23
Analytical applications of flow injection with chemiluminescence detection—a review Philip Fletcher, 1 Kevin N. Andrew, 1 Anthony C. Calokerinos, 2 Stuart Forbes 3 and Paul J. Worsfold 1 * 1 Department of Environmental Sciences, Plymouth Environmental Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK 2 Department of Chemistry, University of Athens, Laboratory of Analytical Chemistry, Panepistimiopolis, 157 71 Athens, Greece 3 Analytical Technology Business Group, Shell Global Solutions, Cheshire Business Park, PO Box 1, Chester CH1 3SH, UK Received 25 May 2000; accepted 7 June 2000 ABSTRACT: This paper reviews the literature on analytical applications of flow injection (FI) techniques with chemiluminescence (CL) detection from 1995–1999. The focus is on the application of FI–CL to the quantitative determination of specific analytes in real sample matrices. Therefore, entries have been tabulated under the most appropriate application area, ie pharmaceutical, environmental, foods and beverages and biomedical, as defined by the matrix that has been analysed. Each table lists analytes alphabetically and gives details of the exact sample matrix, the limit of detection (as reported in the original paper) and comments on the CL reaction used. Copyright # 2001 John Wiley & Sons, Ltd. KEYWORDS: flow injection; chemiluminescence; pharmaceutical; environmental; foods and beverages; biomedical INTRODUCTION Flow injection (FI) is now well established as an excellent technique for rapid, automated, quantitative analysis that combines on-line chemical and physical sample treatment with a range of flow-through detection systems in an enclosed, continuous flow environment. It is particularly well-suited to monitoring transient light emission from liquid phase chemiluminescence (CL) reactions due to the rapid and reproducible mixing of sample and reagent in close proximity to the detector. FI has been used to investigate the fundamental chemistry of CL reactions, to optimize post column reaction conditions for liquid chromatography and to quantify analytes in relatively clean or synthetic matrices. In the last 5 years (1995–1999, the period covered by this review) however, there has been a notable increase in the application of FI–CL to the analysis of real sample matrices (1–227). This has been achieved by a combina- tion of more sophisticated on-line sample treatment, eg the use of solid phase reagents to preconcentrate selected analytes and/or to remove the sample matrix, and the use of more inherently selective CL reactions. For an historical perspective on the development of FI–CL the reader is referred to two previous reviews (228, 229) that cover the periods late 1970s–mid-1992 and 1991–mid- 1995, respectively. In view of this development, and to make the review more directly useful for analytical problem solving, papers have been classified by generic application area and analytes have been listed alphabetically within each category. The application areas are pharmaceutical (Table 1), environmental (Table 2), foods and beverages (Table 3) and biomedical (Table 4) and a group of papers in which the matrix has not been specified (Table 5). All limits of detection (LODs) are quoted as reported in the origial paper. CHEMILUMINESCENCE REACTIONS If one looks at the range of chemistries used in FI–CL systems it is clear that variants of the luminol reaction are the most popular, but there are also a significant number of papers that utilize the oxidizing power of permanga- nate and cerium(IV). There are also several references to 1,10-phenanthroline, gallic acid/pyrogallol, lucigenin and peroxyoxalate. Other reagents that have been used include ruthenium(II), periodate, TCNQ, fluorescein and quercetin. The relatively small number of reactions involving peroxyoxalate is in marked contrast to the situation in liquid chromatography (LC) and is related to the fact that the majority of FI–CL applications involve aqueous matrices. This review does not cover the use of CL detection Luminescence 2001;16:1–23 *Correspondence to: P. J. Worsfold, Department of Environmental Sciences, Plymouth Environmental Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK. Contract/grant sponsor: Shell Research Ltd, UK. Contract/grant sponsor: British Council, UK. Contract/grant sponsor: MAST Programme of the EU; contract/grant number: MAS3-CT97-0143, MEMOSEA. Copyright 2001 John Wiley & Sons, Ltd. REVIEW

Analytical applications of flow injection with chemiluminescence detection—a review

Embed Size (px)

Citation preview

Page 1: Analytical applications of flow injection with chemiluminescence detection—a review

Analytical applications of ¯ow injection withchemiluminescence detectionÐa review

Philip Fletcher,1 Kevin N. Andrew,1 Anthony C. Calokerinos,2 Stuart Forbes3 and Paul J. Worsfold1*1Department of Environmental Sciences, Plymouth Environmental Research Centre, University of Plymouth, Drake Circus, Plymouth PL48AA, UK2Department of Chemistry, University of Athens, Laboratory of Analytical Chemistry, Panepistimiopolis, 157 71 Athens, Greece3Analytical Technology Business Group, Shell Global Solutions, Cheshire Business Park, PO Box 1, Chester CH1 3SH, UK

Received 25 May 2000; accepted 7 June 2000

ABSTRACT: This paper reviews the literature on analytical applications of flow injection (FI) techniques with chemiluminescence(CL) detection from 1995–1999. The focus is on the application of FI–CL to the quantitative determination of specific analytes in realsample matrices. Therefore, entries have been tabulated under the most appropriate application area, ie pharmaceutical,environmental, foods and beverages and biomedical, as defined by the matrix that has been analysed. Each table lists analytesalphabetically and gives details of the exact sample matrix, the limit of detection (as reported in the original paper) and comments onthe CL reaction used. Copyright# 2001 John Wiley & Sons, Ltd.

KEYWORDS: flow injection; chemiluminescence; pharmaceutical; environmental; foods and beverages; biomedical

INTRODUCTION

Flow injection (FI) is now well established as anexcellent technique for rapid, automated, quantitativeanalysis that combines on-line chemical and physicalsample treatment with a range of flow-through detectionsystems in an enclosed, continuous flow environment. Itis particularly well-suited to monitoring transient lightemission from liquid phase chemiluminescence (CL)reactions due to the rapid and reproducible mixing ofsample and reagent in close proximity to the detector.

FI has been used to investigate the fundamentalchemistry of CL reactions, to optimize post columnreaction conditions for liquid chromatography and toquantify analytes in relatively clean or synthetic matrices.In the last 5 years (1995–1999, the period covered by thisreview) however, there has been a notable increase in theapplication of FI–CL to the analysis of real samplematrices (1–227). This has been achieved by a combina-tion of more sophisticated on-line sample treatment, egthe use of solid phase reagents to preconcentrate selectedanalytes and/or to remove the sample matrix, and the useof more inherently selective CL reactions. For anhistorical perspective on the development of FI–CL the

reader is referred to two previous reviews (228, 229) thatcover the periods late 1970s–mid-1992 and 1991–mid-1995, respectively.

In view of this development, and to make the reviewmore directly useful for analytical problem solving,papers have been classified by generic application areaand analytes have been listed alphabetically within eachcategory. The application areas are pharmaceutical(Table 1), environmental (Table 2), foods and beverages(Table 3) and biomedical (Table 4) and a group of papersin which the matrix has not been specified (Table 5). Alllimits of detection (LODs) are quoted as reported in theorigial paper.

CHEMILUMINESCENCE REACTIONS

If one looks at the range of chemistries used in FI–CLsystems it is clear that variants of the luminol reaction arethe most popular, but there are also a significant numberof papers that utilize the oxidizing power of permanga-nate and cerium(IV). There are also several references to1,10-phenanthroline, gallic acid/pyrogallol, lucigeninand peroxyoxalate. Other reagents that have been usedinclude ruthenium(II), periodate, TCNQ, fluorescein andquercetin. The relatively small number of reactionsinvolving peroxyoxalate is in marked contrast to thesituation in liquid chromatography (LC) and is related tothe fact that the majority of FI–CL applications involveaqueous matrices.

This review does not cover the use of CL detection

Luminescence2001;16:1–23

*Correspondence to: P. J. Worsfold, Department of EnvironmentalSciences, Plymouth Environmental Research Centre, University ofPlymouth, Drake Circus, Plymouth PL4 8AA, UK.

Contract/grant sponsor: Shell Research Ltd, UK.Contract/grant sponsor: British Council, UK.Contract/grant sponsor: MAST Programme of the EU; contract/grantnumber: MAS3-CT97-0143, MEMOSEA.

Copyright 2001 John Wiley & Sons, Ltd.

REVIEW

Page 2: Analytical applications of flow injection with chemiluminescence detection—a review

Table 1. Pharmaceutical applications

Analyte Samplematrix Reaction LODReferencenumber

Amidopyrine Injection solutions Formaldehyde–acidifiedpotassiumpermanganateCL

3� 10ÿ5 mol/dm3 (1,2)

Analgin Pharmaceuticalpreparations

Auto-oxidationof analginin thepresenceof Tween80 with rhodamine6G asasensitizerimmobilizedon acation-exchangecolumn

0.15mg/L (3)

Analgin Tablets Ce(IV)–sulphuricacid CL with rhodamine6G asa sensitizer

0.02mg/mL (4)

Ascorbicacid Vitamin C tabletsandmultivitamincapsules

Luminol–Fe(II)–Na2B4O7–potassiumhydroxideCL

0.2ng/mL (5)

Ascorbicacid Pharmaceuticalsamplesandtablets

Luminol–K7[Cu(IO6)2]–potassiumhydroxideCL

1.5� 10ÿ8 mol/dm3 (6)

Ascorbicacid Pharmaceuticalsamples

LucigeninCL with ascorbicacid in a basicmedium,enhancedwith iron(III) andBrij 35

2� 10ÿ9 mol/dm3 (7)

Ascorbicacid Tablets Luminol–sodiumhydroxide–hydrogenperoxideCL

8.6� 10ÿ9 mol/dm3 (8)

Ascorbicacid Pharmaceuticalpreparations

Luminol–potassiumperiodate–ascorbicacid CL

0.8ng/mL (9)

Ascorbicacid Pharmaceuticalsandblood

Potassiumhexacyanoferrate(III)–luminolCL

4� 10ÿ8 mol/dm3 (10)

Ascorbicacid Tablets Inhibition of luminol–hexacyanoferrate(III)CL (immobilizedon ananion-exchangeresincolumn,elution with sodiumphosphate)

5.5� 10ÿ3mg/mL (11)

Aztreonam,penicillin G,cephalothin,6-amino-penicillanicacid,7-aminocephalosporanicacid,panipenem,latamoxefandfaropenem

Aqueous Luminol–hydrogenperoxideCL withhexacyanoferrate(III)andhexacyanoferrate(II)ascatalysts

100,60, 40, 20, 4, 2,1 and1 ngrespectively(5mLinjection)

(12)

Benzocaine,butacaine,butoform,procaine,tetracaine

Pharmaceuticalpreparations

Acidic permanganateCL 30ng/mL, 20ng/mL,30ng/mL, 40ng/mL and3 ng/mL,respectively

(13)

Captopril Pharmaceuticalpreparations

Cerium(IV)–sulphuricacid CL 2� 10ÿ7 mol/dm3 (14)

Cefadroxilmonohydrate Pharmaceuticalpreparationsandbiological fluids

Potassiumpermanganate–sulphuricacidCL with quinineassensitizer

0.05mg/mL (15)

Ciprofloxacinhydrochloride

Tabletsandcapsules Ceriumsulphate–sulphuricacid–Na2SO3CL

0.27mg/L (16)

Co(II) Eye lotions Lophine–Co(II)–hydrogenperoxideCLenhancedwith hydroxylammoniumchloride

4.5� 10ÿ8 mol/dm3 (17)

Codeine Pharmaceuticalsamples

Permanganate–polyphosphoricacid CL 2� 10ÿ7 mol/dm3 (18)

Dopamine Aqueous Inhibition of the lucigenin–Fe(II)–Brij35 CL reaction

2� 10ÿ9 mol/dm3 (19)

Dopamine,adrenalineandisoprenaline

Injection solutions Treatmentwith EDTA–Reineche’ssalt.Detectionusingluminol–hydrogenperoxideCL

4 ng/mL, 20ng/mLand16ng/mL,respectively

(20)

Ergonovinemaleate Pharmaceuticalpreparations

Potassiumhexacyanoferrate(III)–sodiumhydroxideCL enhancedusinghexadecylpyridiniumchloride

0.07mg/L (21)

Furosemide Tablets Ce(IV)–sulphuricacid chemiluminescence,sensitizedby rhodamine6G

2.2� 10ÿ7 mol/dm3 (22)

Glutathioneandcysteine Aqueous Ce(IV)–hydrocortisoneCL 2� 10ÿ7 mol/dm3 and1.4� 10ÿ6mol/dm3

respectively

(23)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

2 REVIEW P. Fletcheret al.

Page 3: Analytical applications of flow injection with chemiluminescence detection—a review

Table 1 continued.

Analyte Samplematrix Reaction LODReferencenumber

Hydrochlorothiazide Pharmaceuticalpreparationsandtablets

Ce(IV)–sulphuricacid CL, sensitizedbyrhodamine6G

1.5� 10ÿ7 mol/dm3 (24)

Hydrogenperoxide,glucoseandascorbicacid

Pharmaceuticals Luminol–hydrogenperoxide–potassiumperiodateCL (indirect CL usingglucoseoxidasefor thedetectionof glucose)

3� 10ÿ8 mol/dm3,0.08mg/mL and6� 10ÿ8 mol/dm3

respectively

(25)

Imipramine Tablets Imipramine–glyoxal–potassiumpermanganateCL

12ng/mL (26)

Imipramineandchlorpromazine

Urine Acidified permanganateCL 5� 10ÿ5 mol/dm3 and2� 10ÿ5 mol/dm3

respectively

(27)

Isoniazid Pharmaceuticalformulations

Inhibition of the luminol–hydrogenperoxide–potassiumhexacyanoferrate(III)reaction

5 mg/L (28)

Isoniazid Pharmaceuticals Mn(II)–luminol–potassiumperiodateCL 30ng/mL (29)Levodopa Tablets Acidified permanganateCL 62mg/L (30)Medazepam Drug formulations Potassiumpermanganate–sulphuricacid CL 1.85� 10ÿ5 mol/dm3 (31)Menadionesodium

bisulphiteInjection solutions Ce(IV)–menadionesodiumbisulphiteCL 2� 10ÿ3 mg/mL (32)

Methotrexate Injection solutionsandtablets

Permanganate–H2SO4–formaldehydeCL 3.4� 10ÿ9 mol/dm3 (33)

Morphine,sinomenineandcodeine

Pharmaceuticalpreparationsandtablets

Treatedwith EDTA–Reineche’ssalt.Detectedwith luminol–hydrogenperoxideCL

60ng/mL, 70mg/mLand600ng/mLrespectively

(34)

Naltrexone Pharmaceuticalpreparations

Acidified permanganateCL 2.5ng/mL (35)

Naproxen Pharmaceuticalpreparations

Ce(IV)–sulphuricacid CL 15ng/mL (36)

Paracetamol Pharmaceuticalformulations

Inhibition of the luminol–hydrogenperoxide–potassiumhexacynoferrate(III)reaction

2.5mg/mL (37)

Penicillamine Pharmaceuticalpreparations

Cerium(IV)–sulphuricacid CL withquinineassensitizer

15pmol (50mLinjection)

(38,39)

Perphenazine Drug formulations Acidified permanganateCL 50mg/L (40)Persantin Pharmaceutical

preparationsandtablets

SodiumhypochloriteCL with TritonX-100 asenhancer

11ng/mL (41)

Phenothiazines Pharmaceuticalpreparationsandbiological fluids

Cerium(IV)–acidCL with rhodamineBasa sensitizer

0.01–0.1mg/mL (42)

Prednisoneacetate Tablets Na2SO3–ammoniumceric sulphate–sulphuricacid CL

31mg/L (43)

Progesteroneandhydrocortisones

Aqueous Cerium(IV)–cysteine–sulphuricacid CLsensitizedby theanalyte

0.10mg/mL (44)

Promethazinehydrochloride

Tablets Potassiumpermanganate–oxalicacid CL 3.5� 10ÿ8 g/mL (45)

Pyridoxinehydrochloride Tablets Luminol–hydrogenperoxideCL 6mg/mL (46)Reserpine Injection solutions Permanganate–hydrogenperoxide–H6P4O13

CL0.3mg/mL (47)

Riboflavine Injection solutionsandtablets

Acidified potassiumpermanganate–sodiumdithionite CL

62ng/mL (48)

Rutin SophorajaponicaL(traditionalChinesemedicine)

Luminol–potassiumhexacyanoferrateCL 6.7� 10ÿ9 g/mL (49)

Rutin TraditionalChinesemedicines

Sodiumhypochlorite–rutin–semicarbazidehydrochlorideCL

13pg/L (50)

Salicylamide Humanurineandpharmaceuticalformulations

Acidified potassiumpermanganateCL 30ng/mL (51)

Sodiumnitroprusside Pharmaceuticals Luminol–hydrogenperoxideCL 9� 10ÿ9 mol/dm3 (52)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 3

Page 4: Analytical applications of flow injection with chemiluminescence detection—a review

Table 1 continued.

