29
8/13/2019 Analysis of Non-repetitive Signals http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 1/29 An Introduction to the Analysis of Non-Repetitive Signals Using Joint Time-Frequency Distributions and Wavelets Paul Wright Applied Electrical and Magnetics Group, NPL.

Analysis of Non-repetitive Signals

Embed Size (px)

Citation preview

Page 1: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 1/29

An Introduction to the Analysis ofNon-Repetitive Signals Using

Joint Time-FrequencyDistributions and Wavelets

Paul Wright

Applied Electrical and Magnetics Group, NPL.

Page 2: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 2/29

Outline

• Non-Repetitive Waveforms

• Windowing and the STFT

• Wigner-Ville Distribution• Joint Time Frequency Distributions

• Wavelets• Polynomial Demoduation

Page 3: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 3/29

Fourier Transform of a Burst Signal

H1 and aburst of H2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 16 32 48 64 80 96

Fourier Frequency

   M  a  g  n   i   t  u   d  e

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample Number

   A  m  p   l   i   t  u

   d  e

2/5 3/5

(H1 and H2 are the same amplitude) 

FT

∫−∞

∞−

= dt et s f S t  f  j   π 2)()(

Page 4: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 4/29

Analysing Non-repetitivewaveforms

Break the waveform up into adjacent sectionsBreak the waveform up into adjacent sections

Do a DFT on each sectionDo a DFT on each section –  – Now have T & F InformationNow have T & F Information

Each Section Should contain an integer number of cyclesEach Section Should contain an integer number of cycles

Sometime called a Short Time Fourier Transform (STFT)Sometime called a Short Time Fourier Transform (STFT)

−∞

∞−

= dt et s f S t  f  j   π 2)()(

No longerNo longer

reliable!reliable!

Page 5: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 5/29

Short Time FT Using 8 Windows

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample Number

   A  m  p   l   i   t  u   d

2/5 3/5

Page 6: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 6/29

Time Frequency Distributions

TimeTimeFrequencyFrequency

MagnitudeMagnitude

Percentage of Full Scale Magnitude

0 40 60 80 10020

Page 7: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 7/29

STFT Using 8 Windows

2/5

3/5

Page 8: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 8/29

STFT Using 16 Windows

2/5

3/5

Page 9: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 9/29

Number of

Windows

Fundamental

Cycles/window

Frequency

Resolution

2nd

 Harmonic Error

Zero 32 1/32 -55.5 %

4 8 1/8 -37.1 %

8 4 1/4 -11.1 %

16 2 1/2 -8.0 %

32 1 1 -2.2 %

STFT Results withVarious Windows

Page 10: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 10/29

The Wigner-VilleDistribution

 Auto-correlation function of signal s(t) :

Wigner Distribution of signal s(t) :

Page 11: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 11/29

Analysis of a Burst

16 Window STFT

Wigner Ville Distribution

Page 12: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 12/29

FT ν

FT ω

FT τ 

FT t 

 IFT t 

 IFT ω

 IFT ν

 IFT τ 

W(t,ω)Wigner Domain

 R(t,τ )

Auto-Correlation

Domain (Temporal)

 R(υ ,ω)

Auto-Correlation

Domain (Spectral)

 A(υ ,τ )

Ambiguity Domain

Page 13: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 13/29

Frequency Shift, ν 

   T   i  m  e   L

  a  g ,      τ

0

0

Ambiguity Domain

Page 14: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 14/29

Frequency Shift, ν 

Time Lag, τ

     M    a    g

    n     i     t    u     d    e

Kernel Filter Response

Design Filter Kernels in the Ambiguity Domain

Choi-Williams Filter

Page 15: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 15/29

   T   i  m  e   L  a  g ,      τ

0

Frequency Shift, ν 

0

Filtered Ambiguity

Function

Page 16: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 16/29

Choi-WilliamsDistribution

2/5

3/5

Page 17: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 17/29

Wavelets

)],(),([)( t t  f ncorrelatioF    =

∫∞

∞−

= dt t t  f F  ),().()(   ω ψ  ω 

Fourier TransformFourier Transform

)](),([)( t t  f ncorrelatiot W  abab   =

∫∞

∞−

= dt t t  f t W abab

)().()(   ψ  

Wavelet TransformWavelet Transform

Page 18: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 18/29

Translation and Dilation

)2(2)( 2 k t t   j

 jk 

 j

−=   ψ  ψ  

Where the integer j is the dilation parameter and integer k  is used for translation

