50
The love of learning, the sequestered nooks, And all the sweet serenity ofbooks - Henry Wadsworth Longfellow

And all the sweet serenity ofbooks Henry Wadsworth Longfellow …shodhganga.inflibnet.ac.in/bitstream/10603/946/18/18_references.pdf · And all the sweet serenity ofbooks - Henry

  • Upload
    lekhanh

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

The love of learning, the sequestered nooks, And all the sweet serenity ofbooks

- Henry Wadsworth Longfellow

References

References

1. Oldach DW. Richard RE, Borza EN, Benitez RM. A mysterious death. N Engl J

Med 1998;338(24): 1764-9

2. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World

Health Organ 2004;82(5):346-53

3. Forsyth JRL. Typhoid and paratyphoid. In: Collier L, Balow A, Sussman M,

editors. Topley and Wilsons' microbiology and microbial infections. 9'h Ed. Great

Britain: Arnold; 1998. p. 459-78

4. Levine MM, Stein MB. Shigella, Salmonella typhi and Escherichia coli: effects of

microbes on the immune system. In: Cunningham MW. Fujinami RS, editors.

Effects of microbes on the immune system. Phi1adelphia:Lippincott Williams and

Wilkins; 2000.p. 171-94

5 . Murray PR, Baron El, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of

clinical microbiology. 7Ih Ed. Washington DC: ASM Press; 1999

6. Yu VL, Merigan TC Jr. B.*rriere SL, editors. Antimicrobial therapy and vaccines.

Baltimore (Maryland): William & Wilkins; 1999

7. Bitar R. Tarpley I. Intestinal perforation in typhoid fever: a historical and state-of-

the-art review. Rev Infect Dis 1985:7(2):2.57-7 1

8. Nelson KE. Early history of infectious diseaae- epidemiology and control of

infectious disease. In: Nelson KE, William CM. Graham NMH, editors. Infectious

Disease Epidemiology- Theory and Practice. Maryland: Aspen Publications Inc;

2M)I. p. 3-15

9. Lee TP. Hoffman SL, Typhoid fever. In: Strickland GT, editor. Hunters tropical

medicine and emerging infectious disease. 8" Ed. Philadelphia: WB Saunders Co;

2000. p. 47 1-84

10. Ivanoff B, k v i n e MM. Typhoid fever: continuing challenges from a resilient

bacterial foe. Bull Inst Pasteur 1997;95:129-42

I I. Miller IS. Pegues DA. Salmonella species, including Salmonella cyphi. In:

Mandell GL, Bennett JE, Dolin R, editors. Mandell. Douglar and Bennetts

References

principles and practice of infectious disease. 5Ih Ed. Philadelphia: Churchill

Livingstone; 2000. p. 2344-63

12. Baumler AJ, Tsolis RM, Ficht TA. Adams LG. Evolution of host adaptation in

Salmonella enterica. lnfect lmmun 1998;66(10):4579-87

13. Kidgell C. Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, Achtman M.

Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000

years old, lnfect Genet Evol2002;2(1):39-45

14. Parkhill J, Dougan G, James KD. Thomson NR, Pickard D. Wain J,et al.

Complete genome sequence of a multiple drug resistant Salmonella enterica

serovar Typhi CT18. Nature 2001 ;413(6858):848-52

15. McClelland M. Sanderson KE, Clifton SW, Latreille P, Ponvollik S, Sabo A, et

al. Comparison of genome degradation in Paratyphi A and Typhi, human-

restricted serovars of Salmonella enterica that cause typhoid. Nat Genet

2004;36( 12): 1268-74

16. Thomson N. Baker S. Pickard D, Fookes M, Anjum M, Hamlin N, et al. The role

of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol

Biol2004;339(2):279-300

17. Calva E. Ordonez LG, Fernandez-Mora M. Santana FJ, Bobadilla M, Puente JL.

Distinctive IS200 insertion between gyrA and rcsC genes in Salmonella typhi. J

Clin Micmbiol 1997;35(12):3048-53

18. Deng W, Liou SR, Piunkett G 3rd. Mayhew GF, Rose DJ, Burland V, et al.

Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and

CT18.J Bacterial 2003; 185(7):2330-7

19. Boyd EF. Ponvollik S, Blackmer F, McClelland M. Differences in gene content

among Salmonella enterica serovu typhi isolates. J Clin Microbial

2003;41(8):3823-8

20. Kidgell C, Pickard D, Wain J, James K, Diem Nga LT, Diep TS, et a].

Characterisation and distribution of a cryptic Salmonella typhi plasmid pHCM2.

Plasmid 2002;47(3): 159-7 1

21. Reeves M W, Evins G M, Heiba A A, Plikaytis B D, Farmer J J 111. Clonal nature

of Salmonella typhi and is genetic relatedness to other salmonellae as shown by

References

multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb.

nov. J Clin Microbiol 1989;27:313-20

22. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA, Kopecko DJ, et al.

Evolutionary genetic relationships of clones of Salmonella serovars that cause

human typhoid and other enteric fevers. Infect Immun 1990;58:2262-75

23. Fica AE, Prat-Miranda S, Fernandez-Ricci A, D'Ottone K, Cabello FC. Epidemic

typhoid in Chile: analysis by molecular and conventional methods of Salmonella

typhi strain diversity in epidemic (1977 and 1981) and nonepidemic (1990) years.

J Clin Microbiol 1996:34(7): 1701-7

24. Thong KL, Puthucheary SD. Pang T. Genome size variation among recent human

isolates of Salmonella typhi. Res Microbiol 1997; 148(3):229-35

2 5 . Thong KL, Goh YL. Yasin RM. h u MG, Passey M, Winston G, et al. Increasing

genetic diversity of Salmonella enterica serovar typhi isolates from Papua New

Guinea over the period from 1992 to 1999. J Clin Microbiol 2002;40( 11):4156-60

26. Pang T. Genetic dynamics of Salmonella typhi--diversity in clonality. Trends

Microbiol 1998;6(9):339-42

27. Liu SL, Sanderson KE. Highly plastic chromosomal organization in Salmonella

typhi. Proc Natl Acad Sci U S A 1996;93(19):10303-8

?I. Liu SL, Sanderson KE. Rearrangements in the genome of the bacterium

Salmonella typhi. Roc Natl Acad Sci U S A 1995;92(4):1018-22

29. Salmonella. In: Cruickshank R, Deguid JP, Marimion BP, Swain RHA, editors.

Medical microbiology: the practice of medical microbiology. 12' Edn.

Edinburgh: Churchill Livingstone; 1975. p 221-237

30. Quintiies BR. Leal NC. Reis EM, Fonseca EL. Hofer E. Conventional and

molecular typing of Salmonella typhi strains from Brazil. Rev lnst Med Trop Sao

Paulo 2002;44(6):3 15-9

31. Thong KL, Cheong YM, Puthucheiuy S, Koh CL. Pang T. Epidemiologic analysis

of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel

electrophoresis. J Clin Microbiol 1994;32(5): 1 135-41

References

32. Tian K, Kan B, HU W, Tong Y, Lu T. [Diversity of 16s rDNA ribotypes of the

Salmonella typhi strains isolated in Guizhou province] Zhonghua Liu Xing Bing

Xue Za Zhi 2002;23(1):50-3

33,Hermans PW, Saha SK, van Leeuwen WJ, Verbrugh HA, van Belkum A,

Goessens WH. Molecular typing of Salmonella typhi strains from Dhaka

(Bangladesh) and development of DNA probes identifying plasmid-encoded

multidrug-resistant iso1ates.J Clin Microbiol 1996;34(6): 1373-9

33. Liu Y, Lee MA, Ooi EE, Mavis Y, Tan AL. Molecular typing of Salmonella

enterica serovar typhi isolates from various countries in Asia by a multiplex PCR

assay on variable-number tandem repeats. J Clin Microbiol 2003;41(9):4388-94

35. Nair S, Schreiber E. Thong KL, Pang T, Altwegg M. Genotypic characterization

of Salmonella typhi by amplified fragment length polymorphism fingerprinting

provides increa~ed discrimination as compared to pulsed-field gel electrophoresis

and ribotyping. J Microbiol Methods 2000;41(1):35-43

36. Kingsley RA. Baumler AJ.Host adaptation and the emergence of infectious

diseaw: the Salmonella paradigm.Mol Microbiol 2000;36(5): 1006-14

37. Parry CM. Typhoid Fever. Curr Infect Dis Rep 2004:6(1):27-33

38. Shere KD, Goldberg MB. Rubin RH. Salmonella Infections. 1n:Gorbach RL,

Btlrtlett JG, Blacklow NR (Eds.) Infectious diseases. 2" a n . Philadelphia: WB

Saunders Company; 1998. p. 699-7 12

39. Ga\ern MH. Dolmans WM. Keuter MM, Djokomoeljanto RR. Poor food hygiene

and housing as risk factors for typhoid fever in Sernarang, Indonesia. Trop Med

Int Health 200 1 ;6(6):484-90

40. Sinha A, Sazawal S, Kumar R, Sood S, Reddaiah VP, Singh B, et al. Typhoid

fever in children aged less than 5 years. Lancet 1999; 354: 734-37

4I.Lin FY. Vo AH, Phan VB, Nguyen 7T, Bryla D, Tran CT, et al. Tbe

epidemiology of typhoid fever in the Dong Thap Province, Mekong Delta region

of Vietnam. Am J Trop Med Hyg 2000;62(5):644-8

42. Bhan MK, Bahl R, Bhatnagar S. Typhoid and paratyphoid fever. Lancet

2005;366(9487):749-62

References

43. Prevalence and Incidence of Typhoid fever-WrongDiagnosis.com downloaded

from http:llwww.wrongdiagnosis.com~t~typhoid~fever/prevaencehtm on

26.03.06

44. Brooks WA. Hossain A, Goswami D, Nahar K, Alam K, Ahmed N, et al.

Bacteremic typhoid fever in children in an urban slum, Bangladesh. Emerg Infect

Dis 2005: 1 1 (2):326-9

45. Background document: The diagnosis, treatment and prevention of typhoid fever

downloaded from

http://www.who.int/vaccine~re\earch/documentsletyphoiddiagnosispdf on

26.03.06

46. Clegg A, Passey M, Omena M. Karigifa K, Suve N. Re-evaluation of the Widal

agglutination test in response to the changing pattern of typhoid fever in the

highlands of Papua New Guinea. Acta Trop 1994;57(4):255-63

47. Lin M, Dong B, Tang 2. Gong J , Li C. Wang M, et al. Analysis of data on

surveillance of typhoid and paratyphoid fever in Guangxi, 2001-4 Roceedings of

the 6' International Conference on Typhoid Fever and Other Salmonelloses.

2005, November 12-14; Guilin, China

48. Siddiqui FJ. Rabbani F, Hwan R, Nizami SQ, Bhutta ZA. Typhoid fever in

children: some epidemiological considerations from Karachi, Pakistan. Int J lnfect

Dis 2006; 10(3):2 15-22

4Y, Stock 1. Wiedemann 8. Naturil antibiotic susceptibility of Salmonella enterica

swains. Int I Antimicrob Agents 2000; 16(3):2 1 1-7

50. Olane J, Galindo E. Salmonella typhi resistant to chloramphenicol, ampicillin,

and other antimicrobial agents: strains isolated during an extensive typhoid fever

epidemic in Mexico. Antimicrob Agents Chemother 1973:4(6):597-60 1

5l.Panicker CKJ. Vimala KN. Transferable chlorarnphenicol resistance in

Salmonella typhi. Nature 1972;239: 109-1 I0

52. Brown JD. Duong Hong M, Rhoades ER.Chloramphenicol-resistant Salmonella

typhi in Saigon, JAMA 1975;23 l(2): 162-6

53.Rowe B, Ward LR, Threlfall EJ. Multidmg-resistant Salmonella typhi: a

worldwide epidemic. Clin lnfect Dis 1997;24 Suppl I:S106-Y

References

54. Schwalbe RS, Hoge CW, Morris JG Jr, O'Hanlon PN, Crawford RA, Gilligan PH.

In vivo selection for transmissible drug resistance in Salmonella typhi during

antimicrobial therapy. Antimicrob Agents Chemother 1990;34(1):161-3

55. Wain J, Kidgell C. The emergence of multidmg resistance to antimicrobial agents

for the treatment of typhoid fever. Trans R Soc Trop Med Hyg 2004;98(7):423-30

56. Kohbata S, Takahashi M, Yabuuchi E. Lactose-fermenting, multiple drug-

resistant Salmonella typhi strains isolated from a patient with postoperative

typhoid fever. J Clin Microbiol 1983; 18(4):920-5

.57. Smith HW, Parsell Z. Green P. Thermosensitive HI plasmids determining citrate

utilization. J Gen Microhiol 1978:109(2):305-1 1

58. Toro CS, Lobos SR. Calderon I, Rodriguez M, Mora GC. Clinical isolate of a

parinless Salmonella typhi resistant to high levels of chloramphenicol.

Antimicrob Agents Chemother 1990;34(9): 17 15-9

59. Beeching NJ. Hart CA, Duerden BI. Tropical and exotic infections. Proceedings

of the 5th Liverpool Tropical School Bayer Symposium on Microbial Diseases.

14 February 1998. J Med Microbiol 2000;49(1):5-27

60. Deshmukh CT. Ndkarni UB, K m d e SC. An analysis of children with typhoid

fever admitted in 199 1. J Postgrad Med 1994;40(4):204-7

61. Koul PB. Murali MV, Shanna PP, Ghai OP, Ramchandran VG, Talww V.Multi

drug resistant Salmonella typhi infection: clinical profile and therapy, Indian

Pediatr 199 1;28(4):357-6 1

62. Taylor DE. Churnpitar JC, Goldstein F. Variability of IncHIl plasmids from

Salmonella typhi with special reference to Peruvian plasmids encoding

resistance to trimethoprim and other antibiotics.

