55
Chapter Chapter Chapter Chapter Analytical Geometry Analytical Geometry Analytical Geometry Analytical Geometry Analytical Geometry is the use of formulae to analyse the length, gradient etc. of certain points and their lines. Section A - Coordinates In grade 10 you learnt that every coordinate is represented by ; and that the same coordinate can be plotted on the Cartesian plane where is your position from left to right and is your position upwards or downwards. Section B - Distance between two points Remember the theorem of Pythagoras – it states that the hypotenuse squared is equal to the sum of the squares of the other two sides. i.e. To find the distance of any point: First find the distance of ‘’ from the two coordinates – e.g. ; and ; . Next find the distance of ‘’ from the two coordinates: Then Substitute it into the original Pythagoras equation: So the distance formula for any point is:

Analytical Geometry - Home - Maths At Sharp

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analytical Geometry - Home - Maths At Sharp

ChapterChapterChapterChapter Analytical GeometryAnalytical GeometryAnalytical GeometryAnalytical Geometry

Analytical Geometry is the use of formulae to analyse the length, gradient etc. of

certain points and their lines.

Section A - Coordinates

In grade 10 you learnt that every coordinate is represented by ��; �� and that the

same coordinate can be plotted on the Cartesian plane where � is your position

from left to right and � is your position upwards or downwards.

Section B - Distance between two points

Remember the theorem of Pythagoras – it states that the hypotenuse squared is

equal to the sum of the squares of the other two sides.

i.e. �� � �� ��

To find the distance of any point:

• First find the distance of ‘�’ from the two coordinates – e.g. ���; ��� and

��� ; � �. ∴ � � � � ��

• Next find the distance of ‘�’ from the two coordinates:

∴ � � � � ��

• Then Substitute it into the original Pythagoras equation:

∴ �� � �� � ���� �� � ����

So the distance formula for any point is:

� � ��� � ���� �� � ����

Page 2: Analytical Geometry - Home - Maths At Sharp

Example: Find the distance from the point A(-2; 3) to point B (3; -2) .

Answer: ∴ � � ��� � ���� �� � ����

∴ � � ��3 � ��2��� ��2 � 3�� ∴ � � ��5�� ��5��

∴ � � √25 25

∴ � � √50 ∴ � � 5√2�����

Activity 1

1. Determine the distance between the two given points that follow:

a) !5; "�# and $ !"% ; "&# b) ' !8; ")# and *��13;�2� c) , !�12;� &

%# and -��5;�1� d) . !�16;� "&# and 0�2; 6�

e) 1 !"& ; 1# and 2�6; 4�

f) 4!�10;� ")# and 5��4; 20� g) 6�6; 1� and 7�1; 6�

h) 8 !") ; "�# and 9 !1 &: ; �9# i) < !2; ":# and = !2;� "

)#

j) >��3; 25� and ? !3;�1 "�#

2. Determine the missing variable’s value(s) if the length and points are given:

a) Distance = 7.3276…units @�1;�2� and A !B; ")#

b) Distance = √�C:% units D�4;�1� and E !� "

% ; F#

c) Distance = √178 units �1; H� and ��4; 16� d) Distance =

√%"I� units !�;�1 "

�# and $��4; 4� e) Distance =

√JI& units ' !�8;�1 "

&# and *�K; 1�

You can put this straight into your calculator

by pressing these buttons:

Page 3: Analytical Geometry - Home - Maths At Sharp

Section C - Gradient

The gradient works out the slope of the graph – or the ratio of the height to the

length.

The formula for gradient is:

Example – the gradient between two points A!"& ; �2# and B�2; 1� ∴ L � MNOMPQNOQP ∴ L � "O�O���O!PR#

∴ L � "�I

Co-linear points

Three points are collinear when all three points lie on the same line and we check

this by using gradient, i.e. points A, B and C are collinear when L� � L S � L�S.

E.g. Show that the following points are collinear: D ��3;�3� and '��1; 3� and

*�2; 12�.

Answer: LTU � %O�O%�O"O�O%� LUV � "�O%�O�O"� LTV � "�O�O%��O�O%�

� 3 � 3 � 3

∴ The points D, E and F are collinear.

L ��� � �"�� � �"

In other words – for every 12 units you

go up, you go across 7 units.

You put this into your calculator by pressing these buttons:

Page 4: Analytical Geometry - Home - Maths At Sharp

Activity 2

1. Determine whether the following points are collinear:

a) A��1;�16� B�3;�8� C�7; 0�

b) D�7;�10� E�1;�13� F!�5;�3 "�#

c) G!�1;� �%# H!3;�16 �

%# I!0;�4 �%#

d) J�1; 12� K��2; 10� L!3; 13 "%#

e) M!"& ; �4# N!1; "�# O!5; 10 "&#

2. Given the gradient, determine the missing variables:

a) L ��16 P��3;�6� Q�B; 2� b) L ��1 R��3; 9� S�1; F� c) L � �

% T!� "& ; H# U!�3 "

& ; 2#

d) L �� %� V��;�8� W!1 "

� ; �11#

e) L � 10 X!� "% ; � �

%# Y�0; K�

Parallel and Perpendicular Gradients

When one line is parallel to another line, the gradients are equal:

When one line is perpendicular (at a right angle) to another line, the gradients are

the negative inverse of each other or gradient 1 times gradient 2 is equal to negative

1.

L" � L�

L" ×L� � �1

Page 5: Analytical Geometry - Home - Maths At Sharp

Activity 3

1. Say whether line AB (given the points of A and B) is parallel or perpendicular

to line DE (given the points D and E). Show all working out.

a) A!"� ; 3 "�# B�12; 15� D�2;�3� E��3; 2�

b) A�2; 0� B!� "� ; �%# D!�5;� "

%# E!2;�2 ":#

c) A!� :� ; �6# B!� "

� ; 1# D�7;�1� E�14;�3� d) A�4;�2� B�1; 8� D!� :

� ; 16# E!�15; 12 "&#

e) A�2; 3� B�1; 6� D��2;�1� E��4; 5�

2. Look at the following equations for these straight lines and state whether they

are parallel, perpendicular or neither.

a) � � 6� � 5 � � 6� � 1

b) � � �% � 10 � � &

) � � 16

c) � � 8� "� � � � "

X � "%

d) � � "� � 4 � � &

X � � 2

e) � � �1� � 16 � � "� � 5

f) � � "& � "

: � � �4� � 2

g) � � 2� 5 � � &X � � 1

h) � � �3� �% � � 3� � 4

i) � � � � 10 � � 2!� "� � 3#

j) � � 9� 9 � � � "J � � 3

Page 6: Analytical Geometry - Home - Maths At Sharp

Section D – Midpoint

To find the midpoint of two coordinates you have to find the “average” of the two

�-coordinates and find the average of the two �-coordinates.

So the formula to find the midpoint is:

e.g. Find the midpoint of the points A�2; 5� and B��3; 8�

4� !QPYQN� ; MPYMN� #

∴ 4� !�O%� ; :YX� #

∴ 4� !� "� ; 6 "

�#

Activity 4

1. Determine the midpoint for each of the following pairs of coordinates.

a) A��1;�9� B�1; 3� b) C!� "� ; �2# D!�1 "

� ; 7#

c) E�3; 6� F�5;�5� d) G!2 �% ; 1# H�3; 2�

e) I ��2; 3� J�7;�1�

2. Determine the other coordinate if the first coordinate and the midpoint is

given.

a) K��2; 1� 4Z[��6;�6� b) N�8;�3� 4\]�6; 5� c) P�1;�8� 4^_ !": ; "&#

d) R!�1;� &:# 4`a !� "

� ; � ":#

e) T�4;�5� 4bc��5;�2�

4�Q;M� d�" ��2 ;�" ��2 e

Page 7: Analytical Geometry - Home - Maths At Sharp

Section E – Equations of Straight Lines

The straight line equation has 4 parts to it

� → depends on your �-value i.e. the dependent variable.

