12
201 Advances in Production Engineering & Management ISSN 18546250 Volume 14 | Number 2 | June 2019 | pp 201–212 Journal home: apem‐journal.org https://doi.org/10.14743/apem2019.2.322 Original scientific paper Timedependent and biobjective vehicle routing problem with time windows Zhao, P.X. a,* , Luo, W.H. a , Han, X. a a School of Management, Shandong University, Jinan, Shandong, P.R. China ABSTRACT ARTICLE INFO The optimization of bi‐objective vehicle routing problem has become a re‐ search hotspot in recent years. In this paper, a time‐dependent and bi‐ objective vehicle routing problem with time windows (TD‐BO‐VRPTW) is proposed, which is a new extension of classical vehicle routing problem. Time‐dependency is presented for the situation that vehicle’s travel speed is affected by its departure time and the distance between two customers. The total transportation costs and time costs are two objectives optimized simul‐ taneously through constructing a bi‐objective mixed integer linear program‐ ming model. To deal with this problem, the non‐dominated sorting genetic algorithm II (NSGA‐II) is adopted to obtain the Pareto optimal solution set. In the numerical examples, the RC108 from Solomon's benchmark set is em‐ ployed and the results in the Pareto front show the efficiency of NSGA‐II for the TD‐BO‐VRPTW. To further test the performance of this algorithm, two objectives are optimized separately and then the sum of two objectives is also optimized. Through comparing these results with solutions in the Pareto front, it can be concluded that the algorithm is reliable, and the results in Pareto front are competitive because there is a trade‐off between two objectives. © 2019 CPE, University of Maribor. All rights reserved. Keywords: Vehicle routing problem; Time‐dependency; Bi‐objective optimization; Time windows; Pareto optimal solutions; Evolutionary algorithms; NSGA‐II algorithm *Corresponding author: [email protected] (Zhao, P.X.) Article history: Received 14 February 2019 Revised 10 May 2019 Accepted 17 May 2019 1. Introduction The Vehicle Routing Problem (VRP) was first proposed by Dantzig and Ramser in 1959 [1]. It is defined on a network, in which the points represent the depot and customers and the weights on the arcs stand for the distance between two points. The depot is the start point and end point of each route, and each customer has a demand that must be served by a vehicle. Each vehicle serves the customers along its route and the sum of all demands on this route cannot exceed the maximum capacity. VRP aims to find the optimal solution and thus the objective function is op‐ timized and the corresponding constraints are met when each vehicle travels along its own route. Zhu et al. proposed an improved hybrid algorithm based on heuristic to solve VRP under multi‐depots condition [2]. Chiang and Hsu considered that VRP combines the characteristics of two typical NP‐hard optimization problems including traveling salesman problem (TSP) and bin packing problem (BPP) [3]. Similar to VRP, TSP aims to find the optimal route, but it only con‐ siders the situation when the number of vehicles is equal to one. BPP assigns customers to dif‐ ferent vehicles to minimize the number of vehicles and satisfies all the constraints at the same time, but it does not consider the customer service priorities. The vehicle routing problem with time windows (VRPTW), which was first introduced by Solomon in 1987, is an extension of VRP [4]. In the VRPTW, each customer is assigned with a time window who must be served within the time window. Cao et al. solved the vehicle routing

and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

 

201 

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume14|Number2|June2019|pp201–212 Journalhome:apem‐journal.org

https://doi.org/10.14743/apem2019.2.322 Originalscientificpaper

Time‐dependent and bi‐objective vehicle routing problem with time windows 

Zhao, P.X.a,*, Luo, W.H.a, Han, X.a  aSchool of Management, Shandong University, Jinan, Shandong, P.R. China  

A B S T R A C T A R T I C L E   I N F O

The optimization of bi‐objective vehicle routing problem has become a re‐search hotspot in recent years. In this paper, a time‐dependent and bi‐objective vehicle routing problem with time windows (TD‐BO‐VRPTW) isproposed, which is a new extension of classical vehicle routing problem.Time‐dependencyispresentedforthesituationthatvehicle’stravelspeedisaffectedbyitsdeparturetimeandthedistancebetweentwocustomers.Thetotaltransportationcostsandtimecostsaretwoobjectivesoptimizedsimul‐taneouslythroughconstructingabi‐objectivemixed integer linearprogram‐mingmodel. To deal with this problem, the non‐dominated sorting geneticalgorithmII(NSGA‐II)isadoptedtoobtaintheParetooptimalsolutionset.Inthe numerical examples, the RC108 from Solomon's benchmark set is em‐ployedandtheresults in thePareto frontshowtheefficiencyofNSGA‐II forthe TD‐BO‐VRPTW. To further test the performance of this algorithm, twoobjectivesareoptimizedseparatelyandthenthesumoftwoobjectivesisalsooptimized.ThroughcomparingtheseresultswithsolutionsintheParetofront,it can be concluded that the algorithm is reliable, and the results in Paretofrontarecompetitivebecausethereisatrade‐offbetweentwoobjectives.

©2019CPE,UniversityofMaribor.Allrightsreserved.