Analyte Samplematrix Reaction LODReferencenumber

Tannicacid Chinesegall(traditionalmedicine)

Inhibition of luminol–hydrogenperoxide–Cu(II) CL

9� 10ÿ9 mol/dm3 (53)

Tetracyclines Commercialformulations

Acidic permanganateCL with octylphenylpolygylcol etherassensitizer

0.4–0.6mg/mL (54)

Tetracyclines Pharmaceuticalpreparations

Cerium(IV)–sulphuricacid CL withquinineassensitizer

0.025–0.25nmol(50mL injection)

(55)

Tetrahydropalmatine Pharmaceuticalpreparationsandtablets

Acidified potassiumpermanganate–sodiumdithionite CL

3.2ng/mL (56)

Thiaminenitrate Tablets Potassiumhexacyanoferrate(III)–sodiumhydroxide–uranineCL

2.0� 10ÿ5 mol/dm3 (57)

Tiopronin Pharmaceuticals Ce(IV)–sulphuricacid CL usingrhodamine6G andquinineasfluorophores

1� 10ÿ7 mol/dm3 (58)

Tiopronin Pharmaceuticals Cerium(IV)–sulphuricacid CL with quinineasa sensitizer

3.4� 10ÿ7 mol/dm3 (59)

Vitamin B6 Injection solutionsandtablets

Na2S2O3–potassiumpermanganate–sodiumpolyphosphateCL

58ng/mL (60)

Table 2. Environmental applications

Analyte Samplematrix Reaction LODReferencenumber

Acetaldehyde River/wastewater Gallic acid–hydrogenperoxide–sodiumhydroxideCL

0.31ng/mL (61)

As Oresandrocks Dissolutionwith HCl. Reductionof As(V)to As(III) usingpotassiumiodide–thioureafollowed by luminol–hydrogenperoxide–Cr(III)CL detection

3.4� 10ÿ5 mol/dm3 (62)

As(III) Geochemicalsamples Samplemixed with K2Cr2O7–H2SO4followed by luminol–hydrogenperoxideCL

1� 10ÿ10 mol/dm3 (63)

Chattonellaantiqua(redtide phytoplankton)

Aqueous 2-Methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]-pyrazin-3-one–superoxideCL

2� 103 cells/mL (64)

Chlorine Tapwater Luminol is immobilizedon ananionexchangeresincolumn.Sodiumhydroxideis passedthroughthecolumnto eluteluminol, which is mixed with asamplestreamto produceCL

8� 10ÿ9 g/mL (65)

Co(II) Seawater Preconcentrationusing8-quinolinolimmobilizedon 8HQ-MAF andCLdetectionusinggallic acid–hydrogenperoxide

0.62ng/L (66)

Co(II) River, seaandtapwater

Luminol chemiluminescenceenhancedwith CO2(g)

5� 10ÿ13 mol/dm3 (67)

Co(II) Seawaterandriverwater

Quercetin–hydrogenperoxide–potassiumhydroxidereversedflow injection CL

0.1ng/mL (68)

Co(II) andCr(III) Mineral waters Cetyltrimethylammoniumbromide–hydrogenperoxide–luminolCL

10pg/mL and12pg/mLrespectively

(69)

Co(II) andNi(II) Hair Microwavedigestionin HNO3 andhydrogenperoxide.Detectionusingalizarin purple–ethanolcetyltrimethyl-ammoniumbromide–potassiumhydroxide

0.1mg/mL (70)

Cr(III) Tapwater Hydrogenperoxide–luminolCL 0.5mg/mL (71)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

4 REVIEW P. Fletcheret al.

Page 5: Analytical applications of flow injection with chemiluminescence detection—a review

Table 2 continued.

Analyte Samplematrix Reaction LODReferencenumber

Cr(III) andCr(VI) Wastewater Reductionto Cr(III) usinghydrogenperoxidefollowed by detectionwithluminol–hydrogenperoxideCL

<10ÿ9 mol/dm3 (72)

Cr(III) andCr(VI) Naturalwaters On-lineoxidationof Cr(III) to Cr(VI) on aPbO2 columnfollowed by quercetin–hydrogenperoxide–potassiumhydroxideCL

1 ng/mL (73)

Cr(III) andCr(VI) Wastewater Reductionusingcopper-coatedzincfollowed by luminol–hydrogenperoxideCL detection

2.3� 10ÿ8 mol/dm3 (74)

Cr(VI) Wastewater CL producedby luminol andhexacyano-ferrate(II) (immobilizedon an anion-exchangeresincolumn,elutedwithsodiumphosphate)

0.014mg/mL (75)

Cu (complexed) Seawater 1,10-Phenanthroline–hydrogenperoxideCL 1� 10ÿ10 mol/dm3 (76)Cu(II) Hair Luminol–potassiumpermanganate

immobilizedontoD201*7 anion-exchangeresin.Elution with sodiumhydroxideto reactwith Cu(II) to produceCL

0.2ng/mL (77)

Cu(II) Naturalwaters Immobilizedluminol–cyanideareelutedwith Na3PO4 andmixed with thesample–sodiumhydroxidefor CLdetection

1.3� 10ÿ9 mol/dm3 (78)

Cyanide River water Sulphitegeneratedby the reactionofcyanideandsodiumthiosulphatecatalysedby immobilizedrhodanesereactswith immobilizedsulphiteoxidaseandproducessulphateandhydrogenperoxide,which is detectedwith luminolandperoxidase

1.2� 10ÿ8 mol/dm3 (79)

Cyanide Tapandwastewater Luminol immobilizedon Amberlystresinwith copperimmobilizedon D151resin.CL is producedwith cyanide

2� 10ÿ9 g/mL (80)

Fe (dissolved) Seawater Preconcentrationwith TSK-8HQ,followedby detectionwith luminol–hydrogenperoxideCL

2.2� 10ÿ11 mol/dm3 (81)

FeandMn (dissolved) Undergroundwater Luminol–potassiumperiodateCL 3� 10ÿ6 mg/mL and5� 10ÿ6mg/mLrespectively

(82)

Fe(II) Naturalwaters Luminol–hydrogenperoxideCL 2� 10ÿ9 mol/dm3 (83)Fe(II) Treatedwaters O-phenanthroline–luminol–potassium

periodateCL (reversedflow-injection)3 ng/L (84)

Fe(II) Hair Lucigenin–sodiumhydroxideCL withcetyltrimethylammoniumbromideassensitizer

2 pg/mL (85)

Fe(II) andFe(III) Seawater Preconcentrationwith 8-HQ, followedby detectionwith luminol CL

4� 10ÿ11 mol/dm3 (86)

Fe(II) andFe(III) Naturalwaters Fe(III) reducedto Fe(II) with Cu-coatedZn. Luminol immobilizedon ananion-exchangeresin.Elutedwith sodiumhydroxidefor CL detection

0.4ng/L (87)

Fe(II) andhydrogenperoxide

Rainwater Oxygen–peroxyoxalateCL <1� 10ÿ7 mol/dm3 (88)

Fe(II) andtotal Fe River andseawater Preconcentrationon Amberlite XAD-4functionalizedby N-hydroxyethylethyl-ethylenediaminegroupsfollowed bybrilliant sulphoflavine–hydrogenperoxideCL detection

0.80nmol/L and0.36nmol/L,respectively

(89)

Fe(II) andtotal Fe Humanhair andnaturalwaters

Luminol–hydrogenperoxideCL enhancedwith cationicsurfactanttetradecyl-trimethylammoniumbromide

2� 10ÿ9 mol/dm3

and1� 10ÿ9 mol/dm3, respectively

(90)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 5

Page 6: Analytical applications of flow injection with chemiluminescence detection—a review

Table 2 continued.

Analyte Samplematrix Reaction LODReferencenumber

Heterosigmacarterae(redtide phytoplankton)

Aqueous 2-Methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]-pyrazin-3-one(MCLA)–superoxideCL

1� 102 cells/mL (91)

Hg(II) Environmentalwaters Cu(II)–luminol–sodiumhydroxide–potassiumhexacyanoferrate(II)CL

0.33mg/mL (92)

Hydrazine Drinking water CL producedfrom N-bromosuccinimidein alkalinemediumwith dichloro-fluoresceinassensitizer

5� 10ÿ7 mol/dm3 (93)

Hydrazine Air Absorptionin sulphuricacid followed byluminol–potassiumperiodate–sodiumhydroxideCL

2mg/m3 (94)

Hydrogenperoxide Rainwater Octylphenylpolyglycol ether–acidicpotassiumpermanganateCL

6.0� 10ÿ9 mol/dm3 (95)

Hydrogenperoxide Snowwater Potassiumperiodate–potassiumcarbonateCL

5� 10ÿ9 mol/dm3 (96)

Hydrogenperoxide Seawater Co(II)–luminol CL 1.06� 10ÿ8 mol/dm3 (97)Hydrogenperoxide Rainwater ImmobilizedCo(II) andluminol areeluted

with NaSO4. CL is producedin thepresenceof hydrogenperoxide

3.5� 10ÿ8 mol/dm3 (98)

Hydrogenperoxide Rainwater Luminol andCo(II) areimmobilizedona stronglybasicanion-exchangeresinanda weaklyacid cation-exchangeresin,respectively.Reagentsareelutedbyhydrolysisfor CL detection.

1.2� 10ÿ8 mol/dm3 (99)

Hydrogenperoxide Air Hydrogenperoxidediffusion scrubbed.Detectionwith 1,1'-oxalyldi-imidazole–peroxyoxalateCL

3.4 ppbv (100)

Hydrogenperoxide Seawater Co(II)–hydrogenperoxide–luminolCL 4.2� 10ÿ10 mol/dm3 (101)Hypochlorite Tapwater Oxidationof indole in propan-2-olwith

hydrogenperoxide5mg/mL (102)

Ir(IV) Oresandrocks Potassiumhydroxide–hydrogenperoxide–Tween-80CL

11pg/L (103)

Mn Humanhair Sampleashedanddissolvedin acid.DetectedusingI2–luminol CL

0.1ng/mL (104)

Mn(II) Potablewater 7,7,8,8-Tetracyanoquinodimethaneoxidationwith EosinY assensitizer

4.5mg/mL (105)

Mn(II) Naturalwaters Immobilizedluminol andIO4ÿ elutedwith

Na3PO4 for CL with Mn(II)1� 10ÿ9 g/mL (106)

Mn(II) Seawater Luminol–hydrogenperoxideCL 2.9� 10ÿ11 mol/dm3 (107)Nitrite Naturalwaters Nitrite reactswith hydrogenperoxideto

form peroxynitrite,which producesCLwith luminol

1� 10ÿ9 mol/dm3 (108)

Nitrite Drinking waterandfood

Luminol–I2 (producedfrom potassiumiodide in acid) CL

1.6ng/mL (109)

Oxygen(dissolved) River andtap water Reactionwith MnSO4–iodine–potassiumiodide–ammoniato form a precipitatethat is dissolvedin H2SO4–H3PO4.Detectionwith luminol–sodiumhydroxide

0.412mg/L (110)

Ozone Treatedwaters Luminol–ozoneCL usinggasdiffusion FIA 8mg O3 L (111)Pb(II) Naturalwaters Lucigenin–hydrogenperoxide–sodium

hydroxideCL enhancedwith ethanol0.1mg/mL (112)

Pb(II) Wastewater Pb(II) replacesFe(II) from anEDTAcomplex.Fe(II) reactswith luminol–sodiumhydroxideto produceCL

20ng/L (113)

Phosphate Naturalwaters Hydrogenperoxideproducedfrom thereactionof immobilizedpyruvateoxidasewith phosphateis detectedusingluminol–horseradishperoxidaseCL

7.4� 10ÿ8 mol/dm3 (114,115)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

6 REVIEW P. Fletcheret al.

Page 7: Analytical applications of flow injection with chemiluminescence detection—a review

with otherflow systems,egLC, CL immunoassaylabelsor electrogeneratedCL. Therearealsoa limited numberof FI–CL papers (not tabulated) in which unstableoxidantshavebeenusedby electrochemicalgenerationof the reagentwithin theFI manifold (230–236).

PHARMACEUTICAL APPLICATIONS

Thehigh sensitivityof FI–CL hasattractedconsiderableinterestfor theanalysisof pharmaceuticalsamples(Table1) using a variety of oxidants.The luminol–hydrogenperoxide reaction, with and without K7Cu(IO6)2, hasbeenusedfor themeasurementof ascorbicacidin tablets(6,8), morphine,sinomenineandcodeinein tabletsand

Table 2 continued.

Analyte Samplematrix Reaction LODReferencenumber

Phosphate Drinking water Phosphateion-dependentpyruvateoxidasereactionproduceshydrogenperoxidewhich is detectedusingluminol CLcatalysedby Arthromycesramosusperoxidase

1.6� 10ÿ7 mol/dm3 (116)

Phosphate River water ImmobilizedpyruvateoxidaseG producinghydrogenperoxidefor luminol CLdetection

9.6� 10ÿ8 mol/dm3 (117)

Phosphate River water Maltosephosphorylase,mutarotase,andglucoseoxidaseimmobilizedon N-hydroxysuccinimidebeadswithArthromycesramosusperoxidase–luminol CL detection

1� 10ÿ6 mol/dm3 (118)

Phosphate Naturalwaters Purinenucleosidephosphorylaseandxanthineoxidaseimmobilizedon amino-propyl-controlledporeglassbeadsconvertphosphateto hydrogenperoxidefor peroxyoxalate–rhodamineB CLdetection

3.9� 10ÿ8 mol/dm3 (119)

Phosphorus Naturalwaters Conversionto phosphomolybdicacid usingHClO4–ammoniummolybdatewithluminol–sodiumhydroxideCL detection

36mg/mL (120)

PolyaromatichydrocarbonsOrganic(hexaneoracetonitrile)

Peroxyoxalate–hydrogenperoxideCL 0.6–79mg/mL (121)

Sb(III) Oresandrocks K2Cr2O7–luminol–sodiumhydroxideCL 0.1ng/mL (122)Sulphite Tapwater Auto-oxidationsensitizedby rhodamine

6G (immobilizedon cationexchangeresin)enhancedwith Tween80

0.01mg/L (123)

Sulphiteandsulphurdioxide

Waterandair Luminol immobilizedon ananionexchangecolumn.Luminol is elutedbyhydrolysisfor CL detection

1� 10ÿ7 mol/dm3 (124)

Sulphurdioxide Air Adsorptionusingtriethanolaminefollowedby Ru(2,2'-bipyridyl)3

2�–SO32ÿ–K2S2O8

CL

4.1� 10ÿ8 mol/dm3 (125)

Sulphurdioxide Air Absorptionon triethanolaminefollowed byTris(1,10-phenanthroline)ruthenium–

potassiumperiodateCL

7� 10ÿ10 mol/dm3 (126)

Sulphurdioxide Air Adsorptionusingtriethanolaminefollowedby Ru(2,2'-bipyridyl)3

2�–SO32ÿ–

potassiumpermanganateCL

2.5� 10ÿ8 mol/dm3 (127)

V(IV) Tapwater Potassiumdichromate–potassiumiodide–sodiumhydroxide–luminolCL

7� 10ÿ10 mol/dm3 (128)

V(V) Geochemicalandhair samples

Luminol andhexacyanoferrate(II),arebothimmobilizedon an anion-exchangeresincolumn,andareelutedwith phosphoricacid to produceCL

5.4� 10ÿ3 mg/cm3 (129)

Volatile phenols Pollutedwaters Quenchedp-chlorobenzenediazoniumfluoroborate–hydrogenperoxideCL

0.015ÿ 0.03mg/mL (130)

Zr(IV) Rocksandores Luminol–hydrogenperoxideCL 30pg/L (131)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 7

Page 8: Analytical applications of flow injection with chemiluminescence detection—a review

Table 3. Food and beverageapplications

Analyte Samplematrix Reaction LODReferencenumber

3,4-Dihydroxybenzoicacid

Wines Inhibition of the luminol–hydrogenperoxide–Co(II)CL

2.7� 10ÿ7 mol/dm3 (132)

Acetaldehyde Alcoholic beverages Gallic acid–hydrogenperoxide–sodiumhydroxideCL

0.31ng/mL (61)

Amino acids Food Cu(II) aminoacid complexformation,catalysisof the luminol–hydrogenperoxideando-phenanthroline–hydrogenperoxideCL systems

pmol (133)

Ascorbicacid Beverages Oxidationwith permanganate–acid 5� 10ÿ7 mol/dm3 (134)Ascorbicacid Mung beansprouts,

tomatoandcucumberskins

Luminol–Fe(II)–Na2B4O7–potassiumhydroxideCL

0.2ng/mL (5)

Ascorbicacid Fruit juices Luminol andpotassiumpermanganateimmobilizedon resinsin a glasscolumn.Eluentmixed with sodiumhydroxideto produceCL

5mg/L (135)

Ascorbicacid Vegetables Acidified permanganate–luminolCL 0.1mg/mL (136)Ascorbicacid Vegetables Inhibition of theCL producedfrom luminol

andferricyanide(immobilizedon ananion-exchangeresincolumn,elutedwith sodiumphosphate)

