18
Takahiro Kozawa 1 , Julius Joseph Santillan 2 , and Toshiro Itani 2 1 The Institute of Scientific and Industrial Research, Osaka University 2 Evolving nano process Infrastructure Development Center, Inc. (EIDEC) Analysis of metal resist used for extreme ultraviolet lithography

Analysis of metal resist used for extreme ultraviolet ...euvlsymposium.lbl.gov/pdf/2016/Oral/Wed_S4-1.pdf · Average energy required to produce an ion pair (W-value) Relationship

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Takahiro Kozawa1, Julius Joseph Santillan2, and Toshiro Itani2

    1The Institute of Scientific and Industrial Research, Osaka University2Evolving nano process Infrastructure Development Center, Inc. (EIDEC)

    Analysis of metal resist used for extreme ultraviolet lithography

  • 1000 coresServer

    Material design

    Establishment of scientific foundation and technology for resist characterization of EUV lithography

    Analysis of resist materials

    NanopatterningTime-resolved spectroscopy

    Modeling

    Ultrashort electron beamElectron linear accelerator

    Spatial resolution

  • Pattern formation in metal resist

    Density

    Absorption coefficientInelastic mean free path (IMFP)

    W-valueBand gapIonization energy

    Thermalization distance

    Particle size (volume)

    Redox potentialHole mobilityElectron mobility

    NP

    Nanoparticle: ZrO2Ligand: Methacrylic acid (MAA)

    Chemical reactions

    DensityAbsorption coefficient

    W-value

    IMFP

    Ligands

    ConcentrationConcentration

    Metal resist

  • 1.E-071.E-061.E-051.E-041.E-031.E-021.E-011.E+001.E+01

    0 1 2 3 41.E-071.E-061.E-051.E-041.E-031.E-021.E-011.E+001.E+01

    0 1 2 3 4

    X-ray reflectivity measurement

    101

    100

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    10-7

    101

    100

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    10-7

    2q (degree)

    X-r

    ay in

    tens

    ity (a

    rb. u

    nit)

    2q (degree)

    X-r

    ay in

    tens

    ity (a

    rb. u

    nit)

    Fig. X-ray reflectivity curves of metal resist film on Si substrate. The film thickness was approximately 60 nm. q is the incident and detector angle.

    (a) Measured (b) Measured + Calculated

    To estimate the density of resist film, the fitting procedure was repeated for different n-m ratios of (ZrO2)n(C4H6O2)m.

  • Density

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0.0 0.2 0.4 0.6 0.8 1.0Ratio of ZrO2, n/(n+m)

    Den

    sity

    (g c

    m-3

    )

    Fig. Film density estimated from X-ray reflectivity curve.

    0.01550.01560.01570.01580.01590.01600.01610.0162

    0.0 0.2 0.4 0.6 0.8 1.0Ratio of ZrO2, n/(n+m)

    c2

    [fitt

    ing

    erro

    r]

    InitialBest fit

    (ZrO2)n(C4H6O2)m

    EDSEELS

    Fig. Relationship between ratio of ZrO2 and fitting error.

    Best fit

    M. Toriumi, Y. Sato, M. Koshino, K. Suenaga, and T. Itani, Appl. Phys. Express 9, 031601 (2016).

    Fig. EDS spectra of a freestanding film of ZrOx.MAA and TiOx.MAA resists.

    Fig. EELS spectra of a freestanding filmof ZrOx.MAA and TiOx.MAA resists.

    1.93

  • Absorption coefficient

    01234567

    0.0 0.2 0.4 0.6 0.8 1.0Ratio of ZrO2, n/(n+m)

    Abs

    orpt

    ion

    coef

    ficie

    nt (m

    m-1

    )

    0

    2

    4

    6

    8

    10

    0 200 400 600 800 1000Photon energy (eV)

    Abs

    orpt

    ion

    coef

    ficie

    nt (m

    m-1

    )

    Fig. Absorption spectra of metal resist calculated with the film density of 1.93 g cm-3 and n:m=1:0.98.

    Fig. Relationship between absorption coefficient and ratio of ZrO2, calculated with the film density of 1.93 g cm-3. Note that this result does not mean that the absorption coefficient decrease with the increase of ZrO2.

