40
1 Analysis of left ventricular mass, volume indices and ejection fraction from SSFP cine imaging: a comparison of semi-automated, simplified manual, detailed manual and geometric modelling techniques Christopher A Miller 1,2,4 *, Peter Jordan 1 , Alex Borg 1 , Rachel Argyle 1 , David Clark 3 , Keith Pearce 1 and Matthias Schmitt 1,4 1. Division of Cardiology and Cardiothoracic Surgery, University Hospital of South Manchester, Wythenshawe, Manchester M23 9LT, UK 2. Cardiovascular Research Group, The University of Manchester, Oxford Road, Manchester M13 9PL, UK 3. Alliance Medical, Wythenshawe CMR Unit, Wythenshawe, Manchester M23 9LT, UK 4. Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK *Corresponding author Email addresses: CAM: [email protected] PJ: [email protected] AB: [email protected] RA: [email protected] DC: [email protected] KP: [email protected] MS: [email protected]

Analysis of left ventricular mass, volume indices and

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of left ventricular mass, volume indices and

1  

Analysis of left ventricular mass, volume indices and ejection fraction from

SSFP cine imaging: a comparison of semi-automated, simplified manual,

detailed manual and geometric modelling techniques

 

Christopher A Miller1,2,4*, Peter Jordan1, Alex Borg1, Rachel Argyle1, David Clark3,

Keith Pearce1 and Matthias Schmitt1,4

1. Division of Cardiology and Cardiothoracic Surgery, University Hospital of South

Manchester, Wythenshawe, Manchester M23 9LT, UK

2. Cardiovascular Research Group, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK

3. Alliance Medical, Wythenshawe CMR Unit, Wythenshawe, Manchester M23 9LT,

UK

4. Biomedical Imaging Institute, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK

*Corresponding author

Email addresses:

CAM: [email protected]

PJ: [email protected]

AB: [email protected]

RA: [email protected]

DC: [email protected]

KP: [email protected]

MS: [email protected]

Page 2: Analysis of left ventricular mass, volume indices and

2  

Abstract

Background:  Cardiovascular  magnetic  resonance  (CMR)  is  considered  the  gold  standard  for  

assessment  of  left  ventricular  (LV)  mass,  volume  indices  and  ejection  fraction  (EF)  however  

variability  exists  due  to  LV  base  positioning,  end-­‐systolic  frame  identification  and  method  of  

endocardial  contouring.  The  aims  of  this  study  were  first  to  compare  3  commonly  used  

analysis  techniques;  assessing  mass,  volume  indices  and  EF  obtained  with  each  and  their  

reproducibility,  and  second  to  assess  the  performance  of  6  LV  geometric  models.  

 

Methods:  Steady-­‐state  free  precession  images  from  50  consecutive  patients  were  analysed  

with  3  techniques;  1.  Semi-­‐automated;  including  semi-­‐automated  LV  base  identification,  

end-­‐systolic  frame  selection  and  endocardial  contouring;  2.  Simplified  manual;  including  

manual  basal  LV  slice  identification,  end-­‐systolic  frame  selection  and  simplified  endocardial  

contouring  (papillary  muscles  and  trabeculae  included  in  volumetric  measurements);  3.  

Detailed  manual;  identical  to  ‘Simplified  manual’  except  with  manual  detailed  endocardial  

contouring  (papillary  muscles  and  trabeculae  included  in  mass);  and  6  geometric  models;  

Teicholz,  modified  Simpson’s,  hemi-­‐ellipse,  monoplane,  biplane  and  triplane.  Bland-­‐Altman  

analysis  and  Wilcoxon  rank  testing  were  used  to  evaluate  the  level  of  agreement  between  

each  method  and  the  significance  of  mean  differences  respectively.  Interobserver  and  

intraobserver  reproducibility  were  assessed  by  re-­‐analysis  of  25  (50%)  scans.  

 

Results:  The  3  analysis  methods  were  not  interchangeable.  Simplified  manual  analysis  

significantly  overestimated  volumes  and  underestimated  EF  (EF  underestimated  by  6+4%  

compared  to  detailed  manual  analysis,  p<0.0005).  Both  manual  techniques  significantly  

underestimated  mass  compared  to  semi-­‐automated  analysis  (simplified  manual  analysis  

43+20g;  detailed  manual  analysis  34+19g;  p<0.0005  for  both).  Semi-­‐automated  LV  base  

Page 3: Analysis of left ventricular mass, volume indices and

3  

position  and  end-­‐systolic  frame  selection  were  significantly  different  from  manual  

techniques.  Semi-­‐automated  analysis  showed  significantly  higher  reproducibility  than  both  

manual  techniques  for  measurement  of  EF  and  mass.  Geometric  models  were  not  

interchangeable  with  conventional  analysis  and  their  reproducibility  was  low.  