  Keywords:Vehicleroutingproblem;Time‐dependency;Bi‐objectiveoptimization;Timewindows;Paretooptimalsolutions;Evolutionaryalgorithms;NSGA‐IIalgorithm

*Correspondingauthor:[email protected](Zhao,P.X.)

Articlehistory:Received14February2019Revised10May2019Accepted17May2019

1. Introduction

TheVehicleRoutingProblem(VRP)wasfirstproposedbyDantzigandRamserin1959[1].Itisdefinedonanetwork,inwhichthepointsrepresentthedepotandcustomersandtheweightsonthearcsstandforthedistancebetweentwopoints.Thedepotisthestartpointandendpointofeach route, and each customer has a demand thatmust be served by a vehicle. Each vehicleservesthecustomersalongitsrouteandthesumofalldemandsonthisroutecannotexceedthemaximumcapacity.VRPaimstofindtheoptimalsolutionandthustheobjectivefunctionisop‐timized and the corresponding constraints are met when each vehicle travels along its ownroute.Zhuetal.proposedanimprovedhybridalgorithmbasedonheuristictosolveVRPundermulti‐depotscondition[2].ChiangandHsuconsideredthatVRPcombinesthecharacteristicsoftwotypicalNP‐hardoptimizationproblemsincludingtravelingsalesmanproblem(TSP)andbinpackingproblem(BPP)[3].SimilartoVRP,TSPaimstofindtheoptimalroute,butitonlycon‐sidersthesituationwhenthenumberofvehiclesisequaltoone.BPPassignscustomerstodif‐ferentvehiclestominimizethenumberofvehiclesandsatisfiesalltheconstraintsatthesametime,butitdoesnotconsiderthecustomerservicepriorities.

The vehicle routing problemwith timewindows (VRPTW), whichwas first introduced bySolomon in1987, isanextensionofVRP[4]. In theVRPTW,eachcustomer isassignedwithatimewindowwhomustbeservedwithinthetimewindow.Caoetal.solvedthevehiclerouting

Page 2: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Zhao, Luo, Han  

202  Advances in Production Engineering & Management 14(2) 2019

problemwithmultiplefuzzytimewindowsusinganimprovedwolfpackalgorithm[5].Wuetal.proposed a co‐evolutionarybased algorithmandapplied it to solveVRPTW [6]. Yuetal. pro‐posedanimprovedbranch‐and‐price(BAP)tohandletheVRPTWwithheterogeneousfleet[7].MirandaandConceiçãoproposedanextensionofVRPTWinwhichthetravel timeandservicetimearestochasticandsolveditbymetaheuristic[8].Inthepresentstudy,weregardthetimewindowasasoftconstraint.Ifthevehiclearrivesoutsidethetimewindow,nomatterearlierorlater,itshouldpayforthepenaltycost.Manyreal‐worldapplicationscanbeconsideredastheVRPTW,suchaspostaldelivery,trainandbusschedulingaswellaswastecollection.VRPTWisatypicalNP‐hardcombinatorialoptimizationproblem.Duetoitspracticalvalueandhighcompu‐tationalcomplexity,ithasbecomearesearchhotspotinoperationalresearchandmanagementscience.

Thebi‐objectivevehicleroutingproblem(BOVRP)isanotherextensionofVRP.TheclassicalwaytosolveBOVRPistoaddthetwoobjectivestogetherandsolveitasasingle‐objectiveopti‐mizationproblem.Thismethod is essentially to search fora single‐objectiveoptimal solution.AnotherwayistofindtheParetooptimalsolutionset,whichisatrade‐offbetweentwoobjec‐tives.Inthisset,solutionsarenotgoingtobeworsethananyothersolutionsonbothobjectivefunctionvaluessimultaneously.Geigerwasoneof the first researcherssolvingmulti‐objectivevehicleroutingproblembyusingParetoapproaches[9].ThenBaránandSchaererproposedamulti‐objective ant colony algorithm tominimize the number of vehicles, travel distance andservice time simultaneously [10].Tanetal. put forwardahybridmulti‐objective evolutionaryalgorithm(HMOEA)todealwithBOVRP,inwhichthetwoobjectivesarenumberofvehiclesandtraveldistance[11].Ombukietal.designedamulti‐objectivegeneticalgorithmtominimizethenumber of vehicles and travel distance [12]. Garcia‐Najera and Bullinaria proposed a multi‐objectiveevolutionaryalgorithm(MOEA),whichischaracterizedbyconsideringindividualsimi‐larity in theselectionprocess [13].ChiangandHsuproposedaknowledge‐basedevolutionaryalgorithm to solve bi‐objective vehicle routing problem with time windows, minimizing thenumberofvehiclesandtraveldistance[3].Qietal.proposedamemeticalgorithmbasedonde‐composition and applied it to solvemulti‐objective VRPTW [14]. Iqbal etal. proposed a newmodelformulti‐objectiveVRP,andsolveditonthebasisoflocalsearch[15].Someresearchersconsideredtheminimizationoftimewindowconstraintviolationsasanobjective.Forexample,Xuetal.optimizedtheconstraintviolationandtwootherobjectivesbyanOr‐optNSGA‐II[16].Castroetal.consideredtheconstraintviolationofvehiclecapacityandtimewindowastwoob‐jectives[17].