    5.14 [email protected]

    Density: 1.93 g cm-3

    InitialBest fit

    EDSEELS

  • Density and absorption coefficient of components

    ZrO2 MAA

    0

    5

    10

    15

    20

    0 200 400 600 800 10000

    5

    10

    15

    20

    0 200 400 600 800 1000

    Bulk density: 5.87 g cm-3 Density: 1.02 g cm-3

    Effect of surface

    Photon energy (eV)

    Abs

    orpt

    ion

    coef

    ficie

    nt (m

    m-1

    )

    3.9 [email protected]

    Photon energy (eV)

    Abs

    orpt

    ion

    coef

    ficie

    nt (m

    m-1

    )

    Fig. Absorption spectra of ZrO2 calculated with the density of 5.87 g cm-3.

    Fig. Absorption spectra of MAA calculated with the density of 1.02 g cm-3.

    11.2 [email protected]

    Grain size (nm)Fig. Experimental and calculated correlation of density as a function of grain size for the nano-ZrO2. [A. Opalinska et al., Beilstein J. Nanotechnol. 6, 27.35 (2015).]

  • Band gap and ionization potential for estimation of secondary electron yields

    Methods Band gap (eV) Referenece

    PES/IPS 5.68 S. Sayan et al., Phys. Status Solidi B 241, 2246 (2004).5.5 E. Bersch et al., Phys. Rev. B 78, 085114 (2008).

    EELS 5.65 R. Puthenkovilakam et al., Appl. Phys. Lett. 84, 1353 (2004).5.50 S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).5.6 H. Nohira et al., J. Non-Cryst. Solids 303, 83 (2002).5.0 N. Ikarashi et al., J. Appl. Phys. 94, 480 (2003).

    SE 5.8 M. Balog et al., Thin Solid Films 41, 247 (1977).5.25 L. Zhu et al., Mater. Sci. Semicond. Process. 9, 1025 (2006).

    Average 5.5

    PES/IPS: Photoemission spectroscopy/inverse photoemission spectroscopyEELS: Electron-energy-loss spectroscopySE: Spectroscopic ellipsometry

    Table. Band gap of ZrO2 [H. Jiang et al. Phys. Rev. B 81, 085119 (2010)]Band gap of ZrO2

    Photoemission spectrum of MAAUnavailable

    Fig. Photodegradation of PMMA measured by UPS. VUV photons (hn=40 eV) were used to degrade PMMA. Irradiation doses are: (a) none (pristine), (b) 6.5x1016 photons/cm2, (c) 1.2x1017photons/cm2, (d) 2.1x1017 photons/cm2, and (e) 2.6x1017 photons/cm2. Intensity of UPS spectra were normalized to ring current at 100 mA. [K. K. Okudaira et al. J. Appl. Phys. 83, 4292 (1998).]

    Alternative data for approximation

  • C. A. Klein, J. Appl. Phys. 39, 2029 (1968).

    Average energy required to produce an ion pair (W-value)Relationship between band gap and W-value