→ changes as � changes

L → gradient (Watch out for parallel and perpendicular lines).

Vertical lines have a undefined gradient because fghijklmn

oipg is undefined,

therefore the equation of the line will be � � Hq���B�� Horizontal lines have a gradient of 0 because

oipgfghijklmn is zero, therefore the

equation of a horizontal line is � � Hq���B��. � → determines your �-value. i.e. the independent variable

H → your �-intercept (where your line crosses the �-axis).

To Solve

• Two coordinates

If you are given two coordinates work out the gradient, then substitute it into

the formula along with one of your coordinates and solve for H. Finally, write

down the equation.

e.g. Find the equation of the line DE if D �1;�7� and E��3; 1�.

1. find the gradient:

L � MNOMPQNOQP

∴ L � "O�OI�O%O�"� ∴ L � �2

2. then find c:

� � L� H Substitute L � �2 and �1;�7� �7 � �2�1� H �5 � H

3. Finally write down the equation properly

∴ � � �2� � 5

� � L� H

Page 8: Analytical Geometry - Home - Maths At Sharp

• Given the gradient parallel or perpendicular to another line:

Determine if your gradient is the same (parallel lines) or the negative inverse

of the other gradient (perpendicular lines).

Then substitute your point to find c.

Finally write down your equation properly.

e.g. Determine the equation of the straight that is parallel to the line

� � 3� 4 and passing through the point ��1; 3�

1. Determine the gradient:

From the parallel line the gradient is 3.

2. Now find the c value:

� � 3� H Substitute the coordinate

3 � 3��1� H 6 � H

3. Write down the formula properly:

� � 3� 6

Activity 5

1. Given two points on the line – determine the equation of the line.

a) A!&: ; �5# and B!� "% ; � "

%#

b) C!1 "� ; 3# and D!�1;� "

�#

c) E��3; 4� and F!�3;� "&#

d) G�1; 2� and H��1; 8� e) I�3; 2� and J�6; 2�

Page 9: Analytical Geometry - Home - Maths At Sharp

2. Determine the equation if:

a) the line passes through the point K��1; 2�and is parallel to the line

� � 2� 1.

b) the line passes through the point L�3; 8� and is perpendicular to the

line � � �4� � 2.

c) the line passes through the point M!9;� "�# and is perpendicular to the

line � � 6� � :).

d) the line passes through the point N!� ": ; 9# and is parallel to the line

� � � "% � � 4

e) the line passes through the point P�4;�6� and is perpendicular to the

line � � 5� � 4.

Section F – Angle of Inclination

The angle of inclination tells you at what angle the straight line crosses the �-axis.

To work out the angle of inclination first work out your gradient, then substitute it

into the formula and solve for the angle:

Remember that when your gradient is positive you can simply use the angle given

when you work it out, however, if your gradient is NEGATIVE then work out the

angle using a positive value of the gradient (i.e. times your gradient by negative 1)

then subtract the angle from 180°.

Example: Positive Gradient:

Determine the angle of inclination for the line � � 3� � 1

∴ L � 3

∴ 3 � tanw

∴ w � 72°

L � �B�w

Page 10: Analytical Geometry - Home - Maths At Sharp

Example: Negative Gradient:

Determine the angle of inclination for the line � � � "& � � 6

∴ L � � "& ∴ Positive value � "

&

∴ "& � tanw

∴ w � 14° ∴ angle of inclination � 180° � 14° � 166° Activity 6

1. Determine the angle of inclination for the following lines:

a) � � 8� ") b) � � �6� � 3

c) � � &: � � 3 d) � � �2� 1

e) � � �3� � %: f) � � � "

% � � &%

g) 2� � � 3 h) �4� � � � 6

i) � � %� � � 2 j) � � �1� 2

2. Given the angle of inclination – determine the gradient round off to one

decimal place.

a) w � 60.95° b) w � 99.46° c) w � 75.96° d) w � 45° e) w � 63.43° f) w � 9.46° g) w � 98.13° h) w � 101.31° i) w � 120.96° j) w � 85.24°

Page 11: Analytical Geometry - Home - Maths At Sharp

Section G – Equation of a Circle

Things to remember about circles before we can begin:

• The diameter is twice the radius i.e. � � 2�q� "�� � �

• The radius is the same throughout the circle.

• The tangent is perpendicular to the radius

• A normal is a line perpendicular to the tangent at the point of contact – the

normal is not the radius but can go through the circle or be outside the circle.

• A secant cuts the circle twice.

• A chord touches the circle twice internally and divides the circle into segments

• A sector is the middle piece between two radii.

• A chord divides a circle’s circumference into different arcs.

• A circumference is the distance around the circle and is given by the formula

2x�.

Circle with centre at the origin i.e. (0; 0)

When the circle has a centre at the origin the formula is:

This formula should remind you of Pythagoras ☺

r is the radius and � and � is the coordinate at a point through the circle.

Circle with any centre

Essentially a circle with any centre is simply a circle with a centre at the origin that

has been shifted up or down and left or right.

The formula for a circle with any centre is:

• r is the radius

• a is the �-coordinate of the centre

• b is the �-coordinate of the centre.

�� � �� ��

�� � �� � B�� �� � F��

Page 12: Analytical Geometry - Home - Maths At Sharp

Example: Given the centre and the radius

Determine the equation of the circle with centre C��6; 3� and radius = 3.

∴ Substitute all points into the equation and simplify.

∴ �3�� � �� 6�� �� � 3��

∴ 9 � �� 12� 36 �� � 6� 9

∴ �36 � �� 12� �� � 6�

Example: Given the centre and another point on the circle.

Determine the equation of the circle with centre C��2; 4� and a point passing

through the circle P!"� ; �6#.

∴ Substitute the centre coordinates into a and b and the point

coordinates into � and � and solve for ��. Then write down the formula

and simplify again.

∴ �� � !"� 2#� ��6 � 4��

∴ �� � 106 "&

∴ 106 "& � �� 2�� �� � 4��

∴ 106 "& � �� 4� 4 �� � 8� 16

∴ 86 "& � �� 4� �� � 8�

Example: Determine the radius and the centre of the circle with equation

107 � �� 2� �� � 6�

∴ You need to complete the square for both �and �.

∴ 107 � �� 2� !��#� � !��#

� �� � 6� !O)) #� � !� )

)#�

∴ 107 1 9 � ��� 2� 1� ��� � 6� 9� ∴ 117 � �� 1�� �� � 3��

∴ � � √117 K���K��1; 3� ∴ � � 3√13

Page 13: Analytical Geometry - Home - Maths At Sharp

Activity 7

1. Determine the equation of the circle given the centre and the radius in the

form: �� � �� � B�� �� � F��

a) C�9; 8� � � 12 b) C�3;�1� � � 6

c) C�7;�5� � � 1 d) C��1; 4� � � 3

e) C!� "& ; 4# � � 5

2. Determine the equation of the circle given the centre and another point on

the circle in the form: �� � �� � B�� �� � F��

a) C!1 "� ; 8# P!2;� "

�# b) C�1; 6� P�10; 12� c) C�5; 6� P!�1; �%# d) C��2; 3� P��1;�2� e) C��3;�1� P�2; 2�

3. Determine the radius and the centre coordinates given the equation:

a) 9 � �� � 8� �� 4�

b) 81 � �� � 4� �� 8�

c) �20 � �� 16� �� 18�

d) 128 � �� 14� �� � 2� e) 2 "%

") � �� � 6� �� � 2�

Page 14: Analytical Geometry - Home - Maths At Sharp

Equation of the tangent to the circle

A tangent is a straight line that is drawn perpendicular to the circle’s radius and

touching the circle at only one point.