Thetime‐dependentvehicleroutingproblem(TDVRP)wasinitiallyproposedbyMalandrakiandDaskin to capture the congestion in a traffic network [18].Hill andBenton constructed amodel for time‐dependent conditions, which lays the foundation of many studies [19].Malandraki and Dial solved TSP under time‐dependent conditions by dynamic programming[20].However,alloftheabovestudiesdisrespecttheFirst‐In‐First‐Out(FIFO)principle,indicat‐ingthatitispossiblethatavehicledepartinglaterarrivesearlier.Ichouaetal.proposedatime‐dependentmodel inwhichtravelspeedisastepfunctionandtraveltimeisapiecewiselinearfunction[21].Fleishmannetal.proposedamethodtoconstructtime‐dependentmodelinwhichthetraveltimewassmoothedbyastepfunction[22].ThesemethodsrespecttheFIFOprinciple.Thesetwomethodsarewidelyusedinstudiesafterwards.Then,Huangetal.proposedthecon‐ceptionofpathflexibilityforTDVRPandsolveditbyCPLEX[23].ÇimenandSoysalextendedtheconceptionofTDVRPtostochasticconditionsandproposedaheuristictosolveit[24].

Basedonpreviousresearch,wecombine thebi‐objectiveoptimization, the time‐dependenttraveltimemodelandthetimewindowaswellasinnovativelyproposethetime‐dependentandbi‐objectivevehicleroutingproblemwithtimewindows(TD‐BO‐VRPTW). Intheremainderofthispaper,wefirstgiveadetaileddescriptionoftheTD‐BO‐VRPTWinSection2.InSection3,weintroducethenotionofNSGA‐II.OurmainresultsaregiveninSection4.Finally,Section5con‐tainsabriefsummary.

Page 3: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Time‐dependent and bi‐objective vehicle routing problem with time windows 

Advances in Production Engineering & Management 14(2) 2019  203

2. Problem description and model construction 

Thissectionmainly includes thenotionof time‐dependent travel timemodel, thedefinitionofparametersanddecisionvariables,assumptionsandmathematicalmodel.

2.1 Time‐dependent travel time model 

Asmentionedpreviously,MalandrakiandDaskinfirstproposedtheconceptionof time‐dependenttravel timemodel [18]. Fig. 1 shows the relationshipbetween travel timeanddeparture timewhenthedistanceis1,presentingthatthetraveltimebetweentwopointsisastepfunctionofdeparturetime.ThemainfeatureofthismodelisthatitdoesnotrespecttheFIFOprinciple.Forexample, a vehicle leaving at 1will arrive at 4, while a vehicle leaving at 2willarriveat 3.HillandBentonproposedanothertime‐dependentmodelinwhichtravelspeedisastepfunctionofthedeparturetime,asshowninFig.2.ThismodelstilldisrespectstheFIFOprinciple [19]. In order to give a better description of time‐dependency, adjustment of travelspeedshouldbetakenintoaccountwhenvehicletravelsbeyondtheboundsofthetimeinter‐vals.Ichouaetal.proposedatime‐dependenttraveltimemodelinwhichtravelspeedisastepfunctionandtraveltimeisapiecewiselinearfunction,asshowninFig.3andFig.4[20].

Fig.1Time‐dependentmodelI Fig.2Time‐dependentmodelII

Fig.3Time‐dependentmodelIII:Speed

Fig.4Time‐dependentmodelIII:Time

Fig.3showstherelationshipbetweentravelspeedanddeparturetime,andFig.4.provides

anexampleoftraveltimefunctionforanarcoflength1.Foranon‐time‐dependentandsymmet‐ricalroadmodel,traveltimeofanarc , canbesimplyexpressedas ⁄ ,where istheaveragetravelspeedonarc , and isthedistanceofarc , .However,intime‐dependentmodel, travelspeedchangeswithdeparturetime.Supposethedeparturetimeis ,andtravelspeedisastepfunctionofdeparturetime,whereinspeedofthek‐thtimeperiodis ,corresponding to the departure time interval for , . Then, the process of calculation isexpressedasfollows:

Step1:Calculatethevalueofkaccordingto ∈ , ,andgetthecorresponding ,assign→ ,calculate ⁄ .

Step2:If , thenoutputarrival time and travel time , end the loop.Otherwise,gotoStep3.

Page 4: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Zhao, Luo, Han  

204  Advances in Production Engineering & Management 14(2) 2019

Step3:Update → , calculate ⁄ ,update 1 → , returntoStep2.

Thistime‐dependentmodelrespectstheFIFOprinciple.Comparedwiththeformertwotime‐dependentmodels, it canbettercapturecongestion ina trafficnetwork.Therefore,wechoosethismodelforfurtherstudy.

2.2 Assumptions and symbolic descriptions 

Thefollowingassumptionswillbeneededthroughoutthepaper:

Travelspeedisvariable,andtherearemultipletimeintervals.Speedinacertaintimein‐tervalisconstant.

Eachcustomerisassignedwithatimewindowandvehiclesarrivinginadvanceorbeyondthedeadlinemustpayforpenaltycost.