    5.5 eV

    >16.1 eV

    ZrO2 MAA

    Authors

    Jesse

    and

    Sadauskis

    Weiss

    and

    Bernstein

    Leblanc

    and

    Herman

    Meisels

    Cooper

    and

    Mooring

    Adler and

    BotheSchulze

    Gas (1955a) (1956) (1966) (1964) (1968) (1965) (1966) (Wa±s )/eV

    CH₄ 27.3 26.8 27.6 26.94 27.5 27.4 27.3±.3

    C₂H₂ 25.9 26.3 25.3 (25.7) 25.8±.4

    C₂H₄ 26.2 26.4 25.5 25.9 24.6 26.3 25.8±.6

    C₂H₆ 24.8 24.6 24.18 25.4 26.0 25.0±.6

    C₃H₈ 23.5 23.68 24.6 24.3 24.0±.5

    C₄H₁₀ 22.9 23.20 23.8 23.7 23.4±.4

    C₅H₁₂ 23.2 22.83 23.5 23.2±.3

    C₆H₁₄ 22.63 23.4 23.0±.4

    CH₃OH 23.6 25.02 25.5 24.7±.8

    C₂H₅OH 24.50 25.1 24.8±.3

    C₆H₆ 23.3 20.9 22.1±1.2

    H₂ 36.3 36.3 37.0 (36.6) 36.5±.3

    N₂ 35.0 34.6 (34.6) (34.6) 34.9 34.8±.2

    O₂ 30.9 31.2 31.0 30.1 30.9 30.8±.4

    N₂O 32.2 32.9 32.6 32.6±.3

    SO₂ 30.4 30.4

    H₂O 29.15 29.6 29.9 29.6±.3

    CO₂ 32.8 32.6 32.1 33.5 34.5 33.0 32.8 33.0±.7

    He 42.3 40.3 (42.3) 41.3±1.0

    Ne 35.6 35.3 34.3 (36.5) 35.4±0.9

    Ar (26.4) 25.8 25.7 (26.2) (26.4) 23.8 -

    Kr 24.2 24.7 (24.2) 24.4±0.3

    Xe 22.2 22.0 22.1±0.1

    Hg 23.6 23.6

    NH₃ 26.5 26.5 26.7 26.6±0.1

    Air 33.9 (33.9) (33.8) (34.0) (33.73) (33.9)

    Values used as reference values are given in parentheses and are not included in the average of experimental values, W a, given in the last column.

    W-value of moleculesTable. W-values for photons and electrons in various gases.

    W-value of PHS (film): 22.2 eVT. Kozawa et al., JVST B24, 3055(2006).

    ICRU report 31

  • Size (volume) and concentration

    Fig. (a) Low- and (b) high-magnification ADF-STEM images of ZrOx. MAA resist and (c) low-and (d) high-magnification ADF-STEM images of TiOx.MAA resist supported on amorphous carbon. Dotted circles show the diameters of (a, b) 2.0 nm and (c, d) 2.3 nm determined by optical scattering methods. [M. Toriumi, Y. Sato, M. Koshino, K. Suenaga, and T. Itani, Appl. Phys. Express 9, 031601 (2016).]

    Diameter: 2 nm

    For rough estimation, cubic close-packed structure was assumed.

    4.48 nm

    3.17 nm

    1.17 nm

    Volume ratio

    NP conc.: 0.0445 nm-3Data from XRD

    ZrO2:MAA = 19:81

  • Radiation chemistry – pulse radiolysis

    0.00

    0.05

    0.10

    0.15

    0.20

    300 500 700 900Wavelength (nm)

    Opt

    ical

    den

    sity

    (arb

    . uni

    t)

    Fig. Transient absorption spectra, obtained in the pulse radiolysis of metal resist solution in PEGMEA. [Courtesy from Dr. K. Okamoto of Hokkaido University]

    Immediately after EB pulse

    50 ns

    150 ns

    300 ns

    The details are under investigation.

    Ultrashort EB pulse

    White light for spectroscopy

    Time-resolved spectroscopy

    Metal resist solution in PEGMEA

    Related information – pulse radiolysis in water

    e-hyd + CH2C(CH3)COOH →e-hyd + CH2C(CH3)COO- →

    Reduction2.8 x 1010 M-1s-13.0 x 109, 4.5 x 109 M-1s-1

    Rate constantE. Hayon et al.

    P.N. Moorthy et al., Radiat. Eff. 10,

    129 (1971), E. Hayon et al.

    Reference

    OH. + CH2C(CH3)COO- →Oxidation

    1.6 x 1010 M-1s-1 P. Maruthamuthu, Makromol. Chem., Rapid Commun. 1: 23-5 (1980)

  • Inelastic mean free path (IMFP)Table. Calculated IMFPs (Å) as a function of electron energy for 27 elements. [S. Tanuma et al., Surf. Interface Anal. 17, 911 (1991)]

    Electron energy

    (eV)C

    a Mg Al Si Ti V Cr

    50 5.9 4.0 3.2 4.1 4.5 4.2 4.4

    100 6.4 5.4 4.2 5.3 5.1 4.9 4.3

    Electron energy

    (eV)Fe Ni Cu Y Zr Hb Mo

    50 4.3 4.9 5.0 5.0 4.4 6.0 5.1

    100 4.4 4.6 5.0 5.5 4.8 6.0 4.5

    Electron energy

    (eV)Ru Rh Pd Ag Hf Ta W

    50 4.9 4.8 4.8 6.2 5.8 4.8 5.0

    100 4.2 4.1 4.8 4.9 6.2 4.5 4.1

    Electron energy

    (eV)Re Os Ir Pt Au Bi

    50 5.2 5.5 5.3 5.0 6.7 4.9

    100 3.8 4.3 4.3 4.2 4.8 5.5

    Table. Inelastic mean free paths (Å) as a function of energy for 14 organic compounds. [S. Tanuma et al., Surf. Interface Anal. 21, 165 (1993)]