Antimicrob Agents Chemother 1985;28(3):452-5

63. Sherbume CK. Lawley TD. Gilmour MW, Blanner FR, Burland V, Grotbeck E, et

al. The complete DNA sequence and analysis of R27, a large lncH1 plasmid from

Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res

2000;28(10):2 177-86

References

64. Tassios IT. Vatopoulos AC, Mainas E, Gennimata D, Papadakis J, Tsiftsoglou A,

et al. Molecular analysis of ampicillin-resistant sporadic Salmonella typhi and

Salmonella paratyphi B clinical isolates. Clin Microbiol lnfect 1997;3(3):3 17-23

65. Ben Hassen A, Meddeb M, Ben Chaabane T, Zribi M, Ben Redjeb S.

Characteristics of the antibiotic resistance plasmid in Salmonella typhi isolated in

Tunis in 1990. Ann Biol Clin (Paris) 1994;52(2): 133-6

66. Shanahan PM, Karamat KA, Thomson CJ, Amyes SG. Characterization of multi-

drug resistant Salmonella typhi isolated from Pakistan. Epidemiol Infect

2000;124(1):9-16

67. Mirza S, Kariuki S. Mamun KZ, Beeching NJ, Hart CA. Analysis of plasmid and

chromosomal DNA of multidmg-resistant Salmonella enterica semvar typhi from

Asia. J Clin Microbiol2000;38(4): 1449-52

68. Ling JM, Lo NW, Ho YM, Karn KM, Hoa NT, Phi LT, et al. Molecular methods

for the epidemiological typing of Salmonella enterica serotype Typhi from Hong

Kong and Vietnam. J Clin Microbiol 2000;38(1):292-300

69. Shanahan PM. Jesudawn MV, Thomson CJ, Amyes SG. Molecular analysis of

and identification of antibiotic resistance genes in clinical isolates of Salmonella

typhi from India. J Clin Micmbiol 1998;36(6): 1595-600

70. Thong KL. Bhuna 2.4. Pang T. Multidmg-resistant strains of Salmonella enterica

wrotype typhi are genetically homogenous and coexist with antibiotic-sensitive

rtrains as distinct, independent clones. Int J Infect Dis 2000:4(4): 194-7

71. Lee K, Yong D, Yum JH. Lim YS, Kim HS, Lee BK. et al. Emergence of

multidrug-resistant Salmonella enterica serovar typhi in Korea. Antimicrob

Agents Chemother 2004;48( 1 1):4 130-5

72. Goldstein FW, Chumpitaz JC, Guevara JM, Papadopoulou B, Acar JF, Vieu JF.

Plasmid-mediated resistance to multiple antibiotics in Salmonella typhi. J lnfect

Dis 1986;153(2):261-6

73. Ackers MI., Puhr ND, Tauxe RV, Mintz ED. Laboratory-based surveillance of

Salmonella serotypt mhi infections in the United States: antimicrobial

resistance on the rise. JAMA 2000;283(20):2668-73

References

74. Threlfall U, Skinner JA, Ward LR. Detection of decreased in vitro susceptibility

to ciprofloxacin in Salmonella enterica serotypes Typhi and Paratyphi A. J

Antimicrob Chemother 200 1 ;48(5):740- 1

75. Coovadia YM, Gathiram V, Bhamjee A, Garratt RM, Mlisana K, Pillay N, et al.

An outbreak of multiresistant Salmonella typhi in South Africa. Q J Med

1992;82(298):91- 100

76, Mills-Robertson F. Addy ME, Mensah P. Crupper SS. Molecular characterization

of antibiotic resistance in clinical Salmonella typhi isolated in Ghana. FEMS

Microbiol Lett 2002;2 15(2):249-53

77. Kariuki S. Gilks C, Revathi G. Hart CA. Genotypic analysis of multidrug-

resistant Salmonella enterica serovar typhi, Kenya. Emerg Infect Dis

2000;6(6):649-5 1

78. Mermin JH, Villar R, Carpenter J. Roberts L, Samaridden A, Gasanova L, et al. A

massive epidemic of multidrug-resistant typhoid fever in Tajikistan associated

with consumption of municipal water. J Infect Dis 1999;179(6):1416-22

79. Guha S, Jalan BY, Dey S, h o w JM, Wilson G. Shivananda PG. Salmonella

bacteraemia in Pokhara: emergence of antibiotic resistance. Nepal Med Coll J

2005;7(1):23-5

XO. Mamun KZ, Tabassum S. Ashna SM, Hart CA. Molecular analysis of multi-drug

resistant -Salmonella typhi from urban paediatric population of Bangladesh.

Bangladesh Med Res Counc Bull ?004;30(3):81-6

8 1 . Le TA, Lejay-Collin M. Grimon1 PA. Hoang TL, Nguyen TV, Grimont F, et al.

Endemic, epidemic clone of Salmonella enterica serovar typhi harboring a single

multidnrg-resistant placmid i n Vietnam between 1995 and 2002. J Clin Microbiol

2004;42(7):3094-9

82. Phipps M. Pang T, Koh CL. Puthucheary S. Plasrnid incidence rate and

conjugative chloram~cnicol and tetracycline resistance plasmids in Malaysian

isolates of Salmonella typhi. Microbiol lmmunol 1991;35(2):157-61

83. Malik AS. Complications of bacteriologically confirmed typhoid fever in

children. J Trop Pediatr 2002;48(2): 102-8

viii

References

84. Tjaniadi P, Lesmana M, Subekti D. Machpud N, Komalarini S, Santoso W, et al.

Antimicrobial resistance of bacterial pathogens associated with diarrheal patients

in Indonesia. Am J Trop Med Hyg 2003;68(6):666-70

85. Pillai PK, Prakash K. Current status of drug resistance & phage types of

Salmonella typhi in India. Indian J Med Res 1993;97:154-8

86. Kamili MA, Ali G. Shah MY, Rashid S, Khan S, Allaqaband GQ. Multiple drug

resistant typhoid fever outbreak in Kashmir Valley. Indian I Med Sci 1993; 47

(6): 147-5 1

87. Sabhenval U, Chdudhary U, Saini S. Multidrug-resistant Salmonella typhi in

Haryana in 1989-90. Indian J Med Res 1992;95: 12-3

88, Sharma A, Gathwala G. Clinical profile and outcome in enteric fever, Indian

Pediatr 1993;30( 1 ):47-50

89. Rabhakar H, Kaur H, Lal M. Prevalence of multi-drug resistant Salmonella typhi

in Ludhiann Punjab.lndian J Med Sci 1996;50(8):277-9

90. Dar L. Gupta BL. Rattan A. Bhujwala RA, Shtiniwas. Multidrug resistant

Salmonella typhi in Delhi. Indian J Pediatr 1992;59(2):221-4

91. Halder KK. Dalal BS, Ghose E, Smyal S. Chloramphenicol resistant Salmonella

typhi: the cause of recent out-break of enteric fever in Calcutta. Indian J Pathol

Microbiol 1992;35( 1 ): 1 1-7

92. K m a k e r S. Biswas D. Shaikh NM, Chatterjee SK, Kataria VK. Kumar K. Role

of a large plasmid of Salmonella typhi encoding multiple drug resistance. J Med

Microbiol 199 1;34(3): 149-5 1

93. Talawadekar NN, Vadher PJ, Antani DU. Kale VV. Kamat SA.Chloramphenicol

resistant Salmonella species isolated between 1978 and 1987. J Postgrd Med

1989;35(2):79-82

94. Sheorey HS. Kaundinya DV. Hulyalkar VS, Deshpande AK. Multi drug resistant

Salmonella typhi in Bombay, lndian J Pathol Microbiol 1993;36( 1):8- 12

95. Rodrigues C. Mehta A, Mehtar S. Blackmore PH, Hakimiym A, Fazalbhoy N, et

al. Chloramphenicol resistance in Salmonella typhi. Report from Bombay. J

Assoc Physicians India 1992;40(11):729-32

References

96. Sanghavi SK, Mane MP, Niphadkar KB. Multidrug resistance in Salmonella

serotypes. Indian J Med Microbial l999;17 (2):88-90

97. Bhat KG, Andrade AT, Karadesai SG, Hemashettar BM, Patil CS. Antimicrobial

susceptibility of Salmonella typhi to quinolones & cephalosporins. Indian J Med

Res 1998; 107:247-5 1

98. Sridhar H, Macaden R, Lakshmi Devi MC, Bhat P.Chloramphenicol resistant

Salmonella typhi in Bangalore. Ind J Med Res 1983;78:3 14-1 8.

99. Jesudacon MV, John TJ. Plasmid mediated multidrug resistance in Salmonella

typhi. Indian J Med Res 1992;95:66-7.

100. Rao PS. Rajashekar V. Varghese GK, Shivananda PG. Emergence of multidrug-

resistant Salmonella typhi in rural southern India. Am J Trop Med Hyg

1093;48(1): 108-1 1

101. Rathish KC. Chandrashekar MR, Nagesha CN. Mullidrug resistant Salmonella

typhi in Bangalore. south India. Indian J Med Sci 1994;48(4):85-8

102. Sankaran K, Parvathavarthini S, Balasubramanian R. Ganesan TS, Natarajan

MK.Typhoid fever caused by chloramphenicol-resistant organisms in

Pondicherry. J Assoc Physicians India 1982;30(4):233

103. Rao RS, Amarnath SK, Sujrtha S. An outbreak of typhoid due to multidrug

resistant Salmonella typhi in Pondicherry. Trans R Soc Trop Med Hyg

lCW2;86(2):204-5

IM. Harish BN. Rashanth K. Multidrug resistant Salmonella typhi with special

reference to invitro activity of ciprofloxacin. Biomedicine 1998;18(2):62-6

105. Libeni A, Loiacono L. Ciprofloxacin versus chloramphenicol in the treatment

of salmonella infection.Int J Antimicroh Agents 2000;16(3):347-8

106. Pany CM. The treatment of multidrug-resistant and nalidixic acid-resistant

lyphoid fever in Vier Nam. Trans R SCC Trop Med Hyg 2004;98(7):413-22

107. Ruiz 1. Mechanisms of resistance to quinolones: target alterations, decreased

accumulation and DNA gyrase protection.1 Antimicrob Chemother

2003;51(5):1 109-17.

108. Hawkey PM. Mechanisms of quinolone action and microbial response. J

Antimicrob Chemother 20033 1 Suppl 1 :29-35

References

109. Horowitz DS, Wang JC. Mapping the active site tyrosine of Escherichia coli

DNA gyrase. J Biol Chem 1987;262(11):5339-44

110. Shen LL, Kohlbrenner WE, Weigl D, Baranowski J. Mechanism of quinolone

inhibition of DNA gyrase. Appearance of unique nortloxacin binding sites in

enzyme-DNA complexes. J Biol Chem 1989;264(5):2973-8

1 11. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the Cquinolones.

Microbiol Mol Biol Rev 1997;6 1 (3):377-92

112. Sonstein SA. Burnham JC. Effect of low concentrations of quinolone antibiotics

on bacterial virulence mechanisms. Diagn Microbiol Infect Dis 1983;16:277-89

113. Michel-Briand Y, Uccelli V, Lapone JM, Plesiat P. Elimination of plasmids

from Enterobacteriaceae by 4-quinolone derivatives. J Antimicrob Chemother

1986; 18(6):667-74

114. Riesenfeld C, Everett M, Piddock W. Hall BG. Adaptive mutations produce

resistance to ciprofloxacin. Ant~microb Agents Chemother 1997;41(9):2059-60

115. Bisognano C, Vaudaux P, Rohner P. Lew DP, Hooper DC. Induction of

fibronectin-binding proteins and increased adhesion of quinolone-resistant

Staphylococcus aureus by subinhibitory levels of ciprofloxacin. Antimicrob

Agents Chemother 2MW);44(6): 1428-37

116. DuPont HL. Quinolones in Salmonella typhi infection. Drugs 1993;45 Suppl

3: l 19-24

117. Rowe B, Ward LR, Threlfall U. Ciprofloxacin and typhoid fever. Lancet 1992;

339(8795):740

118. Chandel DS, Chaudhry R. Enteric fever treatment failures: a global concern.

Emerg Infect Dis 2001;7(4):762-3

119. Dutta P, Mitra U, Dutta S, Saha MR. Dey A. Roy K, et al. Ciprofloxacin

susceptible Salmonella typhi with treatment failure. J Trop Pediatr 2001;47:252-3

120. Slinger R, Desjardins M, McCarthy AE. Ramotar K, Jessamine P, Guibord C,

Toye B. Suboptimal clinical response to ciprofloxacin in patients with enkric

fever due to Salmonella spp. with reduced fluoroquinolone susceptibility: a case

series. BMC Infect Dis 2004;4:36

References

121. Rupali P, Abraham OC, Jesudason MV, John TJ, Zachariah A, Sivaram S, et al.

Treatment failure in typhoid fever with ciprofloxacin susceptible Salmonella

enterica serotype Typhi. Diagn Microbiol Infect Dis 2004;49(1):1-3

122, Mandal S, Mandal MD, Pal NK. Ofloxacin minimum inhibitory concentration

versus disk diffusion zone diameter for Salmonella enterica serovar Typhi

isolates: problems in the detection of ofloxacin resistance. Jpn .I lnfect Dis

2003;56(5-6):2 10-2

123. Renuka K. Kapil A, Kabra SK, Wig N, Das BK, Prasad VV, et al. Reduced

susceptibility to ciprofloxacin and gyta gene mutation in North Indian strains of

Salmonella enterica serotype Typhi and serotype Pwatyphi A. Microb Drug

Resist 2004; lO(2): 146-53

124. Kadhiravan T. Wig N. Kapil A, Kabra SK, Renuka K, Misra A. Clinical

outcomes in typhoid fever: adverse impact of infection with nalidixic acid-

resistant Salmonella typhi. BMC lnfect Dis 2005;5(1):37

125. Crump JA, Barrett TJ, Nelson IT, Angulo FJ. Reevaluating fluoroquinolone

breakpoints for Salmonella enterica serotype Typhi and for non-Typhi

salmonellae. Clin lnfect Dis 2003;37(1):75-81

126. Allen KJ, Poppe C. Phenotypic and genotypic characterization of food animal

isolates of Salmonella with reduced sensitivity to ciprofloxacin. Microb Drug

Resist 2002;8(4):375-83

127. Hakanen A. Kotilainen P, Jalava J, Siitonen A, Huovinen P. Detection of

decreased fluoroquinolone susceptibility in Salmonellas and validation of

nalidixic acid screening test. 1 Clin Microbiol 1999;37(11):3572-7

128. Oliveira CJ, Carvalho LF, Fernandes SA, Tavechio AT. Menezes CC,

Domingues FJ Jr. Antimicrobial resistance of Salmonella serotypes isolated from

slaughter-age pigs and environmental samples. Microb Drug Resist

2002;8(4):407- 1 1

129. Moniot-Ville N, Guiberl J, Moreau N, Acat JF, Collatz E, Gutmann L.

Mechanisms of quinolone resistance in a clinical isolak of Escherichia coli highly

resistant to fluoroquinolones but susceptible to nalidixic acid. Antimicrob Agents

Chcmother 199 1 ;35(3):5 19-23

xii

References

130, Cambau E. Bordon F, Collatz E, Gutmann L. Novel gyrA point mutation in a

strain of Escherichia coli resistant to fluoroquinolones but not to nalidixic acid.

