13

Analytical Study of Geometric Nonlin ear Behavior of Cable

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

30 1A · 2010 1 − 1 −

30 1A·2010 1
Analytical Study of Geometric Nonlinear Behavior of Cable-stayed Bridges
*·**·***·****
·····························································································································································································································
Abstract
This paper presents an investigation on the geometric nonlinear behavior of cable-stayed bridges using geometric nonlinear
finite element analysis method. The girder and mast in cable-stayed bridges show the combined axial load and bending
moment interaction due to horizontal and vertical forces of inclined cable. So these members are considered as beam-column
member. In this study, the nonlinear finite element analysis method is used to resolve the geometric nonlinear behavior of
cable-stayed bridges in consideration of beam-column effect, large displacement effect (known as P-δ effect) and cable sag
effect. To analyze a cable-stayed bridge model, nonlinear 6-degree of freedom frame element and nonlinear 3-degree of free-
dom equivalent truss element is used. To resolve the geometric nonlinear behavior for various live load cases, the initial shape
analysis is performed for considering dead load before live load analysis. Then the geometric nonlinear analysis for each live
load case is performed. The deformed shapes of each model, load-displacement curves of each point and load-tensile force
curves for each cable are presented for quantitative study of geometric nonlinear behavior of cable-stayed bridges.
Keywords : cable-stayed bridge, geometric nonlinear analysis, large displacement effect, beam-column effect, equivalent truss
element

.
. , -
.
, - .
6 3
. ,
. , -,
.
: , , , - ,
·····························································································································································································································
.

.



,

. ,

P-δ .

- .

.

*· · (E-mail : [email protected])
**· · (E-mail : [email protected])
***· (E-mail : [email protected])
****· · · (E-mail : [email protected])
− 2 −
.
Wang(1993, 1996), (2001)

,
(2003) TCUD(Target Configuration
Under Dead Load)
. (2005)

.
(2005), (2005)



.
Ren(1999)


. Shu (2001)
, -, -

,
, -
.

.



,
- , , --




.



.


.


. 6
(Generalized Displacement
Control Method, Yang 1994) -

.
, ,

-,
,


.
.



.

. Updated Lagrangian Formulation


. Updated
Lagrangian Formulation
(Bathe, 1996).
εij : Green-Lagrangian Strain Tensor



.
(2)
(2) -

.
1
2 --- ui j, uj i, uk i, uk j,⋅+ +( )= eij ηij+=
εij 1
1
R t t+
R t t+
δ t t+
δ t t+
2.1
1 3 3

.
.
ε11 e11 η11
.
.
(11)
(12)
(13)

.



.


.
(tangent modulus) .(Gimsing 1983)
(14)
(15)
w :
l :
(16)
3 .
Updated Lagrangian
f{ } fxa fya fza fxb fyb fzb{ } T
=
=
ηt 11
+ +
=
δtη11 u1 1, δu1 1, u2 1, δu2 1, u3 1, δu3 1,+ +=
δtu1 1, δtu2 1, δtu3 1,[ ]
ut 1 1,
ut 2 1,
ut 3 1,
u{ }=
δ u{ }=
t u[ ]+ δt u[ ]
L t
=
=
24T0
t A t
= =
+
1.
− 4 −

.
2
(17), (18) .
(17)
(18)
u, v, w θx
N
.
(19)
(20)
(21)
(y, z : N y, z )

. ,
(2)

.
(22)
(19)~(21) Euler-
Lagrangian (23)~(34)
t t+t
(35)
.
.
u θx
v
w 3

(35) .
(36)
(37)
(38)
(39)
,
u{ }T ua va wa θxa θya θza ub vb wb θxb θyb θzb{ }T=
f{ } T
=
t V+
τ t
Ad A
∫ θz τ
EAu′δu′ EIyw″δw″ EIzv″δv″ GJθc′δθx′)+ + + xd 0
L
yδ v′θx′( )– 0
2 --- M
L
{ } f t
n3{ } T
30 1A · 2010 1 − 5 −
(i=0 @node A, i=1 @ node B)
(35)

.
6
[ke]
(Yang & Kuo 1994).
(40)
,
(41)
,
l
2001) .

0
(Negative Stiffness Zone),

. i- j-
.
(42)
,


j-1

i- j-
.
(43)
(44)
.
.
ε :
M t
+ t
zbi+=
kg[ ]
a 0 0 0 d– e– a– 0 0 0 n– o–
b 0 d g k 0 b– 0 n g– k
c e h– g 0 0 c– o h– g–
f i l 0 d– e– f– i– l–
j 0 d g– h i– p q–
m e k– g– l– q r
a 0 0 0 n o
b 0 n– g k–
c o– h g
<⁄=
(Successive Iteration Method),


, .


