Yakushkina, V I. Pakhomov, J. Polym.Sci. C, 23, 385 (1968).

84. V. N. Tsvetkov, K. A. Andrianov, I. N. Shtennikova, G. I.Okhrimenko, L. N. Andreeva, G. A. Fomin, V. I. Pakhomov,Vysokomol. Soedin., 10A, 547 (1968).

85. V. N. Tsvetkov, K. A. Andrianov, G. I. Okhrimenko, I. N.Shtennikova, G. A. Fomin, M. G. Vitovskaja, V. I. Pakho-mov, A. A. Jarosh, D. N. Andreev, Vysokomol. Soedin.,12A, 1892(1970).

86. V N. Tsvetkov, I. N. Shtennikova, V. S. Skazka, E. I.Rjumtsev, J. Polym. Sci. C, 16, 3205 (1968).

Page 18: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

87. V. N. Tsvetkov, E. I. Rjumtsev, I. N. Shtennikova, G. I.Okhrimenko, Vysokomol. Soedin., 8, 1466 (1966).

88. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, G. F.Pirogova, Vysokomol. Soedin., 9A, 1575 (1967).

89. V. N. Tsvetkov, L. N. Andreeva, P. N. Lavrenko, E. V.Beliaeva, O. V. Okatova, A. Yu. Bilibin, S. S. Skorokhodov,Eur. Polym. J., 20, 817 (1984).

90. V. N. Tsvetkov, L. N. Andreeva, R N. Lavrenko, O. V.Okatova, E. V. Beliaeva, A. Yu. Bilibin, S. S. Skorokhodov,Eur. Polym. J., 21, 933 (1985).

91. V. N. Tsvetkov, L. N. Andreeva, S. V. Bushin, A. I.Mashoshin, V. A. Cherkasov, Z. Edlinski, D. Sek, Eur.Polym. J., 20, 371 (1984).

92. V. N. Tsvetkov, S. Ya. Magarik, Dokl. Acad. Nauk SSSR,115,911 (1957).

93. V. N. Tsvetkov, E. I. Rjumtsev, I. N. Shtennikova, E. V.Korneeva, G. 1. Okhrimenko, N. A. Mikhailova, A. A.Baturin, Ju. A. Amerik, B. A. Krentsel, Vysokomol. Soedin.,15A, 2570 (1973).

94. S. Ja. Magarik, Zh. Fiz. Khim., 33, 835 (1959).

95. T. M. Birshtein, V. P. Budtov, E. V. Frisman, N. K. Janovs-kaja, Vysokomol. Soedin., 4, 455 (1962).

96. E. V. Frisman, N. N. Boitsova, Leningrad. Univ. Vestnik, N4,26 (1959).

97. A. Romanov, S. Ja. Magarik, M. Lazar, Vysokomol. Soedin.,9B, 292 (1967).

98. V. N. Tsvetkov, G. A. Andreeva, I. A. Baranovskaja, V. E.Eskin, S. I. Klenin, S. Ja. Magarik, J. Polym. Sci. C, 16, 239(1967).

99. V. N. Tsvetkov, S. Ja. Magarik, T. Kadirov, G. A. Andreeva,Vysokomol. Soedin., 1OA, 943 (1968).

100. V. N. Tsvetkov, "Rigid-Chain Polymers", ConsultantsBureau, Plenum, New York, 1989.

101. V. N. Tsvetkov, Vysokomol. Soedin., 25A, 1571 (1983).

102. G. M. Pavlov, E. V. Korneeva, T. I. Garmonova, D. Hardi,K. Nitrai, Vysokomol. Soedin., 2OA, 1634 (1978).

103. V. N. Tsvetkov, E. V. Korneeva, I. N. Shtennikova, P. N.Lavrenko, G. F. Kolbina, D. Hardi, K. Nitrai, Vysokomol.Soedin., 14A, 427 (1972).

104. E. I. Rjumtsev, I. N. Shtennikova, N. V. Pogodina, G. F.Kolbina, I. I. Konstantinov, Ju. B. Amerik, Vysokomol.Soedin., 18A, 439 (1976).

105. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, N. V.Pogodina, G. F. Kolbina, E. V Korneeva, P. N. Lavrenko,O. V. Okatova, Ju. B. Amerik, A. A. Baturin, Vysokomol.Soedin., 18A, 2016 (1976).