Eachcustomermustbeservedexactlyoncebyonevehicle. Eachvehiclemustdepartfromthedepotandreturntothedepotaftercompletingthede‐

liverytask. Vehicles are homogeneous, and the constraints ofmaximumdrivingdistance andmaxi‐

mumdrivingtimearenotconsidered.

Based on the above assumptions, the present study aims tominimize transportation costsand time costs. Transportation costs includedepreciation costs and fuel costs, and time costsincludewaitingcostsandpenaltycosts.Sincetheprobleminvolvedinthecurrentworkisessen‐tiallyaderivativemodelofclassicalVRPTW,itcanbedescribedbythetraditionalnetworkfluidformulasystemasfollows[25]:

Let , representsacompletegraph,where ={ , ,…, }isthepointset.There‐fore,thesubset ={ , ,…, }arethecustomers.Then,definethenodesets ={ , ,…, }and ={ , ,…, }, and arc set ={ , | , | ∈ , ∈ , }. Each vehicle∈ hasamaximumcapacity .Besides, eachcustomer ∈ has ademand 0, a service

time 0andatimewindow[ , ].Thedepotalsohasatimewindow 0, .Thedistanceofarc , ∈ is . isthevehicle’sfuelcostperunitdistance,and isthevehicle’sde‐preciationcost. isthewaitingcostperunittime,and isthepenaltycostperunittime.

2.3 Mathematical model 

First,wedefinetwodecisionvariables:

Binarydecisionvariable , ∀ ∈ , ∀ ∈ , ∀ ∈ .

1Ifvehicle travelsfromcustomer tocustomer

0Otherwise

Non‐negativerealdecisionvariable :Thedeparturetimeaftervehiclekhasservedcus‐tomeri.

Accordingtotheprevioustime‐dependentmodel,travelspeedonarc , isafunctionofthe departure time and then travel time can be denoted by and , i.e.( , ).Travelspeedfunction andtraveltimefunction ( , )areastep

functionandapiecewiselinearfunction,respectively.Basedonthisnotation,theTD‐BO‐VRPTWcanbeconstructedasthefollowingbi‐objectivemixedintegerlinearprogrammingmodel:Objectivefunctions:

(1)

, 0 , 0 (2)

Page 5: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Time‐dependent and bi‐objective vehicle routing problem with time windows 

Advances in Production Engineering & Management 14(2) 2019  205

Constrains:

, ∀ ∈∈∈

(3)

 

1, ∀∈∈

∈ (4)

 

0, ∀ ∈ , ∀ ∈∈∈

(5)

 

, 0, ∀ ∈ , ∀ ∈ (6) 

, 1, ∀ ∈∈∈

(7)

 

, , ∀ ∈ , ∀ ∈ ∀ ∈ (8) 

∈ 0,1 , ∀ ∈ , ∀ ∈ ∀ ∈ (9) 

0, ∀ ∈ , ∀ ∈ (10)

Theobjectivefunction(Eq.1)minimizesthetransportationcosts,andtheobjectivefunction(Eq.2)minimizesthetimecosts.Expressions(Eq.3)arethemaximumcapacityconstraints,in‐dicatingthatforeachroute,thesumofalldemandscannotexceedthemaximumcapacity.Con‐straints(Eq.4)ensurethateachcustomerisvisitedexactlyoncebyonevehicle.Constraints(Eq.5) and (Eq.6) are thevehicle flowconservation constraints.Constraints (Eq.7) stipulate thateachvehiclecanbeusedatmostonce.Expressions(Eq.8)arethearrivaltimeconstraint,indi‐catingthatavehiclemustarriveatthenextcustomerearlierthanitsservicestarttime.Expres‐sions(Eq.9)and(Eq.10)arevariablespecificationconstraints.

3. Used methods 

Recently, thenon‐dominatedsortinggeneticalgorithmII(NSGA‐II)proposedbyDebhasbeenextensively responded and applied [26]. The selection process of individuals is improved byemployingtheelitestrategy,densityvalueestimationstrategyandfastnon‐dominatedsortingstrategy.Thisgeneticalgorithmhasbeenwidelyusedinvariousfields. ItnotonlyensuresthevalueoftheoptimalsolutionandobtainstheParetofront,butalsoreducesthealgorithmcom‐plexity and ensures the efficiency of the algorithm. It has become a classical algorithm in thefieldofmulti‐objectiveoptimization.Therefore,thisalgorithmisadoptedtosolvetheproblem.Thissectionmainlyintroducesintegerlinearprogramming,NSGA‐IIanditsrelatedconceptions.

3.1 Introduction to integer linear programming and NSGA‐II 

Integerlinearprogrammingindicatesthatthevaluesofsomeoralldecisionvariablesinlinearprogrammingareintegers.IntegerlinearprogrammingismostlyNP‐hard.Therefore,whenthescaleoftheproblemislarge,itwillbedifficulttosolvetheproblem.Integerlinearprogrammingisanimportantissueinoperationsresearch.Inrecentdecades,numerousscholarshavestudiedthesolutiontosolvethisproblem.Themostcommonlyusedmethodistheheuristicalgorithm,whoseprincipleistofindafeasiblesolutionwithinanacceptablerange.Theadvantageisthattheconvergencespeedisfast,andthedisadvantageisthatitmayfallintolocaloptimum.Com‐monheuristicalgorithmsincludegeneticalgorithm,tabusearch,simulatedannealing,etc. TheNSGA‐IIalgorithmwasproposedbasedongeneticalgorithm.Thenon‐dominatedsortingapproachisputforwardinordertogiveeverysolutioninthepopulationanon‐dominationrank.

