Anatomy

Embed Size (px)

Citation preview

Anatomy & Physiology of the Vitreous & the Vitreoretinal Interface

The vitreous gel is a transparent extracellular matrix that fills the cavity behind the lens of the eye. It occupies an average volume of 4.4 ml in adulthood. It is surrounded by and attached to the retina and lens of the eye.[1]It is a virtually acellular, highly hydrated extracellular gel matrix, composed of approximately 99% water.[15]The transparent nature of the vitreous makes it challenging to study its structure and anatomy.

The gel structure is maintained by a dilute network of thin, unbranched collagen fibrils that are mixed (heterotopic) in composition, comprising collagen types II, V/XI and IX in a molar ratio of 75:10:15, respectively. Collagen type V/XI forms the core of the fibrils, with type II surrounding the core and type IX on the outside of the fibril. The spaces between these collagen fibrils are mostly filled by glycosaminoglycans (GAGs), mainly hyaluronan.[15]Opticin has been found to coat the collagen fibers and, by binding to different GAGs, may play a role in maintaining the gel structure of the vitreous and also in adhesion at the vitreoretinal interface.[1517]Chondroitin sulfate, another GAG linked to type IX collagen, was found to play a role in bridging adjacent collagen fibrils and at the same time spacing them apart to minimize light scattering and maintain vitreous transparency.[18]The vitreoretinal interface is an adhesive sheet that facilitates the connection of the posterior vitreous cortex of the vitreous body to the internal limiting membrane of the retina.[6]The vitreoretinal interface consists of matrix proteins including laminin, fibronectin and collagen IV,[18,19]and it is thought that these may act as an extracellular matrix 'glue'.[6]It is not completely understood how the vitreous and retina interact. The vitreous is known to be most firmly attached at places where the internal limiting membrane is thinnest, that is, the vitreous base, optic disc and macula, and over retinal blood vessels.[1]At the base area, the vitreous and the retina are connected by vitreous collagen fibers passing though the internal limiting membrane and intertwining with retinal collagen.[20]The collagen fibrils of the posterior vitreous cortex are indirectly attached to the internal limiting membrane, and hence to the retina via laminin and fibronectin,[21]as shown in Figure 1. The attachment between the vitreous and the macula is called the vitreomacular interface.

(Enlarge Image)Figure 2.

Protein bonds in the vitreomacular interface.

Starting in the fourth decade of life, the vitreous body witnesses a significant decrease in gel volume with a concomitant increase in the liquid volume. Derangement of the normal association between hyaluronan and collagen results in the simultaneous aggregation of collagen fibrils into bundles of parallel fibrils seen as large fibers and the formation of large pockets of liquid vitreous recognized clinically as 'lacunae'. By 8090 years of age, more than half of the vitreous is liquid.[22]With aging, weakening of the adhesion between the posterior vitreous cortex and the internal limiting membrane occurs, probably due to biochemical alterations in the vitreoretinal interface.[23,24]One component of the extracellular matrix of the vitreoretinal interface, galactose (1,3)-N-acetylglucosamine, is no longer present in adults.[25]Several studies demonstrated that an intact vitreoretinal interface has been found in patients less than 60 years of age, despite extensive vitreous liquefaction.[1]After the age of 60 years, weakening of the posterior vitreous cortex/internal limiting membrane adhesion at the posterior pole occurs, allowing liquid vitreous to enter the retrocortical space. Volume displacement from the central vitreous to the preretinal space causes the observed collapse of the vitreous body,[6]usually leading to posterior vitreous detachment.

References

1. Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages.Am. J. Ophthalmol.149(3), 371382(2010).

2. Krebs I, Brannath W, Glittenberg C, Zeiler F, Sebag J, Binder S. Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration?Am. J. Ophthalmol.144(5), 741746(2007).

Provides an association between vitreomacular adhesion and wet age-related macular degeneration.

3. Hikichi T, Yoshida A, Trempe CL. Course of vitreomacular traction syndrome.Am. J. Ophthalmol.119(1), 5561(1995).

Provides important natural history of the disease data.

4. Sonmez K, Capone A Jr, Trese MT, Williams GA. Vitreomacular traction syndrome: impact of anatomical configuration on anatomical and visual outcomes.Retina (Philadelphia, PA)28(9), 12071214(2008).

5. Melberg NS, Williams DF, Balles MWet al.Vitrectomy for vitreomacular traction syndrome with macular detachment.Retina (Philadelphia, PA)15(3), 192197(1995).