5.5� 10ÿ3 mg/mL (11)

Carbohydrates Aqueous Acidified permanganate/Mn(II)CL 1� 10ÿ4 mol/dm3 (137)Choline Cabbage Luminol–Co(II) detectionof hydrogen

peroxideproducedfrom an immobilizedcholineoxidasecolumn

1� 10ÿ7 mol/dm3 (138)

Citric acid Non-alcoholicbeverages

Reductionof Fe(III) to Fe(II) with citricacid followed by luminol CL detection

0.1mg/mL (139)

Ethanol Beer Productionof hydrogenperoxideusingalcoholoxidasefollowed by luminol CL

0.01%(v/v) (140)

FreeL-malate Wines Malatedehydrogenase/reducednicotineamideadeninedinucleotideoxidaseco-immobilizedon polymerbeadsto producehydrogenperoxidefordetectionusingluminol–hexacyano-ferrate(III) CL

8� 10ÿ8 mol/dm3 (141)

Glucoseandfructose Aqueous Pyrogallol–hydroxylaminehydrochloride–periodateCL

Not reported (142)

Glycerol Wines Glycerol dehydrogenaseandNADHoxidaseareco-immobilizedonpoly(vinyl alcohol)beadsto producehydrogenperoxide,which wasdetectedusingluminol–hexacyanoferrate(III)CL

7� 10ÿ8 mol/dm3 (143)

Hydrogenperoxide Fermentedliquors PeroxyoxalateCL in an emulsionof ethylacetate,non-ionicsurfactantpolyoxy-ethylene(20)sorbitanemonolaurate(Tween20) andwater

1� 10ÿ6 mol/dm3 (144)

L-lactate Foodsamples ImmobilizedL-lactateoxidaseto producehydrogenperoxidefor luminol–horse-radishperoxidase–luminolCL detection

1� 10ÿ7 mol/dm3 (145)

Nitrite Waterandfood Luminol–I2 (producedfrom potassiumiodide in acid) CL

1.6ng/mL (109)

Sulphite Sugar Ru(2,2'-bipyridyl)32�–SO3

2ÿ–K2S2O8 CL 4.1� 10ÿ8 mol/dm3 (125)Sulphite Beersandwines Auto-oxidationsensitizedby rhodamine

6G (immobilizedon cationexchangeresin)enhancedwith Tween80

0.03mg/L (146)

Sulphite Wines Na2CO3–NaHCO3–Cu(II) CL with a gasdiffusion module

5� 10ÿ7 mol/dm3 (147)

Sulphite Sugar Ru(2,2'-bipyridyl)32�–SO3

2ÿ–potassiumperoxideCL

2.5� 10ÿ8 mol/dm3 (127)

Tannicacid Hop pellet samples Inhibition of luminol–hydrogenperoxide–Cu(II) CL

9� 10ÿ9 mol/dm3 (53)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

8 REVIEW P. Fletcheret al.

Page 9: Analytical applications of flow injection with chemiluminescence detection—a review

Table 4. Biomedical applications

Analyte Samplematrix Reaction LODReferencenumber

Acetylcholineandcholine Ratbrain tissue Following samplepreparation,injectioninto stream,passedthroughtwo reactorscontainingacetylcholinesteraseandcholineoxidaseimmobilizedon glassbeads.DetectionusingCo(II)–luminolCL

600and500 fmol,respectively

(148)

Acetylcholineandcholine Culturemedia Productionof hydrogenperoxideusinganimmobilizedenzymereactorfollowed

by detectionwith luminol–Co(II) CLenhancedusingsodiumdodecylsulphate

1� 10ÿ6 mol/dm3 (149)

Adenosine-5'-triphosphate Aqueous Alkaline phosphatasefrom Escherichiacoli(immobilized) is usedto producehydrogenperoxidefor detectionwithluminol–heteropolyacid

1� 10ÿ8 mol/dm3 (150)

a-Chymotrypsin,trypsinanda commercialprotease

Aqueous Immobilizedtripeptideandisoluminol–Co(II)–hydrogenperoxideCL

2.7� 10ÿ4 mg/L,4� 10ÿ2 mg/Land2� 10ÿ3

mg/L respectively

(151)

Amino acids Aqueous Inhibition of the lucigenin–Co(II)reaction 1� 10ÿ9–2� 10ÿ7

mol/dm3(152)

Amino acids Aqueous Ninhydrin–hydrogenperoxide–Cu(II)orCo(II) CL

4.2� 10ÿ7–9.2�10ÿ6 mol/dm3

(153)

Amino acids,polyamines,andsalicylic acids

Aqueous Unsaturatedcomplexof Cu(II) andorganicligandsenhanced1,10-phenanthroline–hydrogenperoxide–CTMABCL

2.7–90pmol (154)

Bilirubin Aqueous N-bromosuccinimideor sodiumhypochloriteCL

1.75mg/mL (155)

Branched-chainL-aminoacids

Plasma LeucinedehydrogenaseandNADH oxidaseareco-immobilizedon aminatedpoly(vinyl alcohol)beadsto producehydrogenperoxidewhich is detectedusingluminol–hexacyanoferrate(III)CL

3� 10ÿ7 mol/dm3 (156)

Catecholamines Plasma Imidazole-catalyseddecompositionbycatecholaminesproducinghydrogenperoxidewhich is detectedusingperoxyoxalateCL

Not reported (157)

Chlorotetracycline Urine Coppersulphate–hydrogenperoxide–ammoniumcarbonate–cetyltrimethyl-ammoniumbromideCL

4� 10ÿ8 mol/dm3 (158)

Cholesterol Humanserum Cholesteroloxidaseimmobilizedon amine-modifiedsilica gel in a columnis usedtoproducehydrogenperoxide.Luminol andferricyanideareco-immobilizedon ananion-exchangecolumnfor CL detection

5� 10ÿ6 g/mL (159)

Cholesterol Blood serum Hydrogenperoxideproducedfrom animmobilizedcholesteroloxidasecolumnis detectedusingluminol–Co(II) CL

0.1mg/L (160)

Cr(III) Urine Luminol–hydrogenperoxideCL 0.01mg/L (161)Cu(II) Serum Hydroxylamine–fluorescein–hydroxideCL 0.5mg/L (162)D-aminoacids Humanplasma Immobilizedenzymecolumnreactorwith

peroxyoxalateCL detection0.4–30pmol (10mL

injection)(163)

D-glucoseand3-hydroxy-butyrate

Serum Two enzymereactors,onecontainingglucosedehydrogenaseandNADHoxidase,theothercontaining3-hydroxy-butyratedehydrogenaseandNADHoxidase,co-immobilizedon beadstoproducehydrogenperoxidefor detectionusingluminol–hexacyanoferrate(III)CL

1� 10ÿ5 mol/dm3

and1� 10ÿ6 mol/dm3, respectively

(164)

Dopamine Biochemicalsamples Imidazole–peroxyoxalateCL 10nmol (20mLinjection)

(165)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 9

Page 10: Analytical applications of flow injection with chemiluminescence detection—a review

Table 4 continued.

Analyte Samplematrix Reaction LODReferencenumber

Fe(III) Blood Luminol andpotassiumhexacyano-ferrate(II) areimmobilizedon a D201anionexchangecolumn.Elution withNa2SO4. Detectionwith sodiumhydroxide

7mg/L (166)

Glucose Rabbitfluid andblood

Microdialysisfollowed by reactionin animmobilizedglucoseoxidasereactortoproducehydrogenperoxide,detectedwith luminol–hexacyanoferrateCL

1� 10ÿ5 mol/dm3 (167)

Glucose Biochemicalsamples K7[Cu(IO6)]2–luminol–sodiumhydroxideCL

0.18ng/mL (168)

Glucose Plasma Immobilizedpyranoseoxidaseproducedhydrogenperoxidefor reactionwithluminol in a flow cell containingimmobilizedperoxidase

3� 10ÿ9 mol/dm3 (169)

Glucose,acetylcholineandcholine

Urine Productionof hydrogenperoxideusingimmobilizedglucoseoxidaseoracetylcholineesterase–cholineoxidasefollowed by peroxyoxalateCL

3� 10ÿ9 mol/dm3

and5� 10ÿ8 mol/dm3, respectively

(170)

Glycerol-3-phosphate Aqueous Glycerol-3-phosphateoxidaseimmobilizedon controlledporeglass.Detectionwithluminol–Co(II) CL

5� 10ÿ7 mol/dm3 (171)

Hydrogenperoxide Humanserum 3-Propyl-7,8-dihydropyridazino[4,5-g]quinoxaline-2,6,9(1H)-trione

1.3pmol (100mLinjection)

(172)

Iodide Urine Conversionto iodine by potassiumdichromatefollowed by detectionwithluminol–Co(II) CL

10mg/L (173)

L-alanine,2-oxoglutarateandL-glutamate

Cell cultivation mediaof mammalliancells

Samplepassedthroughreactorcontainingalanineaminotransferaseandglutamateoxidaseimmobilizedon sievedporousglassbeadsbeforepassinginto a flowcell containingNaHCO3–luminol–Co(II)immobilizedperoxidasefromArthromycesramosusfor CL detection

2� 10ÿ6 mol/dm3

5� 10ÿ6 mol/dm3

and1� 10ÿ6 mol/dm3, respectively

(174)

L-valine,L-leucineandL-isoleucine

Plasma Leucinedehydrogenase,NADH oxidaseandperoxidaseareco-immobilizedcovalentlyon tresylate-hydrophilicvinylpolymerbeadsin a flow cell. NAD� andluminol usedto produceCL

1� 10ÿ8 mol/dm3 (175)

Lysineandglucose Aqueous Immobilizedlysineoxidaseandglucoseoxidaseproducinghydrogenperoxidewith luminol–Co(II) CL detection

4� 10ÿ8 and7�10ÿ7 mol/dm3,respectively

(176)

Lysineandornithine Aqueous Immobilizedlysineoxidaseproducinghydrogenperoxidewith luminol–Co(II) CL detection

4� 10ÿ7 mol/dm3 (177)

Polyphenols,monophenolsandsugars

Not reported Imidazole–peroxyoalateCL Not reported (178)

Porphyrins Aqueous Peroxyoxalate–hydrogenperoxideCL 0.1mg/L (179)Proteins Bovineserum

albumin,humanserumalbumin,humang-globulin,andeggalbumin

Cu(II)–proteinscomplexescatalyseluminol–hydrogenperoxide

0.03–0.05mg/mL (180)

Proteins Bovineserumalbumin,humanserumalbumin,g-globulin, andeggalbumin

1,10-Phenanthroline–hydrogenperoxide–Cu(II) cetyltrimethylammoniumbromideCL

0.02mg/mL (181)

Pyruvate Blood serum Acidified permanganate–quinineCL 0.8mg/mL (182)Serotoninandrelated

indolesAqueous Potassiumpermanganate–sulphuric

acid CL2� 10ÿ9 – 1.5�

10ÿ8 mol/dm3(183)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

10 REVIEW P. Fletcheret al.

Page 11: Analytical applications of flow injection with chemiluminescence detection—a review

injectionsolutions(34),pyridoxidein dietarysources,egpeanuts, yeast, lemons, tomatoes and apples (46),nitroprussidein injection solutions (52) and rutin intraditionalChinesemedicines(49).Somecatecholamines(dopamine,adrenaline,isoprenaline)have been deter-mined by the same reaction after treatment withReineche’ssalt (20). Addition of potassiumperiodatetothe luminol streamhasbeenproposedfor thedetermina-tion of ascorbicacid (9) and isoniazid(29) in pharma-ceutical preparationsand glucose(after treatmentwithglucose oxidase) (25). Ascorbic acid has also beendeterminedby the luminol–hydrogenperoxidereactionin the presenceof iron(II) in vitamin C tablets,multi-vitamin capsules,mung bean sprouts, tomatoesandcucumberskin, with recoveriesof 96–105%(5). Thepresenceof hexacyanoferratein the reaction mixtureallowed measurementof b-lactam antibiotics via gen-erationof hydroxyandsuperoxideradicals(12).Ascorbicacid has also been determinedusing hexacyanoferra-te(III) insteadof hydrogenperoxide(10). Inhibition ofluminol CL has been applied to the determinationofascorbicacidin vitaminpills andvegetableextracttablets(with good agreementwith iodimetry) (11), isoniazid(28) and paracetamol(37). Tannic acid in Chinesegallhasbeendeterminedby its inhibition of the copper(II)-catalysedluminol–hydrogenperoxidereaction(53).

A variety of other oxidants in acidic and alkalinemediahavebeeninvestigatedfor druganalysisusingFI–CL. Potassiumpermanganatein acidic media, with orwithoutCL enhancersor promoters,hasbeenusedfor thedeterminationof amidopyrine (1, 2), benzocaine,pro-caineandother local anaesthetics(13), cefadroxil (15),codeine (18), imipramine (26,27), levodopa (30),medazepam(31), methotrexate(33), naltrexone (35),perphenazine(40), promethazine(45), reserpine(47),

salicylamide(51), tetracyclines(54) and tetrahydropal-matine (56) in pharmaceutical preparations.All gavegoodrecoveriesandagreementwith official or standardanalyticalmethods.Initiation of CL reactionsin acidicmedia has also be achievedusing cerium(IV) for thedeterminationof analgin(4), captopril (14), furosemide(22), hydrochlothiazide(24), naproxen(36), penicilla-mine(38,39),phenothiazines(42),tetracyclines(55)andtiopronin (58,59).

TheCL reactionof cerium(IV) with sulphitehasbeenusedfor excitation by energytransfer to ciprofloxacin(16) and prednisoneacetate(43). CL also occurs ifsulphiteis substitutedby a mercapto-compound,suchasglutathioneor cysteine,andthe reactionis sensitizedbyhydrocortisone(23), while the reactionwith glutathioneand energy transfer has been used to determineprogesteroneand hydrocortisonein human serum bystandardadditions (44). Menadionesodium bisulphitehasbeendeterminedin injection solutionsby releaseofsulphite and reaction with cerium(IV) and the resultswere in good agreementwith a standardspectrophoto-metric method(32). Similarly the reactionof permanga-nate with dithionite has been used to determineriboflavine (48) and with thiosulphate to determinevitamin B6 (60).

Potassiumhexacyanoferrate(III)in alkaline solutionshas been used for the determination of ergonovinemaleatein syntheticpharmaceuticalpreparations(withgood agreementwith the official method) (21) andthiamine(57).Alternatively,sodiumhypochloritecanbeusedfor initiation of CL reactionsin alkalinemediaforthe assayof persatinin injection solutionsand tablets(41). Rutin has been measuredin Chinesetraditionalmedicinesby thehypochlorite–semicarbazideCL system(50).

Table 4 continued.