Antimicrob Agents Chemother 1993;37(6): 1247-52

131, Kapil A, Renuka K, Das B. Nalidixic acid susceptibility test to screen

ciprofloxacin resistance in Salmonella typhi. Indian J Med Res 2002;115:49-54

132. Ling JM. Zhou GM, Woo TH, French GL.Antimicrobial susceptibilities and

beta-lactamase production of Hong Kong isolates of gastrwnteric salmonellae

and Salmonella 1yphi.J Antimicrob Chemother 1991;28(6):877-85

13.1. Threlfall E. Ward L. Skinner J , Smith H, Lacey S. Ciprofloxacin-resistant

Salmonella typhi and treatment failure. Lancet 1999;353: 1590-1

134. Threlfall EJ, Graham A, Cheaqty T, Ward LR, Rowe B. Resistance to

ciprofloxacin in pathogenic Enterobacteriaceae in England and Wales in 1996. J

Clin Pathol 1997;50( 12): 1027-8

135. Caumes E. Ehya N. Nguyen J, Bricaire F.Typhoid and pwatyphoid fever: a 10-

year retrospective study of 41 cases in a Parisian hospital. J Travel Med

2001 ;8(6):293-7

136. Hakanen A, Kotilainen P, Huovinen P, Helenius H, Siitonen A. Reduced

tluoroquinolone susceptibility in Salmonella enterica serotypes in travelers

returning from Southeast Asia. Emerg Infect Dis 2001 ;7(6):996-1003

137 Threlfirll €3. Fisher IS. Berghold C. Gerner-Smidt P, Tschape H, Cormican M,

et nl. Antimicrobial drug resistance in isolates of Salmonella enterica from cases

of salmonellosis in humans in Europe in 2000: results of international multi-

centre surveillance. Euro Surveil1 2003;8(2):41-5

138. Ktviuki S. Revathi G, Muyodi 1. Mwituria J . Munyalo A, Mina S, et al.

Characterization of multidrug-resistant typhoid outbreaks in Kenya. J Clin

Microbiol 200442(4): 1477-82

139. Wain J . Hoa NT. Chinh NT, Vinh H, Everett MJ. Diep TS, et al. Quinolone-

tesistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical

response to treatment. Clin Infect Dis 1997;25(6): 1404-1 0

140. Parry C, Wain J, Chinh N, Vinh H, Farrar J . Quinolone-resistant Salmonella

typhi in Vietnam Lancet 1998;351: 1289

xiii

141. Asna SM, Haq JA, Rahman MM. Nalidixic acid-resistant Salmonella enterica

serovar Typhi with decreased susceptibility to ciprofloxacin caused treatment

failure: a report from Bangladesh. Jpn J Infect Dis 2003;56(1):32-3.

142. Murdoch DR, Woods CW, Zimmerman MD, Dull PM, Belbase RH, Keenan kl,

et al. The etiology of febrile illness in adults presenting to Patan hospital in

Kathmandu. Nepal. Am J Trop Med Hyg 2004;70(6):670-5

143. Shwe TN, Nyein MM, Yi W, Mon A. Blood culture isolates from children

admitted to Medical Unit 111. Yangon Children's Hospital, 1998. Southeast Asian

J Trop Med Public Health 2002;33(4):764-71

144. Hirose K, Tamura K, Sagara H, Watanabe H. Antibiotic susceptibilities of

Salmonella enterica serovar Typhi and S. enterica serovar Paratyphi A isolated

from patients in Japan. Antimicrob Agents Chemorher 2001;45(3):956-8

145. Biswal N, Mathai B, Bhatia BD, Srinivasan S, Nalini P. Enteric fever: a

changing perspective. Indian Pediatr 1994;3 1 (7):813-9

1.16. Nath G, Tikoo A. Manocha H, Tripathi AK, Gulati AK. Drug resistance in

Salmonella typhi in north India with special reference to ciprofloxacin. J

Antimicrob Chemother 2000;46(1): 149-50

117. Jesudason MV. Mnlathy B, John TI. Trend of increasing levels of minimum

inhibitory concentration of ciprofloxacin to Salmonella typhi. Indian J Med Res

1096; 1033247-9

118. Rathish KC. Chandrashekar MR. Nagesha CN. An outbreak of rnultidrug

resistant typhoid fever in Bangalore. Indian J Pediatr 1995;62(4):445-8

119. Brown JC, Shanahan PM, Jesudason MV, Thomson CJ, Amyes SG. Mutations

responsible for reduced susceptibility to 4quinolones in clinical isolates of multi-

resistant Salmonella typhi in India. J Antimicrob Chemother 1996;37(5):891-900

150. Kumar R. Aneja KR. Roy P, Sharma M. Gupta R, Ram S. Evaluation of

minimum inhibitory concentration of quinolones and third generation

oephalosporins to Salmonella typhi isolates, Indian J Med Sci 2002;56(1): 1-8

151. Rodrigues C, Mehta A, Joshi VR. Nalidixic acid-resistant Salmonella t p h i in

Mumbai. Natl Med J India 1999;12(2):88

xiv

References

152. Saha MR, Dutta P, Niyogi SK, Dutta S. Mitra U, Ramamurthy T, et al.

Decreasing trend in the occurrence of Salmonella enterica serotype Typhi

amongst hospitalised children in Kolkata, India during 1990-2000. Indian J Med

Res 2002; 1 15:46-8

153. Walia M, Gaind R, Mehta R, Paul P. Aggarwal P, Kalaivani M. Current

perspectives of enteric fever: a hospital-based study from India. Ann Trop

Paediatr 2005;25(3): 161 -74

154. Mohanty S, Renuka K, Sood S, Dm BK, Kapil A. Antibiogram pattern and

seasonality of Salmonella serotypes in a North Indian tertiary care hospital.

Epidemiol Infect 2006: 14: 1-6

155. Mehta G, Randhawa VS, Mohapatra NP. Intermediate susceptibility to

ciprofloxacin in Salmonella typhi strains in India. Eur J Clin Microbiol Infect Dis

2001;20(10):760-1

156. Joshi S, Wattal C, JK Oberoi, KJ Rasad. Quinolones-drug of choice for enteric

fever? Indian J Med Microbiol 2004;22(4): 27 1-2

157. Sun L. Sreedharan S, Plummer K, Fisher LM. NorA plasmid resistance to

fluoroquinolones: role of copy number and norA frameshift mutations.

Antimicrob Agents Chemother 1996;40(7): 1665-9

1%. Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect

Dis 2001;7(2):337-41

1.59. Yoshida H, Bogaki M, Nakarnura M, Nakarnum S. Quinolone resistance-

determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob

Agents Chemother 1990;34(6): 127 1-2

160. Goni-Umza M, Arpin C. Capdepuy M, Dubois V, Caumette P, Quentin C.

Type I1 topoisomerase quinolone resistance-determining regions of Aerornonas

caviae. A. hydrophila, and A. sobria complexes and mutations associated with

quinolone mistance. Antimicrob Agents Chemother 2002;46(2):350-9

161. Waters B. Davies J. Amino acid variation in the GyrA subunit of bacteria

potentially associated with natural resistance to fluoroquinolone antibiotics.

Antimicrob Agents Chemother 1997;4 1 ( 12):2766-9

References

162. Weigel LM, Steward CD, Tenover FC. gyrA mutations associated with

fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob

Agents Chernother 1998;42(10):2661-7

163. Bagel S, Hullen V. Wiedemann 9, Heisig P, Impact of gyrA and parC mutations

on quinolone resistance, doubling time, and supercoiling degree of Escherichia

coli. Antimicrob Agents Chemother 1999;43(4):868-75

164. Higgins ffi, Ruit AC, Milatovic D, Verhoef J, Schmitz FJ. Mutations in GyrA,

Pa&, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J

Antimicrob Agents 2003;21(5):409- 13

165. Saenz Y, Zdrazaga M. Brinas L, Ruiz-Lama F, Torres C. Mutations in gyrA

and par€ genes in nalidixic acid-resistant Escherichia coli strains from food

products, humans and animals. J Antimicrob Chemother 2003;5 l(4): 1001 -5

166. Akasaka T. Tanaka M, Yamaguchi A, Sato K. Type I1 topoisomerase mutations

in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in

1998 and 1999: role of target enzyme in mechanism of fluoroquinolone

resistance. Antimicrob Agents Chemother 2001;45(8):2263-8

167. Navia MM. Ruiz J, Ribera A, de Anta MT, Vila J. Analysis of the mechanisms

of quinolone resistance in clinical isolates of Citrobacter freundii. J Antimicrob

Chemother 1999;44(6):743-8

168. Vila J. Ruiz J, Marco F, Barcelo A. Goni P, Giralt E, et al. Association between

double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of

Escherichia coli and MICs. Antimicrob Agents Chemother 1994;38(10):2477-9

169. Everett UI, Jin YF, Ricci V, Piddock U. Contributions of individual

mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated

from humans and animals. Antimicrob Agents Chemother 1996;40( 10):2380-6

170. Liebana E, Clouting C. Cassar CA, Randall LP, Walker RA, Threlfall U, et al.

Comparison of gyrA mutations, cyclohexane resistance, and the presence of class

I integrons in Salmonella enterica from farm animals in England and Wales. J

Clin Microbial 2002;40(4): 148 1-6

17 1 . Giraud E, Brisabois A, Martel JL. Chaslus-Dancla E. Comparative studies of

mutations in animal isolates and experimental in vitro- and in vivo-selected

References

mutants of Salmonella spp. suggest a counterselection of highly fluoroquinolone-

resistant strains in the field. Antimicrob Agents Chemother 1999;43(9):2131-7

172. Eaves DJ. Randall L, Gray DT, Buckley A, Woodward UI, White AP, et al.

Prevalence of mutations within the quinolone resistance-determining region of

gyrA, gyrB, p a s , and parE and association with antibiotic resistance in

quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother

2004;48(10):4012-5

173. Soto SM, Gonzalez-Hevia MA, Mendoza MC. Antimicrobial resistance in

clinical isolates of Salmonella enterica serotype Enteritidis: relationships between

mutations conferring quinolone resistance, integrons, plasmids and genetic types.

J Antimicrob Chemother 2003;5 l(5): 1287-9 1

174. Chu C, Su LH, Chu CH, Baucheron S, Cloeckaen A, Chiu CH. Resistance to

fluoroquinolones linked to gyrA and par C mutations and overexpression of acr

AB efflux pump in Salmonella enterica serotype Choleraesuis. Microb Drug

Resist 2005; 11(3):248-53

175. Ruiz J, Castm D, Goni P, Santamaria JA. Bonego JJ. Vila J. Analysis of the

mechanism of quinolone resistance in nalidixic acid-resistant clinical isolates of

Salmonella serotype Typhimurium. J Med Microbiol 1997;46(7):623-8

176. Ling JM, Chan EW, Lam AW, Cheng AF. Mutations in topoisomerase genes of

fluoroquinolone-resismt s;llmonellae in Hong Kong. Antimicrob Agents

Chemother 2003:47(11):3567-73

177. Griggs DJ, Gensberg K, Piddock U. Mutations in gyrA gene of quinolone-

resistant Salmonella serotypes isolated from humans and animals. Antimicrob

Agents Chemother 1996;40(4): 1009- 13

178. Phung le V, Ryo H, Nomura T. Specific gyrA mutation at codon 83 in nalidixic

acid-resistant Salmonella enterica serovar Typhi strains isolated from Vietnamese

patients. Antimicrob Agents Chemother 2002;46(6):2052-3

179. Piddock U. Ricci V. M c b n I. Griggs DJ. Role of mutation in the gyrA and

parC genes of nalidixic-acid-resistant salmonella serotypes isolated from animals

in the United Kingdom. J Antimicrob Chemother 1998;41(6):635-41

xvii

References

180, Heisig P. Genetic evidence for a role of parC mutations in development of high-

level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents

Chemother 19%;40(4):879-85

181. Ince D, Hooper DC. Quinolone resistance due to reduced target enzyme

expression. J Bacteriol 2003;185(23):6883-92

182. Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B. A soxRS-

constitutive mutation contributing to antibiotic resistance in a clinical isolate of