 

Conclusions: Methods  for  measuring  LV  mass,  volume  and  EF  are  not  interchangeable  and  

normal  reference  ranges  appropriate  to  analysis  technique  must  be  used.  A  technique  that  

includes  semi-­‐automated  endocardial  contouring,  LV  base  identification  and  end-­‐systolic  

frame  selection  is  the  most  reproducible.  Analysis  of  CMR  images  with  geometric  models  

should  be  discouraged.  

Page 4: Analysis of left ventricular mass, volume indices and

4  

Background

 

Accurate  and  reproducible  assessment  of  left  ventricular  (LV)  mass,  volume  indices  and  

ejection  fraction  is  an  important  strength  of  cardiovascular  magnetic  resonance  imaging  

(CMR).  These  parameters  remain  some  of  the  most  evidenced-­‐based  indictors  of  prognosis,  

and  both  their  absolute  measurement  and  temporal  change  are  used  to  guide  

pharmacological,  device  and  surgical  intervention  [1-­‐5].    

 

Although  CMR  is  the  gold  standard  technique  for  assessment  of  LV  mass,  volume  and  EF,  a  

number  of  factors  lead  to  variability  in  image  analysis.  First,  many  institutions  use  only  short-­‐

axis  images  for  analysis  despite  it  often  being  difficult  to  determine  the  basal  LV  slice,  and  

how  much  of  it  to  include,  from  short-­‐axis  images  alone.  Arbitrary  criteria  are  widely  used,  

such  as  inclusion  of  a  slice  within  the  LV  when  at  least  50%  or  75%  of  the  cavity  is  

surrounded  by  myocardium  (Figure  1)  [6-­‐8].  Alternatively  if  a  slice  is  thought  to  include  both  

ventricular  and  atrial  myocardium,  others  advocate  tracing  up  to  the  apparent  junction  of  

atrium  and  ventricle  before  joining  up  the  contours  with  a  straight  or  curved  line  through  

the  blood  pool,  creating  a  semi-­‐circle  or  crescent-­‐shaped  ‘cavity’  [9].  Second,  it  is  standard  

practice  in  many  centres  to  perform  simplified  endocardial  contouring  whereby  only  the  

‘compacted’  endocardial  border  is  traced  (Figure  2)  [10,  11].  As  a  result,  papillary  muscles  

and  trabeculae  are  included  in  cavity  volumes  rather  than  within  mass.  Third,  end-­‐systolic  

frame  selection  is  usually  performed  manually  by  visually  identifying  the  frame  with  the  

smallest  cavity  [6].  However  often  this  is  not  uniform  across  short-­‐axis  slices,  particularly  in  

dyssynchronous  ventricles  (Figure  3).  

 

This  study  had  two  objectives.  First,  we  sought  to  compare  mass,  volume  indices  and  EF  

obtained  using  3  commonly  used  analysis  techniques,  and  the  reproducibility  of  each  

Page 5: Analysis of left ventricular mass, volume indices and

5  

method,  in  a  prospective  cohort  reflective  of  ‘real-­‐world’  CMR  practice.  The  3  techniques  

assessed  were:  

1.  Semi-­‐automated  analysis;  including  semi-­‐automated  LV  base  identification,  end-­‐systolic  

frame  selection  and  endocardial  contouring;  

2.  Simplified  manual  analysis;  including  manual  basal  LV  slice  identification,  end-­‐systolic  

frame  selection  and  simplified  endocardial  contouring;  

3.  Detailed  manual  analysis;  identical  to  simplified  manual  analysis  except  with  manual  

detailed  endocardial  contouring  (Figures  1-­‐3).    

 

We  hypothesised  that  the  3  techniques  would  yield  different  LV  mass,  volume  and  EF  values  

and  that  the  techniques  would  differ  in  their  reproducibility.    

 

Second,  we  sought  to  compare  volumes  and  EF  obtained  with  6  LV  geometric  modelling  

techniques  (Figure  4,  5),  and  the  reproducibility  of  each  model,  with  the  most  reproducible  

of  the  3  methods  described  above.    