    Electron energy

    (eV)26-n -Paraffin Adenine β-Carotene BPA DNA

    Diphenyl-

    hexatrieneGuanine

    50 7.0 6.4 6.4 7.3 7.3 6.4 6.2

    100 7.6 6.6 7.0 7.2 7.3 7.0 6.2

    Electron energy

    (eV)Kapton

    Poly-

    acetylene

    Poly(butene-

    1-sulfone)Poly-ethylene PMMA Poly-styrene

    Poly(2-

    vinylpyridine)

    50 7.0 5.3 7.1 6.9 7.8 6.9 6.9

    100 6.8 5.7 7.2 7.2 7.9 7.3 7.3

  • Patterning – line-and-space patterns32 30 28 26 24 22 20 18 17 16 15 14 13

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    Half-pitch (nm)

    Expo

    sure

    dos

    e (m

    J cm

    -2)

  • Rough estimation of hole-electron pair yield

    4.48 nm

    0.58 nm

    ZrO2

    MAA

    MAA

    Exposure dose: 10 mJ cm-2

    1.8

    1.4

    0.6

    1 nm

    Closest MAA shell

    Assuming that holes and electrons generated in zirconia nanoparticles can oxidize and reduce MAA, the maximum number of decomposable MAA molecules in the closest shell was estimated. The radical chain reaction is not taken into account at this stage of investigation.

  • Distribution of decomposable MAA in the closest MAA shell

    0

    2

    4

    6

    8

    10

    12

    -32 -16 0 16 32

    Fig. Distribution of maximum value of the number of decomposable MAA in the closest MAA shell.

    Distance (nm)

    Num

    ber o

    f MA

    A m

    olec

    ules

    0

    2

    4

    6

    8

    10

    12

    -32 -16 0 16 32Distance (nm)

    Num

    ber o

    f MA

    A m

    olec

    ules

    17 mJ cm-2

    12 mJ cm-2

    7 mJ cm-2

    17 mJ cm-2

    12 mJ cm-2

    7 mJ cm-2

    13 n

    m h

    alf-

    pitc

    h

    32 n

    m h

    alf-

    pitc

    hThe number of destroyed MAA ligands required for insolubilization is considered to be approximately 4 or less.

  • Distribution of decomposable MAA in the closest MAA shell

    0

    2

    4

    6

    8

    10

    12

    -32 -16 0 16 32

    Fig. Distribution of maximum value of the number of decomposable MAA in the closest MAA shell.

    Distance (nm)

    Num

    ber o

    f MA

    A m

    olec

    ules

    0

    2

    4

    6

    8

    10

    12

    -32 -16 0 16 32Distance (nm)

    Num

    ber o

    f MA

    A m

    olec

    ules

    17 mJ cm-2

    12 mJ cm-2

    7 mJ cm-2

    17 mJ cm-2

    12 mJ cm-2

    7 mJ cm-2

    13 n

    m h

    alf-

    pitc

    h

    32 n

    m h

    alf-

    pitc

    h

    Corresponding acid yield in typical CAR

  • Distribution of decomposable MAA in the closest MAA shell

    0

    2

    4

    6

    8

    10

    12

    -32 -16 0 16 32

    Fig. Distribution of maximum value of the number of decomposable MAA in the closest MAA shell.

    Distance (nm)

    Num

    ber o

    f MA

    A m

    olec

    ules

    0

    2

    4

    6

    8

    10

    12

    -32 -16 0 16 32Distance (nm)

    Num

    ber o

    f MA

    A m

    olec

    ules

    17 mJ cm-2

    12 mJ cm-2

    7 mJ cm-2

    17 mJ cm-2

    12 mJ cm-2

    7 mJ cm-2

    13 n

    m h

    alf-

    pitc

    h

    32 n

    m h

    alf-

    pitc

    h

    Corresponding deprotected unit yield in typical CAR

  • Summary

    ○ The distribution of the maximum value of the numberof decomposable MAA molecules in the closest MAAshell was roughly estimated on the basis of radiation-material interaction and radiation chemistry.

    ○ A simulation code strictly based on the reactionmechanism of metal resist is under construction forobtaining the material design.

    This work was partially supported by Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO).

    Acknowledgement