Page 6: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Zhao, Luo, Han  

206  Advances in Production Engineering & Management 14(2) 2019

Thenon‐dominationrankstartsat1andincreasesby1eachround.Ineachroundoftheloop,everyunsortedindividualpinthepopulationiscomparedwithalltheremainingunsortedindi‐vidualstodeterminewhethertheindividual dominatesalltheotherunsortedindividuals.Ifso,individual is assigned with the current non‐domination rank. Finally, all individuals in thepopulationareassignedwithanon‐dominationrank.

Additionally,crowdingdistanceisalsodefinedinNSGA‐IItogetanestimateofthedensityofsolutionssurroundingaparticularsolution.Intermsofbi‐objectiveoptimization,calculatetheaveragedistanceoftwopointsoneithersideofaparticularpointalongeachobjective.Thisval‐uecanberegardedasthesumoftheadjacenttwosidesofarectangleformedbytwoadjacentsolutionsonbothsidesofaparticularsolutionasvertices.AspresentedinFig.5,thecrowdingdistanceofthethi‐thsolutionisequaltohalftheperimeteroftherectangleformedbyitstwoadjacentsolutionsasvertices,asshownbydashedline.

Each solution is assignedwitha crowdingdistanceby calculation. For individualswith thesamenon‐dominatedrank,thelargerthecrowdingdistance,thebetterthediversity.Therefore,itshouldbepreferredintheselectionprocess.Basedonthedefinitionofnon‐dominationrank

and crowding distance , two solutions and in the population can be comparedusingthecomparisonoperator:

≺ if: < or: = and >

Thatis,intheselectionprocessofthealgorithm,itispreferredwhenasolutionhasalowernon‐dominationrank.Otherwisewhenthetwosolutionshavethesamenon‐dominatedrank,wepreferthesolutionwithlargercrowdingdistanceduetoitsbetterdiversity.

Fig.5Crowdingdistance

3.2 Main loop 

ThemainloopofNSGA‐IIcanbefoundinFig.6.

Fig.6Mainloop

Page 7: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Time‐dependent and bi‐objective vehicle routing problem with time windows 

Advances in Production Engineering & Management 14(2) 2019  207

First, generate the initialpopulation ,whichcontains solutions.Then, thepopulation issortedbasedondomination,andeachsolutionisassignedwithanon‐dominationrank.Anoff‐springpopulation ofsize iscreatedbyselection,crossoverandmutationoperators.Thesetwopopulationsarecombinedtoget ∪ .Finally,thepopulation istrimmedbasedonnon‐dominationrankandcrowdingdistancetoensurethatthepopulationisthesamesizeatthebeginningofeachiteration.

4. Results and discussion 

Solomon'sbenchmarksetiswidelyusedinVRP,whichconsistsof56instancescategorizedinto6sets.Eachinstanceincludes1depotand100customers.Accordingtothespatialdistributionof customers, these instances canbedivided into3 categories includingC (clustered),R (ran‐dom)andRC(mixed).Itisassumedthatthetravelspeedofallarcsconformstoaunifiedtime‐dependentstep function.The timewindowofdepot 0, 240 isdivided into fiveintervalsonaverage,andtheaveragespeedofeachintervalis[1,1.6,1.05,1.6,1].Inthispaper,RC108isselectedtotesttheperformanceofthealgorithm.Inthisinstance,customersareclus‐teredandrandomlydistributed,themaximumcapacityofvehicle is200,andtheservicetimeis10.AlltheexperimentsarebasedonMATLABR2017a,andthealgorithmparametersaresetas

follows:Populationsize 100,maximumnumberofiterations 500,crosso‐ver probability 0.5 and mutation probability 0.1 . Vehicle’s fuel cost per unittance 0.5,depreciationcost 50,thetimecostcoefficient is 0.5and 5.Fig.7representsthefirstnon‐dominatedfront,namelyParetofront.Thereare27solutionsinthePa‐retooptimalset.Table1showsthedetaileddata.

TheresultsinFig.7showthatthesetwoobjectives and arenotpositivelycorrelated.Ifthetwoobjectiveschangeinthesamedirection,somesolutionswillbebetteronbothobjectivesandthusthenumberofParetosolutionsbecomessmall.Thereare27solutionsinParetofront,indicatingthatthetwoobjectivesarecontradictorytosomeextent.Foroneobjectivetobecomebetter,itisnecessarytotaketheothertobecomeworse.