 

One  of  the  advantages  of  CMR  is  that  it  can  image  the  LV  in  its  entirety  so  that  no  geometric  

assumptions  need  to  be  made.  Nevertheless,  a  number  of  LV  geometric  approximation  

models  have  been  validated,  are  widely  used  by  other  imaging  modalities,  are  advocated  for  

analysing  CMR  images  and  are  incorporated  into  state-­‐of-­‐the-­‐art  CMR  analysis  software  

packages  [8,  12-­‐16].  We  hypothesised  that  geometric  models  would  yield  different  LV  

volume  and  EF  values  to  ‘conventional’  analysis,  and  would  have  inferior  reproducibility.  

 

 

 

Page 6: Analysis of left ventricular mass, volume indices and

6  

Methods  

 

Patients  

The  study  was  conducted  according  to  the  Helsinki  Declaration.  Ethical  approval  for  the  

study  was  given  by  an  ethics  committee  of  the  UK  National  Research  Ethics  Service  

(reference  number  08/H1004/153)  and  written  informed  consent  was  obtained  from  all  

participants  before  entering  the  study.    

 

Fifty  consecutive  consenting  patients  undergoing  clinically-­‐indicated  CMR  scanning  at  a  

single  institution  (University  Hospital  of  South  Manchester)  were  enrolled.  Patients  were  

recruited  prospectively,  prior  to  undergoing  imaging.  The  only  exclusion  criterion  was  known  

complex  congenital  heart  disease.  In  order  to  reflect  real-­‐world  clinical  practice,  patients  

were  not  excluded  on  the  basis  of  arrhythmia  or  breath-­‐holding  ability.    

 

CMR  imaging  

All  patients  underwent  CMR  imaging  using  a  1.5  Tesla  scanner  (Avanto;  Siemens  Medical  

Imaging,  Erlangen,  Germany)  with  a  32-­‐element  phased-­‐array  coil.  Steady-­‐state  free  

precession  end-­‐expiratory  breath-­‐hold  cines  were  acquired  in  3  long-­‐axis  planes  (horizontal  

long-­‐axis,  horizontal  short-­‐axis  and  3-­‐chamber  long-­‐axis).  Subsequently,  contiguous  short-­‐

axis  cines  were  acquired  from  the  atrioventricular  ring  to  the  apex  (SA  stack).  Typical  

parameters  included  repetition  time  2.9ms,  echo  time  1.2ms,  flip  angle  80  degrees,  matrix  

256  x  208,  in  plane  pixel  size  1.4  x  1.4mm,  slice  thickness  8mm  (inter-­‐slice  gap  2mm  for  the  

SA  stack),  temporal  resolution  30-­‐50ms,  depending  on  heart  rate.  Retrospective  gating  was  

used  in  48  patients.  Prospective  gating  was  used  in  2  patients  due  to  arrhythmia.    

 

Image  analysis  

Page 7: Analysis of left ventricular mass, volume indices and

7  

LV  mass  and  volumetric  analysis  was  performed  on  each  scan  using  the  3  methods  described  

below.  Analysis  was  carried  out  by  a  Level  2  accredited  operator  with  over  3-­‐years  

experience  of  clinical  CMR  and  of  each  analysis  method.  

 

Semi-­‐automated  analysis  (Auto)  

Semi-­‐automated  analysis  was  performed  using  CMRtools  (Cardiovascular  Imaging  Solutions,  

London,  UK).  The  epicardial  border  was  manually  traced  at  end-­‐diastole  in  successive  short-­‐

axis  slices.  A  second  contour  was  placed  within  the  myocardium  on  the  short-­‐axis  slices  at  

end-­‐diastole  and  systole  allowing  the  signal  intensity  between  the  two  contours  (i.e.  the  

signal  intensity  of  myocardium)  to  be  automatically  determined.  Detailed,  semi-­‐automated  

tracing  of  the  endocardium  at  end-­‐diastole  and  end-­‐systole  was  then  performed  using  a  

signal  intensity  ‘thresholding’  tool,  such  that  papillary  muscles  and  trabeculae  were  included  

in  mass  and  excluded  from  volumetric  measurements  (Figure  2).  The  mitral  and  aortic  valve  

positions  at  end-­‐diastole  and  systole  were  manually  identified  on  the  3  long-­‐axis  images,  

allowing  the  valve  planes  to  be  tracked  through  the  cardiac  cycle.  This  was  integrated  into  

the  SA  stack  analysis  allowing  automated  identification  of  the  LV  base  and  outflow  tract  

(Figure  1).  Finally,  end-­‐systole  was  automatically  determined  as  being  the  frame  with  the  

smallest  cavity  volume,  by  calculating  cavity  volume  at  each  frame  (Figure  3).    