Salmonella enterica (Serovar typhimurium). Antimicrob Agents Chemother

2001 ;45(1):38-43

183. Putman M, van Veen HW, Konings WN. Molecular properties of bacterial

multidrug transporters. Microbiol Mol Biol Rev 2000;64(4):672-93

184. Randall LP, Woodward MJ. Multiple antibiotic resistance (mar) locus in

Salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol

200 1 ;67(3): 1 190-7

185. Sulavik MC, Dazer M. Miller PF. The Salmonella typhimurium mar locus:

molecular and genetic analyses and assessment of its role in virulence. J Bacteriol

1997; 179(6): 1857-66

186. Grkovic S, Brown MH, Skumy RA. Regulation of bacterial drug export

systems. Microbiol Mol Biol Rev 2002;66(4):671-701

187. Alekshun MN, Levy SB. Regulation of chrornosornally mediated multiple

antibiotic resistance: the mar regulon. Antimicrob Agents Chemother

1997;41(10):2067-75

188. Alekshun MN. Kim YS, Levy SB. Mutational analysis of MarR, the negative

regulator of marRAB expression in Escherichia coli, suggests the presence of two

regions required for DNA binding. Mcl Microbiol 2000,35(6):1394-404

189. Alehhun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and

other toxic chemicals. Trends Microbiol 1999;7(10):410-3

190. Martin RG, Jair KW. Wolf RE Jr, Rosner JL. Autoactivation of the marRAB

multiple antibiotic resistance operon by the MarA tmscriptional activator in

Escherichia coli. J Bacteriol 19%; 178(8):22 16-23

xviii

References

191. Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes

in Escherichia coli by constitutive expression of MarA. J Bacteriol

2000; t82( 12):3467-74

192. Cohen SP. Hachler H, Levy SB. Genetic and functional analysis of the multiple

antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol

1993; 175(5): 1484-92

193. Alekshun MN, Levy SB. Alteration of the repressor activity of MarR, the

negative regulator of the Escherichia coli marRAB locus, by multiple chemicals

in vitro. J Bacteriol 1999; 181(15):4669-72

194. Bina X. Perreten V. Levy SB. The periplasmic protein MppA requires an

additional mutated locus to repress marA expression in Escherichia coli. J

Bacteriol 2003; 185(4): 1465-9

195. Chollet R, Bollet C, Chevalier J, Mallea M, Pages JM, Davin-Regli A, mar

Operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob

Agents Chemother 2002:46(4): 1093-7

196. Goldman JD, White DG, Levy SB. Multiple antibiotic resistance (mar) locus

protects Escherichia coli from rapid cell killing by fluoroquinolones. Antiminob

Agents Chemother 1996;40(5): 1266-9

197. Oethinger M. Kern WV, Jellen-Rimer AS, McMurry LM, Levy SB.

Ineffectiveness of topoisomerase mutations in mediating clinically significant

fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux

pump. Antimicrob Agents Chemother 2000;44(1):10-3

198. Oethinger M. Podglajen I, Kern WV, Levy SB. Overexpression of the marA or

soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli.

Andmicrob Agents Chemother 1998;42(8):2089-94

199. Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance

to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected

by tetracycline or chloramphenicol: decreased dmg accumulation associated with

membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother

1989;33(8): 13 18-25

xix

References

200. Linde HJ, Notka F. Metz M, Kochanowski B, Heisig P, Lehn N. In vivo

increase in resistance to ciprofloxacin in Escherichia coli associated with deletion

of the C-terminal part of MarR. Antimimob Agents Chemother 2000;44(7): 1865-

8

201, Maneewannakul K, Levy SB. Identification for mar mutants among quinolone-

resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother

1996;40(7): 1695-8

202. Moken MC. McMurry LM, Levy SB. Selection of multiple-antibiotic-resistant

(mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the

mar and acrAB loci. Antimicrob Agents Chemother 1997;41(12):2770-2

203. Oethinger M. Kern WV. Goldman JD, Levy SB. Association of organic solvent

tolerance and fluoroquinolone resistance in clinical isolates of Escherichia coli. J

Antimicrob Chemother 1998;41(1): 11 1-4

2 0 4 Park YH, Yoo JH, Huh DH, Cho YK, Choi JH, Shin WS. Molecular analysis of

fluoroquinolone-resistance in Escherichia coli on the aspect of gyrase and

multiple antibiotic resistance (mar) genes. Yonsei Med J 1998;39(6):534-40

205. Bryskier A. Fluoroquinolones: Mechanisms of action and resistance. Int J

Antimicrob Agent 1993;2:151-84

206. Piddock U. Jin YF. Ricci V. Asuquo AE. Quinolone accumulation by

Pseudomonas aemginosa, Staphylococcus aureus and Escherichia coli. J

Antimicrob Chemother 1999;43( 1 ):61-70

207. Jalal S. Ciofu 0, Hoiby N, Gotoh N, Wretlind B. Molecular mechanisms of

fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic

fibrosis patients. Antimicrob Agents Chemother 2000,44(3):710-2

?OR. White DG. Goldman JD, Demple B, Levy SB. Role of the acrAB locus in

organic solvent tolerance mediated by expression of marA, soxS, or robA in

Escherichia coli. J Bacleriol 1997; 179(19):6122-6

209. Mazzatiol A. Tokue Y. Kanegawa TM. Comaglia G, Nikaido H. High-level

fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce

multidmg efflux protein AcrA. Antimicrob Agents Chemother 2000;44(12):3441-

3

References

210. Cohen SP, Hooper DC, Wolfson JS, Souza KS, McMurry LM, LVY SB.

Endogenous active efflux of noffloxacin in susceptible Escherichia coli.

Antimicrob Agents Chemother 1988;32(8): 1 1 87-91

21 1. Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob

Agents Chemother 1992;36(4):695-703

212. Yu J L Grinius L, Hooper DC. NorA functions as a multidnrg efflux protein in

both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J

Bacteriol 2002; 184(5): 1370-7

213. Giraud E. Cloeckaen A, Kerboeuf D, Chaslus-Dancla E. Evidence for active

efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella

enterica serovar typhimurium. Antimicrob Agents Chemother 2000;44(5): 1223-8

214. Piddock U, White DG, Gensberg K, Pumbwe L, Griggs DJ. Evidence for an

efflux pump mediating multiple antibiotic resistance in Salmonella enterica

serovar Typhimurium. Antimicrob Agents Chemother 2000;44(11):3118-21

215. Baucheron S. Imberechts H, Chaslus-Dancla E, Cloeckaert A. The AcrB

multidrug transporter plays a major role in high-level fluoroquinolone resistance

in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug

Resist 2002;8(4):28 1-9

2 16. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited.

Mlcrobiol Mol Biol Rev 2003;67(4):593-656

217. Nikaido H, Vaara M. Molecular basis of bacterial outer membrane

permeability. Micmbiol Rev 1985;49(1):1-32

218. Nikaido H, Nikaido K, Haraynma S. Identification and characterization of

porins in Pseudomonas aeruginosa. J Biol Chem 199 1 ;266(2):770-9

219. Hancock RE. Role of porins in outer membrane permeability. J Bacteriol

1987; 169(3):929-33

220. Hernandez-Alles S, Benedi VJ, Martinez-Martinez L, Pascual A, Aguilar A.

Tomas JM, et al. Development of resistance during antimicrobial therapy caused

by insertion sequence interruption of porin genes. Antimicrob Agents Chemother

1999; 43(4): 937-9

References

221. Oliver A, Weigel LM, Ruheed JK, McGowan Jr JE Jr, Raney P, Tenover FC.

Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli.

Antimicrob Agents Chemother 2002;46(12):3829-36

222. Heisig P. Tschomy R. Characterization of fluoroquinolone-resistant mutants of

escherichia coli selected in vitro. Antimicrob Agents Chemother

1994;38(6): 1284-9 1

223. Nestorovich EM. Danelon C. Winterhalter M, Beznrkov SM. Designed to

penetrate: time-resolved interaclion of single antibiotic molecules with bacterial

pores. Proc Natl Acad Sci U S A 2002;99(15):9789-94

224. Zhanel GG, Karlowsky JA, Saunders MH, Davidson RJ, Hoban DJ, Hilncock

RE, et al. Development of multiple-antibiotic-resistant (Mar) mutants of

Pseudomonu aeruginosa after serial exposure to fluoroquinolones. Antimicrob

Agents Chemother 1995;39(2):489-95

225. Daikos GL. Lolms VT, Jackson GG. Alterations in outer membrane proteins of

Pseudomonas aeruginosa associated with selective resistance to quinolones.

Antimicrob Agents Chemother 1988;32(5):785-7

226. Rajyaguru JM, Muszynski MJ. Association of resistance to

trimethoprim/sulphmethoxazole, chloramphenicol and quinolones with changes

in major outer membrane proteins and iipopolysaccharide in Burkholderia

cepacia. J Antimicroh Chemother 1997;40(6):803-9

227. Piddock U, Hall MC. Walters RN. Phenotypic characterization of quinolone-

resistant mutants of Enterobactenaceae selected from wild type, gyrA type and

multiply-resistant (marA) type strains. J Antirnicrob Chemother 1991;28(2):185-

98

228. Tavio MM, Vila J. Ruiz J . Ruiz J . Martin-Sanchez AM, Jimenez de Anta MT.

Mechanisms involved in the development of resistance to fluoroquinolones in

Escherichia coli isolates. J Antimicrob Chemother 1999;44(6):735-42

229. Hirai K. Aoyama H, Suzue S, lrikura T, lyobe S, Mitsuhashi S. Isolation and

characterization of norfloxacin-resistant mutants of Escherichia coii K-12.

Antimicrob Agents Chemother 1986;30(2):248-53

References

230. Cohen SP, McMuny LM, Levy SB. marA locus causes decreased expression of

OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J

Bacterial 1988;170(12):5416-22

231. Yamaguchi Y, Tornoyasu T, Takaya A, Morioka M, Yamamoto T. Effects of

disruption of heat shock genes on susceptibility of Escherichia coli to

fluoroquinolones. BMC Microbiol 2003;3: 16

232. Hallett P, Mehltrt A, Maxwell A. Escherichia coli cells resistant to the DNA

gyrase inhibitor, ciprofloxacin, overproduce a 60 kD protein homologous to

GroEL. Mol Microbiol 1990;4(3):345-53

233. Martinez-Martinez L, Pascual A, Conejo Mdel C, Gucia I, Joyanes P,

Domenech-Sanchez A, et al. Energy-dependent accumulation of norfloxacin and

porin expression in clinical isolates of Klebsiella pneumoniae and relationship to

extended-spectrum beta-lactamoe production. Antiniicrob Agents Chemother

2(X)2;46( 12):3926-32

234. Giraud E, Cloeckacrt A, Baucheron S, Mouline C, Chaslus-Dancla E. Fitness

cost of fluoquinolone resistance in Salmonella enterica serovar Typhimurium.J

Med Microbiol 2003;52(8):697-703

235. Martinez-Martinez L Pascual A, Garcia 1, Tran J, Jacoby GA. Interaction of

plasmid and host quinolone resistance. J Antimicrob Chemother 2003;51(4): 1037-

9

236. Wang M. Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-

medialed quinolone resistance in clinical isolates of Escherichia ooli from

Shanghai, China. Antimicrob Agents Chemother 2003;47(7):2242-8

237. Kern WV, Oethinger M, Jellen-Ritter AS, Levy SB. Non-target gene mutations

in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob

Agents Chemother 2000,44(4):814-20

238. Hansen H, Heisig P. Topoisomerase IV mutations in quinolone-resistant

salmonellae selected in vim. Microb Drug Resist 2003;9(1):25-32

239. Zafar A, lbrahirn NG, Ahsan T, Abbas 2, Zaidi A, Hacan R. Nalidixic acid

screening test in detection of decreased fluoquinolone susceptibility in

References

Salmonella typhi isolated from blood. J Coil Physicians Surg Pak 2005;15(7):413-

7

240. Hirose K, Tarnura K, Watanabe H. Screening method for Salmonella enterica

serovar Typhi and serovar Paratyphi A with reduced susceptibility to

fluoroquinolones by PCR-restriction fragment length polymorphism. Microbiol

lmmunol2003;47(2): 16 1-5

241. Walker RA, Skinner JA, Ward LR, Threlfall EJ. Lightcycler gyrA mutation

assay (GAMA) identifies heterogeneity in GyrA in Salmonella enterica serotypes

Typhi and Paratyphi A with decreased susceptibility to ciprofloxacin. Int J

Antimicrob Agents 2003:22(6):622-5

242. Ames GF. Spudich' EN, Nikaido H. Rote~n composition of the outer membrane

of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol

1974; 1 17(2):406- 16

243. Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar

assembly in Salmonella enterica serovar typhimurium and Escherichia coli.