. , 3

.

.


.
(toggle frame)

.
4.1 1 - Williams' Toggle Frame
Williams'
toggle frame(Williams 1964) -
(Arc-length method)
ABAQUS V6.6 5
.


.
4.2 2 -
6

. 10
6 1,068 kN 1


.

(2001)

3. ()
5. 4 -
6. -
1.
Beam Cable
A(m2) 2.0 0.03
30 1A · 2010 1 − 7 −
.

-2.21%, 3.18%, 0.32%
.





.

.
9
, ,
,
10

(,
2005) (DL24) 6
9
. 4
,
8
. 2
, 2
.
.

11
.

, , ,
0.27 cm, 0.24 cm, 0.20 cm
8.
9.
10.
Girder Mast Cable
A(m2) 0.640 0.792~0.858 0.0840
I(m4) 0.573 6.447~8.205 -
γ(kN/m3) 296.83 76.9 76.9

0.001%, 0.0009%, 0.0007%. ,
,

.
12
, 13 14
.

, 14

,
.



.
5.2
5.2.1 LC1

LC1 .
15
- .
15 LC1
25.06
. ,


.
.
,

, ,
. ,
16 -

. ,




.
11.
12.
13.
14.
15. LC1 -
30 1A · 2010 1 − 9 −
,
.
24.25
.
, 6 7 -
25.06
25.06 .
18
, 6~8
6, 7
0 .

0 . ,

.


- .
5.2.2 LC2

LC2
. 19
LC2
- .
LC1
. , LC2


.

. -
11.79, 12.63, 13.16

.
20 14.00~14.01
LC2
.


. -

.


.

16. LC1
17. LC1 -
18. LC1
19. LC2 -
− 10 −

.
21~23 LC2
- .
-
12.0

.
20. LC2
21. LC2 -
22. LC2 -
23. LC2 -
24. LC2
25. LC2
26 LC2
30 1A · 2010 1 − 11 −




.
24~26 LC2
.

.




.
,

.

LC2

. 24~26


0 ,

. ,

0
. LC2 LC1
1 2

,

.



.

.


LC1 LC2
.
5.2.3 LC3

LC3
. LC3

.
LC2

.
- 27 .
27 LC3
.


.
- - 7.68,
9.93, 12.38 . 27





.



.
.
.


27. LC3 -
− 12 −

.



.
29 LC3
- .


.



.


,
. ,


.


. LC3 LC1 LC2

.

.
28. LC3
29. LC3
-()
30 1A · 2010 1 − 13 −

.


.
,
.
,

.
.
1.

1

.
- .
2.

,

.


.

.
3.




.


.
4.




.
-

. , ,
,



.


” .
GS
.
, , 15, 2, pp.
175-185.
, , , 25,
1A, pp. 73-79.
, , , 21, 1A,
pp, 165-177.
, 25, 4A, pp. 627-636.
, , (2005)
, ,
, 25, 6A, pp. 1113-1125.
Wang, P.H., Tseng, T.C., and Yang, C.G. (1993) Initial shape of
cable stayed bridge, Computers & Structures, Vol. 47, No. 1,
pp. 111-123.
Wang, P.H. and Yang, C.G. (1996) Parametric study on cable stayed
bridges, Computers & Structures, Vol. 60, No. 2, pp. 243-260.
Ren, W.-X. (1999) Ultimate behavior of long-span cable-stayed
bridges, Journal of Bridge Engineering, Vol. 4, No. 1, pp. 30-
37.
Tang, C.C., Shu, H.S., and Wang, Y.C. (2001) Stability analysis of
steel cable-stayed bridge, Structural Engineering and Mechan-
ics Vol. 11, No. 1, pp. 35-48.
Shu, H.S. and Wang, Y.C. (2001) Stability analysis of box-girder
cable-stayed bridges, Journal of Bridge Engineering, Vol. 6,
No. 1, pp. 63-68.
USA.
2nd Edition, John Wiley & Sons Ltd., England.
Yang, Y.B. and Kuo, S.R. (1994) Theory and Analysis of Nonlin-
ear Framed Structures, Prentice-Hall, Inc, Singapore.
Williams, F.W. (1964) An approach to the nonlinear behavior of the
members of a rigid jointed plane framework with finite deflec-
tions quart. J. Mech. and Applied Math., Vol. 17, pp. 451-469.
ABAQUS Standard User's Manual (2004) Hibbitt, Karlsson and
Sorensen, Inc., Vol 1, 2 and 3. Version 6.5.
(: 2008.11.25/: 2009.2.9/: 2009.9.12)