6. Sebag J. Molecular biology of pharmacologic vitreolysis.Trans. Am. Ophthalmol. Soc.103, 473494(2005).

7. Guillaubey A, Malvitte L, Lafontaine POet al.Incidence of retinal detachment after macular surgery: a retrospective study of 634 cases.Br. J. Ophthalmol.91(10), 13271330(2007).

8. Ramkissoon YD, Aslam SA, Shah SP, Wong SC, Sullivan PM. Risk of iatrogenic peripheral retinal breaks in 20-G pars plana vitrectomy.Ophthalmology117(9), 18251830(2010).

9. Rizzo S, Belting C, Genovesi-Ebert F, di Bartolo E. Incidence of retinal detachment after small-incision, sutureless pars plana vitrectomy compared with conventional 20-gauge vitrectomy in macular hole and epiretinal membrane surgery.Retina (Philadelphia, PA)30(7), 10651071(2010).

10. Recchia FM, Scott IU, Brown GC, Brown MM, Ho AC, Ip MS. Small-gauge pars plana vitrectomy: a report by the American Academy of Ophthalmology.Ophthalmology117(9), 18511857(2010).

11. Cheng L, Azen SP, El-Bradey MHet al.Duration of vitrectomy and postoperative cataract in the vitrectomy for macular hole study.Am. J. Ophthalmol.132(6), 881887(2001).

12. Banker AS, Freeman WR, Kim JW, Munguia D, Azen SP. Vision-threatening complications of surgery for full-thickness macular holes. Vitrectomy for Macular Hole Study Group.Ophthalmology104(9), 14421452; discussion 1452(1997).

Provides important natural history of disease data, as well as data on vitrectomy complications.

13. Freeman WR, Azen SP, Kim JW, el-Haig W, Mishell DR 3rd, Bailey I; The Vitrectomy for Treatment of Macular Hole Study Group. Vitrectomy for the treatment of full-thickness stage 3 or 4 macular holes. Results of a multicentered randomized clinical trial.Arch. Ophthalmol.115(1), 1121(1997).

Provides important natural history of disease data, as well as data on vitrectomy complications.

14. Sebag J. Pharmacologic vitreolysis.Retina18(1), 13(1998).

Introduces the concept of pharmacological vitreolysis.

15. Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel.Prog. Retin. Eye Res.19(3), 323344(2000).

16. Reardon AJ, Le Goff M, Briggs MDet al.Identification in vitreous and molecular cloning of opticin, a novel member of the family of leucine-rich repeat proteins of the extracellular matrix.J. Biol. Chem.275(3), 21232129(2000).

17. Hindson VJ, Gallagher JT, Halfter W, Bishop PN. Opticin binds to heparan and chondroitin sulfate proteoglycans.Invest. Ophthalmol. Vis. Sci.46(12), 44174423(2005).

18. Scott JE, Chen Y, Brass A. Secondary and tertiary structures involving chondroitin and chondroitin sulphates in solution, investigated by rotary shadowing/electron microscopy and computer simulation.Eur. J. Biochem.209(2), 675680(1992).

19. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes.Eye22(10), 12141222(2008).

20. Wang J, McLeod D, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion.Invest. Ophthalmol. Vis. Sci.44(5), 17931800(2003).

21. Matsumoto B, Blanks JC, Ryan SJ. Topographic variations in the rabbit and primate internal limiting membrane.Invest. Ophthalmol. Vis. Sci.25(1), 7182(1984).

22. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ. Age-related changes on the surface of vitreous collagen fibrils.Invest. Ophthalmol. Vis. Sci.45(4), 10411046(2004).

23. Larsson L, Osterlin S. Posterior vitreous detachment. A combined clinical and physiochemical study.Graefes Arch. Clin. Exp. Ophthalmol.223(2), 9295(1985).

24. Vaughan-Thomas A, Gilbert SJ, Duance VC. Elevated levels of proteolytic enzymes in the aging human vitreous.Invest. Ophthalmol. Vis. Sci.41(11), 32993304(2000).

25. Russell SR, Shepherd JD, Hageman GS. Distribution of glycoconjugates in the human retinal internal limiting membrane.Invest. Ophthalmol. Vis. Sci.32(7), 19861995(1991).

26. Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease.Graefes Arch. Clin. Exp. Ophthalmol.242(8), 690698(2004).