To work out the equation of the tangent use the straight line formula:

�B��� → are the coordinates that the tangent touches the circle at

L → is the gradient – you find the gradient by working out the gradient of

the gradient of the radius from the centre of the circle to the point

where the tangent touches the circle. Then find its negative inverse –

this is the gradient of the tangent.

H → is the �-intercept – substitute �, � and L into the straight line

equation and solve for H.

Example: Determine the equation of the tangent that touches the circle with the

equation 48 � �� � 2� �� 12� at the point �10;�4�.

First find the centre of the circle’s coordinates:

∴ 48 � �� � 2� !��#� � !��#

� �� 12� !"�� #� � !"�� #

∴ 48 1 36 � ��� � 2� 1� ��� 12� 36� ∴ 85 � �� � 1�� �� 6��

∴ Centre at �1;�6�

Next find the gradient of the radius:

∴ L � O)Y&"O"C ∴ L � �J

∴ the gradient of the tangent is �J ×L� ��1

∴ L� �� J�

Now find the c value by substituting in �, � and L.

∴ �4 � � J� �10� H

∴ 41 � H

Finally, write down the equation properly

∴ � � � J� � 41

� � L� H

Page 15: Analytical Geometry - Home - Maths At Sharp

Activity 8

1. Determine the equation of the tangent given the centre’s coordinates, C, and

the point, P, where the tangent touches the circle.

a) C�6;�6� P��1; 1� b) C��1;�3� P�4; 6� c) C��7; 4� P��8;�2� d) C�8; 3� P��6; 4� e) C�5; 3� P��5; 4�

2. Given the equation of the circle and the point on the circle determine the

equation of the tangent to the circle at that point.

a) 10 � �� 12� �� � 4� P�1; 3� b) 8 � �� 8� �� � 2� P��7;�3� c) 124 � �� 4� �� � 12� P�8;�2� d) �48 � �� 14� �� 16� P��6; 0� e) 67 � �� 10� �� 6� P�5;�4�

3. Given the radius and the point of the tangent that touches the circle,

determine value(s) of the missing variable for the centre of the circle and give

the equation(s) of the circle.

a) � � 3 T��2; 6� C�B; 4� b) � � 7 T�3; 9� C��3; F� c) � � 12 T!8; "�# C�H; 10� d) � � 5 T��3; 6� C��; 2� e) � � 8 T�4; 1� C�5; K�

4. Given the gradient of the radius to the point of the tangent, the equation of

the circle and the point T, where the tangent touches the circle, determine

the value(s) for the missing variable.

a) L � "I 333 � �� 18� �� 12� T�12; ��

b) L �� "& 42 � �� 10� �� � 2� T�K;�1�

c) L �� """ 93 � �� � 10� �� � 4� T��6; z�

Page 16: Analytical Geometry - Home - Maths At Sharp

d) L � ���Kz��K� �4 � �� 2� �� 4� T�{;�3� e) L �� "&

"% 157 � �� 16� �� � 24� T�5; |�

Activity 9 – Mixed Exercise

1. Given the sketch below with two circles, c and d and the straight line a, all

passing through the point ��4; 0�. The centre of circle d is the �-intercept of

the straight line a, given by the equation � � "& � 1.

a) Determine the equation of circle d.

b) Given that the radius of circle c is 1 and that the centre passes through

the �-axis, determine the equation of circle c.

c) Determine the other point of intersection of the straight line a, with

both of the circles in the sketch.

d) Determine the equation of the tangent to circle c at the point ��3; 1�. e) Where does the straight line in question (d) intersect with the circle d.

The typical analytical geometry questions include all of the

above sections in a mixture. So below is a mixed exercise

for you to practice with.

Page 17: Analytical Geometry - Home - Maths At Sharp

2. Given the sketch below with triangle ABC with vertex A at (-1; 4), vertex B at

(-2; -3), and vertex C at (2; 0).

a) Prove using two methods that angle }� is a right angle.

b) Determine the midpoint of A and B, called N.

c) Determine the equation of the line through points C and N.

d) What is the angle of inclination for line AC.

3. Given the sketch below with centre at A and diameter BC.

a) Given that the coordinate of B is (0; -2) and the coordinate of C is

(-2; 4), determine the point A – the centre of the circle.

Page 18: Analytical Geometry - Home - Maths At Sharp

b) Hence, or otherwise, determine the equation of the circle.

c) Determine the equation of the tangent that touches the circle at C.

d) A normal to the tangent in (c) runs through the point A. Determine the

equation of the normal.

4. Given the sketch below with the centre at C(1; -2) and a triangle with

coordinates A(1; 1) and B!�5;� "�#. D is the �-intercept of the circle.

a) Prove that triangle ABC is an isosceles triangle.

b) Find the length of the radius of the circle.

c) Hence, or otherwise, determine the equation of the circle.

d) Show that the �-axis is the tangent to the circle at D.

e) Determine the �-intercept of line AB.

f) Determine the point of intersection where line BC cuts through the

circle (round off your answer to the nearest whole number).

g) Determine the equation of the tangent at the point where line BC cuts

the circle in the diagram.

Page 19: Analytical Geometry - Home - Maths At Sharp

5. Given the sketch below with the centre of the circle at C, and diameter AB. D

is a point on the circle. (For all of the following questions round off the final

answers to one decimal place – hint use the memory function for accuracy).

a) Given that the coordinates of A and B are (-4; 2) and (4; 4) respectively,

prove that the coordinates of the centre of the circle, C, are (0; 3).

b) Hence, or otherwise, determine the equation of the circle.

c) Given that the angle �~$ is 30,39°determine the equation of the line

BD.

d) Hence, or otherwise, determine the coordinates of D.

e) Prove that the triangle ACD is an equilateral triangle.

f) Determine the equation of the tangent at the point A.

g) Determine the equation of the line DC and then determine where it

cuts the circle again at E if line DC is produced to cut the circle again at

E.

h) Show that the tangent to circle at D is parallel to the tangent at point E.

Page 20: Analytical Geometry - Home - Maths At Sharp

Answers to Activities

Activity 1

1. a) C !5; "�# and $ !"% ; "&#

$ST ����� � �"�� ��� � �"��

$ST ��!"%� 5#� !"&� "�#

$ST � 4.67 units

b) ' !8; ")# and *��13;�2�

$UV ����� � �"�� ��� � �"�� $UV ����13 � 8�� !�2 � "

)#�

$UV � 21.11 units

c) , !�12;� &%# and -��5;�1�

$�� ����� � �"�� ��� � �"��

$�� ����5 12�� !�1 &%#

$�� � √&&�% � 7.01 units

d) . !�16;� "&# and 0�2; 6�

$�� ����� � �"�� ��� � �"��

$�� ���2 16�� !6 "&#

$�� � 19.05 units

e) 1 !"& ; 1# and 2�6; 4�

$Z[ ����� � �"�� ��� � �"��

$Z[ ��!6 � "&#

� �4 � 1��

$Z[ � √)I%& � 6.49 units

Page 21: Analytical Geometry - Home - Maths At Sharp

f) 4!�10;� ")# and 5��4; 20�

$�\ ����� � �"�� ��� � �"��

$�\ ����4 10�� !20 ")#

� $�\ � 21,04 units

g) 6�6; 1� and 7�1; 6� $]^ ����� � �"�� ��� � �"��

$]^ ���1 � 6�� �6 � 1��

$]^ � 5√2

$]^ � 7,07 units

h) 8 !") ; "�# and 9 !1 &: ; �9#

$_` ����� � �"�� ��� � �"��

$_` ��!1 &:� "