To furthercomparetheperformanceof thealgorithm,weusesingle‐objectiveoptimizationalgorithmtooptimize and respectively.Weusetheclassicalgeneticalgorithmtocarryoutthis experiment.The relevantparameters are set asbefore. First, is optimizedand the finaloptimizationresult isshowninFig.8.Theleft figurerepresentstheoptimalroutes,wherethesquareandcirclesrepresentthedepotandcustomersrespectively,andtheright figurestandsfor the changeof theobjective function with thenumberof iterations. Fig. 9 is obtainedbyoptimizing .Thedetailedrouteofeachvehicleandthevaluesof and areshowninTable2andTable3.Finally, and areaddedtogetherasoneobjectiveandoptimized.TheresultsareshowninTable4andFig.10.

Fig.7Paretofront

Page 8: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Zhao, Luo, Han  

208  Advances in Production Engineering & Management 14(2) 2019

Table1DetaileddataofParetofront

SolutionNo.ValuesofParetooptimalsolutions

1 2047.2581 1445.58842 2158.6574 1266.60683 2159.2772 1258.66484 2167.7613 996.13045 2168.3811 988.18846 2184.0555 954.53007 2185.5761 934.04958 2268.4119 583.73999 2268.8158 502.948510 2276.2644 502.652411 2276.8878 499.661312 2287.2728 494.885013 2295.2586 489.350314 2296.7619 480.185115 2316.6997 450.122016 2317.8669 444.933917 2325.2467 370.642718 2337.3527 367.257619 2345.8875 352.228120 2345.8913 348.437021 2453.7982 265.294422 2492.1418 253.848223 2499.1596 220.462224 2500.9599 208.902125 2526.6566 207.199326 2532.5440 195.310327 2545.1208 190.0310

Fig.8Resultswhenoptimizing

Page 9: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Time‐dependent and bi‐objective vehicle routing problem with time windows 

Advances in Production Engineering & Management 14(2) 2019  209

Fig.9Resultswhenoptimizing

Fig.10Resultswhenoptimizing

Table2Detaileddataofoptimalsolutionwhenoptimizing

VehicleNo. Optimalroutesandthevalueof and whenoptimizing 1 0‐49‐19‐23‐21‐24‐22‐91‐02 0‐98‐69‐82‐52‐17‐12‐47‐78‐7‐61‐03 0‐92‐31‐34‐28‐32‐85‐20‐64‐04 0‐68‐96‐94‐93‐56‐84‐95‐05 0‐51‐76‐63‐33‐30‐26‐29‐27‐06 0‐100‐88‐1‐5‐4‐45‐2‐6‐46‐79‐73‐07 0‐15‐16‐9‐11‐97‐13‐59‐65‐83‐08 0‐60‐14‐8‐3‐39‐42‐70‐09 0‐44‐43‐40‐35‐36‐37‐38‐41‐72‐010 0‐58‐10‐53‐55‐81‐54‐011 0‐99‐74‐75‐89‐66‐80‐012 0‐57‐18‐48‐25‐77‐87‐86‐90‐013 0‐50‐62‐67‐71‐0 1564.0496 3909.1340

Page 10: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Zhao, Luo, Han  

210  Advances in Production Engineering & Management 14(2) 2019

Table3Detaileddataofoptimalsolutionwhenoptimizing

VehicleNo. Optimalroutesandthevalueof and whenoptimizing 1 0‐52‐8‐65‐9‐4‐02 0‐85‐67‐97‐56‐80‐03 0‐14‐76‐86‐74‐55‐04 0‐21‐61‐3‐13‐05 0‐5‐73‐22‐28‐06 0‐48‐57‐66‐50‐1‐07 0‐64‐38‐71‐94‐46‐08 0‐27‐10‐72‐09 0‐83‐19‐12‐51‐60‐010 0‐92‐78‐77‐58‐45‐011 0‐29‐35‐2‐91‐012 0‐17‐79‐96‐34‐013 0‐15‐30‐93‐37‐014 0‐47‐95‐49‐26‐015 0‐23‐100‐53‐25‐016 0‐44‐84‐99‐6‐68‐017 0‐18‐87‐32‐018 0‐69‐82‐88‐70‐40‐33‐019 0‐11‐59‐98‐62‐63‐020 0‐7‐20‐36‐021 0‐89‐24‐31‐54‐022 0‐16‐90‐43‐41‐39‐023 0‐75‐81‐42‐0 3572.6748 48.6028

Table4Detaileddataofoptimalsolutionwhenoptimizing

VehicleNo. Optimalroutesandthevalueof and whenoptimizing 1 0‐28‐71‐99‐5‐02 0‐92‐98‐74‐58‐11‐55‐03 0‐33‐83‐17‐93‐04 0‐36‐38‐40‐41‐10‐80‐05 0‐13‐22‐75‐20‐06 0‐39‐35‐96‐29‐07 0‐73‐8‐78‐59‐54‐08 0‐53‐60‐51‐63‐09 0‐6‐49‐43‐010 0‐64‐57‐19‐82‐46‐011 0‐31‐69‐90‐1‐012 0‐76‐84‐56‐95‐67‐70‐013 0‐89‐21‐97‐23‐014 0‐44‐42‐3‐25‐015 0‐79‐24‐47‐016 0‐62‐81‐2‐37‐017 0‐16‐66‐85‐34‐018 0‐15‐9‐87‐86‐52‐32‐019 0‐14‐12‐88‐30‐26‐020 0‐7‐4‐27‐91‐021 0‐77‐48‐18‐45‐100‐68‐022 0‐72‐61‐94‐50‐65‐0 3115.7205 132.0221