Analyte Samplematrix Reaction LODReferencenumber

Serum3-hydroxybutyrate Serum Two immobilizedenzymes,3-hydroxy-butyratedehydrogenaseandNADHoxidaseproducinghydrogenperoxide,detectionwith luminol–hexacyanoferrateCL

Not reported (184)

Sulphatedbile acids Urine Productionof hydrogenperoxideusingmultistepenzymaticreactionswithdetectionusingluminol CL

1� 10ÿ7 mol/dm3 (185)

Tryptophan Tissue Cerium(IV)–sulphuricacid CL 0.1mg/mL (186)Uric acid Urine Luminol–K7[Cu(IO6)2]–potassium

hydroxideCL enhancedwithpolyhydroxycompounds

7.2� 10ÿ9 mol/dm3

(187)

Uric acid Urine Acidic permanganateCL with octylphenylpolygylcol etherasa sensitizer

0.055mg/mL (188)

Uric acid Aqueous Inhibition of luminol–potassiumperiodate–Mn(II) CL

1.8� 10ÿ9 g/mL (189)

Vanilmandelicacid Urine Luminol–hexacyanoferrate(III)CL 2� 10ÿ8 mol/dm3 (190)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 11

Page 12: Analytical applications of flow injection with chemiluminescence detection—a review

Table 5. General/unspecifiedapplications

Analyte Samplematrix Reaction LODReferencenumber

2,4-DinitrophenylhydrazineAqueous/propan-2-ol Potassiumpermanganate–formicacid CLwith rhodamineB assensitizer

5� 10ÿ10 mol/dm3 (191,192,193)

4-(5',6'-Dimethoxybenzo-thiazolyl) phthalhydra-zide

Dimethyl sulphoxide 4-(5',6'-Dimethoxybenzothiazolyl)phthal-hydrazide–hydrogenperoxide–potassiumhexacyanoferrate(III)CL

1.3� 10ÿ11 mol/dm3 (194)

Al(III), Zn(II), Cd(II), andIn(III)

1,4-Dioxane Derivatisationwith g-hydroxyquinolinefollowed by peroxyoxalate–hydrogenperoxideCL detection

20 –70mg/L (195)

Benzaldehyde Benzylalcohol Gallic acid–hydrogenperoxide–sodiumhydroxideCL

4.4� 10ÿ6 mol/dm3 (196)

Clÿ, Brÿ, NO2ÿ, NO3

ÿ,SO4

2ÿAqueous N-(b-carboxypropionyl)isoluminol

immobilizedon a resinis replacedbyanionsreleasingisoluminol which reactswith hydrogenperoxideandpotassiumhexacyanoferrate(III)producingCL

8.0� 10ÿ7–1.4� 10ÿ6 mol/dm3

(197)

Co(II) Aqueous 1,10-Phenanthroline–hydrogenperoxide–Co(II) CL with the cationicsurfactantcetyltrimethylammoniumbromide

5mg/L (198)

Cu(II) Aqueous Peroxyoxalatechemiluminescencewith3-aminofluorantheneasfluorophoreandimidazoleascatalyst

Not reported (199)

Fe(II) andFe(III) Aqueous On-line liquid–liquid extractionintochloroformfollowed by Fe(III) complexformationwith 8-quinolinol anddetectionwith luminol–hydrogenperoxide–cetyltrimethylammoniumchloride

5 ng/mL (200)

Fe(II) andFe(III) Aqueous Reductionof Fe(III) to Fe(II) usingCu-coatedzinc followed by luminol CLdetection

2.7� 10ÿ10 mol/dm3

and3.5� 10ÿ10

mol/dm3,respectively

(201)

Fe(III) Aqueous 1,10-Phenanthroline–hydrogenperoxide–sodiumhydroxideCL with thecationicsurfactantzephiramine

0.1mg/L (202)

Heterocycliccompounds Acetonitrile Peroxyoxalate–hydrogenperoxide–3-2aminofluoranthreneCL

Not reported (203)

Horseradishperoxidase Aqueous Luminol–hydrogenperoxideCL enhancedwith sodiumtetraphenylborate

6� 10ÿ14 mol/dm3 (204)

Hydrogenperoxide Aqueous Flow-cell reactorcontainingimmobilizedhorseradishperoxidaseis usedto mix thesamplewith luminol to produceCL

10pmol (205)

Hydrogenperoxide Aqueous Luminol–potassiumperiodateCL 3� 10ÿ8 mol/dm3 (206)Hydrogenperoxide Aqueous Immobilizedluminol andCo(II) are

removedfrom a columnby hydrolysisandCL is detected

4� 10ÿ8 mol/dm3 (207)

Hydrogenperoxide Aqueous Horseradishperoxidase–sol–gelimmobi-lized on a glassplate.Luminol CLdetection

8� 10ÿ6 mol/dm3 (208)

Hydrogenperoxide Not reported PeroxyoxalateCL with peryleneasafluorophore

1� 10ÿ9 mol/dm3 (209)

Hydrogenperoxide Aqueous PeroxyoxalateCL with immobilized3-aminoperyleneor 3-aminofluorantheneasfluorophore

3� 10ÿ10 mol/dm3 (210)

Hydrogenperoxide Aqueous PeroxyoxalateCL with immobilized2-(4-hydrazinocarbonylphenyl)-4,5-diphenylimidazoleasfluorophore

1� 10ÿ9 mol/dm3 (211)

Hydrogenperoxide,pyrogallol,anda-thioglycerol

Aqueous Periodate–polyhydroxylcompoundsin acidmediumproducingCL, enhancedwithcarbonate

5� 10ÿ9 mol/dm3,5� 10ÿ9 mol/dm3

and1� 10ÿ8 mol/dm3, respectively

(212)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

12 REVIEW P. Fletcheret al.

Page 13: Analytical applications of flow injection with chemiluminescence detection—a review

Table 5 continued.

Analyte Samplematrix Reaction LODReferencenumber

Hypoxanthine Aqueous Productionof hydrogenperoxidefrom axanthineoxidasebioreactorfollowed byArtheromycesramosusperoxidase–luminol CL

1� 10ÿ8 mol/dm3 (213)

Indole, indole-3-aceticacidandtryptophan

Aqueous Hydrogenperoxide–Fe(III)–sodiumhydroxideCL

5.5� 10ÿ7 mol/dm3,6.1� 10ÿ9 mol/dm3, and5� 10ÿ7

mol/dm3,respectively

(214)

Lophine Dimethylformamide/methanol

Lophine–Co(II)–hydrogenperoxideCLenhancedwith hydroxylammoniumchloride

72 fmol (20mLinjection)

(215)

Luminol andlucigenin Aqueous CL producedby addingluminol andlucigeninsolutionsto magnesiumoxideandbariumoxidepowders,respectively

3� 10ÿ11 mol/dm3

and3� 10ÿ12

mol/dm3,respectively

(216)

Oxovanadium(IV)acetylacetonate

Chloroform Luminol–cetyltrimethylammoniumchloride(in chloroform/cyclohexane)

0.1ng/mL (217)

Potassiumpermanganate,Ce(IV), potassiumperiodate,NaOClandhydrogenperoxide

Aqueous PyrogallolCL 3� 10ÿ4 mol/dm3,3.5� 10ÿ4 mol/dm3, 2.5� 10ÿ4

mol/dm3, 6.1�10ÿ4 mol/dm3 and4.5� 10ÿ4 mol/dm3, respectively

(218)

Pyrogallol Aqueous Lucigenin–hydroxylaminehydrochloride–sodiumhydroxideCL

4.5� 10ÿ8 g/mL (219)

Pyrogallol Aqueous Oxidationof pyrogallol by N-bromo-succinimidein alkalinemedia,enhancedwith hydroxylammoniumchlorideandcetyltrimethylammoniumbromide

2� 10ÿ7 mol/dm3 (220)

Sulphite Aqueous Cerium(IV)–acidifiedpermanganateCLwith cyclyoctylamineassensitizer

5.4� 10ÿ7 mol/dm3 (221,222)

Uric acid,phenacylalcohol,cortisone,ascorbicacid,corticosterone,glutathione,cysteine,fructose,glucoseandcreatinine

20%Acetonitrile/80%H2O

Luminol CL with hexacyanoferrate(III)andhexacyanoferrate(II)ascatalysts

1.7pmol, 3.0pmol,4.0pmol,6.0pmol,16.0pmol,55.0pmol,62.0pmol,0.6nmol, 1.5nmoland15.0nmol,respectively(10mL injection)

(223)

V(IV) Aqueous On-line liquid–liquid extractionintochloroformfollowed by cetyltrimethyl-ammonium–luminolCL

50ng/mL (224)

V(IV) andFe(II) Aqueous Lucigeninadsorbedon non-functionalizedsilica gel useda solid phaseCL reagentwith potassiumhydroxide

0.7mg/L and0.8mg/L, respectively

(225)

Yb(III) Chemicalreagents Quenchingof theCr(II)–luminol–hydrogenperoxideCL

3� 10ÿ8 mol/dm3 (226)

Zn(II) Aqueous 1,10-Phenanthroline–hydrogenperoxide–sodiumhydroxideCL with thecationicsurfactanttrimethylstearylammoniumchloride

2.3� 10ÿ8 mol/dm3 (227)

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 13

Page 14: Analytical applications of flow injection with chemiluminescence detection—a review

The auto-oxidationof analgin in Tween 80, in thepresenceof rhodamine6G assensitizer,to generateCLemission has been used for its determination inpharmaceuticalpreparations(3). LucigeninCL hasbeenusedto determineascorbicacid (7) andinhibition of theiron(II)-catalysed reaction can be used to measuredopamine(19). Cobalt(II) has beendeterminedin eyelotions by the hydroxylammoniumchloride-sensitizedreactionwith lophineandhydrogenperoxide(17).

ENVIRONMENTAL APPLICATIONS

FI–CL methodologieshavebeenappliedto wide ranginganalysesof environmentalsamples,asdetailedin Table2. Here theseare categorizedaccordingto the type ofsample matrix analysed, ie aquatic (natural waters,drinking water and wastewaters),geological, atmo-sphericandbiological (humanhair).

Natural, potable and waste waters

Metal ion determinationscomprise the majority ofpublishedFI–CL applicationsfor aqueousenvironmentalsamples.Manyof thesearebasedontheluminol reaction,which is catalysedby certain metal ions. Examplesincludethe determinationof cobalt(II) at sub-picomolarlevelsin river, seaandtapwater(67)andof copper(II)atnanomolar levels in natural water samples(78). Co-balt(II) and chromium(III) in admixtures have beenmonitoredvia their catalytic effect on the reactionofluminol–hydrogen peroxide–cetyltrimethylammoniumbromide. Initially, both ions are determinedand thencobaltis maskedwith EDTA andchromiumis measured.The procedurehasbeenusedin the analysisof mineralwater,with recoveriesof 94–105%(69).Luminol CL hasbeenusedto detectiron(II) andiron(III) at nanomolarorsubnanomolarlevels in seawater(81,86), naturalfresh-waters(83,87,90), groundwater(82) andtreatedwaters(84). Similar methodshavemeasuredchromium(III) atpart-per-billion levels in tap water (71), and bothchromium(III) and chromium(VI) at nanomolarlevelsin wastewaters(72,74–75). Modified luminol-basedmethodshavealso beenusedto determinemercury(II)at part-per-billion levels in naturalwaters(92), manga-nese(II) at sub-nanomolarlevels in seawater (107),lead(II) at part-per-trillion levels in wastewaters(113),andvanadium(IV) atnanomolarlevelsin tapwater(128).The chemiluminescence reactionbetween1,10-phenan-throline andhydrogenperoxidehasbeenappliedto thedeterminationof coppercomplexationin seawater(76),while cobalt(II) in seawaterhasbeendeterminedusingmethodsinvolving both gallic acid–hydrogenperoxide(66)andquercetin–hydrogenperoxide–potassiumhydro-xide (68). The latter reactionhasalso beenapplied todeterminationsof chromium(III) and chromium(VI) in

natural waters (73). Iron(II) in rainwater has beendeterminedusing peroxyoxalateCL (88), and iron(II)/total iron havebeenmeasuredin river waterandseawaterusingbrilliant sulphoflavine–hydrogenperoxideCL (89).A CL method based on the oxidation of 7,7,8,8-tetracyanoquinodinodimethanehasbeenusedto measuremanganese(II)in drinking water (105),andthe reactionbetween lucigenin, hydrogen peroxide and sodiumhydroxide has been applied to the determinationoflead(II) in naturalwaters(112).

As shownpreviously,a numberof CL reactionsarebasedon the oxidativepropertiesof hydrogenperoxide.FI–CL methodshavethereforeprovedhighly suitablefordetermininglow levelsof dissolvedhydrogenperoxideinnaturalwaters.Nanomolarlevelshavebeendetectedinrainwaterusingmethodsbasedon eithertheoctylphenylpolyglycol ether–potassiumpermanganate(95) or co-balt(II)–luminol (98,99) reactions.Thelattermethodhasalso been applied to nanomolar and sub-nanomolardeterminations of hydrogen peroxide in seawater(97,101), while a periodate–potassiumcarbonateCLmethodhasbeenusedto measurenanomolarlevels inmeltedsnow(96).

FI–CL methodshavebeenusedto determinearangeofdissolved inorganic molecular and anionic speciesinaqueoussamples.Free chlorine has beenmeasuredatpart-per-billion levels in tap water using a luminol CLmethod(65), and modified luminol methodshavebeenusedto determinecyanideat nanomolarlevels in river(79), tapandwastewaters(80).Sub-micromolarlevelsofhydrazinein drinkingwaterhavebeendeterminedwith aCL methodbasedon n-bromosuccinimide(93). Hypo-chlorite ions havebeenmeasuredin tap waterusingCLgeneratedby the oxidation of indole by hydrogenperoxide (102). Variants of the luminol reactionhavebeenappliedto thedeterminationof nanomolarlevelsofnitrite in natural(108) andpotable(109) waters,andtothe determination of phosphorusand phosphatesatmicro-nanomolarlevels in natural freshwaters(114–115,117–120)anddrinking water(116).Sulphitein tapwater has been measuredusing an auto-oxidativeCLmethod,sensitizedwith rhodamine6G (123).Dissolvedoxygenhasbeenquantifiedat part-per-millionlevels inriver and tap watersusinga luminol–sodiumhydroxideCL method(110),while a gasdiffusionmethodbasedonluminol–ozoneCL hasbeenappliedto themeasurementof part-per-billion levels of dissolvedozonein treatedwaters(111).

Determinationsof a small numberof organic/biologi-calparametersusingFI–CL methodshavebeenreported.Acetaldehyde has been measuredat part-per-billionlevels in both natural and wastewatersusing a gallicacid–hydrogenperoxideCL method(61). Similar levelsof volatile phenolspresentin pollutedwatershavebeendeterminedusinga hydrogenperoxide–p-chlorobezene-diazonium fluoroborate CL reaction (130). FI–CL

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

14 REVIEW P. Fletcheret al.

Page 15: Analytical applications of flow injection with chemiluminescence detection—a review

methodshavealsobeenusedto identify the presenceoftwo strainsof red tide phytoplanktonin naturalwaters(64,91), with a CL reaction basedon 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo(1,2-alpha)-pyra-zin-3-oneandsuperoxideusedin eachcase.

Geological samples

FI–CL methodshave beenreportedfor the determina-tions of five elements in a variety of geological/geochemicalsamples.Trace levels of arsenic(III) ingeochemicalsolutions have been determinedusing aluminol–hydrogenperoxide CL reaction (63), while asimilar method incorporating prior reduction of ar-senic(V)to arsenic(III)hasbeenappliedto themeasure-mentof total arsenicin acidic extractsof rocksandores(62). Picogramlevels of iridium(IV) have beendeter-mined using a hydrogenperoxide–potassiumhydroxideCL reaction(103), anda luminol methodincorporatingpotassiumdichromateand sodium hydroxide has beenappliedto the measurementof part-per-billionlevelsofantimony(III) in mineral extracts(122). Variantsof theluminol reactionhavealsobeenappliedto thedetermina-tionsof vanadium(V)andzirconium(IV) in geochemicalsamples.The former usesluminol and hexacyanoferra-te(II) as immobilized reagentson an anion-exchangecolumn(129),while thelatterusesthefrequentlyappliedluminol–hydrogenperoxidereaction(131).

Atmospheric samples

Four FI–CL applicationshave been reported for thedeterminationof micromolarto sub-nanomolarlevelsofsulphurdioxide in air andsulphitein aqueoussolution.Threeof thesemethodsusedtriethanolaminefor initialadsorption,followed by CL reactionsinvolving eitherruthenium(2,2'-bipyridyl)3/potassiumpersulphate(125),Tris(1,10-phenanthroline) ruthenium–potassiumperio-date (126) or ruthenium (2,2'-bipyridyl)3–potassiumpermanganate(127). The fourth methodwas basedonluminol CL, with luminol initially immobilized on ananionexchangecolumn,thenelutedby hydrolysis(124).Trace levels of hydrazinein air havebeendeterminedusing a CL method basedon the luminol–potassiumperiodate–sodium hydroxide reaction, following initialabsorptionof hydrazinein sulphuricacid solution (94).Part-per-billion levels of gaseoushydrogen peroxidehave been measuredwith a method based on 1,1'-oxalyldi-imidazole–peroxyoxalateCL andincorporatinga diffusion scrubber(100).Theperoxyoxalate–hydrogenperoxide CL reaction has also been used in thedeterminationof a rangeof polycyclic aromatichydro-carbons(PAHs) at part-per-billion levels in synthetichexaneandacetonitrilesolutions(121). This methodofdetection,in combinationwith chromatographicsepara-tion, could also prove suitablefor the determinationof

PAHs in solvent-extractedatmosphericparticulatesam-ples.

Human hair

Analysisof humanhair samplescanoftenprovideusefulindicationsof the body’s intake of a rangeof chemicalspecies,either through diet or by environmentalex-posure.Thedeterminationof tracemetalsin humanhairsamplesusingFI–CL hasbeenreportedin severalpapers.Part-per-billion levels of cobalt and nickel have beenmeasuredin microwave-digestedsamplesby utilizingtheircatalyticeffectin theCL reactionof alizarinpurple–ethanol cetyltrimethylammonium bromide–potassiumhydroxide (70). Similar levels of copper(II) have beendeterminedusing the luminol–potassiumpermanganatereaction,with thesereagentsinitially immobilizedon ananion-exchangeresin,thenelutedwith sodiumhydroxide(77). Iron(II) in hair hasbeendeterminedusingboth thelucigenin–sodium hydroxide (85) and the luminol–hydrogenperoxide (90) CL reactions,either of whichare capable of nanomolar/part-per-trillion detectionlimits whensensitizedwith cationicsurfactants.Manga-nesehasbeenmeasuredatpart-per-billionlevelsusinganiodine–luminol CL method(104), and part-per-millionlevelsof vanadium(V)havebeendeterminedwith a CLmethodbasedon the luminol–hexacyanoferrate(II)reac-tion (129).