 

Simplified  manual  analysis  (SimpMan)  

Simplified  manual  analysis  was  performed  using  Argus  Syngo  MR  software  (Siemens  Medical  

Imaging,  Erlangen,  Germany).  The  epicardial  border  was  manually  traced  at  end-­‐diastole  in  

successive  short-­‐axis  slices.  The  ‘compacted’  endocardial  border  was  traced  on  the  short-­‐

axis  slices  at  end-­‐diastole  and  end-­‐systole  such  that  papillary  muscles  and  trabeculae  were  

included  in  volumetric  and  excluded  from  mass  measurements  (Figure  2).  At  the  base  of  the  

heart,  slices  were  considered  to  be  within  the  LV  at  end-­‐diastole  and  end-­‐systole  if  the  cavity  

Page 8: Analysis of left ventricular mass, volume indices and

8  

was  surrounded  by  50%  or  more  of  ventricular  myocardium.  If  the  basal  slice  contained  both  

ventricular  and  atrial  myocardium,  contours  were  drawn  up  to  the  junction  and  joined  by  a  

curved  line  through  the  blood  pool  (Figure  1).  The  end-­‐systolic  frame  was  manually  

identified  as  the  frame  in  which  the  LV  cavity  visually  appeared  smallest.  In  cases  where  

there  was  a  discrepancy  between  slices,  the  frame  in  which  the  more  basal  slices  had  the  

smallest  cavity  was  used  as  it  was  felt  this  would  more  closely  represent  the  smallest  cavity  

volume.  

 

Detailed  manual  analysis  (DetMan)  

Detailed  manual  analysis  was  identical  to  simplified  manual  analysis  except  that  detailed  

manual  tracing  of  the  endocardium  was  performed  such  that  papillary  muscles  and  

trabeculae  were  included  in  mass  and  excluded  from  volumetric  measurements  (Figure  2).  

 

The  data  from  each  technique  was  used  to  calculate  end-­‐diastolic  (EDV)  and  end-­‐systolic  

(ESV)  volumes,  from  which  stroke  volume  (SV)  and  EF  were  derived.  End-­‐diastolic  myocardial  

mass  was  determined  by  multiplying  myocardial  tissue  volume  at  end-­‐diastole  by  1.05  g/cm3  

(specific  density  of  myocardium).  Short  axis  slices  were  numbered  with  slice  1  being  the  

most  basal,  and  the  most  basal  slice  included  in  the  analysis  at  end-­‐diastole  and  end-­‐systole  

was  recorded  for  each  technique,  no  matter  how  little  of  the  slice  was  included.  End-­‐systolic  

frame  used  and  the  time  taken  for  analysis  was  also  recorded.  

 

Geometric  modelling  

LV  volumetric  analysis  was  performed  on  each  scan  using  6  geometric  models  (Figure  4,  5).  

Appropriate  contours  were  drawn  for  each  model  using  open-­‐source  OsiriX  Imaging  

Software.  EDV,  ESV  and  EF  were  calculated  using  an  OsiriX  software  plug-­‐in,  with  the  

exception  of  the  triplane  model  where  contours  were  drawn  using  OsiriX  but  calculations  

Page 9: Analysis of left ventricular mass, volume indices and

9  

were  performed  manually  as  no  appropriate  plug-­‐in  was  available.  Papillary  muscles  and  

trabeculae  were  included  in  volumetric  measurements.  Results  obtained  from  each  model  

were  compared  with  the  method  found  to  be  most  reproducible  of  the  3  described  above.  

LV  internal  diameter,  defined  as  the  distance  between  the  endocardial  border  of  the  septum  

and  the  inferolateral  wall  just  distal  to  the  mitral  valve  leaflet  tips  in  the  3-­‐chamber  long-­‐axis  

view,  was  measured  in  diastole  and  systole  and  compared  to  EDV  and  ESV  respectively.      

 

Reproducibility  

To  assess  interobserver  reproducibility,  25  randomly  selected  scans  (50%)  were  

independently  re-­‐analysed  by  a  second  experienced  observer  using  the  methods  described.  