)#� !�9 � "

�#�

$_` � 9,64 units

i) < !2; ":# and = !2;� ")#

$ab ����� � �"�� ��� � �"��

$ab ���2 � 2�� !� ") � "

:#�

$ab � ""%C ≈ 0,36667 units

j) >��3; 25� and ? !3;�1 "�#

$c� ����� � �"�� ��� � �"��

$c� ���3 3�� !�1 "�� 25#�

$c� � 27,17 units

Page 22: Analytical Geometry - Home - Maths At Sharp

2. a) Distance = 7.3276… units @�1;�2� and A !B; ")#

∴ $�� ����� � �"�� ��� � �"��

∴ �7.327�� � �B � 1�� !") 2#�

∴ 53.69372176 � �B � 1�� ")J%)

∴ 48.99927732 � �B � 1��

∴ ±6.9999 � B � 1

∴ B � �7 1 or B � 7 1

∴ B � �6 B � 8

b) Distance = √�C:% units D�4;�1� and E !� "

% ; F#

∴ $�� ����� � �"�� ��� � �"��

∴ !√�C:% #� � !� "%� 4#� �F 1��

∴ �C:J � ")J

J �F 1��

∴ 4 � �F 1��

∴ ±2 � F 1

∴ F � �2 � 1 or F � 2 � 1

∴ F � �3 F � 1

c) Distance = √178 units �1; H� and ��4; 16� ∴ $� ����� � �"�� ��� � �"��

∴ �√178�� � �4 � 1�� �16 � H��

∴ 178 � 9 �16 � H��

∴ 169 � �16 � H��

∴ ±13 � 16 � H

∴ �H � �13 � 16 or �H � 13 � 16

∴ H � 29 H � 3

Page 23: Analytical Geometry - Home - Maths At Sharp

d) Distance = √%"I� units !�;�1 "

�# and $��4; 4� ∴ $ST ����� � �"�� ��� � �"��

∴ !√%"I� #� � ��4 � ��� !4 1 "�#

∴ %"I& � ��4 � ��� "�"

&

∴ 49 � ��4 � ���

∴ ±7 � �4 � �

∴ �� � �7 4 or �� � 7 4

∴ � � 3 � � �11

e) Distance = √JI& units ' !�8;�1 "

&# and *�K; 1� ∴ $UV ����� � �"�� ��� � �"��

∴ !√JI& #� � �K 8�� !1 1 "

&#�

∴ JI") � �K 8�� X"

")

∴ 1 � �K 8��

∴ ±1 � K 8

∴ K � �1 � 8 or K � 1 � 8

∴ K � �9 K � �7

Activity 2

1. a) A��1;�16� B�3;�8� C�7; 0�

L� � MNOMPQNOQP L S � MNOMPQNOQP L� �OXY")%Y" L S � CYXIO%

∴ L� � 2 ∴ L S � 2

∴ Points A, B and C are collinear.

Page 24: Analytical Geometry - Home - Maths At Sharp

b) D�7;�10� E�1;�13� F!�5;�3 "�#

LTU � MNOMPQNOQP LUV � MNOMPQNOQP

LTU �O"%Y"C"OI LUV �O%PNY"%O:O"

LTU � "� LUV �� "J

"�

∴ They are not collinear.

c) G!�1;� �%# H!3;�16 �

%# I!0;�4 �%#

L�� � MNOMPQNOQP L�� � MNOMPQNOQP

L�� �O")N�YN�%Y" L�� �O&N�Y")N�CO%

L�� ��4 L�� ��4

∴ They are collinear

d) J�1; 12� K��2; 10� L!3; 13 "%#

L�Z � MNOMPQNOQP LZ[ � MNOMPQNOQP

L�Z � "CO"�O�O" LZ[ � "%P�O"C%Y�

L�Z � �% LZ[ � �

%

∴ They are collinear.

e) M!"& ; �4# N!1; "�# O!5; 10 "&#

L�\ � MNOMPQNOQP L\] � MNOMPQNOQP

L�\ � PNY&"OPR L\] � "C

PROPN:O"

L�\ � 6 L\] � %J")

∴ They are not collinear

To enter this into the calculator

press the following buttons:

Page 25: Analytical Geometry - Home - Maths At Sharp

2. a) L ��16 P��3;�6� Q�B; 2� L^_ � MNOMPQNOQP

�16 � �Y)�Y%

�16B � 48 � 8

�16B � 56

∴ B � �3 "�

b) L ��1 R��3; 9� S�1; F� L`a � MNOMPQNOQP

�1 � �OJ"Y%

�4 � F � 9

∴ F � 5

c) L � �% T!� "

& ; H# U!�3 "& ; 2#

Lbc � MNOMPQNOQP

�% � �O�

O%PRYPR

�% � �O�O%

�6 � 6 � 3H

�12 ��3H ∴ H � 4

d) L �� %� V��;�8� W!1 "

� ; �11#

L�� � MNOMPQNOQP

� %� �O""YX"PNO�

�4 "

� 3� ��6

3� � �1 "�

∴ � � � "�

Page 26: Analytical Geometry - Home - Maths At Sharp

e) L � 10 X!� "% ; � �

%# Y�0; K� L�� � MNOMPQNOQP

10 � iYN�CYP�

"C% � K �

%

∴ K � X% q�2 �

%

Activity 3

1. a) A!"� ; 3 "�# B�12; 15� D�2;�3� E��3; 2�

L� � MNOMPQNOQP LTU � MNOMPQNOQP

L� � ":O%PN

"�OPN LTU � �Y%O%O�

L� � 1 LTU ��1

∴ L" × L� ��1 ∴ � ⊥ $'

b) A�2; 0� B!� "� ; �%# D!�5;� "

%# E!2;�2 ":#

L� � MNOMPQNOQP LTU � MNOMPQNOQP

L� �N�OCOPNO�

LTU �O�P�YP��Y:

L� �� &": LTU �� &

":

∴ � ∥ $'

c) A!� :� ; �6# B!� "

� ; 1# D�7;�1� E�14;�3� L� � MNOMPQNOQP LTU � MNOMPQNOQP

L� � "Y)OPNY�N LTU �O%Y""&OI

L� � 3 "� � I

� LTU �� �I

∴ L" ×L� ��1 ∴ � ⊥ $'

Page 27: Analytical Geometry - Home - Maths At Sharp

d) A�4;�2� B�1; 8� D!� :� ; 16# E!�15; 12 "

&#

L� � MNOMPQNOQP LTU � MNOMPQNOQP

L� � XY�"O& LTU � "�PRO")

O":Y�N

L� �� "C% LTU � %

"C

∴ L" × L� ��1 ∴ � ⊥ $'

e) A�2; 3� B�1; 6� D��2;�1� E��4; 5� L� � MNOMPQNOQP LTi � MNOMPQNOQP

L� � )O%"O� LTU � :Y"O&Y�

L� ��3 LTU ��3

∴ � ∥ $'

2. a) � � 6� � 5 � � 6� � 1

∴ ∥

b) � � �% � 10 � � &

) � � 16

∴ ∥

c) � � 8� "� � � � "

X � "%

8 � "X ��1

∴⊥

d) � � "� � 4 � � &

X � � 2

∴ ∥

e) � � �1� � 16 � � "� � 5

neither

f) � � "& � "