Microbiol Mol Biol Rev 2000;64(4):694-708

244. Huang X, Phung le V, Dejsirilert S. Tishyadhigama P, Li Y, Liu H, et al

Cloning and chamcterization of the gene encoding the 266 antigen of Salmonella

enterica serovar Typhi.FEMS Microbiol Lett 2004;234(2):239-46

245. Guinee PA. Jansen WH, M a s HM. Le Minor L. Beaud R. An unusual H

antigen (266) in strains of Salmonella typhi. Ann Microbiol (Paris)

1981;132(3):331-4

246. Dauga C, Zabrovskaia A, Grimont PA. Restriction fragment length

polymorphism analysis of some flagellin genes of Salmonella enterica. J Clin

Microbiol 1998;36(10):2835-43

247. Minamino T, Macnab RM. Components of the Salmonella flagellar export

apparatus and classification of export substrates. J Bacteriol 1999; 181(5): 1388-94

248. Wang JY, Noriega FR. Galen JE, Barry E, Levine MM. Constitutive expression

of the Vi polysaccharide capsulu antigen in attenuated Salmonella erlterica

serovar typhi oral vaccine strain CVD 909. Infect Immun 2000;68(8):4647-52

References

249. Jones CJ, Macnab RM. Flagellar assembly in Salmonella typhimurium: analysis

with temperature-sensitive mutants. J. Bacteriol 1990; 172: I 327-39

250. Hitchcock PJ, h i v e L. Makela PH, Rietschel ET, Striamatter W, Morrison E.

Lipoplysaccharide nomenclature--past, present, and future. J Bacteriol

1986; 166(3):699-705

251. Bittner M, Saldias S. Estevez C, Zaldivar M, Marolda CL, Valvano MA, 1990.

0-antigen expression in Salmonella enterica serovar Typhi is regulated by

nitrogen availability through RpN-mediated transcriptional control of the rfaH

gene. Microbiology 2002;148(Pt 12):3789-99

252. Shands JW Jr. Evidence for a bilayer structure in gram-negative

lipplysaccharide: relationship to toxicity. Infect Immun 1971;4(2):167-72

253. Munford RS. Hall C L Rick PD. Size heterogeneity of Salmonella typhimurium

lipopolysaccharides In outer membranes and culture supernatant membrane

fragments. J Bacterial 1980; 144(2):630-40

2.M. Peterson AA, McGroarty EJ. High-molecular-weight components in

lipplysaccharides of Salmonella typhimurium, Salmonella minnesota, and

Bcherichia coli. J Bacteriol 1985; 162(2):738-45

255. Chart H. Lipoplysaccharide chernotyping. In: Howard J, Whitecombe DM,

editors. Diagnostic bacteriology protocols. New Jersey, Humana Press. 1995.

p.41-8. (Methods in molecular biology -Volume 46).

256. Hitchcock PJ, Brown TM. Morphological heterogeneity among Salmonella

lipplysaccharide chemotypes in silver-stained plyacrylamide gels. J Bacteriol

1983; 154( 1):269-77

257. Osborn MJ, Gander JE, Parisi E. Mechanism of assembly of the outer

membrane of Salmonella typhimurium. Site of synthesis of lipopolysaccharide. J

Biol Chem 1972 ;247(12):3973-86

258. Yeh HY. Jacobs DM. Characterization of lipopolysaccharide fractions and their

interactions with cells and model membranes. J Bacteriol 1992;174(1):336-41

259. Batchelor RA, Alifano P. Biffali E, Hull SI, Hull RA. Nucleotide sequences of

the genes regulating 0-polysaccharide antigen chain length (rol) from Escherichia

References

coli and Salmonella typhimurium: protein homology and functional

complementation. J. Bacteriol 1992;174:5228- 36.

260. Rojas G, Saldias S, Bittner M. Zaldivar M, Contreras I. The rfaH gene, which

affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is

differentially expressed during the bacterial growth phase. FEMS Microbiol Lett

2001 ;204(1): 123-8

261. Calderon I, Lobes SR, Rojas HA, Palomino C, Rodriguez LH, Mora

GC.Antibodies to porin antigens of Salmonella typhi induced during typhoid

infection in humans. Infect Immun 1986;52(1):209-12

262. Muthukkumar S, Muthukkaruppan VR. Detection of porin antigen in serum for

early diagnosis of mouse infections with Salmonella typhimurium. FEMS

Microbiol lmmunol 1992:4(3):147-53

263. Simonet V, Mallea M, Fourel D, Bolla JM, Pages JM. Crucial domains are

conserved in Enterobacteriaceae porins. FEMS Microbiol Lett 1996;136(1):9 1-7

264. Faundez G, Aron L. Cabello FC. Chromosomal DNA, iron-transport systems,

outer membrane proteins, and enterotoxin (heat labile) production in Salmonella

typhi strains. J Clin Microbiol 1990;28(5):894-7

26.5. Puente JL, Rores V, Fernandez M, Fuchs Y, Calva E. isolation of an ompC-like

outer membrane protein gene from Salmonella typhi. Gene 1987:6 I( 1 ):75-83

266. Rocque WJ, Coughlin RT, McGroMy W. Lipopolysaccharide tightly bound to

porin monomers ;md trimers from Escherichia coli K-12. J Bacteriol

1987; 169(9):4003- 10

267. Arcidiacono S. Butler MM, Mello CM. A rapid selective extraction procedure

for the outer membrane protein (OmpF) from Escherichia coli. Protein Expr Purif

2002;25( I): 134-7

268. C o n m m I, Munoz L, Toro CS, Mora GC. Heterologous expression of

Escherichia coli porin genes in Salmonella typhi Ty2: regulation by medium

osmolarity, temperature and oxygen availability. FEMS Microbiol Lett

1995;133(1-2): 105-1 1

269. Saint N, Dc E, Julien S, Orange N, Molle G, Ionophore properties of OmpA of

Escherichia coli. Biochim Biophys Acta 1993;1145(1):119-23

References

270. Santiviago CA, Tor0 CS, Bucarey SA, Mora GC. A chromosomal region

surrounding the ompD porin gene marks a genetic difference between Salmonella

typhi and the majority of Salmonella serovars. Microbiology 2001;147(7):1897-

907

271. Molloy MP, Herbert BR. Slade MB, Rabilloud T, Nouwens AS, Williams KL,

et al. Rotaomic analysis of the Escherichia coli outer membrane. Eur J Biochem

2000;267(10):2871-81

272. Zugel U, Kaufmann SH. Role of heat shock proteins in protection from and

pathogenesis of infectious diseases. Clin Microbiol Rev 1999; 12(1):19-39

273. Findlay JBC. Structure and function in membrane transport systems. Curr Opin

Struct Biol 199 1 ; 1(5): 1804- 10

274. Nikaido H. Pwins and specific diffusion channels in bacterial outer membranes.

J Biol Chem 1994;269(6):3905-8

275. Klebba PE, Newton SM. Mechanisms of solute transport through outer

membme porins: burning down the house. Curr Opin Microbiol 1998;1(2):238-

47

276. Achouak W, Heulin T, Pages JM. Multiple facets of bacterial porins. FEMS

Microbiol Lett 2001 ; 199( 1 ): 1-7

277. Liu X, Ferenci T. Regulation of porin-mediated outer membrane permeability

by nutrient limitation in Escherichia coli. J Bacterial 1998; 180(15):39 17-22

278. Bernstein HD. The biogenesis and assembly of bacterial membrane proteins.

Curr Opin Microbiol 2000;3(2):203-9

279. Danvin KH, Miller VL. Molecular basis of the interaction of Salmonella with

the intestinal mucosa. Clin Microbiol Rev 1999; 12(3):405-28

280. House D, Bishop A, Pany C, Dougan G, Wain J. Typhoid fever: pathogenesis

and disease. Curr Opin Infect Dis 200 1 ; 14 (5): 567-72

281. Levine MM, Tacket CO, Sztein MB. Host-Salmonella interaction: human trials.

Microbes Infect 2001 ;3(14-15): 1271-9

282. Wain J. Diep TS, Ho VA, Walsh AM, Nguyen 'IT, Parry CM, et al.

Quantitation of bacteria in blood of typhoid fever patients and relationship

References

between counts and clinical features, transmissibility, and antibiotic resistance. J

Clin Microbiol 1998:36(6): 1683-7

283. G o t u m E, Morris JG Jr, Benavente L, Wood PK, Levine 0, Black RE, et al.

Association between specific plasmids and relapse in typhoid fever. J Clin

Microbiol 1987;25(9): 1779-81

284. Carter PB, Collins FM. The route of enteric infection in normal mice. J Exp

Med 1974; 139(5): 1 189-203

285. Mastroeni P. Menager N. Development of acquired immunity to Salmonella. J

Med Microbiol 2003;52(6):453-9

286. Pascopella L, Raupach B. Ghori N, Monack D, Falkow S, Small PL. Host

restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect

lmmun 1995;63(1 1 ):4329-35

287. Zhang XL, Tsui IS. Yip CM. Fung AW, Wong DK, Dai X, et al. Salmonella

enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells.

Infect lmmun 2000;68(6):3067-73

288. Weinstein DL. O'Neill BL, Hone DM, Metcalf ES. Differential early

interactions between Salmonella enterica serovar Typhi and two other pathogenic

Salmonella serovan with intestinal epithelial cells. Infect lmmun

I W8;66(5):23 10-8

289. Finlay BB, Fillkaw S. Common themes in microbial pathogenicity revisited.

Microbiol Mol Biol Rev 1997;61(2): 136-69

290. Monack DM. Raupach B. Hromockyj AE. Falkow S. Salmonella typhimurium

invasion induces apoptosis in infected macrophages. Roc Natl Acad Sci U S A

1996;93( 18):9833-8

291. Monack DM, Hersh D. Ghori N, Bouley D, Zychlinsky A, Falkow S.

Salmonella exploits caspase-l to colonize Peyer's patches in a murine typhoid

model. J Exp Med 2000,192(2):249-58

292. Finlay BB, Brumell JH. Salmonella interactions with host cells: in vitro to in

vivo. Philos Trans R Soc Lond B Biol Sci 2MM;355(1397):623-31

293. Wain 1. House D, Pukhill J. Parry C, Dougan G. Unlocking the genome of the

human typhoid bacillus.Lancet Infect Dis 2002;2(3): 163-70

xxviii

References

294. Paesold G, Guiney DG, Eckmann L, Kagnoff MF. Genes in the Salmonella

~athogenicity island 2 and the Salmonella virulence plasmid are essential for

Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol

2002;4(11):771-81

295. Chakravortty D, Hansen-Wester I, Hensel M. Salmonella pathogenicity island 2

mediates protection of intracellular Salmonella from reactive nitrogen

intermediates. J Exp Med 2002; 195(9): 1 155-66

296. Lee TP, Hoffman SL. Typhoid fever. In: Guerrant RL, Walker DH, Weller PF.

Tropical infectious disease- principles pathogens and practice. Philadelphia;

Churchill Livingstone: 1999. p. 277-94

297. de Andrade DR, de Andrade Junior DR. Typhoid fever as cellular

lnicrobiological model. Rev Inst Med Trop Sao Paulo 2003;45(4): 185-91

!OX. Contrer&s I, Tor0 CS, Troncoso G, Mora GC. Salmonella typhi mutants

defective in anaerobic respiration are impaired in their ability to replicate within

epithelial cells. Microbiology 1997;143 (8):2665-72

299. Vazquez-Toms A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC,

et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte

NADPH oxidase. Science 2000;287(5458): 1655-8

3(Kl. Fang F, Vazquez-Tomes A. Salmonella selectively stops traffic. Trends

Microbiol 2002; 10(9):39 1-2

301. Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system

SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol 2000; 182(3):77 1-8 1

302. Hansen-Wester I. Stecher B, Hensel M. Analyses of the evolutionary

distribution of Salmonella translocated effectors. Infect Immun 2002;70(3):1619-

22

303. Chan K, Baker S, Kim CC, Denveiler CS, Dougan G, Falkow S. Genomic

comparison of Salmonella enterica serovars and Salmonella bongori by use of an

S. enterica serovw typhimurium DNA micromay. J Bacteriol 2003;185(2):553-

63

xxix

References

304. Sarasombath S, Banchuin N, Sukosol T, Rungpitarangsi B, Manasatit S.

Systemic and intestinal immunities after natural typhoid infection. J Clin

Microbiol 1987; 25(6): 1088-93

305. Mastroianni CM, Jirillo E, De Simone C, Grassi PP, Maffione AB, Catino AM,

et al. Humoral and cellular immune responses to Salmonella typhi in patients with

typhoid fever. J Clin Lab Anal 1989;3(3): 19 1-5

306. Salerno-Goncalves R. Wyant TL. Pasetti MF, Fernandez-Vina M. Tacket CO,

Levine MM, et al. Concomitant induction of CD4+ and CD8+ T cell responses in

volunteers immunized with Salmonella enterica serovar typhi strain CVD 908-

htrA. J Immunol2003; 170(5):2734-41

307. Hsu HS. Pathogenesis and immunity in murine salmonellosis. Microbiol Rev

1989;53(4):390-409

308. McSorley SJ, Jenkins MK.Antibody is required for protection against virulent

but not attenuated Salmonella enterica serovar typhirnurium. Infect Immun

2000;68(6):3344-8

309. Mittrucker HW, Raupach 8, Kohler A, Kiufmann SH. Cutting edge: role of B

lymphocytes in protective immunity against Salmonella typhimurium infection. J

lmmunol2000; 164(4): 16-48-52

3 10. Mastroeni P, Simmons C. Fowler R, Hormaeche CE, Dougan G. Igh-6(-I-) (B-

cell-deficient) mice fail to mount solid acquired resistance to oral challenge with

virulent Salmonella enterica serovar typhimurium and show impaired Thl T-cell

responses to Salmonella antigens. Infect Irnmun 2000;68(1):46-53

31 1 . Adversarial sbategies during infection. In: Roitt IM, editor. Roitts essential