FOOD AND BEVERAGE APPLICATIONS

This hasbeenan areaof considerabledevelopmentinrecent years. The bioluminescencereaction involvingfirefly luciferase has been used to monitor bacterialcontaminationof foodsbut CL reactionshavealsobeenusedto quantify speciessuchas ascorbicacid, sulphiteandcarbohydratesin alcoholicbeveragesandavarietyoffoods(Table3).

Ascorbic acid

Various FI–CL systemshave been used to determineascorbicacid in vegetablesandnon-alcoholicbeverages,with detectionlimits in therange0.2mg/L–5.5mg/L.Theoxidationof ascorbicacidby permanganate-producedCL(134)andresultscomparedwell with spectrofluorimetricand titrimetric methods,but transition metals,sorbitolandmannitolinterfered.Theinhibition of theCL reactionbetweenhexacyanoferrate(III) and luminol can also beusedfor thedetectionof ascorbicacid.This reactioncanbe performedwith (11) or without (5) the reagentbeingimmobilized on an anion exchangecolumn. The CLreaction between luminol, permanganateand sodiumhydroxidehasalso beenusedfor the determinationofascorbicacid and, as with the previous reaction, the

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 15

Page 16: Analytical applications of flow injection with chemiluminescence detection—a review

reagentcanbe usedwith (135)or without (136) reagentimmobilization on an anion exchangecolumn. Manga-nese(II)and copper(II) interferedwhen presentat five-fold excess.

Sulphite

A variety of CL reactions have been used for thedeterminationof sulphitein diversematrices,includingsugar,beersand wines with sub-micromolarlimits ofdetection.Chemiluminescenceproducedfrom tris(2,2'-bipyridyl)ruthenium(II) in thepresenceof eitherK2S2O8

(125) or KMnO4 (127) wasusedto quantify sulphiteinsugarandsulphurdioxide in air (absorbedin triethano-lamine) with interferencefrom copper(II) and EDTA.Sulphite (detection limit 30mg/mL) has also beendeterminedin beersandwinesusing the auto-oxidationof sulphitesensitizedby rhodamine6Gin thepresenceofTween 80 surfactantmicelles (146), with interferencefrom sulphite,nitrite and ascorbicacid. This is a goodexampleof the increasingtrend to add surfactantstoenhanceCL emissionby providinga protectiveenviron-mentfor thereaction.FI–CL hasbeenusedto determinesulfite in wines using the NaHCO3–sodiumcarbonate–copper(II)CL reaction(147).Themanifold incorporatedagasdiffusionmoduleto enhanceselectivityandremovephysical interferencesbut iodide, cobalt(II), nickel(II),andsulphiteinterferedat two-fold excess.

Carbohydrates

Chemiluminescenceis producedwhencarbohydratesareoxidized by acidified potassiumpermanganate(137).Glucose,galactose,fructose,arabinose,xylose, lactoseandsucrosehaveall beendetectedover the linear range10ÿ4–10ÿ1 mol/dm3. The oxidation of pyrogallol byperiodatehas beenusedfor the detectionof carbohy-drates(142) with a detectionlimit for hexoseof 20mg.An interesting aspectof this method was the use ofdifferentialCL reactionkineticsto allow theresolutionofbinarymixturesof glucoseandfructose.

Other analytes

Luminol chemiluminescencehasbeenusedfor a varietyof other analytesin food and beverages,including 3,4-dihydroxybenzoic acid (132), choline (138) citric acid(139), ethanol (140), L-malate (141), glycerol (143),L-lactate(145), nitrite (109) and tannic acid (53). 3,4-Dihydroxybenzoicacid (protocatechuricacid) (132) hasbeen measuredin wines using CL producedby theoxidation of luminol with hydrogen peroxide, withcobalt(II) as a catalyst. Citric acid in orange drinks(139) has also been determined using the luminolreaction.Iron(III) is reducedby citric acid to iron(II),which can then be detectedwith luminol, but ascorbic

acid interfered. Ethanol in beer can be indirectlydeterminedby the enzymatic generationof hydrogenperoxideusing alcohol oxidase(140). L-Cysteineinter-ference was removed by prior complexation withcopper(II).L-Malate (141), glycerol (143) and L-lactate(145)haveall beenindirectlydetectedusingimmobilizedenzymereactorsto producehydrogenperoxide,followedby luminol detection.Nitrite canbedetectedin foodsbyreactionwith KI (109) to produceI2, which thenreactswith luminol. Iron(II), copper(II), AsO4

3ÿ and SbO43ÿ

interfere.Tannic acid (53) hasbeendeterminedin hoppellets, using the lumino–peroxide reaction with acopper(II) catalyst, and hydrogen peroxide has beenmeasuredin fermentedliquors (144) using bis-(2,4,6-trichlorophenyl)oxalate and perylene chemilumi-nescence.The latter method has been applied to thedetermination of L-glutamic acid in culture media.Acetaldehydehas been determinedusing gallic acid–hydrogen peroxide–sodium hydroxide chemilumi-nescence(61), but formaldehyde,cobalt(II), manga-nese(II),silver(I), cadmium(II), lead(II) and permanga-nateall interfered.Amino acidshavebeendetectedinfood (lysine) and serum(phenylalanine)using both theluminol–hydrogenperoxideando-phenanthroline/hydro-genperoxidereactions(133).

BIOMEDICAL APPLICATIONS

A particularly wide variety of analytes have beendeterminedby enzymaticconversionto producehydro-genperoxide,whichis thenquantitativelydetectedby theluminol or peroxyoxalatereactions(Table4).

The luminol reactionhasbeenusedfor the measure-mentof hydrogenperoxidegeneratedfrom acetylcholineand choline after passing the sample through twoconsecutivecolumnscontainingimmobilizedacetylcho-linesteraseand choline oxidase (148,149). Similarly,ATP has been determinedwith immobilized alkalinephosphatase(150) and glycerol-3-phosphatewith im-mobilizedglycerol-3-phosphateoxidase(171).Branchedchain L-amino-acidshave been determinedin humanplasma, with recoveries in the range 98–102%, bypassingthe analytesolution throughan enzymereactorcolumn containing leucine dehydrogenaseand NADHoxidase(156)or by introducingthesolution,mixedwithluminol and NAD�, into a spiral flow cell onto whichleucine hydrogenase,NADH oxidase and peroxidasehave been immobilized (175). Cholesterol has beenmonitoredby passingthe samplethrough immobilizedcholesteroloxidase(159,160) andL-alanine,a-ketoglu-tarate and L-glutamate determinedwith immobilizedalanineaminotransferase and glutamateoxidase(174).Glucosehasbeenmonitoredin subcutaneoustissuefluidand blood of rabbitsafter passingthroughimmobilizedglucoseoxidase(167), in plasmaby flowing through

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

16 REVIEW P. Fletcheret al.

Page 17: Analytical applications of flow injection with chemiluminescence detection—a review

immobilizedpyranoseoxidase(169),in mixtureswith 3-hydroxybutyrateby passingthroughtwo NADH oxidaseenzymereactorscontainingglucosedehydrogenaseand3-hydroxybutyratedehydrogenase(164),andin mixtureswith lysine by passing through immobilized glucoseoxidaseto measureglucoseandthroughlysineoxidasetomeasurelysine (176). The same principle has beenappliedto themeasurementof lysineandornithine(177).On-line co-immobilized3-hydroxybutyratedehydrogen-aseandNADH oxidasehasbeenusedfor the measure-ment of 3-hydroxybutyratein serum, with very goodagreementwith otheracceptedanalyticalmethods(184).Hydrogenperoxidecanalsobeproducedfrom sulphatedbile acids by passingthrough a column of bile acidsulphatesulfataseand3b-hydroxysteroiddehydrogenase(185). a-Chymotrypsin, trypsin and a commercialproteasehave been determinedby passingthrough amini-columncontainingimmobilizedisoluminol (151).

Catecholaminescan be measured in plasma byimidazoleconversionto hydrogenperoxideprior to theperoxyoxalateCL reaction (157). D-Amino acids inplasmahavebeendeterminedwith goodagreementwitha colorimetric method by flowing through a specificenzymereactorcontainingD-aminoacid oxidasebeforeperoxyoxalateCL detectionof hydrogenperoxide(163).Incubation of dopamine with imidazole at 60°C for30min in the dark generatedhydrogenperoxide,whichwasthenintroducedinto a FI analyserfor peroxyoxalateCL detection(165). Glucoseor choline and acetylcho-line, separatedby a cationexchangecolumn,havebeendeterminedin urineby conversionto hydrogenperoxidevia a glucose oxidase reactor or a choline oxidase–acetylcholineesterasereactor,respectively(170). Com-poundscontaining an alcoholic or phenolic hydroxylgroup(polyphenols,monophenolsandsugars)havebeendeterminedby mixing with imidazole and heating to80°C prior to peroxyoxalatedetection of hydrogenperoxide(178).

Several other reactions have also been used forbiomedical applicationsof FI–CL. Amino acids havebeen determinedby complexationwith cobalt(II) andinhibition of the lucigenin CL reaction (152), by theinhibiting effect of cobalt(II) complexesor enhancingeffect of copper(II) complexeson the ninhydrin–hydro-genperoxideCL reaction(153)andby their effecton the1,10-phenanthroline/copper(II)–hydrogenperoxide CLreaction(154). Chlorotetracyclinehas beenassayedinurine,with recoveriesof 98.8–101.1%by its effectonthecopper(II)–ammonium carbonate–cetyltrimethylammo-nium bromide–hydrogenperoxide CL reaction (158).Proteinshavebeenmonitoredvia the catalyticeffect ofcopper(II) complexeson the luminol (180) or phenan-throline (181) CL reactionwith hydrogenperoxideandporphyrins have been measured in urine via theperoxyoxalate–hydrogenperoxidereaction(179).

Chromium(III) has beendeterminedin urine, blood

serumand hair by its catalytic effect on the luminol–hydrogen peroxide CL reaction. The method wasvalidated by analysing a certified referencematerialand recoverieswere within the range89–115%(161).Copper(II)in serumhasbeendeterminedwith recoveriesof 94–97% by its effect on the hydroxylamine–fluor-esceinCL reaction(162)andiron(III) in bloodhasbeenmonitoredby its effect on the luminol reactionand theresultsshowedgood agreementwith thoseobtainedbyflameAAS (166).Iodide in urinecanbemonitoredafteroxidationto iodinewith dichromateandmeasurementbythe cobalt(II)-catalysedluminol reaction (173). Theluminol reactionwith K7[Cu(IO6)]2 has beenusedfordeterminingglucose(168) and uric acid (187), whilevanilmandelicacid hasbeendeterminedby its enhance-ment effect on the luminol–hexacyanoferrate(III) CLreaction,with anexcellentdetectionlimit (190),anduricacidhasbeenmeasuredin urineby its inhibiting effectonthe luminol–periodatereaction,with resultscomparablewith thoseobtainedby spectrophotometry(189).

Serumglucosehasbeenassayedby theCL reactionofhydrogenperoxidewith 3-propyl-7,8-dihydropyridazino-[4,5-g]quinoxaline-2,6,9(1H)-trione,which is a luminol-relatedcompound(172) Acidic permanganatehasbeenusedas a chemiluminogenicreagentfor the determina-tion of pyruvatein serum(182), serotoninand relatedindoles(183) anduric acid (188). Tryptophanhasbeenfound to exhibit CL by the action of cerium(IV) (186),while bilirubin generatesCL by reaction with N-bromosuccinimideor sodiumhypochlorite(155).

GENERAL/UNSPECIFIED APPLICATIONS

A number of published FI–CL methodologieshaveinvolved the analysisof synthetic aqueousor organicsolutions,but eitherno real sampleapplicationhasbeenspecifiedor theapplicationis not onethateasilyfits intothe categoriesdescribedabove.However,in mostcasestheanalytesof interestandtheCL chemistriesconcernedaresimilar to thosedescribedin the precedingsections,so with little or no adaptationthesemethodsshouldbeequally applicable to analysesof such real samplematrices.Details of thesemethodsare summarizedinTable5.

The majority of thesemethodshavebeenappliedtodeterminationsof metal ions or hydrogen peroxide.Aluminium(III), zinc(II), cadmium(II) and indium(II),for example,haveall beenmeasuredat part-per-billionlevels in a 1,4-dioxanematrix using peroxyoxalate–hydrogenperoxideCL (195), while ytterbium(III) hasbeenmeasuredat nanomolarlevelsin chemicalreagents,owing to its quenchingeffect on the chromium(III)/luminol–hydrogenperoxideCL reaction(226).Luminol–hydrogenperoxideCL methodsincorporatingimmobi-lizedhorseradishperoxidasehavebeenusedto determine

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 17

Page 18: Analytical applications of flow injection with chemiluminescence detection—a review

bothhydrogenperoxide(205)andhorseradishperoxidase(204) at picomolarand femtomolarlevels,respectively.A numberof organicanalyteshavealsobeenmeasured,in both organicand aqueousmedia.Two examplesare2,4-dinitrophenylhydrazineand benzaldehyde.The for-mer has been measuredat sub-nanomolarlevels inaqueous–propan-2-ol solution,usinga CL methodbasedon the potassiumpermanganate–formic acid reactionsensitizedwith rhodamineB (191–193),while the latterhasbeendeterminedin a benzylalcoholmediumwith agallic acid–hydrogenperoxide–sodiumhydroxide CLmethod(196).Otherreportedmethodsworthyof mentionhere include a luminol CL reaction catalysed withhexacyanoferrate,which has proved suitable for themeasurementof nanomolarlevels of fructose,glucoseand creatinine, and picomolar levels of uric acid,phenacylalcohol, cortisone,ascorbicacid, corticoster-one,glutathioneandcysteine(223),anda methodbasedon pyrogallolCL thathasbeenappliedto sub-millimolardeterminationsof potassiumpermanganate,cerium(IV),potassiumperiodate,sodiumhypochloriteandhydrogenperoxide(218).

CONCLUSIONS

Themajortrendin thelast5 yearshasbeenthesignificantincreasein the application of FI–CL reactionsto realsamplematrices.A surveyof all FI literaturehasshownthat CL is now the fourth mostcommonlyuseddetectorfor FI applications(after UV/visible, fluorescenceandamperometry).Thispopularityis dueto theattractionsofrapid and reproduciblemixing of sampleand reagentsandtheability to performon-linechemicalandphysicalsampletreatment.With regard to CL chemistries,therecenttrendhasbeento modify well knownCL reactionsto suitparticularapplicationsratherthanto developnovelCL reactions.

Acknowledgements

PF, KNA and PJWwould like to thank Shell ResearchLtd for fundingwork onindustrialapplicationsof FI–CL.PW andAC would like to thankthe British Council forsupporting a collaborative project on environmentalapplicationsof FI–CL. PW would alsolike to thanktheEU for fundingundertheMAST programme(GrantNo.MAS3-CT97-0143, MEMOSEA) to design FI–CL in-strumentationand chemistriesfor the determinationoftracemetalsin coastalandestuarinewaters.

REFERENCES

1. He YH, Du JX, Feng ML, Lu JR. Flow-injection chemilumi-

nescencedetermination of amidopyrine in the Antongdininjection solutions.Fenxi Shiyanshi1999;18: 60–62.

2. He YH, Du JX, Feng ML, Lu JR. Investigation on thechemiluminescencereactionof the amidopyrine/formaldehyde/potassiumpermanganatesystem.Fenxi Shiyanshi1999;18: 13–15.

3. Huang YM, Zhang C, Zhang XR, Zhang ZJ. A novel chemi-luminescenceflow-through sensor for the determination ofanalgin.FreseniusJ. Anal. Chem.1999;365: 381–383.

4. HuangYM, ZhangC, ZhangXR, ZhangZJ. Cerium(IV)-basedchemiluminescenceanalysisof analgin.Analyt. Lett. 1999; 32:933–943.

5. ChenHH, Qin W, ZhangZJ.Highly sensitivechemiluminescencesystemfor the determinationof ascorbicacid. Fenxi Huaxue1997;25: 1079–1081.

6. FengML, Lu JR,ZhangXY, Xu ZL, ZhangZJ. Flow-injectionchemiluminescenceanalysisfor determinationof traceascorbicacid.Fenxi Huaxue1996;24: 1364.

7. Hasebe T, Kawashima T. Flow-injection determination ofascorbicacidby iron(III)-catalysedlucigeninchemiluminescencein a micellar system.Anal. Sci.1996;12: 773–777.

8. ShenAB, Xu BR, Ji MJ, Wu JM. Determination of traceascorbicacid by the flow-injection chemiluminescencemethod. FenxiKexueXuebao1997;13: 347.

9. Wu YY, Li LQ, Geng Z, Liu QG. Study on the chemilumi-nescencereactionof the luminol–potassiumperiodate–ascorbicacidsystemandits application.FenxiShiyanshi1999;18: 58–61.

10. Yang WP, Li BL, ZhangZJ, Tian GH. Determinationof traceascorbicacidby aflow-injectionchemiluminescencesuppressionmethod.Fenxi Huaxue1996;24: 579–582.