To  assess  intraobserver  reproducibility,  25  scans  (50%)  were  re-­‐analysed  by  the  first  

observer  with  a  1-­‐month  temporal  separation  between  analyses.    

 

Statistics  

Values  are  expressed  as  mean  ±  standard  deviation  (SD)  unless  stated  otherwise.  Histogram  

plots  showed  the  data  to  be  non-­‐normally  distributed.  Agreement  between  each  method  

was  evaluated  using  Bland-­‐Altman  testing  by  calculating  mean  difference  (bias)  and  95%  

limits  of  agreement  (i.e.  mean  difference  +  2  SD).  The  significance  of  the  differences  

between  each  method  was  assessed  using  Wilcoxon  rank  testing.  Correlation  was  assessed  

using  Spearman’s  rank  correlation  coefficient  (whilst  it  is  recognised  that  assessment  of  

agreement  is  more  appropriate  than  correlation,  both  are  displayed  in  keeping  with  

convention).  Reproducibility  of  each  method  was  assessed  using  the  repeatability  co-­‐

efficient  (defined  as  1.96  x  √[sum  of  the  squares  of  the  differences  between  observer  

measurements  divided  by  n])  [17].  The  significance  of  the  differences  in  reproducibility  was  

assessed  using  a  Wilcoxon  rank  comparison  of  the  squared  differences  [18].  P-­‐values  <  0.05  

Page 10: Analysis of left ventricular mass, volume indices and

10  

were  considered  significant.  Statistical  analysis  was  performed  using  SPSS  Statistics  (version  

19,  IBM).    

 

 

Page 11: Analysis of left ventricular mass, volume indices and

11  

Results  

 

Patient  characteristics  and  scan  indications  were  representative  of  those  referred  for  CMR  at  

our  institution  (Table  1).  Patients  demonstrated  a  variety  of  cardiovascular  pathology  and  a  

wide  range  of  mass,  EDV,  ESV  and  EF  (Table  2).      

 

Comparison  of  semi-­‐automated,  detailed  manual  and  simplified  manual  analysis  

 

Volumetric,  EF  and  mass  measurement  

Compared  to  the  other  two  techniques,  simplified  manual  analysis  significantly  

overestimated  both  EDV  and  ESV,  but  ESV  to  a  greater  degree  (Table  2  and  3,  Figure  6).  As  a  

result,  this  method  significantly  underestimated  SV  and  EF  (mean  difference  in  EF  between  

semi-­‐automated  and  simplified  manual  analysis  7+5%,  and  between  detailed  manual  and  

simplified  manual  analysis  6+4%;  p<0.0005  for  both).  As  a  consequence,  6  patients  (12%)  

classified  as  having  a  normal  EF  by  the  semi-­‐automated  technique  (using  a  nominal  normal  

EF  cut-­‐off  of  >  55%)  were  classified  as  having  a  reduced  EF  by  the  simplified  manual  

technique.  Furthermore,  6  patients  (12%)  classified  as  having  mild  to  moderate  LV  

impairment  by  the  semi-­‐automated  technique  (EF  <  55%  but  >  35%)  were  classified  as  

having  severe  LV  impairment  (EF  <  35%)  by  the  simplified  manual  technique.  There  was  no  

significant  difference  between  semi-­‐automated  and  detailed  manual  analysis  for  EDV,  ESV,  

SV  and  EF,  but  the  95%  limits  of  agreement  were  wide  for  each  parameter  suggesting  these  

methods  were  not  interchangeable  (Table  2  and  3).      

 

Whilst  the  simplified  manual  technique  significantly  underestimated  mass  compared  with  

the  detailed  manual  technique,  both  underestimated  mass  compared  with  the  semi-­‐

automated  method  (mean  difference  between  semi-­‐automated  and  simplified  manual  

Page 12: Analysis of left ventricular mass, volume indices and

12  

analysis  was  43+20g;  between  semi-­‐automated  and  detailed  manual  analysis  was  34+19g;  

p<0.0005  for  both).  

 

Basal  slice  selection,  end-­‐systolic  frame  selection  and  analysis  time    

Semi-­‐automated  analysis  determined  the  base  of  the  LV  to  be  ‘more  basal’  than  manual  

analysis  at  both  end-­‐diastole  and  end-­‐systole.  The  most  basal  short-­‐axis  slice  included  in  the  

semi-­‐automated  and  manual  analyses  at  end-­‐diastole  was  1.4+0.5  and  2.0+0.6  respectively  

(where  short-­‐axis  slice  number  1  is  the  most  basal)  and  at  end-­‐systole  was  2.1+0.6  and  

3.0+0.7  respectively  (p<0.0005  for  both).    