106. G. F. Kolbina, Theses, Inst. MacromolecuJar CompoundsAc. Sci. SSSR, Leningrad, 1981.

107. V. N. Tsvetkov, E. I. Rjumtsev, I. I. Konstantinov, Ju. B.Amerik, B. A. Krentsel, Vysokomol. Soedin., 14A, 67(1972).

108. V N. Tsvetkov, I. N. Shtennikova, E. 1. Rjumtsev, G. F.Kolbina, E. V. Korneeva, B. A. Krentsel, Ju. B. Amerik, 1.1.Konstantinov, Vysokomol. Soedin., 15A, 2158 (1973).

109. I. N. Shtennikova, T. V. Peker, G. F. Kolbina, V R. Petrov,V. S. Grebneva, I. I. Konstantinov, Ju. B. Amerik,Vysokomol. Soedin., 24A, 2047 (1982).

110. T. I. Garmonova, V N. Artem'eva, Ye. M. Nekrasova,Vysokomol. Soedin., 32A, 2062 (1990).

111. V N . Tsvetkov, I. N. Shtennikova. G. F. Kolbina, A. 1.Mashoshin, P. N. Lavrenko, S. V Bushin, A. A. Baturin, Ju.A. Amerik, Vysokomol. Soedin., 27A, 319 (1985).

112. L. N. Andreeva, E. V. Beliaeva, A. A. Boikov, A. M.Muzafarov, V. N. Emelianov, K. A. Andrianov. V. N. Tsvet-kov, Vysokomol. Soedin., 21A, 362 (1979).

113. V N. Tsvetkov, K. A. Andrianov, N. N. Makarova, Wl. G.Vitovskaja, Vysokomol. Soedin., 15A, 400 (1973).

114. V N. Tsvetkov, N. A. Mikhailova, V. B. Novakovsky, A. V.Volokhina, A. B. Raskina, Vysokomol. Soedin., 22A, 1028(1980).

115. N. V. Pogodina, L. V Starchenko, V. N. Tsvetkov. Eur.Polym. J., 16, 387 (1980).

116. V. N. Tsvetkov, V V. Korshak, I. N. Shtennikova. Kh.Raubakh, E. S. Krongauz, G. M. Pavlov, G. F. Kolbina,S. O. Tsepelevich, Vysokomol. Soedin., 21A. 83 (1979);Macromolecules, 12, 645 (1979).

117. V. N. Tsvetkov, G. I. Kudryavtsev, I. N. Shtennikova. T. V.Peker, E. N. Zakharova, V. D. Kalmykova. A. V. Volokhina,Eur. Polym. J., 12, 517 (1976).

118. V N. Tsvetkov, N. V. Pogodina. I. N. Bogatova, L. V.Starchenko, Vysokomol. Soedin., 26A, 122 (1984).

119. N. V. Pogodina, L. V. Starchenko, K. S. Pozhivilko, V. D.Kalmykova, T. A. Kulichikhina, A. V. Volokhina, G. I.Kudryavtsev, V. N. Tsvetkov, Vysokomol. Soedin., 23A,2185 (1981).

120. V. N. Tsvetkov, I. N. Shtennikova, T. V. Peker. Eur. Polym.J., 13, 455 (1977).

121. V N . Tsvetkov, E. N. Zakharova, N. A. Mikhailova. Dokl.Akad. Nauk SSSR, 224, 1365 (1975).

122. N. A. Mikhailova, Theses, University of Leningrad. 1982.

123. V. N. Tsvetkov, N. V. Pogodina, L. V. Starchenko. EurPolym. J., 19, 837 (1983).

124. I. N. Shtennikova, T. V Peker, T. I. Garmonova. G. FKolbina, L. V Avrorova, A. B. Tokareva. G. I. Kudryavtsev,V. N. Tsvetkov, Vysokomol. Soedin., 23A. 2510 (1981).

125. N. A. Mikhailova, V. N. Tsvetkov, V. B. Novakovsky,Vysokomol. Soedin., 24B, 770 (1982).

126. N. V. Pogodina, L. V. Starchenko. V. N. Tsvetkov. Eur.Polym. J., 19, 841 (1983).

127. P. D. Sybert, W. H. Beever. J. K. Stille, Macromolecules, 14,493 (1981).

128. L. N. Andreeva, E. V. Beliaeva, A. A. Boikov, P. N.Lavrenko, V. N. Tsvetkov. Vysokomol. Soedin.. 25A,1631 (1983).

129. L. N. Andreeva, T. I. Garmonova, I. N. Shtennikova,V. N. Tsvetkov, The Fifth Meeting on Cellulose, Vladimir1976.

130. N. V. Pogodina, K. S. Pozhivilko, A. B. Melnikov, S. A.Didenko, G. N. Marchenko, V N. Tsvetkov. Vysokomol.Soedin., 23A, 2454 (1981).