According to Table 1, Table 2 and Table 3,when is optimized, the optimal solution

1564.0496and the corresponding 3909.1340; when is optimized, the result is 3572.6748and 48.6028. Obviously, when optimization is carried out with one objective,the other objectivewill be significantlyworse,which is consistentwith the previous analysisthat and arecontradictory.Forexample,when isoptimized,thevalueofoptimalsolutionis1564.0496,whichisbetterthanallthesolutionsinParetofront.However,thecorrespondingis3909.1340,whichisworsethantheworstinParetofront,i.e.1445.5884.Thesamegoesfor

thesituationwhen isoptimized.FromFig.8andFig.9,wecanalsofindthatwhen isopti‐

Page 11: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Time-dependent and bi-objective vehicle routing problem with time windows

mized, the routes with shorter distance is preferred. When 𝑚𝑚2 is optimized, the routes with shorter interval between time windows of customers are preferred. Above all, it can be conclud-ed that not as extreme as the single-objective optimal solution, bi-objective optimization is a trade-off between two objectives.

Additionally, based on Table 1 and Table 4, when we regard 𝑚𝑚1 and 𝑚𝑚2 as one objective, the value of optimal solution is 𝑚𝑚1 = 3115.7205 and 𝑚𝑚2 = 132.0221, which is close to the No. 1 solu-tion in Pareto front. Moreover, 132.0221 is better than any other solutions in Pareto front while 3115.7205 is worse than the all. This is because the impact of 𝑚𝑚1 and 𝑚𝑚2 on the total cost is not the same. When we add the two objectives together, the algorithm will give priority to optimiz-ing the objective that has a greater impact on total cost, namely 𝑚𝑚2. We can also see that no mat-ter the objective is 𝑚𝑚1 or 𝑚𝑚2 or 𝑚𝑚1 + 𝑚𝑚2, the optimal solution cannot dominate any solutions in the Pareto front, indicating that the optimal solutions obtained by NSGA-II is competitive. From the above analysis, we can conclude that the algorithm adopted in this paper is effective, and the results obtained by Pareto approach are credible.

5. Conclusion The VRP has become a classical optimization problem in recent decades due to its high computa-tional complexity and practical value. In the present study, a time-dependent and bi-objective vehicle routing problem with time windows (TD-BO-VRPTW) is proposed based on the existing research, and a bi-objective mathematical model is formulated. The calculation process of travel time under time-dependent conditions and the main loop of bi-objective optimization algorithm are given. In the numerical experiment, an instance in Solomon benchmark set is selected to test the performance of our algorithm. The objectives are to minimize transportation costs and time costs. Meanwhile, two objectives are optimized separately and are added together for optimiza-tion for making the comparison. It is shown that the results of bi-objective optimization are competitive.

Further research is needed. For example, there are many complex factors that need to be con-sidered, such as nonhomogeneous fleet and multiple depots. The definition of time-dependency can also be extended to random or regional time-dependency, etc. In addition, related studies have demonstrated that NSGA-II is less efficient when the number of objective increases and there are some difficulties in balancing convergence and diversity preservation. Future research can test the algorithm performance of different multi-objective optimization algorithms. Moreo-ver, in the case of an emergency, there may be path failure and reconnection or other effects, which are also the focus of future research.

References [1] Dantzig, G.B., Ramser, J.H. (1959). The truck dispatching problem, Management Science, Vol. 6, No. 1, 80-91, doi:

10.1287/mnsc.6.1.80. [2] Zhu, X.N., Yan, R., Zhang, Q. (2015). A promoted hybrid heuristic algorithm for two-dimensional multi-depots

vehicle routing problem, International Journal of Simulation Modelling, Vol. 14, No. 3, 499-510, doi: 10.2507/ IJSIMM14(3)CO11.

[3] Chiang, T.-C., Hsu, W.-H. (2014). A knowledge-based evolutionary algorithm for the multiobjective vehicle rout-ing problem with time windows, Computers & Operations Research, Vol. 45, 25-37, doi: 10.1016/j.cor.2013. 11.014.

[4] Solomon, M.M. (1987). Algorithm for the vehicle routing and scheduling problems with time window constraints, Operations Research, Vol. 35, No. 2, 254-265, doi: 10.1287/opre.35.2.254.

[5] Cao, Q.K., Yang, K.W., Ren, X.Y. (2017). Vehicle routing optimization with multiple fuzzy time windows based on improved wolf pack algorithm, Advances in Production Engineering & Management, Vol. 12, No. 4, 401-411, doi: 10.14743/apem2017.4.267.

[6] Wu, D.Q., Dong, M., Li, H.Y., Li, F. (2016). Vehicle routing problem with time windows using multi-objective co-evolutionary approach, International Journal of Simulation Modelling, Vol. 15, No. 4, 742-753, doi: 10.2507/IJSIMM15(4)CO19.