Harr Wavelet

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

Translation (k) = 1

Dilation (j) = 1

Harr Wavelet

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

Translation (k) = 1

Dilation (j) = 2

Harr Wavelet

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

Translation (k) = 2

Dilation (j) = 2

Harr Wavelet

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

Translation (k) = 3

Dilation (j) = 2

Harr Wavelet

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

Translation (k) = 3

Dilation (j) = 3

Harr Wavelet

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1

Translation (k) = 4

Dilation (j) = 3

Page 19: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 19/29

Wavelet Families

1 0 1 2

1

0

1

φ   x( )

ψ   x( )

x

Haar

2 0 2 42

1

0

1

2

φ   x( )

ψ   x( )

x

Daubechies 4

2 0 2 41

0

1

2

φ   x( )

ψ   x( )

x

Symmlet 20Battle-Lemarie 6

2 0 2 42

1

0

1

2

φ   x( )

ψ   x( )

x

Page 20: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 20/29

Vibration Analysis Using Wavelets

 

 D 1 1

 D 1 0

 D 9

 D 8

 D 7

 D 6

 D 5

 D 4

 D 3

S a m p le N u m b e r

   F  r

  e  q  u  e  n  c  y

   A  m  p   l   i   t  u   d  e

   (  w   i   t   h  a  r   b .  o

   f   f  s  e   t  s   )

Page 21: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 21/29

WaveletData/Image

Compression

Reject all wavelet coefficientsbelow a given Threshold,then invert what’s left….

Signal

75% data compression in this 

example.

Compressed Data Signal

Page 22: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 22/29

Perform DWT, retain only

highest 10 % of coefficients

 Reconstructed Image – 

10:1 compressionPerform DWT, retain only

highest 1 % of coefficients

 Reconstructed Image – 

100:1 compression

Image Compression

Original Image

Page 23: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 23/29

 JPEG Compression Wavelet Compression

Image Compression

W l t D t /I F i

Page 24: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 24/29

Fine Spatial Texture Image

Coarse Spatial Spectral Image

Fused Image

Wavelet Data/Image Fusion

(NB this is illustrative!) 

Page 25: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 25/29

Smooth Modulation

Made of H1,H2 and H3

But…

A H i M d l ti

Page 26: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 26/29

A Harmonic ModulationModel

∑∑ ==

+++=

 N 

n

n

 N 

n

n t nqqt n p pt  x1

0

1

0 )(sin)(cos)(   ω ω 

A signal x(t) with N non-modulated harmonics:

For modulated harmonics, use modulation functions

m(t) for the p ’s & q ’s:

 pn(t) = an,0 m<0> + an,1 m<1> + … an,K m<K>

qn(t) = bn,0 m<0> + bn,1 m<1> + … bn,K m<K>

(if m <k>  = t k  then the scheme is a polynomial modulation model)

De De - - modulate using Method of Least Squares modulate using Method of Least Squares 

Page 27: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 27/29

When m(t) = t , the modulators are polynomials,

Highly accurate demodulation for smooth modulation functions.

Polynomial modulation functionsPolynomial modulation functions

Using Wavelet Basis Functions

Page 28: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 28/29

Using Wavelet Basis Functions

For signals with discontinuities, the m(t) functions can be wavelets…

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

0 100 200 300 400 500

Sample Number

   A  m  p   l   i   t  u   d  e

Test Signal: Modulated H1 and H2

H1

H2

 L.S. D4 Wavelet demodulation

High Accuracy Demodulation – Handles the discontinuity!

S

Page 29: Analysis of Non-repetitive Signals

8/13/2019 Analysis of Non-repetitive Signals

http://slidepdf.com/reader/full/analysis-of-non-repetitive-signals 29/29

Summary

• Short Time Fourier Transforms

• Time Resolution – Frequency Resolution Trade Off

• Wigner Distributions

• Ambiguity Domain Filtering• Wavelets

• Time Series Modulation Methods