 

The  frame  used  as  end-­‐systole  was  also  significantly  different  between  the  semi-­‐automated  

and  manual  techniques  (frame  number  10.2+1.5  versus  9.9+1.5  respectively;  p=0.003).  

However,  in  the  21  patients  where  there  was  a  difference  in  end-­‐systolic  frame  selection,  

mean  difference  in  ESV  was  only  2+1mls.  

 

Time  taken  for  the  simplified  manual  (7.0+1  minutes)  and  semi-­‐automated  (7.5+1  minutes)  

analyses  were  both  significantly  shorter  than  for  detailed  manual  analysis  (11.0+2  minutes;  

p<0.0005  for  both).  There  was  no  significant  difference  between  simplified  manual  and  

semi-­‐automated  analysis  time.  

 

Reproducibility  (Figure  7)  

Semi-­‐automated  analysis  had  higher  interobserver  and  intraobserver  reproducibility  than  

both  manual  techniques  for  measurement  of  EF  (interobserver;  p<0.0005  compared  to  

simplified  manual  technique  and  p=0.001  compared  to  detailed  manual  technique;  

intraobserver;  p=0.04  compared  to  both  manual  techniques)  but  there  was  no  difference  in  

reproducibility  between  the  two  manual  techniques  for  measurement  of  EF.  Both  the  semi-­‐

Page 13: Analysis of left ventricular mass, volume indices and

13  

automated  and  detailed  manual  techniques  were  significantly  more  reproducible  than  

simplified  manual  analysis  for  measurement  of  EDV  and  ESV.  However  there  was  no  

difference  in  reproducibility  between  the  semi-­‐automated  and  detailed  manual  techniques  

for  EDV  and  ESV  measurements.  Semi-­‐automated  analysis  had  higher  interobserver  

reproducibility  than  both  manual  techniques  for  measurement  of  mass  (p=0.02  compared  to  

simplified  manual  technique  and  p<0.0005  compared  to  detailed  manual  technique)  

although  intraobserver  reproducibility  was  not  significantly  different.  

 

Comparison  of  geometric  modelling  with  semi-­‐automated  analysis    

 

Geometric  models  were  compared  with  the  semi-­‐automated  analysis  technique.  EDV,  ESV  

and  EF  varied  substantially  between  geometric  models  (Table  4).  The  biplane  model  was  the  

most  accurate  compared  with  the  semi-­‐automated  technique,  with  no  significant  difference  

in  EDV,  ESV  and  EF,  although  limits  of  agreement  were  wide  for  each  parameter  (Table  5).  

For  the  majority  of  the  other  models,  volume  and  EF  measurements  were  significantly  

different  from  the  semi-­‐automated  technique,  with  very  wide  limits  of  agreement.  There  

was  a  moderate  correlation  between  LV  internal  diameter  in  diastole  and  EDV  (RS  0.65)  and  a  

good  correlation  between  LV  internal  diameter  in  systole  and  ESV  (RS  0.83).    

 

Interobserver  and  intraobserver  reproducibility  for  measurement  of  EF  was  low  for  all  

models  and  was  significantly  lower  than  that  of  the  semi-­‐automated  technique  (Figure  8).  

Reproducibility  of  EDV  and  ESV  measurements  was  variable.  Interobserver  reproducibility  

for  measurement  of  EDV  using  the  Teicholz,  triplane,  modified  Simpson’s  and  biplane  

models  was  not  significantly  different  to  that  of  the  semi-­‐automated  technique.  However  all  

models  had  significantly  lower  interobserver  reproducibility  than  the  semi-­‐automated  

technique  for  measurement  of  ESV.  All  models  also  had  statistically  lower  intraobserver  

Page 14: Analysis of left ventricular mass, volume indices and

14  

reproducibility  for  measurement  of  EDV  and  ESV  than  the  semi-­‐automated  technique.

Page 15: Analysis of left ventricular mass, volume indices and

15  

Discussion  

 

This  study  compared  3  commonly  used  techniques  for  measuring  LV  mass,  volume  and  EF  

from  CMR  SSFP  cine  images.  We  found  that  analysis  methods  were  not  interchangeable  and  

the  reproducibility  of  the  methods  differed  significantly.  We  also  assessed  6  LV  geometric  

models  and  found  that  the  majority  yielded  significantly  different  volume  and  EF  values  

compared  to  ‘conventional’  analysis  and  all  had  statistically  inferior  reproducibility  for  

measurement  of  EF.  