27. Smiddy WE, Green WR, Michels RG, de la Cruz Z. Ultrastructural studies of vitreomacular traction syndrome.Am. J. Ophthalmol.107(2), 177185(1989).

28. Shinoda K, Hirakata A, Hida Tet al.Ultrastructural and immunohistochemical findings in five patients with vitreomacular traction syndrome.Retina20(3), 289293(2000).

29. Wu PC, Chen YJ, Chen YHet al.Factors associated with foveoschisis and foveal detachment without macular hole in high myopia.Eye23(2), 356361(2009).

30. Shechtman DL, Dunbar MT. The expanding spectrum of vitreomacular traction.Optometry80(12), 681687(2009).

31. Ito Y, Terasaki H, Suzuki Tet al.Mapping posterior vitreous detachment by optical coherence tomography in eyes with idiopathic macular hole.Am. J. Ophthalmol.135(3), 351355(2003).

32. Huang D, Swanson EA, Lin CPet al.Optical coherence tomography.Science254(5035), 11781181(1991).

The first time that the concept of optical coherence tomography was published.

33. Chang LK, Fine HF, Spaide RF, Koizumi H, Grossniklaus HE. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome.Am. J. Ophthalmol.146(1), 121127(2008).

34. van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina.Prog. Retin. Eye Res.26(1), 5777(2007).

35. Do DV, Cho M, Nguyen QDet al.The impact of optical coherence tomography on surgical decision making in epiretinal membrane and vitreomacular traction.Trans. Am. Ophthalmol. Soc.104, 161166(2006).

36. Gallemore RP, Jumper JM, McCuen BW 2nd, Jaffe GJ, Postel EA, Toth CA. Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography.Retina20(2), 115120(2000).

37. Sayegh RG, Georgopoulos M, Geitzenauer W, Simader C, Kiss C, Schmidt-Erfurth U. High-resolution optical coherence tomography after surgery for vitreomacular traction: a 2-year follow-up.Ophthalmology117(10), 20102017(2010).

38. Tammewar AM, Bartsch DU, Kozak Iet al.Imaging vitreomacular interface abnormalities in the coronal plane by simultaneous combined scanning laser and optical coherence tomography.Br. J. Ophthalmol.93(3), 366372(2009).

39. Chew EY, Sperduto RD, Hiller Ret al.Clinical course of macular holes: the Eye Disease CaseControl Study.Arch. Ophthalmol.117(2), 242246(1999).

40. Morgan CM, Schatz H. Idiopathic macular holes.Am. J. Ophthalmol.99(4), 437444(1985).

41. Kim JE, Mantravadi AV, Hur EY, Covert DJ. Short-term intraocular pressure changes immediately after intravitreal injections of anti-vascular endothelial growth factor agents.Am. J. Ophthalmol.146(6), 930934(2008).

42. Akiba J, Yoshida A, Trempe CL. Risk of developing a macular hole.Arch. Ophthalmol.108(8), 10881090(1990).

43. Ezra E. Idiopathic full thickness macular hole: natural history and pathogenesis.Br. J. Ophthalmol.85(1), 102108(2001).

44. Thompson JT, Sjaarda RN, Lansing MB. The results of vitreous surgery for chronic macular holes.Retina17(6), 493501(1997).

45. Gaucher D, Haouchine B, Tadayoni Ret al.Long-term follow-up of high myopic foveoschisis: natural course and surgical outcome.Am. J. Ophthalmol.143(3), 455462(2007).

46. Nasrallah FP, Jalkh AE, Van Coppenolle Fet al.The role of the vitreous in diabetic macular edema.Ophthalmology95(10), 13351339(1988).

47. Avunduk AM, Cetinkaya K, Kapicioglu Z, Kaya C. The effect of posterior vitreous detachment on the prognosis of branch retinal vein occlusion.Acta Ophthalmol. Scand.75(4), 441442(1997).

48. Haller JA, Qin H, Apte RSet al.; Diabetic Retinopathy Clinical Research Network Writing Committee. Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction.Ophthalmology117(6), 10871093.e3(2010).

49. Mojana F, Cheng L, Bartsch DUet al.The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results.Am. J. Ophthalmol.146(2), 218227(2008).

50. Robison CD, Krebs I, Binder Set al.Vitreomacular adhesion in active and endstage age-related macular degeneration.Am. J. Ophthalmol.148, 7982(2009).

51. Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography.Arch. Ophthalmol.119(10), 14751479(2001).

52. Panozzo G, Mercanti A. Optical coherence tomography findings in myopic traction maculopathy.Arch. Ophthalmol.122(10), 14551460(2004).

53. The Eye Disease CaseControl Study Group. Risk factors for idiopathic macular holes: the Eye Disease CaseControl Study Group.Am. J. Ophthalmol.118, 754761(1994).

54. McCannel CA, Ensminger JL, Diehl NN, Hodge DN. Population-based incidence of macular holes.Ophthalmology116(7), 13661369(2009).

55. Huang LL, Levinson DH, Levine JP, Mian U, Tsui I. Optical coherence tomography findings in idiopathic macular holes.J. Ophthalmol.2011, 928205 (2011).

56. Krebs I, Brannath W, Glittenberg Cet al.Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration?Am. J. Ophthalmol.144, 741746(2007).

57. Lee SJ, Lee CS, Koh HJ. Posterior vitreomacular adhesion and risk of exudative age-related macular degeneration: paired eye study.Am. J. Ophthalmol.147(4), 621626(2009).

58. Robison CD, Krebs I, Binder Set al.Vitreomacular adhesion in active and end-stage age-related macular degeneration.Am. J. Ophthalmol.148(1), 7982(2009).

59. Mojana F, Cheng L, Bartsch DUet al.The role of abnormal vitreomacular adhesion in age-related macular degeneration: spectral optical coherence tomography and surgical results.Am. J. Ophthalmol.146, 218227(2008).

60. Sebag J. Pharmacologic vitreolysis premise and promise of the first decade.Retina29(7), 871874(2009).

61. Hageman GS, Russell SR. Chondroitinase-mediated disinsertion of the primate vitreous body.Invest. Ophthalmol. Vis. Sci.35, 1260(1994).

62. Staubach F, Nober V, Janknecht P. Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin.Curr. Eye Res.29, 261268(2004).

63. Hermel M, Schrage NF. Efficacy of plasmin enzymes and chondroitinase ABC in creating posterior vitreous separation in the pig: a masked, placebo-controlledin vivostudy.Graefes Arch. Clin. Exp. Ophthalmol.245(3), 399406(2007).

64. O'Neill R, Shea M. The effects of bacterial collagenase in rabbit vitreous.Can. J. Ophthalmol.8(2), 366370(1973).

65. Moorhead LC, Radtke N. Enzyme-assisted vitrectomy with bacterial collagenase. Pilot human studies.Retina5(2), 98100(1985).

66. Takahashi K, Nakagawa M, Ninomiya Het al.Enzyme-assisted vitrectomy with collagenase.Jpn. J. Clin. Ophthalmol.47, 802803(1993).

67. Stenn KS, Link R, Moellmann G, Madri J, Kuklinska E. Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase.J. Invest. Dermatol.93(2), 287290(1989).

68. Oliveira LB, Tatebayashi M, Mahmoud TH, Blackmon SM, Wong F, McCuen BW 2nd. Dispase facilitates posterior vitreous detachment during vitrectomy in young pigs.Retina21(4), 324331(2001).

69. Tezel TH, Del Priore LV, Kaplan HJ. Posterior vitreous detachment with dispase.Retina18(1), 715(1998).

70. Jorge R, Oyamaguchi EK, Cardillo JA, Gobbi A, Laicine EM, Haddad A. Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes.Curr. Eye Res.26(2), 107112(2003).

71. Zhu D, Chen H, Xu X. Effects of intravitreal dispase on vitreoretinal interface in rabbits.Curr. Eye Res.31(11), 935946(2006).

72. Wang F, Wang Z, Sun X, Wang F, Xu X, Zhang X. Safety and efficacy of dispase and plasmin in pharmacologic vitreolysis.Invest. Ophthalmol. Vis. Sci.45(9), 32863290(2004).

73. Kaplan HJ, Tezel TH, Del Priore LV. Purification of the active constituents of dispase for vitreopharmacolysis.Invest. Ophthalmol. Vis. Sci.46, E-abstract 5454 (2005).

74. Narayanan R, Kuppermann BD. Hyaluronidase for pharmacologic vitreolysis.Dev. Ophthalmol.44, 2025(2009).

75. Gottlieb JL, Antoszyk AN, Hatchell DL, Saloupis P. The safety of intravitreal hyaluronidase. A clinical and histologic study.Invest. Ophthalmol. Vis. Sci.31(11), 23452352(1990).