11. Zhang ZJ, Qin W. Chemiluminescenceflow sensor for thedetermination of ascorbic acid with immobilized reagents.Talanta1996;43: 119–124.

12. Kubo H, Saitoh M, Murase S, Inomata T, Yoshimura Y,NakazawaH. Chemiluminescenceof b-lactamantibioticsbasedon the luminol reaction.Anal. Chim.Acta 1999;389: 89–94.

13. ZhangXR, BaeyensWRG, VanDerWekenG, CalokerinosAC,Imai K. Chemiluminescencedetermination of some local-anesthetics.Anal. Chim.Acta 1995;303: 137–142.

14. Zhang ZD, Baeyens WRG, Zhang XR, VanDerWeken G.Chemiluminescenceflow-injectionanalysisof captoprilapplyinga sensitizedrhodamine6G method.J. Pharm. Biomed.Anal.1996;14: 939–945.

15. Aly FA, Alarfaffj NA, Alwarthan AA. Permanganate-basedchemiluminescenceanalysis of cefadroxil monohydrate inpharmaceuticalsamplesand biological fluids using flow injec-tion. Talanta1998;47: 471–478.

16. Liang YD, Li JZ, ZhangZJ. Flow-injectionchemiluminescencedetermination of ciprofloxacin hydrochloride. Fenxi Huaxue1997;25: 1307–1310.

17. NakashimaK, YamasakiH, ShimodaR, KurodaN, Akiyama S,BaeyensWRG. Flow-injection analysisof cobalt(II) utilizingenhancedlophine chemiluminescencewith hydroxylammoniumchloride.Biomed.Chromatog.1997;11: 63–64.

18. ChristieTJ,HanwayRH, PaullsDA, TownshendA. Chemilumi-nescencedeterminationof codeineby permanganateoxidation.Anal. Proc. 1995;32: 91–93.

19. ZhangLH, TeshimaN, HasebeT, Kurihara M, KawashimaT.Flow-injection determinationof traceamountsof dopamine bychemiluminescencedetection.Talanta1999;50: 677–683.

20. Li JG, Lu JR. Flow-injection chemiluminescenceassaysofcatecholamines.Fenxi Huaxue1997;25: 314–317.

21. FusterMestreY, FernandezBandB, LahuertaZamoraL, Marti-nezCalatayudJ. Flow-injection analysis—direct chemilumi-nescencedeterminationof ergonovine maleate enhancedbyhexadecylpyridiniumchloride.Analyst1999;124: 413–416.

22. RaoY, ZhangXR, Luo GA, BaeyensWRG.Chemiluminescenceflow-injectiondeterminationof furosemidebasedonarhodamine6G sensitizedcerium(IV) method.Anal. Chim. Acta 1999;396:273–277.

23. Li HN, Ci YX. Study on the chemiluminescencereaction ofmercaptocompound/cerium(IV)/hydrocortisoneby flow-injec-tion analysis.Fenxi Huaxue1997;25: 679–682.

24. Ouyang J, Baeyens WRG, Delanghe J, VanDerWeken G,

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

18 REVIEW P. Fletcheret al.

Page 19: Analytical applications of flow injection with chemiluminescence detection—a review

CalokerinosAC. Cerium(IV)-basedchemiluminescenceanalysisof hydrochlorothiazide.Talanta1998;46: 961–968.

25. Zhou YX, NagaokaT, Li F, Zhu GY. Evaluationof luminol–hydrogenperoxide–potassiumiodatechemiluminescencesystemand its applicationto hydrogenperoxide,glucoseand ascorbicacid assays.Talanta1999;48: 461–467.

26. Xue YY, He YH, Lu JR. An investigationon the chemilumi-nescencereactionof theimipramine–glyoxal–potassiumperman-ganatesystem.Fenxi Shiyanshi1999;18: 49–51.

27. LopezPazJL, TownshendA. Flow-injectionchemiluminescencedeterminationof imipramine and chlorpromazine.Anal. Com-mun.1996;33: 31–33.

28. AlapontAG, GimenezEA, ZamoraLL, CalatayudJM. Inhibitionof the systemluminol–H2O2–Fe(CN)6

3ÿ chemiluminescencebytheMn(II) indirectdeterminationof isoniazidin apharmaceuticalformulation.J. Biolumin.Chemilumin.1998;13: 131–137.

29. ZhaoF, Wu YY, GengZ, WangHX. Determinationof isoniazidby a flow-injection analysischemiluminescencemethod.FenxiHuaxue1997;25: 927–929.

30. YangML, Li LQ, FengML, Lu JR.Studyonchemiluminescencesystem of potassium permanganate/levodopain assay oflevodopa.YaowuFenxi Zazhi1998;18: 41–45.

31. Sultan SM, Almuaibed AM, Townshend A. Flow-injectionchemiluminescencedeterminationof medazepam.FreseniusJ.Analyt.Chem.1998;362: 167–169.

32. HuangYM, ChenZQ, ZhangZJ. Chemiluminescentdetermina-tion of menadionesodiumbisulfite.Anal. Lett. 1999;32: 2789–2798.

33. He YH, Xue YY, FengML, Lu JR. Flow-injection chemilumi-nescencedeterminationof methotrexate.FenxiHuaxue1998;26:1136–1138.

34. Li JG,Lu JR.Studieson flow-injectionchemiluminescentassaysof morphinanalkaloids.Fenxi Shiyanshi1997;16: 41–44.

35. Campiglio A. Chemiluminescencedetermination of naltrexonebasedon potassiumpermanganateoxidation.Analyst1998;123:1053–1056.

36. Campiglio A. Determination of naproxen with chemilumi-nescencedetection.Analyst1998;123: 1571–1574.

37. Alapont AG, ZamoraLL, CalatayudJM. Indirect determinationof paracetamolin pharmaceutical formulationsby inhibition ofthe system luminol–H2O2–Fe(CN)6

3ÿ chemiluminescence.J.Pharm.Biomed.Anal. 1999;21: 311–317.

38. Zhang ZD, Baeyens WRG, Zhang XR, VanDerWeken G.Potentials of chemiluminescencedetection in flow-injectionanalysis: determinationof penicillamine applying a quinine–cerium(IV) system.Biomed.Chromatog.1995;9: 287–288.

39. Zhang ZD, Baeyens WRG, Zhang XR, VanDerWeken G.Chemiluminescencedetermination of penicillamine via flowinjection applying a quinine-cerium(IV)system.Analyst 1996;121: 1569–1572.

40. Sultan SM, Abdennabi AMS, Almuaibed AM. Chemilumi-nescencemethod for the assay of perphenazinein drugformulation using permanganatein sulphuric acid with flowinjection techniqueanda chemometricaloptimizationapproach.Talanta1999;49: 1051–1057.

41. Nie F, ZhangLD, FengML, Lu JR. Flow-injectionchemilumi-nescencedeterminationof Persantin.Fenxi Huaxue1997; 25:879–882.

42. Aly FA, Alarfaj NA, AlwarthanAA. Flow-injectionchemilumi-nometricdeterminationof somephenothiazinesin dosageformsandbiological fluids. Anal. Chim.Acta 1998;358: 255–262.

43. Liang YD, Li JZ, Zhang ZJ, Zhang XQ. Flow-injectiondeterminationof prednisoneacetate.YaowuFenxi Zazhi 1998;18: 168–170.

44. Li HN, Ci YX. Flow-injectionchemiluminescencemethodfor thedeterminationof hydrocortisoneand progesterone.Appl. Spec-trosc.1997;51: 1484–1487.

45. Xue YY, He YH, Feng ML, Lu JR. Determination ofpromethazinehydrochloride by flow injection analysis withchemiluminescencedetection.Chin. J. Anal. Chem.1999; 27:427–429.

46. Alwarthan AA, Aly FA. Chemiluminescentdeterminationofpyridoxinehydrochloridein pharmaceuticalsamplesusingflowinjection.Talanta1998;45: 1131–1138.

47. Li LQ, YangML, FengML, Lu JR.Determinationof reserpinebyflow-injectionchemiluminescenceanalysis.FenxiHuaxue1998;26: 307–309.

48. Li LQ, Yang ML, FengML, Lu JR. Study of the chemilumi-nescencesystemof potassiumpermanganate/sodiumdithionite/riboflavine.Fenxi Shiyanshi1997;16: 33–35.

49. He CX, Cui H, ZhaoXY, ZhaoHZ, ZhaoGW. Determinationofrutin by flow injection with inhibited chemiluminescencedetection.Anal. Lett. 1999;32: 2751–2759.

50. Nie F, Li LQ, Feng ML, Lu JR. Investigationon chemilumi-nescencereactionin thesodiumhypochlorite/rutin/semicarbazidehydrochloridesystem.Fenxi Shiyanshi1999;18: 54–56.

51. Mestre YF, Zamora LL, CalatayudJM. Direct flow injectionchemiluminescencedeterminationof salicylamide.Anal. Chim.Acta 1999;394: 159–163.

52. Wang ZL, Li JZ, Li BX, Wang LF, Zhang JG. Chemilumi-nescencedeterminationof sodiumnitroprussideby flow-injectionanalysis.YaowuFenxi Zazhi1997;17: 75–77.

53. Cui H, Li Q, MengR, ZhaoHZ, He CX. Flow injectionanalysisof tannic acid with inhibited chemiluminescentdetection.Anal.Chim.Acta 1998;362: 151–155.

54. Li Z, Feng ML, Lu JR, Gong ZL, Jiang HL. Flow injectionchemiluminescencedetermination of tetracyclines.Anal. Lett.1997;30: 797–807.

55. ZhangXR, BaeyensWRG, VandenborreA, VanDerWekenG,CalokerinosAC, SchulmanSG.Chemiluminescencedetermina-tion of tetracyclinesbased on their reaction with hydrogenperoxide-catalyzedby the copper-ion.Analyst1995; 120: 463–466.

56. Li LQ, Yang ML, Feng ML, Lu JR. Determination oftetrahydropalmatinein rotundineby flow-injection analysiswithchemiluminescencedetection.Fenxi Huaxue 1997; 25: 1321–1323.

57. Ishii M, Kawashima M. A cyclic flow-injection system fordeterminationof thiamineusinga sensitivechemiluminescencedetectionassociatedwith zero emissionsresearchinitiative. J.Flow Inject. Anal. 1998;15: 25–38.

58. PerezRuiz T, MartinezLozano C, Baeyens WRG, Sanz A,SanMiguelMT. Determinationof tiopronin in pharmaceuticalsusing a chemiluminescentflow-injection method. J. Pharm.Biomed.Anal. 1998;17: 823–828.

59. Zhao YN, Baeyens WRG, Zhang XR, Calokerinos AC,NakashimaK, VanDerWekenG. Chemiluminescencedetermina-tion of tiopronin by flow injection analysisbasedon cerium(IV)oxidation sensitizedby quinine.Biomed.Chromatog.1997;11:117–118.

60. Li LQ, YangML, FengML, Lu JR.Determinationof vitamin B6by a flow-injectionchemiluminescencemethod.FenxiShiyanshi1998;17: 5–8.

61. Yao GG, Liu QG, Geng Z. Study on determination ofacetaldehyde by flow-injection chemiluminescence.FenxiShiyanshi1997;16: 30–32.

62. Jia SH, Lu JY, Zhang HQ. Determinationof trace arsenicingeochemical samples by luminol/hydrogen peroxide/chro-mium(III) chemiluminescencesystemwith sulfhydrylatedcottonseparation.Fenxi Shiyanshi1998;17: 16–18.

63. Jia SH, Zhou G. Chemiluminescencereaction in determiningarsenic(III) using the luminol/hydrogenperoxide/chromium(III)system.Fenxi Huaxue1995;23: 1228.

64. Asai R, MatsukawaR, Ikebukuro K, Karube I. Chemilumi-nescenceflow-injection systemfor rapid detectionof red tidephytoplankton,Chattonellaantiqua. Anal. Lett. 1998;31: 2279–2288.

65. Liu SN, Qin W, Zhang ZJ. Flow-injection chemiluminescencesensorfor the determinationof free chlorine in tap water.Chin.Chem.Lett. 1996;7: 1023–1026.

66. Hirata S, Aihara M, HashimotoY, Mallika GV. On-line columnpreconcentrationfor the determinationof cobalt in seawaterbyflow-injection chemiluminescencedetection.FreseniusJ. Anal.Chem.1996;355: 676–679.

67. Lan ZH, Mottola HA. Carbondioxide-enhancedluminol chemi-luminescencein theabsenceof addedoxidant.Analyst1996;121:211–218.

68. Li GH, Li LY, Kuang CX, Wang JF. ReverseFIA-chemilumi-

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 19

Page 20: Analytical applications of flow injection with chemiluminescence detection—a review

nescencedeterminationof tracesof cobalt(II) in naturalwater.Lihua Jianyan,HuaxueFence1999;35: 149–150.

69. FangGZ, WangDD. Chemiluminescenceflow-injectionmethodfor theconsecutivedeterminationof cobaltandchromium.FenxiCeshiXuebao1997;16: 27–32.

70. FangGZ, Liu L. Flow-injection micelle-sensitizedchemilumi-nescencedetermination of traceamountsof nickel andcobalt inhair with microwavedigestionof sample.Fenxi Huaxue1996;24: 743.

71. EconomouA, Clark AK, FieldenPR.FIA determinationof CrIIIin tap waterwith chemiluminescencedetection.Anal. Commun.1998;35: 389–390.

72. EscobarR, Lin Q, GuiraumA, delaRosaFF. Determinationoftrivalent and hexavalentchromium in waste water by flowinjection chemiluminescenceanalysis. Int. J. Environ. Anal.Chem.1995;61: 169–175.

73. HanHY, HeZ, Luo QY, ZengY. Onlineoxidationflow-injectionchemiluminescencemethodfor determinationof traceamountsofchromium(III) andchromium(VI).LihuaJianyan,HuaxueFence1998;34: 295–296,299.

74. Zhang HS, Yang XC, Wu LP. Simultaneousdeterminationofchromium(III) and chromium(VI) in waste water with flow-injection analysis monitored by chemiluminescence.FenxiHuaxue1995;23: 1148–1150.

75. ZhangZJ, Qin W, Liu SN. Chemiluminescenceflow systemforthemonitoringof chromium(VI) in water.Anal.Chim.Acta1995;318: 71–76.

76. ZamzowH, CoaleKH, JohnsonKS, SakamotoCM. Determina-tion of copper complexationin seawaterusing flow injectionanalysiswith chemiluminescencedetection.Anal. Chim. Acta1998;377: 133–144.

77. ChenHH, Qin W. Flow-injectionchemiluminescencesystemfordeterminationof copper(II)basedonimmobilizedreagents.FenxiHuaxue1997;25: 1472.

78. Liu HJ, Qin W, ZhangZJ. Chemiluminescenceflow systemforthe determinationof copperwith immobilized reagents.FenxiShiyanshi1998;17: 78–80.

79. IkebukuroK, ShimomuraM, OnumaN, WatanabeA, NomuraY,NakanishiK, Arikawa Y, KarubeI. A novelbiosensorsystemforcyanide basedon a chemiluminescencereaction.Anal. Chim.Acta 1996;329: 111–116.

80. Lu JZ, Qin W, ZhangZJ, FengML, WangYJ. A flow-injectiontype chemiluminescence-basedsensorfor cyanide.Anal. Chim.Acta 1995;304: 369–373.

81. deJongJTM, denDasJ, BathmannU, Stoll MHC, Kattner G,Nolting RF,deBaarHJW.Dissolvediron atsub-nanomolarlevelsin the SouthernOceanas determinedby ship-boardanalysis.Anal. Chim.Acta 1998;377: 113–124.

82. Zhou YX, Zhu GY. Rapidautomatedin situ monitoringof totaldissolvediron and total dissolvedmanganesein undergroundwater by reverse-flowinjection with chemiluminescencedetec-tion during the processof water treatment.Talanta 1997; 44:2041–2049.

83. EmmeneggerL, King DW, Sigg L, SulzbergerB. Oxidationkineticsof Fe(II) in aeutrophicSwisslake.Environ.Sci.Technol.1998;32: 2990–2996.

84. Zhou YX, Li F, Zhu GY, Sun J, Lei J. Reverseflow-injectionchemiluminescencefor determinationof traceiron.FenxiHuaxue1997;25: 334–337.

85. Zhu ZJ, Lu JR. Study on the chemiluminescencereactionbetweenlucigenin and iron(II) by flow-injection analysiswithmicelle sensitization.Fenxi Huaxue1998;26: 1007–1010.

86. Bowie AR, Achterberg EP, Mantoura RFC, Worsfold PJ.Determinationof sub-nanomolarlevelsof iron in seawaterusingflow injection with chemiluminescencedetection.Anal. Chim.Acta 1998;361: 189–200.

87. Qin W, ZhangZJ,WangFC.Chemiluminescenceflow systemforthedeterminationof iron(II) andiron(III) in water.Fresenius’J.Anal. Chem.1998;360: 130–132.