immunology. 9' Ed, United Kingdom: Blackwell Science Ltd ;1997. p.253-84

312. Sood A. Kaur IR. Electrophoretic analysis of Salmonella typhi and other

bacteria. Indian J Med Sci 2002;56(6):265-9

313. Tsutsumi R. lchinohe Nu', Shimwki 0 , Obata F, Takahashi K, Inada K, et al.

Homologous and heterologous antibody responses to lipopolysaccharide after

enterohemohagic Escherichia coli infection. Microbiol lmmunol 2004;48(1):27-

38

References

314. ~ o u s e D, Chinh NT, Hien TT. Parry CP, Ly NT, Diep TS, et al. Cytokine

release by lipopolysacchhde-stimulated whole blood from patients with typhoid

fever. J Infect Dis 2002; 186(2):240-5

315. Maswoeni PI Clare S, Khan S, Hamson JA, Hormaeche CE, Okamura H, et al,

Interleukin 18 contributes to host resistance and gamma interferon production in

mice infected with virulent Salmonella typhimurium, Infect lmmun

1%9;67(2):478-83

316. Nauciel C, Espina~se-Maes F. Role of gamma interferon and tumor necrosis

factor alpha in resistance to Salmonella typhimurium infection. Infect lmmun

1992;60(2):450-1

317. Maskell DJ, Hormaeche CE, Hanington KA, Joysey HS, Liew M . The initial

suppression of bacterial growth in 3 salmonella infection is mediated by a

localized rather than a systemic response. Microb Pathog 1987;2(4):295-305

318. Mastroeni P, Arena A, Costa GB, Liberto MC, Bonina L, Hormaeche CE.

Serum TNF alpha in mouse typhoid and enhancement of a Salmonella infection

by anti-TNF alpha antibodies. Microb Pathog 1991; l1(1):33-8

319. Mastroeni P, Harrison JA, Robinson JH, Clare S, Khan S. Maskell DJ, et al.

Interleukin-12 is required for control of the growth of attenuated aromatic-

compounddependent salmonellae in BALBlc mice: role of gamma interferon and

macrophage activation. Infect lmmun 1998;66( 10):4767-76

320. Dunstan SJ. Stephens HA. Blackwell JM. Duc CM, Lanh MN. Dudbridge F, et

al. Genes of the class 11 and class 111 major histocompatibility complex are

associated with typhoid fever in Vietnam. J Infect Dis 2001;183(2):261-8

321. D h m a n a E. Joosten I, Tijssen HJ, Gasem MH, Indanvidayati R, Keuter M, et

al. HLA-DRBI*12 is associated with protection against complicated typhoid

fever, independent of tumour necrosis factor alpha. Eur J Immunogenet

2002;29(4):297-300

322. Grossman DA, Witham ND, Burr DH. Lesmana M, Rubin FA, Schoolnik GK,

et al. Flagellar serotypes of Salmonella typhi in Indonesia: relationships among

motility, invasiveness, and clinical illness. J Infect Dis 1995;171(1):212-6

References

323. Liu SL, Ezaki T, Miura H, Matsui K, Yabuuchi E. Intact motility as a

Salmonella typhi invasion-related factor. Infect Immun 1988;56(8): 1967-73

324. Kantele A, Arvilommi H, Kantele JM. Rintala L, Makela PH. Comparison of

the human immune response to live oral, killed oral or killed parenteral

Salmonella typhi TY21A vaccines. Microb Pathog 1991;10(2):117-26

325. Schultz CL. Kaufman B, Hamilton D, Hartman A, Ruiz M, Powell C, et al. Cell

wall structures which may be important for successful immunization with

Salmonella-Shigella hybrid vaccines. Vaccine 1990;8(2):115-20

326. Wyant TL, Tanner MK, Sztein MB. Potent immunoregulatory effects of

Salmonella typhi flagella on antigenic stimulation of human peripheral blood

mononuclear cells. Infect lmmun 1999;67(3): 1338-46

327. Eichelberg K, Galan JE. The flagellar sigma factor FliA (sigma(28)) regulates

the expression of Salmonella genes aqsociated with the centisome 63 type 111

secretion system. Infect lmmun 2000;68(5):2735-43

328. Wyant TL. Tanner MK. Sztein MB. Salmonella typhi flagella are potent

inducers of proinflammatory cytokine secretion by human monocytes. Infect

Immun 1999:67(7):36 19-24

329. Bellanti JA, Eiuman DV, Robbins JB. Smith RT. The development of the

immune response. Studies on the agglutinin response to Salmonella flagellar

antigens in the newborn rabbit. J Exp Med 1%3;117:479-96

330. Plii AP, Koppikar GV, Deshpande S. Role of modified Widal test in the

diagnosis of enteric fever. J Assoc Physicians India 2003;5 19-1 1

331. House D, Wain J, Ho VA, Diep TS. Chinh NT. Bay PV, et al. Serology of

typhoid fever in an area of endemicity and its relevance to diagnosis. J Clin

Microbiol 2001 ;39(3): 1002-7

332. Tannock GW, Blumershine RV, Savage DC. Association of Salmonella

typhimurium with, and its invasion of, the ileal mucosa in mice. Infect lmmun

1975; 1 l(2): 365-70

333. Lyman MB, Stocker BA, Roantree RJ. Comparison of the virulence of 0:9,12

and 0:4,5,12 Salmonella typhimurium his+ trans duct ant^ for mice. Infect Immun

1977;15(2): 491-9

References

protect C3H mice against challenge with virulent Salmonella typhimurium. J

Immunol 1984; 133(2):950-7

344. Honnaeche CE, J O Y ~ ~ Y HS, Desilva L, Izhar M, Stocker BA, Immunity induced

by live attenuated Salmonella vaccines. Res Microbiol 1990; 141(7-8);757-64

345. Tacket CO, Szlein MB, Wasserman SS, Losonsky G, Kotloff KL, Wyant TL, et

al Phau 2 clinical trial of attenuated Salmonella enterica serovar oral live

vector vaccine CVD 908-htrA in U.S. volunteers. Infect. lmmun 2000; 68: 1196-

20 I

346. Koenig S. Hoffmann MK. Bacterial lipopolysaccharide activates suppressor B

lymphocytes. Prw Natl Acad Sci U S A 1979;76(9):4608-12

347. Winchurch RA, Hilberg C, Birmingham W, Munster AM. Lipopolysaccharide-

induced activation of suppressor cells: reversal by an agent which alters cyclic

nucleotide metabolism, lmmunology 1982;45(1):147-53

348. Ortiz V, Is ibi i A, Garcia-Ortigoza E, Kumate J. Immunoblot detection of class-

specific humoral immune response to outer membrane proteins isolated from

Salmonella typhi in humans with typhoid fever. J Clin Microbiol

1989;27(7): 1640-5

349. Aron L, Faundez G. Gonzalez C. Roessler E. Cabello F. Lipopolysaccharide-

independent ndioimmunoprecipita~ion and identification of structural and in vivo

induced immunogenic surface proteins of Salmonella typhi in typhoid fever.

Vaccine 1993;l l(1). 10-7

350. Tang SW. Abubakar S, Devi S, Puthucheary S, Pang T. Induction and

characterization of heat shock proteins of Salmonella typhi and their reactivity

with sera from patients with typhoid fever. Infect Immun 1997;65(7):2983-6

351. Udhayakumar V, Muthukkaruppan VR. Protective immunity induced by outer

membnne proteins of Salmonella typhimurium in mice. Infect Immun

1987;55(3):8 16-2 1

352. Alurkar V, Kamat R, Immunomodulatory properties of porins of some

members of the family Enterobacteriaceae. Infect lmmun 1997;65(6):2382-8

xxxiv

References

353. Negm RS, Pistole TG. Macrophages recognize and adhere to an OmpD-like

protein of Salmonella typhimurium. FEMS Immunol Med Microbial

1998;20(3):191-9

354. Arockiasamy A, Krishnaswamy S. Crystallization of the immunodominant outer

membrane protein OmpC; the first protein crystals from Salmonella typhi, a

human pathogen. FEBS Lett 1999;453(3):380-2

355. Blanco F, lsibasi A, Raul Gonzalez C, Ortiz V, Paniagua J, Arreguin C, et al.

Human cell mediated immunity to porins from Salmonella typhi. Scand J Infect

Dis 1993;25( 1):73-80

356. Sharma P. Ganguly NK, Sharrna BK, Sharma S, Rawal lJ, Saxena SN, et al.

Humoral and cell mediated immune responses to porins of Salmonella typhi. Jpn J

Exp Med 1989:59(2):73-7

357. Muthukkmppan VR, Nandakumar KS, Palanivel V. Monoclonal antibodies

against Salmonella porins: generation and charac~erization. Immunol Lett

1992;33(2):201-6

358. Sharma P, Ganguly NK. S h m a BK. Sharma S, Sehgal K. Specific

immunoglobulin response in mice immunized with porins and challenged with

Salmonella typhi. Microbiol lmmunol 1989;33(7):5 19-25

350. lsibasi A, Oniz V, Varga. M, Paniagua J, Gonzalez C, Moreno J, et al.

Protection against Salmonella typhi infection in mice after immunization with

outer membrane proteins isolated from Salmonella typhi 9,12,d, Vi. Infect lmmun

1088:56( I 1 ):2953-9

360. Klebba PE, Benson SA, Bala S, Abdullah T. Reid J, Singh SP, et al.

Determinants of OmpF porin antigenicity and structure. J Biol Chem

1990;265( 12):6800- 10

361. Singh SP, Singh SR, Williams YU, Jones L. Abdullah T. Antigenic

determinants of the OmpC p r i n from Salmonella typhimurium. Infect Immun

1()95:63(12):4MX)-5

362. Cabello F. Salmonella Typhi infections are also modulated by antibodies.

Tnnds Microbiol 1998;6 (1 2):470- 1

XXXV

References

363. Pandey KK, Srinivasan S, Mahadevan S, Nalini P, Rao RS. Typhoid fever

below five years. Indian Pediatr 1990;27(2): 153-6

364. Chandra R, Srinivasan S, Nalini P, Rao RS. Multidrug resistant enteric fever. J

Tmp Med Hyg 1992;95(4):284-7

365. Dutta TK, Beeresha. Ghotekar LH. Atypical manifestations of typhoid fever. J

Postgrad Med 2001 ;47(4):248-5 1

366. Sinha R, Saha S. Ascites- an under-reported finding i n enteric fever? Indian

Pediatr 2004; 4 1 : 965-6

367. Gotuuo E, Frisancho 0, Sanchez I, Liendo G, Carrillo C, Black RE, et al.

Association between the acquired immunodeficiency syndrome and infection with

Salmonella typhi or Salmonella paratyphi i n an endemic typhoid area. Arch Intern

Med 1991;151(2):381-2

368. Karande SC, Desai MS. Jain MK. Typhoid fever in a 7 month old infant. J

Postgrad Med 1995;4 l(4): 108-9

369. Pany CM, Hien TT. Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J

Med 2002: 347 (22): 1770-82

370. Khosla SN, Goyle N, Seth RK. Lipid profile in enteric fever. J Assoc Physicians

India 199 1;39(3):260-2

371. Butler T, Knight I, Nath SK, Speelman P, Roy SK, Azad MA. Typhoid fever

complicated by intestinal perforation: a persisting fatal disease requiring surgical

management. Rev lnfect Dis 1985:7(2):244-56

372. Khosla SN. Typhoid perforation. J Trop Med Hyg 1977;80(4):83-7

373. Akgun Y, Bac B, Boylu S, Aban N, Tacyildiz I. Typhoid enteric perforation. Br

J Surg 1995;82(11): 1512-5

374. Nguyen QC, Everest P, Tran TK, House D, Murch S, Parry C, et al. A clinical,

microbiological, and pathological study of intestinal perforation associated with

typhoid fever. Clin lnfect Dis 2004;39(1):61-7

375. Chattcrjee H, Jagdish S, Pai D, Satish N. Jayadev D, Reddy PS. Changing

trends in outcome of typhoid ileal perforations over three decades in Pondicherry.

Trop Gastroenterol2001;22(3): 155-8

xxxvi

References

376. Kayabali I, Gokcora IH, Kayabali M. A contemporary evaluation of enteric

perforations in typhoid fever: analysis of 257 cases. Int Surg 1990;75(2):96-100

377. Hosoglu S, Aldemir M, Akalin S, Geyik MF, Tacyildiz IH, Loeb M. Risk

factors for enteric perforation in patients with typhoid Fever. Am J Epidemiol

2004; 160(1):46-50

378. Adesunkanmi AR, Ajao OG. The prognostic factors in typhoid ileal perforation:

a prospective study of 50 patients. J R Coll Surg Edinb 1997;42(6):395-9

379. Aziz M, Qadir A, Aziz M, Faizullilh. Prognostic factors in typhoid perforation. J

Coll Physicians Surg Pak 2005;15(11):704-7

380. Thong KL. Passey M, Clegg A, Combs BG, Yassin RM, Pang T. Molecular

analysis of isolates of Salmonella typhi obtained from patients with fatel and

nonfatal typhoid fever.J Clin Microbiol 1996;34(4):1029-33

381. Massi MN. Shirakawa T, Gotoh A, Hatta M, Kawabata M. Identification and

sequencing of Salmonella entericil serotype typhi isolates obtained from patients

with perforation and non-perforation typhoid fever. Southeast Asian J Trop Med

Public Health 2005;36(1): 118-22

382. Rajagopalan P, Kumar R, Malaviya AN, Immunological studies in typhoid

fever. 11. Cell-mediated immune responses and lymphocyte subpopulations in

patients with typhoid fever. Clin Exp Immunol 1982;47(2):269-74

383. Sarma VN, Malaviyn AN, Kumar R, Ghai OP, Bakhtary MM. Development of

immune response during typho~d fever in man. Clin Exp Immunol 1977;28(1):35-

9

384. Khosla SN, Kumar D, Singh V. Lyrnphocytic adenosine deaminase activity in

typhoid fevers. Postgrad Med J 1992;68(798):268-71

385. Thevanesam V, Arseculeratne SN, Weliange LV, Athauda PK. Cell mediated

and humoral immune responses in human typhoid fever. Trop Geogr Med

1982;34( 1 ): 13-7

386. Abdool Gaffar MS. Seedat YK, Coovadia YM, Khan Q. The white cell count in

typhoid fever. Trop Geogr Med 1992;44(1-2):23-7

xxxvii

References

387. Keuter M. Dhf~nnana E, Kullberg BJ, Schalkwijk C, Gasem MH, seuren L, et

aI. Phospholipase A2 is a circulating mediator in typhoid fever, J Infect Dis

1995; 172(1):305-8

388. Chiu CH, Su LH, He CC, Jaing TH, Luo CC, Lin TY. Perforation of toxic

megacolon in non-typhoid Salmonella enterocolitis spares young infants and is

immune-mediated. Pediatr Surg int 2002;18(5-6):410-2

389. Butler T, HO M. Acharya G, Tiwari M, Gallati H. Interleukind, gamma

interferon, and tumor necrosis factor receptors in typhoid fever related to outcome

of antimicrobial therapy. Antimicrob Agents Chemother 1993;37(11):2418-21

390. Everest P, Wain I , Roberts M, Rook G, Dougan G. The molecular mechanisms

of severe typhoid fever. Trends Microbiol2001;9(7):316-20

391. Rathore AH, Khan IA, Saghir W. Prognostic indices of typhoid perforation.

Ann Trop Med Parasitol 1987;81(3):283-9

392. Kapoor VK, Mishra MC, Ardhanari R, Chattopadhyay TK, Sharma LK.

Typhoid enteric perforations. Jpn J Surg 1985;15(3):205-8

393, Peiris JS, Thevanesam V, Arseculeratne SN, Kumarakulasinghe CB, Edwards

RH. Ileal perforation in typhoid: bacteriological and immunological findings.