131. N. V. Pogodina, P N. Lavrenko, K. S. Pozhivilko, A. B.Melnikov, T. A. Kolobova, G. N. Marchenko, V. N. Tsvet-kov, Vysokomol. Soedin., 24A, 332 (1982).

132. N. V. Pogodina, Y. B. Tarabukina, L. V. Starchenko. G. N.Marchenko, V. N. Tsvetkov, Vysokomol. Soedin., 22A, 2219(1980).

133. L. N. Andreeva, V. Yu. Elohovski, Vysokomol. Soedin..19B, 111 (1977).

Page 19: Anisotropy of Segments and Monomernguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND...B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Vli-746 Table 1. Main-Chain

134. P. N. Lavrenko, E. U. Urinov, L. N. Andreeva, K. J. Linow,H. Dautzenberg, B. Philipp, Vysokomol. Soedin., 18A, 2579(1976).

135. V. N. Tsvetkov, P. N. Lavrenko, L. N. Andreeva, A. I.Mashoshin, V. Okatova, O. I. Mikriukova, L. I. Kutsenko,Eur. Polym. J., 20, 823 (1984).

136. N. V. Tsvetkov, A. K. Khripunov, E. P. Astapenko, S. A.Didenko, Vysokomol. Soedin. 37A, 1306 (1995).

137. V. N. Tsvetkov, N. V. Tsvetkov, Russian Chem. Rev., 62, 851(1994).

138. N. V. Tsvetkov, G. N. Marchenko, M. A. Bezrukova, S. A.Didenko, V. M. Denisov, A. K. Khripunov, A. V. Lezov, V. N.Tsvetkov, Polym. Sci. (Russ.), 35, 345 (1993).

139. N. V. Tsvetkov, L. I. Kutsenko, S. A. Didenko, Vysokomol.Soedin., 37A, 1300(1995).

140. N. V. Tsvetkov, S. A. Didenko, Vysokomol. Soedin., 35A,1640(1993).

141. V. N. Tsvetkov, A. V. Lezov, N. V. Tsvetkov, L. N. Andreeva,Eur. Polym. J., 26, 1103 (1990).

142. I. N. Stennikova, G. F. Kolbina, V. P. Shibaev, I. V. Ekaeva,Eur. Polym. J., 26, 787 (1990).

143. I. N. Stennikova, G. F. Kolbina, Vysokomol. Soedin., 37A,1314 (1995).

144. 1. N. Stennikova. E. V. Korneeva, G. F. Kolbina, I. A.Strelina, P. N. Lavrenko V. P. Shibaev, I. V. Ekaeva, Eur.Polym. J., 28, 353 (1992).

145. G. F. Kolbina. E. V. Korneeva, I. N. Stennikova, MoI. Mat., 5,79 (1995).

146. I. N. Stennikova, G. F. Kolbina, E. V. Korneeva, I. A. Strelina,V. P. Shibaev. I. V. Ekaeva, Polym. Sci., 34, 1022 (1992).

147. I. N. Stennikova, T. V. Filippova, H. Dautzenberg, Vysoko-mol. Soedin., 35, 1459 (1993).

148. P. N. Lavrenko, I. A. Strelina, S. Ya. Magarik, L. I. Kutsenko,Vysokomol. Soedin., 37, 2007 (1995).

149. G. M. Pavlov, N. P. Evlampieva, Biophisica, 40 (6), 1220(1995).

150. G. M. Pavlov, A. N. Kozlov, S. M. Yakopson, S. V. Usova,L. S. Efros. Vysokomol. Soedin., 27A, 30 (1985).

151. N. V. Tsvetkov, S. A. Didenko, V. N. Tsvetko, Dokl. A Nauk.SSSR, 337, 483 (1994).

152. P. N. Lavrenko. T. I. Garmonova, M. M. Gel'mont, L. S.Efros, I. M. Kralina, Vysokomol. Soedin., 34B, 45 (1992).

153. I. P. Kolomiets, P. N. Lavrenko, A. V. Lezov, A. M. Ovsip-yan, H. Finkelmann, Vysokomol. Soedin., 35A, 1620(1993).

154. E. V. Frisman. N. A. Kas'yanenko, MoI. Biol., 24 (2), 318(1990).

155. E. 1. Rumtsev, I. N. Shtennikova, D. R. Tur, G. F. Kolbina,E. V. Korneeva. V G. Kulichikhin, Vysokomol. Soed., 31B,648 (1990).