: � � �4� � 2

"& × �4 � �1 ∴⊥

Page 28: Analytical Geometry - Home - Maths At Sharp

g) � � 2� 5 � � &X � � 1

� � "� � � 1

∴ neither

h) � � �3� �% � � 3� � 4

neither

i) � � � � 10 � � 2!� "� � 3#

� � �1� 6

∴ 1 ×�1 � �1

∴⊥

j) � � 9� 9 � � � "J � � 3

9 � "J ��1

∴ ⊥

Activity 4

1. a) A��1;�9� B�1; 3� b) C!� "� ; �2# D!�1 "

� ; 7#

4� � !QPYQN� ; MPYMN� # 4ST � !QPYQN� ; MPYMN� #

4� � !O"Y"� ; OJY%� # 4ST � �OPNO"PN� ; O�YI� �

4� � �0;�3� 4ST � !�1; 2 "�#

c) E�3; 6� F�5;�5� d) G!2 �% ; 1# H�3; 2�

4UV � !QPYQN� ; MPYMN� # 4�� � !QPYQN� ; MPYMN� #

4UV � !%Y:� ; )O:� # 4�� � ��N�Y%� ; "Y�� �

4UV � !4; "�# 4�� � !2 :) ; %�#

Page 29: Analytical Geometry - Home - Maths At Sharp

e) I ��2; 3� J�7;�1�

4�� � !QPYQN� ; MPYMN� #

4�� � !O�YI� ; %O"� #

4�� � !:� ; 1#

2. a) K��2; 1� 4Z[��6;�6�

��6;�6� � !O�YQ� ; "YM� #

∴ � → �6 � O�YQ� ∴ � →�6 � "YM�

∴ �12 � �2 � ∴ �12 � 1 �

∴ � � �10 ∴ � � �13

b) N�8;�3� 4\]�6; 5�

�6; 5� � !XYQ� ; O%YM� #

∴ 6 � XYQ� ∴ 5 � O%YM�

∴ 12 � 8 � ∴ 10 � �3 �

∴ � � 4 ∴ � � 13

c) P�1;�8� 4^_ !": ; "&#

!": ; "&# � !"YQ� ; OXYM� #

∴ ": � "YQ� ∴ "

& �OXYM�

∴ 2 � 5 5� ∴ 2 � �32 4�

∴ 5� � �3 ∴ 4� � 34

∴ � � � %: ∴ � � 8 "

Page 30: Analytical Geometry - Home - Maths At Sharp

d) R!�1;� &:# 4`a !� "

� ; � ":#

!� "� ; � "

:# � �O"YQ� ; OR�YM� �

∴ � "� �O"YQ� ∴ � "

: �OR�YM�

∴ �1 � �1 � ∴ � �: �� &

: �

∴ � � 0 ∴ � � �:

e) T�4;�5� 4bc��5;�2�

∴ ��5;�2� � !&YQ� ; O:YM� #

∴ �5 � &YQ� ∴ �2 � O:YM�

∴ �10 � 4 � ∴ �4 � �5 �

∴ � � �14 ∴ � � 1

Activity 5

1. a) A!&: ; �5# and B!� "% ; � "

%#

L� � MNOMPQNOQP

L� �OP�Y:

OP�OR�

L� �� IC"I

∴ � "% �� IC

"I !� "%# H

∴ H � � �J"I

∴ � � � IC"I � � �J

"I

Page 31: Analytical Geometry - Home - Maths At Sharp

b) C!1 "� ; 3# and D!�1;� "

�#

LST � MNOMPQNOQP

LST � OPNO%

O"O"PN

LST � I:

∴ 3 � I: !%�# H

∴ H � J"C

∴ � � I: � J

"C

c) E��3; 4� and F!�3;� "&#

LUV � MNOMPQNOQP

LUV � OPRO&O%Y%

LUV � ���Kz��K�

∴ � � �3

d) G�1; 2� and H��1; 8�

L�� � MNOMPQNOQP

L�� � XO�O"O"

L�� ��3

∴ 2 � �3�1� H

∴ H � 5

∴ � � �3� 5

This means that � � Hq���B�� i.e. that the�-value that appears in

each coordinate i.e. -3 is your constant

because you have a vertical line.

Page 32: Analytical Geometry - Home - Maths At Sharp

e) I�3; 2� and J�6; 2�

L�� � MNOMPQNOQP

L�� � �O�)O%

L�� � 0

∴ � � 2

2. a) the line passes through the point K��1; 2�and is parallel to the line

� � 2� 1.

∴ L � 2

∴ 2 � 2��1� H

∴ H � 4

∴ � � 2� 4

b) the line passes through the point L�3; 8� and is perpendicular to the

line � � �4� � 2.

∴ L � "&

∴ 8 � "& �3� H

∴ H � 7 "&

∴ � � "& � 7 "

&

c) the line passes through the point M!9;� "�# and is perpendicular to the

line � � 6� � :).

∴ L � � ")

∴ � "� �� "

) �9� H

∴ H � 1

∴ � � � ") � 1

This means that � � Hq���B�� i.e. that the�-value that appears in

each coordinate i.e. 2, is your constant

because you have a horizontal line.

Page 33: Analytical Geometry - Home - Maths At Sharp

d) the line passes through the point N!� ": ; 9# and is parallel to the line

� � � "% � � 4

∴ L � � "%

∴ 9 � � "% !� "

:# H ∴ H � 8 "&

":

∴ � � � "% � 8 "&

":

e) the line passes through the point P�4;�6� and is perpendicular to the

line � � 5� � 4.

∴ L � � ":

∴ �6 � � ": �4� H

∴ H � �5 ":

∴ � � � ": � � 5 "

:

Activity 6

1. a) � � 8� ") b) � � �6� � 3

∴ L � 8 ∴ L � �6

∴ tanw � 8 ∴ tanw � �6 ∴ w � 82,87° ∴ w � 80,54

∴ B�{�K � 180 � 80,54

∴ B�{�K � 99,46°

c) � � &: � � 3 d) � � �2� 1

∴ L � &: ∴ L � 2

∴ tanw � &: ∴ tanw � 2

∴ w � 38,66° ∴ w � 63,43

∴ B�{�K � 180 � 63,43 � 116,57°

Remember to find an angle you need

to press gradient.

Page 34: Analytical Geometry - Home - Maths At Sharp

e) � � �3� � %: f) � � � "

% � � &%

∴ L � 3 ∴ L � "%

∴ tanw � 3 ∴ tanw � "%

∴ w � 71,57 ∴ w � 18,43

∴ B�{�K � 180 � 71,57 ∴ B�{�K � 180 � 18,43

∴ B�{�K � 108,43° ∴ B�{�K � 161,57°

g) 2� � � 3 h) �4� � � � 6

∴ � � "� � %

� ∴ � � � "& � )

&

∴ L � "� ∴ L � "

&

∴ tanw � "� ∴ tanw � "