Southeast Asian J Trop Med Public Health 1993;24(1 ):I 19-25

394. Rajagopalan P, Kumar R, Malaviya AN. lmmunological studies in typhoid

fever. I. Immunoglobulins, C3, antibodies, rheumatoid factor and circulating

immune complexes in patients with typhoid fever. Clin Exp lmmunol

I98 I:* 1 ):68-73

395. Gaviria-Ruiz MM. Cardona-Castro NM. Evaluation and comparison of different

blood culture techniques for bacteriological isolation of Salmonella typhi and

Brucella abortus. J Clin Micmbiol 1995;33(4):868-71

396, Rubin FA, McWhirter PD, Punjabi NH, Lane E, Sudarmono P, Pulungsih SP, et

al. Use of a DNA probe to detect Salmonella typhi in the blood of patients with

typhoid fever. J Clin Micmbiol 1989;27(5): 1 1 12-4

397. Haque A, Ahmed J, Qurcishi JA. Early detection of tqphoid by polymerase

chain reaction. Annals of Saudi Medicine 1999; 19 (4):337-340

xxxviii

References

398. Hirose K, Itoh K, Nakajima H, Kurazono T, Yamaguchi M, Moriya K, et al.

Selective amplification of tyv (rfbE), prt (AS) , viaB, and fliC genes by multiplex

PCR for identification of Salmonella enterica serovars Typhi and Paratyphi A. J

Clin Microbiol2002;40(2):633-6

399. Hwrfar J, Ahrens P, Radstrom P. Automated 5' nuclease PCR assay for

identification of Salmonella enterica. J Clin Minobiol2000;38(9):3429-35

400. Pany CM, Hoa NT, Diep TS, Wain J, Chinh NT, Vinh H et al. Value of a

single-tube widal test in diagnosis of typhoid fever in Vietnam. J Clin Microbiol

1999;37(9):2882-6

401. Buck RL, Escamilla J, Sangalang RP, Cabanban AB, Santiago LT, Ranoa CP, et

al. Diagnostic value of a single, pre-treatment Widal test in suspected enteric

fever c a e s in the Philippines. Trans R Soc Trop Med Hyg 1987;81(5):871-3

102. Talwar V, Kaur I, Gupta HC. Counter immunoelectrophoresis (CIEP) for

serological diagnosis of typhoid fever, Indian J Med Res 1986;84:353-7

103. Koeleman JG. Regensburg DF, van Katwijk F, MacLaren DM. Retrospective

study to determine the diagnostic value of the Widal test in a 11on-endemic

country. Eur J Clin Microbiol Infect Dis 1992;l l(2): 167-70

104. Olopoenia LA, King AL. Widal agglutination test - 100 years later: still plagued

by controversy. Postgrad Med J 2000;76(892):80-4

105. Hatta M. Goris MG. Heerkens E, Gooskens J , Smits HL. Simple dipstick assay

for the detection of Salmonella typhi-specific IgM antibodies and the evolution of

the immune response in patients with typhoid fever, Am J Trop Med Hyg

2002;66(4):416-2 1

406. Jesudason MV, Sridharan G, Arulselvan R, Babu PG, John TJ. Diagnosis of

typhoid fever by the detection of anti-LPS & anti-flagellin antibodies by ELISA.

Indian J Med Res 1998;107:204-7

407. Cardona-Castro N, Gotuzzo E, Rodriguez M, Guerra H. Clinical application of a

dot blot test for diagnosis of enteric fever due to Salmonella enterica serovar typhi

in patients with typhoid fever from Colombia and Peru. Clin Diagn Lab Immunol

2000;7(2):312-3

xxxix

References

408. Nandakumar KS, Palanivel V, Muthukkanrppan V. Diagnosis of typhoid fever:

detection of Salmonella typhi porins-specific antibodies by inhibition ELISA.

Clin Exp Immunol 1993;94(2):317-2 1

409. Purwaningsih S, Handojo 1. Rihatini, Probohoesodo Y. Diagnostic value of

dot-enzyme-immunoassay test to detect outer membrane protein antigen in sera of

patients with typhoid fever. Southeast Asian J Trop Med Public Health

2001 ;32(3):507-12

410. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et

al. Detection of antibodies against Salmonella typhi outer membrane protein

(OMP) preparation in typhoid fever patients. Asian Pac J Allergy Immunol

1993; 1 1(1):45-52

41 1 . lsmail A, Hai OK, Kader ZA. Demonstration of an antigenic protein specific for

Salmonella typhi. Biochem Biophys Res Commun 1991;181(1):301-5

312. Choo KE, Oppenheimer SJ, lsmail AB, Ong KH. Rapid serodiagnosis of

typhoid fever by dot enzyme immunoassay in an endemic area. Clin Infect Dis

1994; 19( 1 ): 172-6

313. Jesudason M, Esther E, Mathai E. Typhidot test to detect IgG & IgM antibodies

in typhoid fever, Indian J Med Res 2002;116:70-2

414. Bhutta 2.4, Mansurali N. Rapid serologic diagnosis of pediauic typhoid fever in

an endemic area: a prospeclive comparative evaluation of two dot-enzyme

immunoassays and the Widal test. Am J Trop Med Hyg 1999;61(4):654-7

115. Choo KE, Davis TM, lsmail A, Tuan lbrahim TA, Ghazali WN. Rapid and

reliable serological diagnosis of enteric fever: comparative sensitivity and

specificity of Typhidot and Typhidot-M tests in febrile Malaysian children. Acta

Trop 1999;72(2): 175-83

416. Jackson AA, Ismail A, Ibrahim TA, Kader ZS, Nawi NM. Retrospective review

of dot enzyme immunoassay test for typhoid fever in an endemic area. Southeast

Asian J Trop Med Public Health 1995;26(4):625-30

417. Chart H, Cheesbmugh JS. Waghom Dl. The serodiagnosis of infection with

Salmonella typhi. J Clin Path01 2000;53(11):851-3

References

418. Franco A, Gonzalez C, Levine OS, Lagos R, Hall RH, Hoffman SL, et al.

Further consideration of the clonal nature of Salmonella typhi: evaluation of

molecular and clinical characteristics of strains from Indonesia and Peru. J Clin

Microbiol 1992;30(8):2 187-90

419. Vullo V, Mastroianni CM, Contini C, Cignarella L, Massetti AP, Falciano M, et

al. lmmunoblot analysis of Salmonella typhi lipopolysaccharjde (LPS) using

typhoid sera. Boll 1st Sieroter Milan 1987;66(2):130-3

420. de Andrade CM, Ferreira AG, da Silva ID, Nascimento HJ, da Silva JG Jr.

Chemical and immunological characterization of a low molecular weight outer

membrane protein of Salmonella typhi. Microbiol Immunol 1998;42(8):521-6

421. Chander H. Majumdar S, Sapru S, Rishi P. Reactivity of typhoid patients sera

with stress induced 55 kDa phenotype in Salmonella enterica serovar Typhi. Mol

Cell Biochem 2004;267(1-2):75-82

422. Mathai E, Jesudason MV. Coagglutination test in the diagnosis of typhoid fever.

Indian J Med Res 1989;89:287-9

423. Kalhan R, Kaur I, Singh RP, Gupta HC. Latex agglutination test (LAT) for the

diagnosis of typhoid fever. Indian Pediatr 1999;36(1):65-8

424. Kang G, Sridharnn G, Jesudason MV, John TJ. Evaluation of modified passive

haemagglutination assay for Vi antibody estimation in Salmonella typhi

infections. J Clin Pathol 1992;45(8):740-1

425. Collee JG. Miles RS. Watt B. Tests for the identification of bacteria. In: Collee

JG, Fraser AG. Mannion BP, Simmons A, editors. Mackie and McCartney

practical medical microbiology. 14th Ed. London: Churchill Livingstone; 1996. p.

131-49

426. National Committee for Clinical Laboratory Standards. Performance standards

for antimicrobial disk susceptibility tests, 6th ed. Approved standard M2-A6.

Wayne. Pa: National Committee for Clinical Laboratory Standards; 1997

427. National Committee for Clinical Laboratory Standards. Methods for dilution

antimicrobial susceptibility tests for bacteria that grow aerobically. 4th ed.

Approved standard M7-A4. Wayne. Pa: National Committee for Clinical

Laboratory Standards; 1997

xli

References

428, Fujimoto S, Marshall B. Blaser MJ. PCR-based restriction fragment length

polymorphism typing of Helicobacter pylon. J Clin Microbial 1994;32(2):331-4

429. Sarnbrook J, Fritsch E.F, Maniatis T, editors. Molecular cloning: a laboratory

manual. 3rd Edn. New York : Cold Spring Harbor Laboratory Press; 2001

430. Altschul SF, Gish W, Miller W. Myers EW, Lipman DJ. Basic local alignment

search tool. 1. Molecular Biol 1990; 215:403-10

431. Schnaitman CA. Solubilization of the cytoplasmic membrane of Escherichia

coli by Triton X-100. J Bacterial 1971; 108(1):545-52

432. Sambrook J, Fritsch EF, Maniatis T, editors. Molecular cloning: a laboratory

manual. 2"' Edn. New York: Cold Spring Harbor Laboratory Press; 1989, p.

18.56

433. Costa.~ M. The analysis of bacterial proteins by SDS polyacrylamide gel

electrophoresis. In Howard I, Whitcomb DM, editors. Methods in molecular

microbiology. New Jersey:Humana Press; 1995. p.27-41.Vol 46 Diagnostic

bacteriology protocols.

434. Towbin H. Staehelin T. Gordon J. Electrophoretic transfer of proteins from

polyacrylamide gels to nitrocellulose sheets: procedure and some applications.

Proc Natl Acad Sci U S A 1979;76(9):4350-4

435. Chart H, Rowe B. Cheesbrough JS. Serological response of patients infected

with Salmonella typhi. J Clin Path01 1997;50(11):944-6

436. Lowry OH. Rosebrough NJ, Farr AL, Randall RI. Protein measurement with the

Folin phenol reagent. J Biol Chem 1951 ;193( 1):265-75

437. Dutta S, Sur D, Manna B, Bhattacharya SK, Deen JL. Clemens JD. Rollback of

Salmonella enterica serotype Typhi resistance to chlorarnphenicol and other

antimicrobials in Kolkata. India. Antimicrob Agents Chemother 2005;49(4):1662-

3

138. Bhattacharya SS, Da. U. Occumnce of Salmonella typhi infection in Rourkela,

Orissa, Indian J Med Res 2000,111 :75-6

439. Rasaily R, Dutta P, Saha MR, Mitra U, Lahiri M, Pal SC. Multi-drug resistant

typhoid fever in hospitalised children. Clinical, bacteriological and

epidemiological profiles. Eur J Epidemiol 1994;10( 1 ):4 1-6

xlii

References

440. Yo0 Sq Psi Hp Byeon JH, Kang YH, Kim S, BK, ~ ~ i d ~ ~ i ~ l ~ ~ ~ of Salmonella enterica SerotYPe typhi infections in Korea for recent 9 years: trends

of antimicrobial resistance. J Korean Med Sci 200419(1): 15-20

441. Banikhi MN. Occurrence of Salmonella typhi and Salmonella paatyphi in

Jordan. New Microbiol 2003;26(4):363-73

442. Otegbayo JA, Daramola 00, Onyegbutulem HC, Balogun WF, Opntoye 00.

Retrospective analysis of typhoid fever in a tropical tertiary health facility. Trop

Gastroenterol 2002;23( 1 ):9- 12

443, Senthilkumar B, Prabakaran G. Muitidrug resistant Salmonella typhi in

asymptomatic typhoid carriers among food handlers in Namakkal district, Tamil

Nadu. Indian J Med Microbiol 2005;23(2):92-4

444. Canals M, Labra F. Non linear analysis of infection diseases dynamics in Chile.

Rev Med Chil 1999;127(9): 1086-92

445. Mandal S, Mandal MD, Pal NK. Reduced minimum inhibitory concentration of

chloramphenicol for Salmonella enterica serovar typhi, Indian J Med Sci.

2004;58(1): 16-23

446. Jesudason MV, John R, John TI. The concurrent prevalence of

chloramphenicol-sensitive and multi-drug resistant Salmonella typhi in Vellore, S.