76. Kuppermann BD, Thomas EL, de Smet MD, Grillone LR; Vitrase for Vitreous Hemorrhage Study Groups. Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage.Am. J. Ophthalmol.140(4), 573584(2005).

77. Kuppermann BD, Thomas EL, de Smet MD, Grillone LR; Vitrase for Vitreous Hemorrhage Study Groups. Safety results of two Phase III trials of an intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage.Am. J. Ophthalmol.140(4), 585597(2005).

78. Wang ZL, Zhang X, Xu X, Sun XD, Wang F. PVD following plasmin but not hyaluronidase: implications for combination pharmacologic vitreolysis therapy.Retina25(1), 3843(2005).

79. Hikichi T, Kado M, Yoshida A. Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit.Retina20(2), 195198(2000).

80. Sumi H, Hamada H, Nakanishi K, Hiratani H. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase.Acta Haematol.84(3), 139143(1990).

81. Urano T, Ihara H, Umemura Ket al.The profibrinolytic enzyme subtilisin NAT purified fromBacillus subtiliscleaves and inactivates plasminogen activator inhibitor type 1.J. Biol. Chem.276(27), 2469024696(2001).

82. Takano A, Hirata A, Ogasawara Ket al.Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis.Invest. Ophthalmol. Vis. Sci.47(5), 20752079(2006).

83. Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane.Cancer Res.41(11 Pt 1), 46294636(1981).

84. Uemura A, Nakamura M, Kachi Set al.Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy.Arch. Ophthalmol.123(2), 209213(2005).

85. Li X, Shi X, Fan J. Posterior vitreous detachment with plasmin in the isolated human eye.Graefes Arch. Clin. Exp. Ophthalmol.240(1), 5662(2002).

86. Takano A, Hirata A, Inomata Yet al.Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous.Am. J. Ophthalmol.140(4), 654660(2005).

87. Verstraeten TC, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA. Pharmacologic induction of posterior vitreous detachment in the rabbit.Arch. Ophthalmol.111(6), 849854(1993).

88. Hikichi T, Yanagiya N, Kado M, Akiba J, Yoshida A. Posterior vitreous detachment induced by injection of plasmin and sulfur hexafluoride in the rabbit vitreous.Retina19(1), 5558(1999).

89. Gandorfer A, Putz E, Welge-Lssen U, Grterich M, Ulbig M, Kampik A. Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy.Br. J. Ophthalmol.85(1), 610(2001).

90. Gandorfer A, Priglinger S, Schebitz Ket al.Vitreoretinal morphology of plasmin-treated human eyes.Am. J. Ophthalmol.133(1), 156159(2002).

91. Margherio AR, Margherio RR, Hartzer M, Trese MT, Williams GA, Ferrone PJ. Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes.Ophthalmology105(9), 16171620(1998).

92. Wu WC, Drenser KA, Trese MT, Williams GA, Capone A. Pediatric traumatic macular hole: results of autologous plasmin enzyme-assisted vitrectomy.Am. J. Ophthalmol.144(5), 668672(2007).

93. Tsukahara Y, Honda S, Imai Het al.Autologous plasmin-assisted vitrectomy for stage 5 retinopathy of prematurity: a preliminary trial.Am. J. Ophthalmol.144(1), 139141(2007).

94. Wu WC, Drenser KA, Lai M, Capone A, Trese MT. Plasmin enzyme-assisted vitrectomy for primary and reoperated eyes with stage 5 retinopathy of prematurity.Retina (Philadelphia, PA)28(3 Suppl.), S75S80(2008).

95. Trese MT, Williams GA, Hartzer MK. A new approach to stage 3 macular holes.Ophthalmology107(8), 16071611(2000).

96. Sakuma T, Tanaka M, Inoue M, Mizota A, Souri M, Ichinose A. Efficacy of autologous plasmin for idiopathic macular hole surgery.Eur. J. Ophthalmol.15(6), 787794(2005).

97. Azzolini C, D'Angelo A, Maestranzi Get al.Intrasurgical plasmin enzyme in diabetic macular edema.Am. J. Ophthalmol.138(4), 560566(2004).

98. Sakuma T, Tanaka M, Inoue J, Mizota A, Souri M, Ichinose A. Use of autologous plasmin during vitrectomy for diabetic maculopathy.Eur. J. Ophthalmol.16(1), 138140(2006).