&

∴ w � 26,57° ∴ w � 14,04

∴ B�{�K � 180 � 14,04

∴ B�{�K � 165,96°

i) � � %� � � 2 j) � � �1� 2

∴ L � %� ∴ L � 1

∴ tanw � %� ∴ tanw � 1

∴ w � 56,31° ∴ w � 45

∴ B�{�K � 180 � 45

∴ B�{�K � 135°

2. a) w � 60.95° b) w � 99.46° ∴ tanw � L ∴ tanw � L

∴ L � 1.8 ∴ L � �6

c) w � 75.96° d) w � 45° ∴ tanw � L ∴ tanw � L

∴ L � 4 ∴ L � 1

Page 35: Analytical Geometry - Home - Maths At Sharp

e) w � 63.43° f) w � 9.46° ∴ tanw � L ∴ tanw � L

∴ L � 2 ∴ L � ") � 0,2

g) w � 98.13° h) w � 101.31° ∴ tanw � L ∴ tanw � L

∴ L � �7 ∴ L � �5

i) w � 120.96° j) w � 85.24° ∴ tanw � L ∴ tanw � L

∴ L � �1 �% ��1,7 ∴ L � 12

Activity 7

1. a) C�9; 8� � � 12 b) C�3;�1� � � 6

�� � �� � B�� �� � F�� �� � �� � B�� �� � F��

∴ �12�� � �� � 9�� �� � 8�� ∴ �6�� � �� � 3�� �� � ��1��

∴ 144 � �� � 9�� �� � 8�� ∴ 36 � �� � 3�� �� 1��

c) C�7;�5� � � 1

�� � �� � B�� �� � F��

∴ �1�� � �� � 7�� �� � ��5���

∴ 1 � �� � 7�� �� 5��

d) C��1; 4� � � 3

�� � �� � B�� �� � F��

∴ �3�� � �� � ��1��� �� � 4��

∴ 9 � �� 1�� �� � 4��

e) C!� "& ; 4# � � 5

�� � �� � B�� �� � F��

∴ �5�� � d� � !� "&#e

� �� � 4��

∴ 25 � !� "&#

� �� � 4��

Page 36: Analytical Geometry - Home - Maths At Sharp

2. a) C!1 "� ; 8# P!2;� "

�# b) C�1; 6� P�10; 12�

�� � !� � 1 "�#

� �� � 8�� �� � �� � 1�� �� � 6��

�� � !2 � 1 "�#

� !� "� � 8#� �� � �10 � 1�� �12 � 6��

∴ �� � 72 "� ∴ �� � 117

∴ 72 "� � !� � 1 "

�#� �� � 8�� ∴ 117 � �� � 1�� �� � 6��

c) C�5; 6� P!�1; �%# d) C��2; 3� P��1;�2�

�� � �� � 5�� �� � 6�� �� � �� 2�� �� � 3��

�� � ��1 � 5�� !�%� 6#� �� � ��1 2�� ��2 � 3��

∴ �� � 64 &J ∴ �� � 26

∴ 64 &J � �� � 5�� �� � 6�� ∴ 26 � �� 2�� �� � 3��

e) C��3;�1� P�2; 2�

�� � �� 3�� �� 1��

�� � �2 3�� �2 1��

∴ �� � 34

∴ 34 � �� 3�� �� 1��

3. a) 9 � �� � 8� �� 4�

9 � � � 8� !X�#� � !X�#

� �� 4� !&�#� � !&�#

∴ 9 16 4 � �� � 8� 16� ��� 4� 4� ∴ 29 � �� � 4�� �� 2��

∴ � � √29 Centre �4;�2�

Page 37: Analytical Geometry - Home - Maths At Sharp

b) 81 � �� � 4� �� 8�

81 � �� � 4� !&�#� � !&�#

� �� 8� !X�#� � !X�#

∴ 81 4 16 � ��� � 4� 4� ��� 8� 16� ∴ 101 � �� � 2�� �� 4��

∴ � � √101 Centre �2;�4�

c) �20 � �� 16� �� 18�

�20 � �� 16� !")X #� �� 18� !"X� #

� � !"X� #�

∴ �20 64 81 � ��� 16� 64� ��� 18� 81� ∴ 125 � �� 8�� �� 9��

∴ � � √125 Centre ��8;�9� ∴ � � 5√5

d) 128 � �� 14� �� � 2� 128 � �� 14� !"&� #

� � !"&� #� �� � 2� !��#

� � !��#�

∴ 128 49 1 � ��� 14� 49� ��� � 2� 1� ∴ 178 � �� 7�� �� � 1��

∴ � � √178 Centre ��7; 1�

e) 2 "%") � �� � 6� �� � 2�

2 "%") � �� � 6� !)�#

� � !)�#� �� � 2� !��#

� � !��#�

∴ 2 "%") 9 1 � ��� � 6� 9� ��� � 2� 1�

∴ 12 "%") � �� � 3�� �� � 1��

∴ � � �12 "%") Centre �3; 1�

∴ � � √�C:&

Page 38: Analytical Geometry - Home - Maths At Sharp

Activity 8

1. a) C�6;�6� P��1; 1�

Lp�� � MNOMPQNOQP

Lp�� � "Y)O"O) Lp�� ��1 ∴ Lj�mn � 1

∴ � � 1� H Substitute P ��1; 1� ∴ 1 � 1��1� H ∴ H � 2

∴ � � � 2

b) C��1;�3� P�4; 6�

Lp�� � MNOMPQNOQP

Lp�� � )Y%&Y"

Lp�� � J: ∴ Lj�mn �� :

J

∴ � � � :J � H Substitute P �4; 6�

∴ 6 � � :J �4� H

∴ H � 8 �J

∴ � � � :J � 8 �

J

c) C��7; 4� P��8;�2�

Lp�� � MNOMPQNOQP

Lp�� �O�O&OXYI

Lp�� � 6 ∴ Lj�mn �� ")

Page 39: Analytical Geometry - Home - Maths At Sharp

∴ � � � ") � H Substitute P ��8;�2�

∴ �2 � � ") ��8� H

∴ H � �3 "%

∴ � � � ") � � 3 "

%

d) C�8; 3� P��6; 4�

Lp�� � MNOMPQNOQP

Lp�� � &O%O)OX

Lp�� �� ""& ∴ Lj�mn � 14

∴ � � 14� H Substitute P ��6; 4� ∴ 4 � 14��6� H

∴ H � 88

∴ � � 14� 88

e) C�5; 3� P��5; 4�

Lp�� � MNOMPQNOQP

Lp�� � &O%O:O:

Lp�� �� ""C ∴ Lj�mn � 10

∴ � � 10� H Substitute P ��5; 4� ∴ 4 � 10��5� H ∴ H � 54

∴ � � 10� 54

Page 40: Analytical Geometry - Home - Maths At Sharp

2. a) 10 � �� 12� �� � 4� P�1; 3�

4 36 10 � �� 6�� �� � 2��

50 � �� 6�� �� � 2��

Centre ��6; 2�

Lp�� � MNOMPQNOQP

Lp�� � �O%O)O"

Lp�� � "I ∴ Lj�mn � �7

� � �7� H Substitute P �1; 3� ∴ 3 � �7�1� H

∴ H � 10

∴ � � 7� 10

b) 8 � �� 8� �� � 2� P��7;�3�

1 16 8 � �� 4�� �� � 1��

25 � �� 4�� �� � 1��

Centre ��4; 1�

Lp�� � MNOMPQNOQP Lp�� �O%O"OIY&

Lp�� � &% ∴ Lj�mn �� %

&

∴ � � � %& � H Substitute P ��7;�3�

∴ �3 � � %& ��7� H

∴ H � �8 "&

∴ � � � %& � � 8 "

&

Page 41: Analytical Geometry - Home - Maths At Sharp

c) 124 � �� 4� �� � 12� P�8;�2�

36 4 124 � �� 2�� �� � 6��

164 � �� 2�� �� � 6��

Centre ��2; 6�

Lp�� � MNOMPQNOQP

Lp�� �O�O)XY�

Lp�� �� &: ∴ Lj�mn � :

&

∴ � � :& � H Substitute P �8;�2�

∴ �2 � :& �8� H

∴ H � �12

∴ � � :& � � 12

d) �48 � �� 14� �� 16� P��6; 0�

64 49 � 48 � �� 7�� �� 8��

65 � �� 7�� �� 8��

Centre ��7;�8�

Lp�� � MNOMPQNOQP

Lp�� � CYXO)YI Lp�� � 8 ∴ Lj�mn �� "