156. E. 1. Rumtsev, I. P. Kolomiets, I. N. Shtennikova, G. F.Kolbina, D. R. Tur, V. G. Kulichikhin, Polym. Sci., 34, 541(1992).

157. N. A. Kas'yanenko, E. V. Frisman, S. I. Klenin, Ye. N.Bykova, I. S. Kochetkova, Vysokomol. Soedin., 29A, 1129(1987).

158. V. N. Tsvetkov, S. V. Bushin, L. N. Andreeva, K. P. Smirnov,E. V. Belyaeva, A. Yu Bilibin, and A. R. Stepanova, Polym.Sci., 34, 229, (1992).

159. V. N. Tsvetkov, L. N. Andreeva, S. V. Bushin, E. V.Belyaeva, V. A. Cherkasov, A. I. Mashoshin, A. Yu.Bilibin, S. S. Skorokhodov, Vysokomol. Soedin., 3OA,713 (1988).

160. V. N. Tsvetkov, L. N. Andreeva, A. P. Filippov, E. V.Belyaeva, A. Yu. Bilibin, and A. R. Stepanova, Eur. Polym.J., 27, 319(1991).

161. V. N. Tsvetkov, L. N. Andreeva, P. N. lavrenko, O. V.Okatova, E. V. Beliaeva, A. Yu. Bilibin, and S. S. Skor-okhodov, Eur. Polym. J., 21, 933 (1985).

162. V. N. Tsvetkov, L. N. Andreeva, P. N. Lavrenko, O. V.Okatova, E. V. Beliaeva, A. Yu. Bilibin, and S. S. Skor-okhodov, Vysokomol. Soedin. A, XXX, 1263 (1933).

163. V. N. Tsvetkov, S. V. Bushin, L. N. Andreeva, K. P. Smirnov,E. V. Belyaeva, E. P. Astapenko, A. Yu. Bilibin, A. V.Ten'kovtsev, A. R. Stepanova, Polym. Sci., 34, 536(1992).

164. S. V. Bushin, N. V. Tsvetkov, E. P. Astapenko, V. N.Tsvetkov, E. V. Belyaeva, V. V. Zuev, S. S. Skorokhodov,Vysokomol. Soedin., 38A, 1308 (1996).

165. N. V. Tsvetkov, V. N. Tsvetkov, S. S. Skorokhodov, Vyso-komol. Soedin., 38A, 1032 (1996).

166. V. N. Tsvetkov, S. V. Bushin, E. P. Astapenko, N. V.Tsvetkov, S. S. Skorokhodov, V. V. Zuev, R. Zentel,H. Potsch, Polym. Sci., 36A, 813 (1994).

167. N. V. Tsvetkov, V. N. Tevetkov, V. V. Zuev, S. S. Skoro-khodov, R. Zentel, Vysokomol. Soedin., 38A, 1831 (1996).

168. N. V. Tsvetkov, N. V. Pogodina, V. V. Zuev, Vysokomol.Soedin., 38A, 1133 (1996).

169. N. V. Tsvetkov, V. V. Zuev, 1. V. Ksenofontov, S. A. Didenko,Vysokomol. Soedin. 38A, 1840 (1996).

170. V. N. Tsvetkov, L. N. Andreeva, S. V. Bushin, A. I.Mashoshin, A. Yu. Bilibin, S. S. Skorokhodov, Vysokomol.Soedin., 3OA, 2128 (1988).

171. S. V. Bushin, V. N. Tsvetkov, L. N. Andreeva, E. P. Asta-penko, E. V. Belyaeva, D. N. Asinovskaya, S. S. Skorokho-dov, Polym. Sci., 39, 943 (1997).

172. L. N. Andreeva, S. V. Bushin, A. I. Mashoshin, M. A.Bezrukova, V. N. Tsvetkov, A. Yu. Bilibin, S. S. Skorokho-dov, Vysokomol. Soedin., 32A, 1754 (1990).

173. I. N. Stennikova, G. F. Kolbina, S. V. Bozhko, N. N.Makarova, Vysokomol. Soedin., 37B, 1585 (1995).

174. S. Ya. Lyubina, I. A. Strelina, L. A. Nud'ga, Ye. A. Plisko, I.N. Bogatova, Vysokomol. Soedin., 25A, 1467 (1983).