99. Hirata A, Takano A, Inomata Y, Yonemura N, Sagara N, Tanihara H. Plasmin-assisted vitrectomy for management of proliferative membrane in proliferative diabetic retinopathy: a pilot study.Retina27(8), 10741078(2007).

100. Udaondo P, Daz-Llopis M, Garca-Delpech S, Salom D, Romero FJ. Intravitreal plasmin without vitrectomy for macular edema secondary to branch retinal vein occlusion.Arch. Ophthalmol.129(3), 283287(2011).

101. Kamei M, Estafanous M, Lewis H. Tissue plasminogen activator in the treatment of vitreoretinal diseases.Semin. Ophthalmol.15(1), 4450(2000).

102. Hesse L, Nebeling B, Schroeder B, Heller G, Kroll P. Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy.Exp. Eye Res.70(1), 3139(2000).

103. Hesse L, Chofflet J, Kroll P. Tissue plasminogen activator as a biochemical adjuvant in vitrectomy for proliferative diabetic vitreoretinopathy.Ger. J. Ophthalmol.4(6), 323327(1995).

104. Le Mer Y, Korobelnik JF, Morel C, Ullern M, Berrod JP. TPA-assisted vitrectomy for proliferative diabetic retinopathy: results of a double-masked, multicenter trial.Retina19(5), 378382(1999).

105. Gandorfer A, Rohleder M, Sethi Cet al.Posterior vitreous detachment induced by microplasmin.Invest. Ophthalmol. Vis. Sci.45(2), 641647(2004).

106. Gad Elkareem AM, Willekens B, Vanhove M, Noppen B, Stassen JM, de Smet MD. Characterization of a stabilized form of microplasmin for the induction of posterior vitreous detachment.Curr. Eye Res.35(10), 909915(2010).

107. Sakuma T, Tanaka M, Mizota A, Inoue J, Pakola S. Safety ofin vivopharmacologic vitreolysis with recombinant microplasmin in rabbit eyes.Invest. Ophthalmol. Vis. Sci.46(9), 32953299(2005).

108. de Smet MD, Valmaggia C, Zarranz-Ventura J, Willekens B. Microplasmin:ex vivocharacterization of its activity in porcine vitreous.Invest. Ophthalmol. Vis. Sci.50(2), 814819(2009).

109. de Smet MD, Gandorfer A, Stalmans Pet al.Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI I trial.Ophthalmology116(7), 13491355(2009).

110. Stalmans P, Delaey C, de Smet MD, van Dijkman E, Pakola S. Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled Phase II trial (the MIVI-IIT trial).Retina30(7), 11221127(2010).

111. Benz MS, Packo KH, Gonzalez Vet al.A placebo-controlled trial of microplasmin intravitreous injection to facilitate posterior vitreous detachment before vitrectomy.Ophthalmology117(4), 791797(2010).

112. Girach A, Kozma-Wiebe P, Pakola S. Ocriplasmin as treatment for symptomatic vitreomacular adhesion: Phase III trial results. Presented at:Knowledge for Growth 2012. Gent, Belgium, 24 May 2012.

113. Zhi-Liang W, Wo-Dong S, Min L, Xiao-Ping B, Jin J. Pharmacologic vitreolysis with plasmin and hyaluronidase in diabetic rats.Retina29(2), 269274(2009).

Websites

201. Vitrectomy, St Luke's Cataract and Laser Institute. www.stlukeseye.com/surgical/vitrectomy.html (Accessed 25 February 2012)

202. IDC-9-CM Tabular Addenda. www.cdc.gov/nchs/data/icd9/ICD-9-CM%20TABULARADDENDAfy12.pdf (Accessed 12 January 2012)

203. Medscape. Oh KT, Hughes BM, Atebara NH, Drouilhet JH. Macular hole. http://emedicine.medscape.com/article/1224320-overview#a0199 (Accessed 19 January 2012)

Papers of special note have been highlighted as:

of interest

of considerable interest

Expert Review of OphthalmologyVitreomacular Interface Diseases

Pathophysiology, Diagnosis and Future Treatment Options

Aniz Girach, Steve Pakola

DisclosuresExpert Rev Ophthalmol.2012;7(4):311-323.

http://www.medscape.com/viewarticle/772188_3 PrintAnatomi & Fisiologi Vitreous & yang vitreoretinal Antarmuka

Vitreous gel adalah matriks ekstraseluler transparan yang mengisi rongga di belakang lensa mata. Ini menempati volume rata-rata dari 4,4 ml di masa dewasa. Hal ini dikelilingi oleh dan melekat pada retina dan lensa mata. [1] Ini adalah hampir acellular, sangat terhidrasi matriks ekstraseluler gel, terdiri dari sekitar 99% air. [15] transparan sifat vitreous membuatnya menantang untuk mempelajari struktur dan anatomi.