 

Recruitment  was  prospective  and  consecutive,  without  exclusion  on  grounds  of  arrhythmia  

or  breath-­‐holding  ability  and  prospective  gating  was  required  in  4%.  Patients  exhibited  a  

wide  range  of  EF,  volumes  and  mass  and  a  variety  of  pathology.  It  is  therefore  felt  that  the  

study  is  representative  of  clinical  CMR  practice.    

 

Whilst  there  were  no  mean  differences  between  the  semi-­‐automated  and  detailed  manual  

techniques  for  measurement  of  EDV,  ESV  and  EF,  limits  of  agreement  were  wide  suggesting  

they  were  not  interchangeable.  As  expected,  simplified  endocardial  contouring,  where  

papillary  muscles  and  trabeculae  are  included  within  volumes  and  excluded  from  mass,  led  

to  an  overestimation  of  volumes  compared  to  detailed  contouring.  However  in  keeping  with  

other  studies,  ESV  was  overestimated  to  a  greater  degree  (EDV  overestimated  by  5%,  ESV  by  

19%)  [19,  20].  Consequently  simplified  contouring  led  to  significant  underestimation  of  EF.  

The  degree  of  EF  underestimation  in  this  study  (6%  difference  between  detailed  and  

simplified  manual  contouring)  is  larger  than  that  found  by  Weinsaft  et  al  [20]  (3%)  although  

the  current  study  includes  patients  with  a  wider  range  of  volumes  and  EF.  In  a  study  

assessing  the  impact  of  simplified  versus  detailed  tracing  of  trabeculae  alone,  Papavassiliu  et  

al  [19]  found  the  simplified  technique  underestimated  EF  by  2%  (papillary  muscles  were  

Page 16: Analysis of left ventricular mass, volume indices and

16  

included  within  mass  measurements  in  all  subjects).  The  greater  underestimation  of  ESV  

relative  to  EDV  by  the  simplified  technique  may  result  from  it  being  more  difficult  to  

differentiate  the  ‘compacted’  endocardial  border  from  papillary  muscles  and  trabeculae  at  

end-­‐systole.    

 

The  technique  of  simplified  endocardial  contouring  is  widely  practiced  [10,  11],  despite  

detailed  contouring  (manual  or  semi-­‐automated)  having  been  used  to  establish  normal  

reference  ranges  for  SSFP  imaging  [6,  9,  21]  and  the  greater  accuracy  of  detailed  contouring  

in  ex-­‐vivo  validatory  studies  [22,  23].  In  this  study  the  use  of  simplified  contouring  had  

potential  clinical  implications,  with  nearly  a  quarter  of  patients  being  assigned  to  a  different  

EF  ‘category’  compared  to  detailed  contouring  (i.e.  abnormal  EF  rather  than  normal,  or  

severely  impaired  EF  rather  than  mild-­‐moderately  impaired),  thus  highlighting  the  

importance  of  using  reference  ranges  appropriate  to  the  analysis  method  used.    

 

It  appears  that  the  method  of  endocardial  contouring  has  a  greater  impact  on  volumes  and  

EF  than  manual  versus  semi-­‐automated  LV  base  positioning  and  end-­‐systolic  frame  

selection.  Detailed  manual  and  semi-­‐automated  techniques  had  comparable  endocardial  

contouring  but  significant  differences  in  end-­‐diastolic  and  end-­‐systolic  LV  base  positioning  

and  end-­‐systolic  frame  identification.  However  despite  these  discrepancies,  there  were  no  

differences  in  volume  and  EF  measurements.  Conversely,  there  was  no  difference  in  LV  base  

positioning  and  end-­‐systolic  frame  identification  between  the  simplified  and  detailed  

manual  endocardial  contouring  techniques,  but  volume  and  EF  measurements  were  

significantly  different.  

