13
Spectral approaches to fractal geometry Analysis on Fractals - Hausdorff and spectral dimension Uta Freiberg Universit¨ at Stuttgart Chalmers University of Technology, Gothenburg September 18, 2018

Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

Spectral approaches to fractal geometry

Analysis on Fractals - Hausdorff and

spectral dimension

Uta Freiberg

Universitat Stuttgart

Chalmers University of Technology, Gothenburg

September 18, 2018

Page 2: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

Plan of the lecture

0. Motivation

1. Analysis (= Laplacian) on fractals – history and overview

2. Dirichlet form approach (Kusuoka, Kigami)

3. Eigenvalues

(4. New directions: random fractals, Hanoi attractors,...)

(5. Einstein’s relation)

Page 3: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

1. Analysis (= Laplacian) on fractals

first ideas came from physicists...

... which led to mathematical theories...

Page 4: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

Classical approaches:

• limit of difference operators (Dirichlet form theory)

Kusuoka, Kigami, Lapidus, Mosco, Hambly, Teplyaev, Strichartz,...

• Construction of the”

natural“ Brownian motion as the limit

of a sequence of appropriate renormalized random walks

Kusuoka, Barlow, Bass, Perkins, Lindstrøm; Sabot, Metz,...

• Martin boundary theory on the Code space

Denker, Sato, Koch,...

• (fractal dimensional) traces of function spaces (for exp. So-

bolev spaces) or via Riesz potentials

Triebel, Haroske, Schmeißer,...; Zahle

Page 5: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

New approaches:

• Generalized Laplacians (∆–Beltrami, Hodge–∆, Dirac–∆)

M. Hinz, Teplyaev, Rogers,...

• Non-commutative Geometry: Interpretation of the fractal in

terms of spectral triple

Bellissard, Falconer, Samuel, Lapidus; Cipriani, Guido, Isola, ...

• Theory of resistance forms

Kigami, Kajino, Alonso–Ruiz, F. ,...

• Approximation by quantum graphs

Teplyaev, Kelleher, Alonso–Ruiz, F. ...; Mugnolo, Lenz, Keller, Post,

Kuchment, ...

Page 6: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

4.2 New directions: random fractals

Page 7: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

SG(3)–modified Sierpinski gasket (G)

measure scaling factor µ

µG = 1/6

length scaling factor r

rG = 1/3

energy/resistance scaling

factor % %G = 15/7

time scaling factor T = M%

TG = 90/7

Page 8: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

Random mixing I

”homogenous random“ (V = 1)

Hambly (’97 BM, ’99 heat

kernels, ’00 ∆)

(Kifer ’95, Stenflo ’01)

Coding: random sequence

Page 9: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

Random mixing II

”random recursive“,

”standard random “ (V =∞)

Hambly ’92 (BM), Bar-

low Hambly ’97 (∆)

(Falconer ’86, Mauldin

Williams ’86, Graf ’87,

Hutchinson Ruschendorf

’98, ’00)

Coding: random labelled

tree

Page 10: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

interpolation between these two models: V –variable fractals

developed by: Barnsley, Hutchinson, Stenflo

see: Barnsley’s book”

Superfractals“

Page 11: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart
Page 12: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

Coding: V –variable (labelled) tree

Hausdorff and box dimension: BHS, Forum Mathematicum

spectral dimension: F.HamblyHutchinson (2006-2016)

Annales Henri Poincare Probab. Stat. 53, 2162–2213, 2017

Page 13: Analysis on Fractals - Hausdor and spectral dimensiongoffeng/fractals18/freiberg_slides.pdfAnalysis on Fractals - Hausdor and spectral dimension Uta Freiberg Universit at Stuttgart

other new directions:

random conductance models (Kumagai, Deuschel, ...)

GFF on fractals (Kumagai, Zeitouni, Chen, ...)