88. QuassU, Klockow D. Determinationof Fe(II) and H2O2 inatmosphericliquid water by peroxyoxalatechemiluminescence.Int. J. Environ.Anal. Chem.1995;60: 361–375.

89. Hirata S, YoshiharaH, Aihara M. Determinationof iron(II) andtotal iron in environmentalwater samplesby flow injection

analysis with column preconcentrationof chelating resinfunctionalizedwith N-hydroxyethylethylenediamineligandsandchemiluminescencedetection.Talanta1999;49: 1059–1067.

90. Saitoh K, HasebeT, Teshima N, Kurihara M, KawashimaT.Simultaneousflow-injection determination of iron(II) and totaliron by micelle-enhancedluminol chemiluminescence.Anal.Chim.Acta 1998;376: 247–254.

91. Asai R, MatsukawaR, IkebukuroK, KarubeI. Highly sensitivechemiluminescenceflow-injection detection of the red tidephytoplanktonHeterosigmacarterae. Anal. Chim. Acta 1999;390: 237–244.

92. Zhao ZQ, Wang ZK, Jia YJ, Zhang ZJ. Determination ofmercury(II) by flow-injection chemiluminescenceanalysiswithaninorganiccouplingreaction—potassiumhexacyanoferrate(II)/luminol system.Fenxi Huaxue1996;24: 699–702.

93. Safavi A, Baezzat MR. Flow injection chemiluminescencedeterminationof hydrazine.Anal. Chim. Acta 1998; 358: 121–125.

94. Wu YY, Zhao F, Geng Z, Chen ZG, Liu QG. Flow-injectionanalysiswith chemiluminescencedetectionof tracehydrazineinair. Fenxi Huaxue1997;25: 263–266.

95. Feng ML, Li Z, Lu JR, Jiang HL. KMnO4–OP chemilumi-nescencesystemfor FIA determinationof hydrogenperoxide.Mikrochim.Acta 1997;126: 73–76.

96. Lin JM, Arakawa H, YamadaM. Flow injection chemilumi-nescentdeterminationof traceamountsof hydrogenperoxideinsnow-waterusingKIO4-K2CO3 system.Anal. Chim.Acta 1998;371: 171–176.

97. PriceD, MantouraRFC, Worsfold PJ.Shipboarddeterminationof hydrogenperoxidein thewesternMediterraneanseausingflowinjection with chemiluminescencedetection.Anal. Chim. Acta1998;377: 145–155.

98. Qin W, ZhangZJ,ChenHH. Chemiluminescenceflow sensorforthemonitoringof hydrogenperoxidein rainwater.Int. J. Environ.Anal. Chem.1997;66: 191–200.

99. Qin W, Zhang ZJ, Li BX, Liu SN. Chemiluminescenceflow-sensingsystemfor hydrogenperoxidewith immobilizedreagents.Anal. Chim.Acta 1998;372: 357–363.

100.Stigbrand M, Karlsson A, Irgum K. Direct and selectivedeterminationof atmosphericgaseoushydrogen peroxide bydiffusion scrubber and 1,1'-oxalyl di-imidazole chemilumi-nescencedetection.Anal. Chem.1996;68: 3945–3950.

101.Yuan J, Shiller AM. Determinationof subnanomolarlevels ofhydrogenperoxidein seawaterby reagentinjection chemilumi-nescencedetection.Anal. Chem.1999;71: 1975–1980.

102.CheregiMC, Mateo JVG, CalatayudJM, Danet AF. Analysissystem and chemiluminescencedetection determination ofhypochloritein waters.Rev.Chim.1999;50: 325–336.

103.Han HY, Luo QY, Yu XM. Determinationof trace iridium innoble metal samples by flow injection-chemiluminescencesystemusing Tween40 as reagent.Fenxi Shiyanshi1997; 16:45–47.

104.ShenJS,Zhou QZ, WangX, Hu CY. Liquid phasechemilumi-nescencedeterminationof manganesein human hair. FenxiHuaxue1998;26: 121.

105.Bowie AR, Fielden PR, Lowe RD, Snook RD. Sensitivedeterminationof manganeseusingflow injectionandchemilumi-nescentdetection.Analyst1995;120: 2119–2127.

106.Lu JZ, ZhangZJ. A sensor-basedon chemiluminescencefor thedeterminationof Mn2�. Chem.J. Chin Univ. 1995; 16: 1034–1036.

107.OkamuraK, GamoT, ObataH, NakayamaE, KarataniH, NozakiY. Selectiveand sensitivedetermination of tracemanganeseinsea water by flow through techniqueusing luminol hydrogenperoxidechemiluminescencedetection.Anal. Chim. Acta 1998;377: 125–131.

108.Mikuska P, Vecera Z, Zdrahal Z. Flow-injection chemilumi-nescencedeterminationof ultra-low concentrationsof nitrite inwater.Anal. Chim.Acta 1995;316: 261–268.

109.YangWP,ZhangZJ,Lu JR,Li BL. Determinationof tracenitritein food andwaterby flow-injectionchemiluminescenceanalysis.Fenxi Huaxue1997;25: 955–958.

110.Shen JS, Wang YH, Li YT. Study on the determinationof

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

20 REVIEW P. Fletcheret al.

Page 21: Analytical applications of flow injection with chemiluminescence detection—a review

dissolvedoxygenby liquid chemiluminescence.Lihua Jianyan,HuaxueFence1999;35: 245–246.

111.Mcgowan KA, PaceyGE. Flow-injection analysischemilumi-nescencedetectionof residualozone.Talanta 1995; 42: 1045–1050.

112.GongLX, Yu ZA. Studyon theoxidationchemiluminescenceoflucigeninsystemsensitizedby alcoholandits application.FenxiShiyanshi1995;14: 11–13.

113.Li WH, WangZL, Li JZ,ZhangZJ,ZhangXQ. Determinationoflead by a flow-injection coupled chemiluminescencereaction.Fenxi Huaxue1998;26: 219–221.

114. IkebukuroK, NishidaR, YamamotoH, ArikawaY, NakamuraH,Suzuki M, Kubo I, TakeuchiT, Karube I. A novel biosensorsystemfor the determinationof phosphate.J. Biotechnol.1996;48: 67–72.

115. Ikebukuro K, WakamuraH, Karube I, Kubo I, Inagawa M,SugawaraT, Arikawa Y, Suzuki M, Takeuchi T. Phosphatesensingsystemusing pyruvateoxidaseand chemiluminescencedetection.Biosens.Bioelectron.1996;11: 959–965.

116.NakamuraH, IkebukuroK, McNiven S,KarubeI, YamamotoH,Hayashi K, Suzuki M, Kubo I. A chemiluminescentFIAbiosensorfor phosphateion monitoringusingpyruvateoxidase.Biosens.Bioelectron.1997;12: 959–966.

117.NakamuraH, TanakaH, HasegawaM, MasudaY, Arikawa Y,NomuraY, IkebukuroK, KarubeI. An automaticflow-injectionanalysissystemfor determiningphosphateion in river waterusing pyruvateoxidaseG (from Aerococcusviridans). Talanta1999;50: 799–807.

118.NakamuraH, HasegawaM, NomuraY, Arikawa Y, MatsukawaR, Ikebukuro K, Karube I. Developmentof a highly sensitivechemiluminescenceflow-injectionanalysissensorfor phosphate-ion detectionusingmaltosephosphorylase.J. Biotechnol.1999;75: 127–133.

119.NoguchiA, Aoki T, OshimaT. Determinationof phosphateusingan immobilizedenzymereactor–chemiluminescencedetectorbyFIA. J. Flow Inject. Anal. 1995;12: 209–215.

120.JiangHL, WangZL, Li JZ, Lu JR.Rapiddeterminationof tracephosphorusby flow-injection differential kinetic chemilumi-nescence.Fenxi Shiyanshi1997;16: 64–67.

121.AndrewKN, SandersMG, ForbesS,WorsfoldPJ.Flow methodsfor thedeterminationof polycyclic aromatichydrocarbonsusinglow power photomultiplier tube and charge coupled devicechemiluminescencedetection.Anal.Chim.Acta1997;346: 113–120.

122.Li WH, WangZL, Li JZ, ZhangZJ. Determinationof antimonyby flow-injection chemiluminescence.Fenxi Huaxue1997; 25:621–624.

123.Huang YM, Zhang C, Zhang XR, Zhang ZJ. A sensitivechemiluminescenceflow systemfor the determinationof sulfite.Anal. Lett. 1999;32: 1211–1224.

124.Qin W, ZhangZJ,ZhangCJ.Chemiluminescenceflow systemforthedeterminationof sulfite.FreseniusJ. Anal.Chem.1998;361:824–826.

125.He ZK, Wu FW, Meng H, Yuan LJ, Song GW, Zeng YE.Chemiluminescencedeterminationof sulfite in sugarandsulfurdioxidein air usingRu(bipy)3

2�–K2S2O8 system.Anal.Sci.1998;14: 737–740.

126.He ZK, Wu FW, Meng H, Yuan LJ, Luo Q, Zeng YE.Chemiluminescencedeterminationof sulfur dioxide in air usingTris(1,10-phenanthroline)ruthenium–KIO4 system. Anal. Lett.1999;32: 401–410.

127.Meng H, Wu FW, He ZK, Zeng YE. Chemiluminescencedeterminationof sulfite in sugarand sulfur dioxide in air usingTris(2,2'-bipyridyl)ruthenium(II)-permanganatesystem.Talanta1999;48: 571–577.

128.Li WH, WangZL, Li JZ,ZhangZJ.Studyonthedeterminationofvanadium(IV) by flow-injection chemiluminescencebasedoncoupledreaction.Fenxi Shiyanshi1998;17: 41–44.

129.Qin W, ZhangZJ,ZhangCJ.Chemiluminescenceflow systemforvanadium(V) with immobilized reagents.Analyst 1997; 122:685–688.

130.Zhuang HS, Zhang F, Wang QE. Determination of volatilephenolsby a flow-injection chemiluminescentquenchmethod.Analyst1995;120: 121–124.

131.Li WH, Li JZ, ZhangZJ. Study on the flow-injection analysis(FIA)-chemiluminescencedeterminationof zirconium(IV) basedon a coupledreaction.Lihua Jianyan,HuaxueFence1998;34:486–487,489.

132.Cui H, Jiang HY, Meng R, He CX, Zhao HZ. Flow injectionanalysisof 3,4-dihydroxybenzoicacidwith inhibitedchemilumi-nescentdetection.Spectrosc.Spect.Anal. 1999;19: 377–379.

133.Zhang ZJ, Li ZP, Wan XQ. Catalytic chemiluminescenceactivation of copperunsaturatedcomplex with organic ligandsandtheir applications.Acta Chim.Sin.1996;54: 685–690.

134.Agater IB, JewsburyRA. Direct chemiluminescencedetermina-tion of ascorbicacid usingflow injection analysis.Anal. Chim.Acta 1997;356: 289–294.

135.WangFC,Qin W, ZhangZJ.Flow-injectionchemiluminescencesensorfor thedeterminationof ascorbicacid.FenxiHuaxue1997;25: 1255–1258.

136.Ye Q, Wang ZB. Determination of trace ascorbic acid invegetablesby potassiumpermanganate/ascorbicacid/luminolchemiluminescencemethod.Fenxi Huaxue1998;26: 613.

137.Agater IB, Jewsbury RA, Williams K. Determination ofcarbohydratesby flow injection with direct chemiluminescencedetection.Anal. Commun.1996;33: 367–369.

138.Yaqoob M, Nabi A, MasoomYasinzai M. Chemiluminescentassaysfor choline and phospholipase-D using a flow injectionsystem.J. Biolumin.Chemilumin.1997;12: 135–140.

139.Li WH, Zhuang ZQ. Study on the flow-injection chemilumi-nescencedeterminationof citric acid. Lihua Jianyan, HuaxueFence1999;35: 78–81.

140.DanetAF, BadeaM, JipaS. Ethanoldeterminationby the flowinjectionanalysis,with chemiluminescencedetection.Rev.Chim.1997;48: 726–731.

141.Kiba N, Inagaki J, FurusawaM. Chemiluminometric flow-injectionmethodfor determinationof freeL-malatein wine withco-immobilizedmalatedehydrogenaseNADH oxidase.Talanta1995;42: 1751–1755.

142.Evmiridis NP,ThanasouliasNK, VlessidisAG. Determinationofglucose and fructose in mixtures by a kinetic method withchemiluminescencedetection.Anal.Chim.Acta1999;398: 191–203.

143.Kiba N, AzumaN, FurusawaM. Chemiluminometricmethodforthe determinationof glycerol in wine by flow-injection analysiswith co-immobilized glycerol dehydrogenaseNADH oxidase.Talanta1996;43: 1761–1766.

144.HasebeT, HasegawaE, KawashimaT. Flow-injection determi-nation of hydrogenperoxide by bis-(2,4,6-trichlorophenyl)ox-alatechemiluminescencein O/W emulsion.Anal. Sci.1996;12:881–885.

145.Hemmi A, Yagiuda K, FunazakiN, Ito S, AsanoY, Imato T,Hayashi K, Karube I. Developmentof a chemiluminescencedetectorwith photodiodedetectionfor flow-injectionanalysisandits applicationto L-lactateanalysis.Anal. Chim.Acta1995;316:323–327.

146.HuangYM, ZhangC, ZhangXR, ZhangZJ.Chemiluminescenceof sulfite basedon auto-oxidationsensitizedby rhodamine6G.Anal. Chim.Acta 1999;391: 95–100.

147.Lin JM, HoboT. Flow-injectionanalysiswith chemiluminescentdetectionof sulphiteusingNa2CO3-NaHCO3-Cu2� system.Anal.Chim.Acta 1996;323: 69–74.

148.FanWZ, ZhangZJ.Determination of acetylcholineandcholineinrat brain tissueby FIA with immobilized enzymesand chemi-luminescencedetection.Microchem.J. 1996;53: 290–295.

149.HasebeT, NagaoJ, KawashimaT. Simultaneousflow injectiondeterminationof acetylcholineand choline basedon luminolchemiluminescencein a micellar systemwith on-line dialysis.Anal. Sci.1997;13: 93–98.

150.FujiwaraT, KurahashiK, KumamaruT. Couplingof membrane-immobilized enzyme reaction and heteropoly acid luminolchemiluminescencereactionfor the determinationof adenosine-5'-triphosphate.Anal. Chim.Acta 1997;349: 159–164.

151.Edwards R, TownshendA, Stoddart B. Chemiluminescencedeterminationof proteasesby flow-injection using immobilizedisoluminol.Analyst1995;120: 117–120.

152.ChenGN,Xu XQ, DuanJP,Lin RE,ZhangF. Flow injectionandliquid chromatographicdetectionof amino acids basedon the

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 21

Page 22: Analytical applications of flow injection with chemiluminescence detection—a review

chemiluminescencereactionof lucigenin.Anal. Commun.1996;33: 99–102.

153.Chen GN, Xu XQ, Zhang F. Study of the chemiluminescentcharacteristicsof ninhydrin and its application.Analyst 1996;121: 37–41.

154.Li ZP, Dai LT, ZhangZJ. Studyon catalyticeffectof copper(II)complex on 1,10-phenanthroline-H2O2-CTMAB chemilumi-nescencereactionand its analyticalapplications.Microchem.J.1995;52: 208–215.

155.Palilis LP, Calokerinos AC, Grekas N. Chemiluminescencearising from the oxidation of bilirubin in aqueousmedia.Anal.Chim.Acta 1996;333: 267–275.

156.Kiba N, Kato A, FurusawaM. Determinationof branched-chainL-amino acids by flow-injection analysiswith co-immobilizedleucinedehydrogenaseNADH oxidaseand chemiluminescencedetection.Anal. Chim.Acta 1995;311: 71–76.

157.Nozaki O, IwaedaT, Moriyama H, Kato Y. Chemiluminescentdetectionof catecholaminesby generationof hydrogenperoxidewith imidazole.Luminescence1999;14: 123–127.

158.Li Z, WangZB. Chemiluminescencemethodfor the determina-tion of chlorotetracycline. Fenxi Huaxue1998;26: 556–560.

159.Huang YM, Zhang C, Zhang ZJ. Chemiluminescenceflowbiosensorsystem for cholesterol with immobilized reagents.Anal. Sci.1999;15: 867–870.

160.Nabi A, RashidA, YaqoobM. Chemiluminescentdeterminationof cholesterol by flow injection analysis with immobilizedcholesteroloxidase.Anal. Lett. 1996;29: 2281–2288.

161.EscobarR, GarciaDominguezMS, Guiraum A, delaRosaFF.Determinationof Cr(III) in urine,bloodserumandhairusingflowinjection chemiluminescenceanalysis.FreseniusJ. Anal. Chem.1998;361: 509–511.

162.Lin JM, Hobo T. Chemiluminescenceinvestigationof NH2OH-fluorescein-Cu2� systemandits applicationto copperanalysisinserum.Talanta1995;42: 1619–1623.