[7] Yu, Y., Wang, S., Wang, J., Huang, M. (2019). A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows, Transportation Research Part B: Methodological, Vol. 122, 511-527, doi: 10.1016/j.trb.2019.03.009.

Advances in Production Engineering & Management 14(2) 2019 211

Page 12: and bi objective vehicle routing problem...Time‐dependent and bi‐objective vehicle routing problem with time windows Advances in Production Engineering & Management 14(2) 2019

Zhao, Luo, Han

[8] Miranda, D.M., Conceição, S.V. (2016). The vehicle routing problem with hard time windows and stochastic trav-el and service time, Expert Systems with Applications, Vol. 64, 104-116, doi: 10.1016/j.eswa.2016.07.022.

[9] Geiger, M.J. (2008). Genetic algorithms for multiple objective vehicle routing, arXiv:0809.0416, from https://arxiv.org/abs/0809.0416, accessed February 1, 2019.

[10] Barán, B., Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing problem with time win-dows, In: Proceedings of the 21st IASTED International Conference on Applied Informatics, Innsbruck, Austria, 97-102.

[11] Tan, K.C., Chew, Y.H., Lee, L.H. (2006). A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows, Computational Optimization and Applications, Vol. 34, 115-151, doi: 10.1007/ s10589-005-3070-3.

[12] Ombuki, B., Ross, B.J., Hanshar, F. (2006). Multi-objective genetic algorithms for vehicle routing problem with time windows, Applied Intelligence, Vol. 24, No. 1, 17-30, doi: 10.1007/s10489-006-6926-z.

[13] Garcia-Najera, A., Bullinaria, J.A. (2011). An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows, Computers & Operations Research, Vol. 38, No. 1, 287-300, doi: 10.1016/ j.cor.2010.05.004.

[14] Qi, Y., Hou, Z., Li, H., Huang, J., Li, X. (2015). A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows, Computers & Operations Research, Vol. 62, 61-77, doi: 10.1016/ j.cor.2015.04.009.

[15] Iqbal, S., Kaykobad, M., Rahman, M.S. (2015). Solving the multi-objective vehicle routing problem with soft time windows with the help of bees, Swarm and Evolutionary Computation, Vol. 24, 50-64, doi: 10.1016/j.swevo. 2015.06.001.

[16] Xu, H., Fan, W., Wei, T., Yu, L. (2008). An Or-opt NSGA-II algorithm for multi-objective vehicle routing problem with time windows, In: Proceedings of 2008 IEEE International Conference on Automation Science and Engineer-ing, Arlington, USA, 310-314, doi: 10.1109/coase.2008.4626505.

[17] Castro, J.P., Landa-Silva, D., Pérez, J.A.M. (2009). Exploring feasible and infeasible regions in the vehicle routing problem with time windows using a multi-objective particle swarm optimization approach, In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., Moreno-Vega, J.M., Pelta, D.A. (eds.), Nature inspired cooperative strategies for optimization, (NICSO 2008), Studies in Computational Intelligence, Vol. 236, Springer, Berlin, Heidelberg, Germany, 103-114, doi: 10.1007/978-3-642-03211-0_9.

[18] Malandraki, C., Daskin, M.S. (1992). Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms, Transportation Science, Vol. 26, No. 3, 185-200, doi: 10.1287/trsc.26.3.185.

[19] Hill, A.V., Benton, W.C. (1992). Modelling intra-city time-dependent travel speeds for vehicle scheduling prob-lems, Journal of the Operational Research Society, Vol. 43, No. 4, 343-351, doi: 10.1038/sj/jors/0430406.

[20] Malandraki, C., Dial, R.B. (1996). A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem, European Journal of Operational Research, Vol. 90, No. 1, 45-55, doi: 10.1016/0377-2217(94)00299-1.

[21] Ichoua, S., Gendreau, M., Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent travel times, European Journal of Operational Research, Vol. 144, No. 2, 379-396, doi: 10.1016/s0377-2217(02)00147-9.

[22] Fleischmann, B., Gietz, M., Gnutzmann, S. (2004). Time-varying travel times in vehicle routing, Transportation Science, Vol. 38, No. 2, 160-173, doi: 10.1287/trsc.1030.0062.

[23] Huang, Y., Zhao, L., Van Woensel, T., Gross, J.-P. (2017). Time-dependent vehicle routing problem with path flexi-bility, Transportation Research Part B: Methodological, Vol. 95, 169-195, doi: 10.1016/j.trb.2016.10.013.

[24] Çimen, M., Soysal, M. (2017). Time-dependent green vehicle routing problem with stochastic vehicle speeds: An approximate dynamic programming algorithm, Transportation Research Part D: Transport and Environment, Vol. 54, 82-98, doi: 10.1016/j.trd.2017.04.016.

[25] Reil, S., Bortfeldt, A., Mönch, L. (2018). Heuristics for vehicle routing problems with backhauls, time windows, and 3D loading constraints, European Journal of Operational Research, Vol. 266, No. 3, 877-894, doi: 10.1016/ j.ejor.2017.10.029.

[26] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 182-197, doi: 10.1109/4235.996017.

212 Advances in Production Engineering & Management 14(2) 2019