X

∴ � � � "X � H Substitute P ��6; 0�

∴ 0 � � "X ��6� H

∴ H � � %&

∴ � � � "X � � %

&

Page 42: Analytical Geometry - Home - Maths At Sharp

e) 67 � �� 10� �� 6� P�5;�4�

9 25 67 � �� 5�� �� 3��

101 � �� 5�� �� 3��

Centre ��5;�3�

Lp�� � MNOMPQNOQP

Lp�� �O&Y%:Y:

∴ Lp�� �� ""C ∴ Lj�mn � 10

∴ � � 10� H Substitute P �5;�4� ∴ �4 � 10�5� H

∴ H � �54

∴ � � 10� � 54

3. a) � � 3 T��2; 6� C�B; 4� * use distance formula for this question *

$bS ����� � �"�� ��� � �"�� �3�� � �B 2�� �4 � 6��

9 � �B 2�� 4

5 � �B 2��

±√5 � B 2 ±√5 � 2 � B

∴ B � √5 � 2 or B � �√5 � 2

∴ B � 0,24 B � �4,24

Page 43: Analytical Geometry - Home - Maths At Sharp

b) � � 7 T�3; 9� C��3; F�

$bS ����� � �"�� ��� � �"�� �7�� � ��3 � 3�� �F � 9��

49 � 36 �F � 9��

13 � �F � 9��

±√13 � F � 9

9 ±√13 � F

∴ F � 12,61 or F � 5,39

c) � � 12 T!8; "�# C�H; 10�

$bS ����� � �"�� ��� � �"�� �12�� � �H � 8�� !10 � "

�#�

144 � �H � 8�� 90 "&

53 %& � �H � 8��

±�53 %& � H � 8

8 ±�53 %& � H

∴ H � 15,33 or H � 0,67

d) � � 5 T��3; 6� C��; 2�

$bS ����� � �"�� ��� � �"�� �5�� � �� 3�� �2 � 6��

25 � �� 3�� 16

9 � �� 3��

±3 � � 3

∴ � � �6 or � � 0

Page 44: Analytical Geometry - Home - Maths At Sharp

e) � � 8 T�4; 1� C�5; K�

$bS ����� � �"�� ��� � �"�� �8�� � �5 � 4�� �K � 1��

64 � 1 �K � 1��

63 � �K � 1��

±√63 � K � 1 ∴ K � 8,94 or K � �6,94

4. a) L � "I 333 � �� 18� �� 12� T�12; ��

36 81 333 � �� 9�� �� 6��

450 � �� 9�� �� 6��

Centre ��9;�6�

Lp�� � MNOMPQNOQP

∴ "I � �Y)"�YJ

∴ �"I � � 6

∴ 3 � 6 � �

∴ � � �3

b) L �� "& 42 � �� 10� �� � 2� T�K;�1�

1 25 42 � �� 5�� �� � 1��

68 � �� 5�� �� � 1��

Centre ��5; 1�

Lp�� � MNOMPQNOQP

∴ � "& �O"O"iY:

∴ 1K 5 � 8

∴ K � 3

Page 45: Analytical Geometry - Home - Maths At Sharp

c) L �� """ 93 � �� � 10� �� � 4� T��6; z�

4 25 93 � �� � 5�� �� � 2��

122 � �� � 5�� �� � 2��

Centre �5; 2�

Lp�� � MNOMPQNOQP

∴ � """ � �O�O)O:

∴ � """ � �O�

O""

∴ 1 � z � 2 ∴ z � 3

d) L � ���Kz��K� �4 � �� 2� �� 4� T�{;�3�

4 1 � 4 � �� 1�� �� 2��

1 � �� 1�� �� 2��

Centre ��1;�2�

Lp�� � MNOMPQNOQP

∴ ?C �O%Y�nY"

∴ { 1 � 0

∴ { � �1

e) L �� "&"% 157 � �� 16� �� � 24� T�5; |�

144 64 157 � �� 8�� �� � 12��

365 � �� 8�� �� � 12��

Centre ��8; 12�

Lp�� � MNOMPQNOQP

∴ � "&"% � kO"�:YX

∴ � "&"% � kO"�"%

∴ �14 � | � 12

∴ | � �2

Page 46: Analytical Geometry - Home - Maths At Sharp

Activity 9

1. a) �-intercept

∴ � � "& �0� 1

∴ � � 1 (0; 1) → Centre of the circle

�� � �� � B�� �� � F��

�� � �� � 0�� �� � 1�� Subs (-4; 0)

�� � ��4�� �0 � 1��

∴ �� � 17

∴ � → 17 � �� �� � 1��

b) radius = 1 �-coordinate of centre → 0

�� � �� � B�� �� � F��

�1�� � �� � B�� �� � 0��

1 � ��4 � B�� �0��

∴ ±1 � �4 � B

∴ �B ��1 4 or �B � 1 4

∴ B � �3 ∴ B � �5

From the graph we can see that the centre must be at (-3; 0).

∴ 1 � �� 3�� ��

c) � � "& � 1 d → 17 � �� �� � 1��

c → 1 � �� 3�� ��

∴ d → 17 � �� !"& � 1 � 1#�

17 � �� !"& �#�

17 � �� "") ��

272 � 16�� ��

272 � 17��

16 � ��

∴ � � 4 or � � �4

Page 47: Analytical Geometry - Home - Maths At Sharp

∴ � � "& �4� 1

∴ � � 2 ∴ �4; 2�

∴c → 1 � �� 3�� !"& � 1#�

1 � �� 6� 9 "") �� "

� � 1

16 � 16�� 96� 144 �� 8� 16

0 � 17�� 104� 144

∴ 0 � �17� 36��� 4� ∴ � � �2 �

"I or � � �4

∴ � � "& !�2 �

"I# 1

∴ � � X"I ∴ !�2 �

"I ; X"I#

d) Lp�� � MNOMPQNOQP Centre ��3; 0� ∴ Lp�� � CO"O%Y%

∴ Lp�� � ���Kz��K� Tangent Point ��3; 1�

∴ Lj�mn � 0

∴ � � 1

e) � � 1

∴ 17 � �� �� � 1��

∴ 17 � �� �1 � 1��

∴ 17 � ��

∴ � � ±√17

∴ � � �4,12 or � � 4,12

∴ ��4,12; 1� �4,12; 1�

Remember that the inverse of

undefined (fghijklmn

C ) is 0, and

that the inverse of 0

(C

fghijklmn) is undefined.

Page 48: Analytical Geometry - Home - Maths At Sharp

2. a) Method 1 → gradients

L�S � MNOMPQNOQP L S � MNOMPQNOQP

L�S � &OCO"O� L S � CY%�Y�

L�S � � &% L S � %

&

∴ L" ×L� ��1

∴ }�is a right angle.

Method 2 → distance and Pythagoras

∴ $� ����� � �"�� ��� � �"��

∴ $� ����1 2�� �4 3��

∴ $� � 5√2

∴ $ S ����� � �"�� ��� � �"��

∴ $ S ����2 � 2�� ��3 � 0��

∴ $ S � 5

∴ $�� ����� � �"�� ��� � �"��

∴ $�S ����1 � 2�� �4 � 0�� ∴ $�S � 5

∴ �� � � � �

∴ !5√2�#� � �5�� �5��

∴ 50 � 25 25 � 50

∴ }�is a right angle because the hypotenuse squared is equal to the

sum of the squares of the other two sides.

b) 4\ !QPYQN� ; MPYMN� # A(-1; 4)

∴ 4\ !O"O�� ; &O%� # B (-2; -3)

∴ 4\ !� %� ; "�#

Page 49: Analytical Geometry - Home - Maths At Sharp

c) LS\ � MNOMPQNOQP C (2; 0)

∴ LS\ � COPN�Y�N

∴ LS\ �� "I

∴ � � � "I � H Subs (2; 0)

∴ 0 � � "I �2� H

∴ H � �I

∴ � � � "I � �

I

d) L�S �� &% (From question A)

∴ tanw � &%

∴ w � 53,13° ∴ angle = 180° � 53,13° � 126,87°

3. a) B (0; -2) 4 S !QPYQN� ; MPYMN� #

C (-2; 4) 4 S��1; 1�

b) ∴ �� � �� 1�� �� � 1��

∴ �� � ��2 1�� �4 � 1��

∴ �� � 10

∴ 10 � �� 1�� �� � 1��

c) C(-2; 4) A(-1; 1)

L�S � MNOMPQNOQP

∴ L�S � "O&O"Y�

∴ L�S ��3 ∴ Lj�mn � "%

∴ � � "% � H Subs (-2; 4)

∴ 4 � "% ��2� H

∴ H � 4 �% ∴ � � "

% � 4 �%

Page 50: Analytical Geometry - Home - Maths At Sharp

d) A Normal is perpendicular to a tangent.