Struktur gel dikelola oleh jaringan encer tipis, fibril kolagen bercabang yang dicampur (heterotopic) dalam komposisi, terdiri dari kolagen tipe II, V / XI dan IX dalam rasio molar 75:10:15, masing-masing. Kolagen tipe V / XI membentuk inti dari fibril, dengan tipe II sekitar inti dan tipe IX di luar urat saraf. Ruang antara fibril kolagen sebagian besar diisi oleh glycosaminoglycans (GAG), terutama Hyaluronan. [15] Opticin telah ditemukan untuk melapisi serat kolagen dan, dengan mengikat GAG yang berbeda, mungkin memainkan peran dalam mempertahankan struktur gel vitreous dan juga dalam adhesi pada antarmuka vitreoretinal. [15-17] Chondroitin sulfat, GAG lain terkait dengan mengetik kolagen IX, ditemukan untuk memainkan peran dalam menjembatani fibril kolagen yang berdekatan dan pada jarak waktu yang sama mereka terpisah untuk meminimalkan hamburan cahaya dan memelihara transparansi vitreous. [18] antarmuka vitreoretinal adalah lembar perekat yang memfasilitasi sambungan dari vitreous korteks posterior vitreous body pada membran membatasi internal retina. [6] Antarmuka vitreoretinal terdiri dari protein matriks termasuk laminin, fibronektin dan kolagen IV, [18,19] dan diperkirakan bahwa dapat bertindak sebagai 'lem' matriks ekstraselular. [6]

Hal ini tidak sepenuhnya dipahami bagaimana vitreous dan retina berinteraksi. Vitreous diketahui paling melekat erat di tempat di mana membran batas yang tertipis, yaitu, basis vitreous, disk optik dan makula, dan lebih dari pembuluh darah retina. [1] Di daerah basis, vitreous dan retina dihubungkan oleh serat kolagen vitreous lewat meskipun internal membatasi membran dan terjalinnya dengan kolagen retina. [20] fibril kolagen dari vitreous korteks posterior secara tidak langsung melekat pada membran batas, dan karenanya ke retina melalui laminin dan fibronektin, [21 ] seperti yang ditunjukkan pada Gambar 1. Lampiran antara vitreous dan makula disebut antarmuka vitreomacular.

(Perbesar Gambar)

Gambar 2.

Obligasi protein dalam antarmuka vitreomacular.

Dimulai pada dekade keempat kehidupan, saksi vitreous body penurunan yang signifikan dalam volume gel dengan seiring bertambahnya volume cairan. Kekacauan asosiasi normal antara Hyaluronan dan hasil kolagen dalam agregasi simultan fibril kolagen ke dalam bundel fibril paralel dilihat sebagai serat besar dan pembentukan kantong besar vitreous cair diakui secara klinis sebagai 'kekosongan'. Dengan 80-90 tahun, lebih dari setengah dari vitreous cair. [22]

Dengan penuaan, melemahnya adhesi antara korteks posterior vitreous dan membran batas terjadi, mungkin karena perubahan biokimia dalam antarmuka vitreoretinal [23,24] Salah satu komponen dari matriks ekstraseluler dari antarmuka vitreoretinal, galaktosa (1,. 3)-N-asetilglukosamin, tidak lagi hadir pada orang dewasa. [25] Beberapa penelitian menunjukkan bahwa antarmuka vitreoretinal utuh telah ditemukan pada pasien kurang dari 60 tahun, meskipun pencairan vitreous yang luas. [1] Setelah usia 60 tahun, melemahnya vitreous posterior korteks / internal yang membatasi adhesi membran pada kutub posterior terjadi, sehingga vitreous cairan masuk ke ruang retrocortical. Volume perpindahan dari vitreous pusat ke ruang preretinal menyebabkan runtuhnya diamati dari tubuh vitreous, [6] biasanya mengarah ke posterior vitreous detachment.