163.WadaM, KurodaN, Akiyama S, NakashimaK. A sensitiveandrapid FIA with an immobilized enzyme column reactor andperoxyoxalatechemiluminescencedetectionfor the determina-tion of total D-aminoacidsin humanplasma.Anal.Sci.1997;13:945–950.

164.Kiba N, KoemadoH, FurusawaM. Flow-injectionmethodfor thesimultaneousdeterminationof D-glucoseand3-hydroxybutyratewith co-immobilizedenzymereactorsanda chemiluminometer.Anal. Sci.1995;11: 605–609.

165.NozakiO, IwaedaT, Kato Y. Aminesfor detectionof dopamineby generationof hydrogenperoxideand peroxyoxalatechemi-luminescence.J. Biolumin.Chemilumin.1996;11: 309–313.

166.Qin W, Zhang ZJ, Zhang CJ. Chemiluminescenceflow sensorwith immobilized reagentsfor the determinationof iron(III).Mikrochim.Acta 1998;129: 97–101.

167.Fang Q, Shi XT, Sun YQ, Fang ZL. A flow injectionmicrodialysis samplingchemiluminescencesystemfor in vivoon-line monitoring of glucosein intravenousand subcutaneoustissuefluid microdialysates.Anal. Chem.1997;69: 3570–3577.

168.Huang YW, Feng ML, Zhang ZJ. Reverse flow-injectionchemiluminescencedetermination of glucose. Fenxi Huaxue1997;25: 34–36.

169.Kiba N, ItagakiA, FukumuraS,SaegusaK, FurusawaM. Highlysensitiveflow-injectiondeterminationof glucosein plasmausingan immobilized pyranoseoxidase and a chemiluminometricperoxidasesensor.Anal. Chim.Acta 1997;354: 205–210.

170.EmteborgM, IrgumK, GooijerC,BrinkmanUAT. Peroxyoxalatechemiluminescencein aqueoussolutions:coupling of immobi-lized enzyme reactorsand 1,1'-oxalyldiimidazole chemilumi-nescence reaction to flow-injection analysis and liquidchromatographicsystems.Anal.Chim.Acta1997;357: 111–118.

171.YaqoobM, Nabi A, MasoomYasinzaiM. Flow-injectionchemi-luminescentdeterminationof glycerol-3-phosphateand glycer-ophosphorylcholineusing immobilized enzymes.J. Biolumin.Chemilumin.1997;12: 1–5.

172. IshidaJ,ArakawaH, TakadaM, YamaguchiM. Developmentofa novel luminol-relatedcompound,3-propyl-7,8-dihydropyrida-zino[4,5-g]quinoxaline-2,6,9(1H)-trione,and its application tohydrogenperoxideandserumglucoseassays.Analyst1995;120:1083–1086.

173.BurgueraJL, BrunettoMR, ContrerasY, BurgueraM, GallignaniM, Carrero P. Head-spaceflow injection for the on-linedeterminationof iodidein urinesampleswith chemiluminescencedetection.Talanta1996;43: 839–850.

174.JanasekD, SpohnU. Chemiluminometricflow-injectionanalysisproceduresfor the enzymic determination of L-alanine, a-ketoglutarateand L-glutamate.Biosens.Bioelectron.1999; 14:123–129.

175.Kiba N, TachibanaM, Tani K, Miwa T. Chemiluminometricbranchedchain amino acids determinationwith immobilizedenzymesby flow-injectionanalysis.Anal.Chim.Acta1998;375:65–70.

176.AlmuaibedAM, TownshendA. Flow injectionamperometricandchemiluminescenceindividual and simultaneousdeterminationof lysine and glucose with immobilized lysine oxidase andglucoseoxidase.Anal. Chim.Acta 1997;338: 149–154.

177.Almuaibed AM, Townshend A. Flow injection chemilumi-nescencedeterminationof ornithineandsequentialdeterminationof ornithine and lysine by using immobilized lysine oxidase.Anal. Chim.Acta 1999;388: 339–343.

178.Nozaki O, Iwaeda T, Kato Y. Detection of substanceswithalcoholicor phenolichydroxyl groupsby generationof hydrogenperoxidewith imidazoleandperoxyoxalatechemiluminescence.J. Biolumin.Chemilumin.1995;10: 339–344.

179.Lin M, Huie CW. Chemiluminescencedetectionof porphyrinswith theperoxyoxalatereactionby flow-injectionanalysis.Anal.Chim.Acta 1997;339: 131–138.

180.Li ZP, Li KA, Tong SY. Study of the catalytic effect ofcopper(II)–protein complexes on luminol–H2O2 chemilumi-nescencereaction and its analytical application. Anal. Lett.1999;32: 901–913.

181.PingLZ, An LK, YangTS. Microdetermination of proteinswiththe 1,10-phenanthroline-H2O2-cetyltrimethylammonium bro-mide-Cu(II) chemiluminescencesystem.Microchem. J. 1998;60: 217–223.

182.FengML, ZhangGF,ZhangZJ.FIA determinationof pyruvateinserumbasedon direct chemiluminescenceoxidation.Fresenius’J. Anal. Chem.1999;363: 320–322.

183.Barnett NW, Hindson BJ, Lewis SW. Determination of 5-hydroxytryptamine (serotonin) and related indoles by flowinjection analysiswith acidic potassiumpermanganatechemi-luminescencedetection.Anal. Chim.Acta 1998;362: 131–139.

184.Tabata M, Totani M. A chemiluminescence-flowinjection-analysisof serum3-hydroxybutyrateusingabioreactorconsistingof 3-hydroxybutyratedehydrogenaseandNADH oxidase.Anal.Biochem.1995;229: 133–138.

185.Gao XF, Ikebukuro K, Karube I, Li YS. A novel assayfordeterminationof sulfated bile acids in urine by use of flow-injection chemiluminescenceprinciple with immobilized en-zymes.Lab. RoboticsAutom.1997;9: 69–79.

186.Alwarthan AA. Chemiluminescentdeterminationof tryptophanin aflow injectionsystem.Anal.Chim.Acta1995;317: 233–237.

187.Feng ML, Huang YW, Zhang ZJ. New chemiluminescencereactionsystemfor analysisof polyhydroxy-compounds.Deter-minationof uric acidin urine.ActaChim.Sin.1997;55: 806–810.

188.Li Z, Feng ML, Lu JR. KMnO4-octylphenyl polygylcol, etherchemiluminescencesystemfor flow injectionanalysisof uric acidin urine.Microchem.J. 1998;59: 278–283.

189.Wu YY, Li LQ, GengZ, Liu QG. Determinationof uric acid bychemiluminescence–flowinjectionanalysis.Chin.J. Anal.Chem.1999;27: 543–546.

190.BarnettNW, FrancisPS,LewisSW,Lim KF. Determinationof a-dihydroxy-3-methoxybenzeneaceticacid(vanilmandelicacid)byflow injection analysiscoupledwith luminol–hexacyanoferrate(III) chemiluminescencedetection.Anal. Commun.1999; 36:131–134.

191.Townshend A, Wheatley RA. Determination of carbonylcompoundsby the oxidative chemiluminescenceof 2,4-dinitro-phenylhydrazine.Analyst1998;123: 1047–1051.

192.TownshendA, Wheatley RA. Oxidative chemiluminescenceassayof 2,4-dinitrophenylhydrazine.Analyst1998; 123: 1041–1046.

193.TownshendA, WheatleyRA. Oxidative chemiluminescenceof

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

22 REVIEW P. Fletcheret al.

Page 23: Analytical applications of flow injection with chemiluminescence detection—a review

somenitrogennucleophilesin the presenceof formic acid asanancillary reductant.Analyst1998;123: 267–272.

194. IshidaJ,TakadaM, HaraS,SasamotoK, Kina K, YamaguchiM.Development of a novel chemiluminescentprobe, 4-(5',6'-dimethoxybenzothiazolyl)phthalhydrazide.Anal. Chim. Acta1995;309: 211–219.

195.SatoK, TanakaS. Determination of metal ions by flow injec-tion analysiswith peroxyoxalatechemiluminescencedetection.Microchem.J. 1996;53: 93–98.

196.Yao GG, Liu QG, GengZ. Determinationof benzaldehydebyflow-injectionanalysiswith chemiluminescencedetection.FenxiHuaxue1996;24: 1441–1443.

197.Zhuang HS, Zhang F, Wang QE. Investigationon the flow-injection chemiluminescenceion-exchange method 1. Thepreparationandapplicationof chemiluminescentanion-exchangeresin.Acta Chim.Sin.1995;53: 168–172.

198.Watanabe K, Yamasaki T, Itagaki M. Chemiluminescencedetermination of cobalt(II) with 1,10-phenanthrolinein thepresenceof surfactants.BunsekiKagaku1996;45: 897–902.

199.SteijgerOM, den NieuwenboerHCM, LingemanH, BrinkmanUAT, HolthuisJJM,SmildeAK. Enhancementof peroxyoxalatechemiluminescenceby copper(II) in flow injection analysis:optimizationby factorialdesignanalysis.Anal.Chim.Acta1996;320: 99–105.

200.Kyaw T, Fujiwara T, Inoue H, Okamoto Y, Kumamaru T.Reversedmicellar mediatedluminol chemiluminescencedetec-tion of iron(II, III) combinedwith on-linesolventextractionusing8-quinolinol.Anal. Sci.1998;14: 203–207.

201.Zhang HS, Yang XC, Wu LP. Simultaneousdeterminationofferric and ferrous ion by chemiluminescenceflow-injectionanalysis.Fenxi Huaxue1996;24: 220–223.

202.WatanabeKW, Yamasaki T, Itagaki M. Chemiluminescencedetermination of iron(III) with 1,10-phenanthroline.BunsekiKagaku1996;45: 407–413.

203.JonssonT, EmteborgM, Irgum K. Heterocycliccompoundsascatalystsin the peroxyoxalatechemiluminescencereaction ofbis(2,4,6-trichlorophenyl)oxalate.Anal. Chim. Acta 1998; 361:205–215.

204.ZhangWY, ZhouYX, Li F, ZhuGY. Sodiumtetraphenylborate:a new type of chemiluminescenceenhancerfor horseradishperoxidasecatalyzedoxidationof luminol. Fenxi Huaxue1998;26: 100–102.

205.KawamotoH, NozakiO. Determination of hydrogenperoxidebyflow injection-chemiluminescenceusinganovelflow-cell reactorin achemiluminescencedetector.BunsekiKagaku1999;48: 471–476.

206.Li F, Zhou YX, Zhu GY. Study of the luminol/potassiumperiodate/hydrogenperoxidechemiluminescenceflow-injectionsystem.Fenxi Huaxue1997;25: 1318–1320.

207.Li BX, Qin W, Zhang ZJ. Flow-injection chemiluminescencesensorfor hydrogenperoxidewith immobilized reagents.Chin.Chem.Lett. 1998;9: 471–472.

208.Li J, Wang KM, Yang XH, Xiao D. Sol–gel horseradishperoxidasebiosensorfor the chemiluminescentflow determina-tion of hydrogenperoxide.Anal. Commun.1999;36: 195–197.

209.Nabi A, Rashid A, Yaqoob M. Flow injection analysis ofhydrogen peroxide with peroxyoxalate chemiluminescencedetection.J. Chem.Soc.Pakistan1996;18: 211–214.

210.PontenE, StigbrandM, Irgum K. Immobilizedaminoaromaticsfor solid-phasedetectionusing imidazole-mediatedbis(trichlor-ophenyl) oxalate chemiluminescence.Anal. Chem. 1995; 67:4302–4308.

211.PontenE, AppelbladP, StigbrandM, Irgum K, NakashimaK.Immobilized 2-(4-hydrazinocarbonylphenyl)-4,5-diphenylimida-zole as solid phaseluminophorein peroxyoxalatechemilumi-nescence.FreseniusJ. Anal. Chem.1996;356: 84–89.

212.Lin JM, YamadaM. Oxidation reactionbetweenperiodateandpolyhydroxyl compoundsand its application to chemilumi-nescence.Anal. Chem.1999;71: 1760–1766.

213.HayashiK, SasakiS, IkebukuroK, KarubeI. Highly sensitivechemiluminescenceflow-injection analysissystemusingmicro-bial peroxidaseand a photodiodedetector.Anal. Chim. Acta1996;329: 127–134.

214.ChenGN,Xu XQ, DuanJP,HeMM, ZhangF.Chemiluminescentcharacteristicsof some indole derivatives.Analyst 1995; 120:1699–1704.

215.NakashimaK, YamasakiH, KurodaN, AkiyamaS.Evaluationoflophine derivatives as chemiluminogensby a flow-injectionmethod.Anal. Chim.Acta 1995;303: 103–107.

216.GotoH, MasudaA, YamadaM. Basicmetalperoxidesasreactionmedia for luminol and lucigenin chemiluminescencesensing.BunsekiKagaku1997;46: 711–717.

217.Fujiwara T, Kyaw T, Okamoto Y, Kumamaru T. Effect ofoxovanadium(IV) acetylacetonateon the chemiluminescencereaction of luminol in reversemicelles. Anal. Sci. 1997; 13:59–62.

218.Evmiridis NP, ThanasouliasNK, Vlessidis AG. Chemilumi-nescence(CL) emissiongeneratedduringoxidationof pyrogalloland its applicationin analytical chemistry.I. Effect of oxidantcompound.Talanta1998;46: 179–196.

219.Li L, Lu MG. Determination of pyrogallol using a novelchemiluminescencereaction.Anal. Lett. 1998;31: 343–353.

220.Safavi A, Baezzat MR. Flow injection chemiluminescencedeterminationof pyrogallol. Anal. Chim. Acta 1998; 368: 113–116.

221.Paulls DA, TownshendA. Sensitizeddeterminationof sulfiteusing flow-injection with chemiluminescentdetection.Analyst1995;120: 467–469.

222.PaullsDA, TownshendA. Enhancementby cycloalkanesof thechemiluminescentoxidationof sulfite. Analyst1996;121: 831–834.

223.KuboH, ToribaA. Chemiluminescenceflow injectionanalysisofreducingagentsbasedon the luminol reaction.Anal. Chim.Acta1997;353: 345–349.

224.Kyaw T, KumookaS, OkamotoY, Fujiwara T, KumamaruT.Reversedmicellar-mediatedluminol chemiluminescencereactionwith bis(acetylacetonato)oxovanadium(IV).Anal. Sci. 1999;15:293–297.

225.Zaporozhets OA, Sukhan VV, Lipkovska NA. Lucigeninimmobilizedonsiliconoxidesasasolid-phasechemiluminescentreagent.Analyst1996;121: 501–503.

226.Zhu ZJ. Quenching of rare-earth ytterbium(III) ion in thechemiluminescencesystemof luminol/hydrogenperoxide/chro-mium(III). Fenxi CeshiXuebao1999;18: 75–77.

227.WatanabeK, Miyamoto H, Itagaki M. Determinationof zinc(II)usingthemicellarenhancedchemiluminescenceof 1,10-phenan-throline.BunsekiKagaku1999;48: 705–710.

228.Lewis SW, Price D, Worsfold PJ. Flow injection assayswithchemiluminescenceandbioluminescencedetection—areview.J.Biolumin.Chemilumin.1993;8: 183–199.

229.Bowie AR, SandersMG, WorsfoldPJ.Analytical applicationsofliquid phasechemiluminescencereactions—areview. J. Biolu-min. Chemilumin.1996;11: 61–90.

230.ZhengX, ZhangZ. Flow-injectionchemiluminescencedetermi-nation of isoniazid using on-line electrogeneratedBrOÿ as anoxidant.Analyst1999;124: 763–766.

231.ZhengXW, ZhangZJ.Newelectrogeneratedchemiluminescencemethod for the determinationof persantinwith flow-injectionanalysis.Fenxi Huaxue1999;27: 145–148.

232.Huang JC, Zhang CX, Zhang ZJ. Flow-injection chemilumi-nescence determination of isoniazid with electrogeneratedhypochlorite.FreseniusJ. Anal. Chem.1999;363: 126–128.

233.Huang JC, Zhang CX, Zhang ZJ. Flow injection chemilumi-nescencedeterminationof L-dopa with electrogeneratedhypo-chlorite.Fenxi Huaxue1999;27: 41–43.

234.Qin W, ZhangZJ, Li BX, PengYY. Chemiluminescenceflowsystemfor the determinationof ammoniumion. Talanta 1999;48: 225–229.

235.Zhang CX, Huang JH, Zhang ZJ, Aizawa M. Flow injectionchemiluminescencedeterminationof catecholamineswith elec-trogeneratedhypochlorite.Anal.Chim.Acta1998;374: 105–110.

236.Zhang CX, Huang JC, Feng ML, Zhang ZJ. Flow injectionchemiluminescencedeterminationof etamsylatewith electro-generatedhypochlorite.Anal. Lett. 1998;31: 1917–1928.

Copyright 2001JohnWiley & Sons,Ltd. Luminescence2001;16:1–23

Flow injection chemiluminescencedetection REVIEW 23