∴ L\ � �3

∴ � � �3� H Subs (-1; 1)

∴ 1 � �3��1� H ∴ H � �2

∴ � � �3� � 2

4. a) isosceles triangle → 2 sides are equal.

∴ $� ����� � �"�� ��� � �"��

∴ $� ���1 5�� !1 "�#

∴ $� � 6,18

∴ $ S ����� � �"�� ��� � �"��

∴ $ S ����5 � 1�� !� "� 2#�

∴ $ S � 6,18

∴ $�S ����� � �"�� ��� � �"��

∴ $�S ���1 � 1�� �1 2��

∴ $�S � 3

∴ 2 sides are equal and therefore ∆ABC is an isosceles triangle.

b) Line AC → � � 1

∴ D coordinate (1; 0)

∴ $TS ����� � �"�� ��� � �"��

∴ $TS ���1 � 1�� �0 2�� ∴ $TS � 2

Another Method:

The circle touches the �-axis

therefore the radius equals the

distance from the centre to the �-

axis which is the positive version of

the y-coordinate of the centre.

∴ r = 2

Page 51: Analytical Geometry - Home - Maths At Sharp

c) �� � �� � B�� �� � F��

�2�� � �� � 1�� �� 2��

4 � �� � 1�� �� 2��

d) Lp�� � MNOMPQNOQP

∴ Lp�� �O�OC"O"

∴ Lp�� � ���Kz��K� ∴ Lj�mn � 0

∴ � � 0

AND because D is the �-intercept of the circle it lies on the

circumference as well as the �-axis

∴ the �-axis is the tangent to the circle.

e) A (1; 1) B !�5;� "�#

L� � MNOMPQNOQP

∴ L� � OPNO"O:O"

∴ L� � "&

∴ � � "& � H (1; 1)

∴ 1 � "& �1� H

∴ H � %&

∴ � � "& � %

&

∴ �-intercept make � � 0

∴ 0 � "& � %

&

∴ � %& � "

& �

∴ � � �3 ∴ ��3; 0�

Page 52: Analytical Geometry - Home - Maths At Sharp

f) Line BC B !�5;� "�#

L S � MNOMPQNOQP C �1;�2� ∴ L S � O

PNY�O:O"

∴ L S �� "&

∴ � � � "& � H

∴ �2 � � "& �1� H

∴ H � �1 %& ∴ � � � "

& � � 1 %&

∴ 4 � �� � 1�� !� "& � � 1 %

& 2#�

∴ 4 � �� � 2� 1 !� "& � "

&#�

∴ 3 � �� � 2� "") �� � "

X � "")

∴ 48 � 16�� � 32� �� � 2� 1

∴ 0 � 17�� � 34� � 47

∴ � � O�±√�NO&����

∴ � � %&±��%&�NO&�"I��O&I���"I�

∴ � � 2,94 ≈ 3 or � � �0,94 ≈ �1

g) !�1;�1 "�# C �1;�2�

∴ Lp�� � MNOMPQNOQP

∴ Lp�� �O�Y"PN"Y"

∴ Lp�� �� "& ∴ Lj�mn � 4

∴ � � 4� H

∴ �1 "� � 4��1� H

∴ H � 3 "�

∴ � � 4� 3 "�

Page 53: Analytical Geometry - Home - Maths At Sharp

5. a) A ��4; 2� B �4; 4�

∴ 4� � !QPYQN� ; MPYMN� #

∴ 4� � !O&Y&� ; �Y&� #

∴ 4� � �0; 3�

b) �� � �� � B�� �� � F��

∴ �� � �� � 0�� �� � 3�� A ��4; 2� ∴ �� � ��4�� �2 � 3�� ∴ �� � 17

∴ 17 � �� �� � 3��

c) ∴ L� � MNOMPQNOQP (-4; 2)

∴ L� � �O&O&O& (4; 4)

∴ L� � "&

∴ B�{�K� → tanw � "&

∴ w � 14,04°

∴ 30,39° � 14,04° � 16,35°

∴ angle for BD � 180 � 16,35

� 163,65

∴ tanw � L ∴ L � �0,3

∴ � � �0,3� H Substitute B (4; 4)

∴ 4 � �0,3�4� H

∴ H � 5 ":

∴ � � �0,3� 5 ":

Page 54: Analytical Geometry - Home - Maths At Sharp

d) ∴ 17 � �� �� � 3��

∴ 17 � �� !�0,3� 5 ":� 3#�

∴ 17 � �� !�0,3� 2 ":#

∴ 17 � �� J"CC �� � 1 X

�: � 4 �"�:

∴ 1700 � 100�� 9�� � 132� 484

∴ 0 � 109�� � 132� � 1216

∴ 0 � �109� 304��� � 4� ∴ � � � %C&

"CJ or � � 4

∴ � � �2 X)"CJ ��2,8

∴ � � �0,3��2,8� 5 ":

∴ � � 6

∴ D ��2,8; 6�

e) Equilateral means all three sides are equal. A (-4; 2)

C (0; 3)

∴ $�S ����� � �"�� ��� � �"�� D (-2,8; 6)

∴ $�S ����4 � 0�� �2 � 3��

∴ $�S �√17

∴ $�S � 4,1

∴ $ST ����� � �"�� ��� � �"��

∴ $ST ���0 2,8�� �3 � 6�� ∴ $ST � 4,1

∴ $�T ����� � �"�� ��� � �"��

∴ $�T ����4 2,8�� �2 � 6�� ∴ $�T � 4,2

∴ approximately all the same ∴ ∆ADC is an equilateral triangle.

Page 55: Analytical Geometry - Home - Maths At Sharp

f) ∴ Lp�� � MNOMPQNOQP

∴ Lp�� � �O%O&OC

∴ Lp�� � "& ∴ Lj�mn ��4

∴ � � �4� H

∴ 2 � �4��4� H ∴ H � �14 ∴ � � �4� � 14

g) ∴ LTS � MNOMPQNOQP

∴ LTS � %O)CY�,X

∴ LTS �� ":"&

∴ � � � ":"& � H

∴ 3 � � ":"& �0� H

∴ H � 3 ∴ � � � ":"& � 3

∴ 17 � �� �� � 3�� ∴ � � � ":"& � 3

∴ 17 � �� !� ":"& � 3 � 3#�

∴ 17 � �� !� ":"& �#

∴ 17 � �� ��:"J) ��

∴ 3332 � 196�� 225��

∴ 3332 � 421��

∴ %%%�&�" � ��

∴ � � 2,8 OR � � �2,8

∴ E → � � � ":"& �2,8� 3

� � 0 ∴ E → �2,8; 0�

h) Lp�� �� ":"&

∴ Lj�mn � "&": for both.