India Epiderniol Infect 1996; 1 16(2):225-7

447. Rahman M, Ahmad A, Shoma S. Decline in epidemic of multidrug resistant

Salmonella typhi is not associated with increased incidence of antibiotic-

susceptible strain in Bangladesh. Epidemiol Infect 2002;129(1):29-34

448. Ochiai RL, Wang X, von Seidlein L, Yang J, Bhutta ZA, Bhattacharya SK, et al.

Salmonella paratyphi A rates. Asia. Emerg Infect Dis 2005;11(11):1764-6

449. Jesudason MV. Paratyphoid fever in Vellore. South India. Trop Doct.

2005;35(3): 191

450. Chandel DS. Chaudhry R, Dhawan B, Pandey A, Dey AB. Dw-resistant

Salmonella enterica serotype paratyphi A in India. Emerg Infect Dis

2000;6(4):420- 1

451. Sood S. Kapil A, Das B, Pain Y, Kabra SK. Re-emergence of chloramphenicol-

sensitive Salmonella typhi. Lancet 1999;353(9160): 1241-2

xliii

References

452. Takkar VP, Kumitr R, Takkar R. Khurana S. Resurgence of chloramphenicol

sensitive Salmonella typhi. lndian Pediatr 1995;32(5):586-7

453. Srivastava L , Aggarwal P. Mullidrug resistant Salmonella Typhi in Delhi.

Indian J Med Microbiol 1994;12 (2): 102-5

454. Chande C. Shrikhande S, Kapale S, Agrawal S, Fule RP. Change in

antimicrobial resistance pattern of Salmonella Typhi in central India. lndian J

Med Res 2002: I 15:248-50

455. Ranju C. Pais P. Ravindran GD, Singh G. Changing pattern of antibiotic

ensilivity of Snlmonella typhi. Natl Med J India 1998;11(6):266-7

456. Lipitch M. The rise and fall of antimicrobial resistance.Trends Microbiol

?001;9(9):4384

457. Ciutmann L. Williamson R, Moreau N, Kitzis MD, Collatz E, Acar JF, el al.

Cross-resistance to nalidiaic acid. vimcthoprim, and chloramphenicol arsociated

with alterntionr In outer membrane proteins of Klebsiella, Enterobacter, and

Serratia. J Infect Dis 1985; 15 1(3):501-7

458. Siha SK. Talukder SY, Islam M, Saha S. A highly ceftriaxone-resistant

Salmonella typhi in Bangladesh Pediatr Infect Dis J 1999;18(4):387

4.59. Gupa A. Sw;unkar NK. Choudhary SP. Changing antibiotic sensitivity in

cnteric fcver. J Trop Pediav ?001;47(6):369-7 1

1(0 Su CP, Chen YC, Chang SC. Changing chardcleristics of typhoid fever in

Tawan. J Micrthlol lmmunol Infect 2004;37(2): 109- I4

Jhl . Rao KS. Sundwmj 'T. Subramanian S. Shankar V. Mur~y SA. Kapoor SC. A

~ u d y of drug rtbrstance among Salmonella typhi and Salmonella pwatyphi A in

an enJem~c area. 1977-79. Ttans R Soc Trop Mcd Hyg 1981;75( 1):214

462. Kumar R, Aneja KR. Punin AK. Roy P. Sharma M. Gup~a R. el al. Changing

pam of b~otypes. phage types & drug resistance of Salmonella typhi in

Mhiana during 1980-1999. lndian J Med Res 2001;I 13:17580

4 6 3 . ThmlfaJl EJ, W d LR. D e c r d susceptibility lo cipmfloaacin in Salmonella

entaica smype Typhi. United Kingdom. Emerg Infect Dis 2001;7(3):438-50

464. Dutta P, Mitra U, Dutta S, De A, Chatterjee MK. Bhattacharya SK. Ceftriaxone

therapy in ciprofloxacin treatment failure typhoid fever in children. Indian J Med

Res2001;I 13:210-3

465. Ciraj AM. Seema DS, Bhat GK, Shivananda PG. Nalidixic acid screening test

for the detection of decreased susceptibility to ciprofloxacin in Salmonella typhi.

Indian J Path01 Microbiol 200 1 ;44(4):407-8

4th. Hakitmn AJ, Lindgren M, Huovinen P, Jalava J. Siitonen A, Kotilainen P. New

quinolone resistance phenomenon in Salmonella enterica: nalidixic acid-

susceptible isolates with reduced fluoroquinolone susceptibility, J Clin Microbiol

2005;43( 1 1 ):5775-8

467. Sekar U. Srikanth P, Kindo AJ. Babu VP. Rammubramanian V. Increase in

minimum inhibitory concentration to quinolones and ceftriaxone in salmonellae

causing enferic fever. J Commun Dis 2003;35(3): 162-9

468. Clinical and Laboratory Standards Institute (Formerly NCCLS). Performance

standards for antimicrobial susceptibility tehting: 15" international supplement.

CLSUNCCLS document M100-S15. Clinical and Laboratory Standards Institute,

Wayne. Pennsylvania. 2005

469. H~rosc K. Hishimot0 A. Tamura K, Kawamura Y. Ezaki T. Sagara H, et al.

DNA sequence analysis of DNA gym.. md DNA topoisomerase IV quinolone

rcsistmce-determining regions of Salmonella enterica nrovar Typhi and semvar

Ilaratyph~ A. Antimicmb Agents Chemother 2002;46( 10):3249-52

,470. Sh~r~kawa T. Acharya B. Kinoshits S. Kumapa~ S. Gotoh A. Kawabata M.

k c m a d susceptibility to fluoroquinolones and gyrA gene mutation in the

Salmonella enterica serovar Typhi and Paratyphi A isolated in Katmandu. Nepal.

tn 2003. Diagn Microbiol Infect Dis 2006:54(4):299-303

471. Nair S, Unnikrishnan M. Turner K. Parija SC. Churcher C. Wain J. Harish BN.

Molecular analysis of fluoroquinolone-resistant Salmonella Paratyphi A isolate.

India. Emag Infect Dis 2006; 12(3):489-91

372. Shomidge VD. Stone GG, Flamm RK. k y e r J. Vedov ic J. Graham DW. et

al. Molecular typing of Helicobacler pylori isolales h m a multicenter U.S.

References

clinical trial by ureC restriction fragment length polymorphism. J Clin Microbiol

1997;35(2):47 1-3

473. Hunado A. Owen R1, Identification of mixed genotypes in Helicobacter pylori

from gastric biopsy tissue by analysis of unase gene polymorphisms. FEMS

lmmunol Med Microbiol 1994;8(4):307- 13

474,Some background information about DNA methylation

http:llwww.people.comell.edu lpagedpds28/ Background%20on%2Omethylation.

html downloaded on 13.03.06

475. Schukler D, Lorincz MC, Cimhord DM. Telling A, Fcng YQ, Bouhilcsira EE,

et al. Genomic targeting of methykited DNA: influence of methylation on

transcription, nplication, chromatin structure, and histone acetylation. Mol Cell

Biol2000;20(24):9103- 12

476. Renuka K. Sood S. Das BK, Kapil A. High-level ciprofloxacin resistance in

Salmonella enterica wrotype Typhi in India. J Med Microbiol 2005:54(10):999-

1000.

177. Chu YW, Hwang ET. Chenp AF Novel combination of mutations in the DNA

pyrase and topoisomerase IV penes in laboratory-grown fluoroquinolone-resistant

Shigella f lexmi mutants. Anlimicrob Agents Chemother 1998;42(1 11305 1-2

478. Webber M. Buckley AM. Rnndall LP. Woodward MJ. Piddock U.

O v e r c x ~ i o n of marh, soxS and acrB in veterinary isolates of Salmonella

entenca rarely correliues with cyclohexane tolerance. J Antimicrob Chemother

2OOb;57(4):673-9

479. Wang H. Dzink-Fox J L Chcn M. Levy SB. Genetic characterization of highly

fluoroquinolone-resistant clinical Eschuichia coli strains from China: role of acrR

mutations. Antimicmb Agents Chemother 2001 :45(5): 1515-2 1

480. D i j h h L. Michel MF. Degener JE. Cell envelope protein profiles of

Acinetobscter calcoanticus strains isolated In hospitals. J Med Micmbioi

1987:23(4):313-9

481. timansky AS. Muss1 MA. Vide AM. Loss of a 29-kilodalton outer membrane

protein in Acinetobrrter baumannil is associated with imipenem resistance. J Clin

Micmbiol2002;40( 12):4776-8

References

482. Suzut S, Aparecida T. Gornes T, Guth BE. Characterization of serotypes and

outer membrane protein profiles in enteroaggregative Escherichia coli strains.

Micmbiol lmmunol 1999;43(3):201-5

483. Kline MW. Mason EO Jr, Kaplan SL. Epidemiologic marker system for

Citrobacter diversus using outer membrane protein profiles. J Clin Microbiol

1989;27(8): 1793-6

4X4. Kappos T. John MA. Hussain Z, Valvano MA. Outer membrane protein profiles

and multilocus enzyme electrophoresis analysis for differentiation of clinical

isolates of Proteus mirabilis and Roteus vulgaris. J Clin Microbiol

IW2:3(Y 10):2632.7

48s. Bli~ser MJ. Hopkins JA. Berka RM, Vasil ML. Wang WL. Identification and

charactenration of Campylobacter jejuni outer membrane proteins. Infect lmmun

l983;42( 1 ):?7&)(4

486. Ng I. LIU SL. Sanderson KE. Role of genomic rearrangements In producing

new r ihypcs of Salmonella typhi. J Bacterial 1999:181(1 I L3536-11

487. Medclms AX, O'Brien TF. Rosenberg EY. Nikaido H. Loss of OmpC porin in a

rtmln of Salmnnella typhimurium causcs incna.\ed resistance to cephalosporins

dunng therapy. 1 Infect DIS 1987:156(5):751-7

4x8. Cebn;~n L. Rudriguer JC. Escribano I. Royo G. Characterization of Salmonella

spp, nlutants with reduced fluoroquinolone susceptibility: Impoflance of efflux

pump mechanisms. Chemotherapy ?005;51( 1 ):40-3

489. Cie 8. McDcm)tt PF. Wh~te DG. Meng J. Role of efflux pumps and

topo~somcrar nul la lions in fluoroqu~nolone resistance in Campylobacter jejuni

and Campylobctcr coli. Antimlmb Agents Chemother 2005;49(8):3347-54

JCW. Chn, KE. Ru i f XR. Oppenheimer SJ. Ariffin WA, Lau J. Abraham T.

tiufulnesr of the Widal test In diagnosing childhood typhoid fever in endemic

mils. I PaeJlatr Ch~ld Health 1993;29( 1 ):36-9

J1jI. h m r s ~ BII. LuBnxby JT. Beyer L. Dearlove CE, Shearman DJ. The human

humoral Immune response In Salmonella typhi Ty2la. J Infect Dis

1991;163(?):336-4.5

References

492. Weber B, Hess 0, Enzensberger R, Harms F, Evans CJ, Hamann A, et al.

Multicenter evaluation of the novel ABN Western blot (imrnunoblot) system in

comparison with an enzym~linked immunosorbent assay and a different Western

blot. J Clin Microbiol 1992;30:691-7

493. DePietropaolo DL, Powers JH, Gill JM, Foy AJ. Diagnosis of Lyme disease.

Del Med J 2006;78(1): 1 1-8

494. Schmitt P, Splettstosser W, Porsch-Ozcururnez M, Finke U, Grunow R. A

novel screening ELlSA and a confirmatory Western blot useful for diagnosis and

epidemiological studies of hlhremia. Epidemiol Infect 2005; 133(4):759-66

495. Beck ST. Leite OM. Armda RS, Ferreira AW. Combined use of Western

bloEL1SA to improve the serological diagnosip of human tuberculosis. Braz J

Infect Dis 2005;9(1):35-43

I06 Sambri V. Miuiangoni A. Eyer C, Reichhuber C. Wtschek E, Negosanti M, et

al. Western immunoblotting with five Treponema pallidum recombinant antigens

for serologic diagnosis of syphilis. Clin Diagn lab lmmunol 2001;8(3):534-9

407. Magnarelli LA, Bushmich SL. Sherman BA. Fikrig E. A comparison of

\erolopic tcsts for the detection of serum antibodies to whole-cell and

recombinant Borrelia burgdorferi antigens in cattle. Can Vet J 2004;45(8):667-73

JVX. Nesra J. Chat H. Owen FU. Drasar B. Human *rum antibody response to

Ilclicohactcr pylon whole cell antigen in an institutionalized Bangladeshi

p~pulat~ofl. J Appl Micmbiol 2001;W 1 ):6X-72

JW. Champagne MJ. Higgins R. Fairbrother JM. Dubreuil D. Detection and

chmcteriz~t~on of leptospinl antigens using a h~otinlavidin double-antibody

\;mdwich enryme.linked immunosorbent assay and ~mmunoblot. Can J Vet Res

1991 :55(3):219-45

5tK) . SbrogicrAlmeida ME. Femira LC. Flagellin expressed by live Salmonella

vxcine strains induces disonct antihody responses following delivery via

systemic or mucosal immunization mutes. FEMS lmmunol Med Microbiol

2001;.W3):203-8

501. Chm H. Jenkins C. Thc semdiagnosis of infections caused by Verocytoloxin-

pducing Escherichia coli. J Appl Microbiol 1999;86(5):73 1-40

502. Yokota SI, Ammo KI, Shibata Y, Nakajima M, Suzuki M, Hayashi S, et al.

Two distinct antigenic types of the polysaccharide chains of Helicobacter pylon

lipopolysaccharides characterized by reactivity with sera from humans with

natural infection, Infect Immun 2000;68( 1 ): 15 1-9

503. Chiut H, Scotland SM. Rowe B. Serum antibodies to Escherichia coli serotype

0157:H7 in patients with hemolytic uremic syndrome. J Clin Microbiol

1989;27(2):285-90

504. van der Ley P. Kuipers 0. Tommur.sen J. Lugtenberg B. 0-antigenic chains of

lipopolysaccharide prevent binding of antibody molecules to an outer membrane

pore protein in Enterobacteriaceae. Micmb Pathog 1986; 1 ( 1 ):43-9

505. Bmwn A. Hormaeche CE. The antibody response to salmonellae in mice and

humina studied hy ~mmunobloa and ELISA. Microb Pathog 1989;6(6):445-54

506. Jancar S. Sanchez Crehpo M. Immune complex-mediated tissue injury: a

multislcp paradigm. Trends lmmunol 2005;26( 1 ):48-55