 

Simplified  manual  endocardial  contouring  led  to  an  underestimation  of  mass  compared  to  

detailed  manual  contouring,  although  to  a  lesser  degree  than  in  the  study  by  Weinsaft  et  al  

Page 17: Analysis of left ventricular mass, volume indices and

17  

[20].  The  detailed  manual  technique  also  significantly  underestimated  mass  compared  with  

the  semi-­‐automated  method,  with  a  mean  difference  of  34g.  This  large  difference  appears  to  

be  in  accordance  with  the  difference  seen  between  studies  by  Maceira  et  al  [21]  and  

Hudsmith  at  al  [6]  that  defined  normal  values  for  LV  mass  (and  volumes  and  EF)  using  

different  analysis  techniques.  Using  the  semi-­‐automated  method,  Maceira  et  al  found  mean  

myocardial  mass  to  be  156g  in  healthy  males  and  128g  in  healthy  females  but  using  the  

detailed  manual  technique,  Hudsmith  et  al  found  mean  mass  to  be  123g  and  96g  in  healthy  

males  and  females  respectively.  The  reason  for  this  substantial  difference  between  

techniques  is  not  clear,  particularly  because  there  were  no  discernable  differences  in  

epicardial  contouring  in  the  current  study.  It  is  possible  however  that  the  difference  in  LV  

base  positioning  has  a  large  effect  on  mass  measurements.  This  finding  further  highlights  the  

importance  of  using  normal  reference  ranges  appropriate  to  analysis  method  used.  

 

The  semi-­‐automated  technique  was  the  most  reproducible  for  measurement  of  EF  and  

mass.  With  automatically  determined  end-­‐systole,  straightforward  identification  of  the  

mitral  valve  plane  from  long-­‐axis  images  (and  hence  LV  base)  and  semi-­‐automatic  

endocardial  border  tracing,  the  main  observer  variability  for  the  semi-­‐automated  technique  

stems  from  the  manual  epicardial  contouring  (which  only  affects  mass)  and  the  level  of  the  

‘thresholding’.  In  comparison,  manual  analysis  requires  much  greater  manual  input  

(including  manual  endocardial  and  epicardial  tracing,  manual  identification  of  the  LV  base  

from  short  axis  images  alone  and  manual  identification  of  end-­‐systole),  explaining  the  

inferior  reproducibility.  These  significant  differences  in  reproducibility  between  techniques  

are  important  for  patient  follow-­‐up  and  for  research  study  sample  sizes  [24].  

 

Detailed  manual  endocardial  contouring  was  significantly  more  reproducible  than  simplified  

manual  contouring  for  measuring  EDV  and  ESV,  possibly  because  the  ‘compacted’  

Page 18: Analysis of left ventricular mass, volume indices and

18  

endocardial  border  was  more  difficult  to  identify,  however  there  was  no  difference  in  EF  

reproducibility.  Papavassiliu  et  al  [19]  found  no  significant  differences  in  EDV,  ESV  or  EF  

reproducibility  although  only  detailed  versus  simplified  tracing  of  trabeculae  was  assessed  

(papillary  muscles  were  included  within  mass  measurements  in  all  subjects).  Compared  with  

other  parameters,  measurement  of  mass  showed  greatest  variability  for  all  techniques,  in  

keeping  with  other  studies  [24].  

 

Geometric  models  are  frequently  used  in  echocardiography  and  have  been  advocated  as  a  

time-­‐saving  alternate  to  conventional  CMR  image  analysis  [16].  Mean  difference  and  levels  

of  agreement  between  each  model  and  ‘conventional’  analysis  in  this  study  are  similar  to  

the  findings  of  Thiele  et  al  [12]  although  somewhat  surprisingly,  the  biplane  rather  than  the  

triplane  model  showed  highest  EF  agreement  here.  Nevertheless,  limits  of  agreement  were  

wide  for  all  models  suggesting  modelling  and  ‘conventional’  analysis  were  not  

interchangeable.  Furthermore,  reproducibility  of  EF  for  all  models  was  too  low  for  clinical  or  

research  utility,  with  repeatability  co-­‐efficients  of  13%  or  greater.  It  is  suggested  that  

geometric  models  devalue  CMR  and  their  use  should  be  discouraged.  

 

Study  limitations  

 

The  main  limitation  of  this  study  is  that  no  comparison  is  made  to  an  externally  validated  

gold  standard,  so  accuracy  of  analysis  techniques  cannot  be  assessed.  Nevertheless,  the  

study  aimed  to  compare  mass,  volume  and  EF  values  obtained  by  each  technique  and  their  

reproducibility,  which  has  been  possible.  In  addition,  interobserver  and  intraobserver  

reproducibility  have  been  assessed,  but  not  inter-­‐study  reproducibility.  It  is  likely  that  inter-­‐

study  reproducibility  would  be  lower  than  the  reproducibility  demonstrated  here  but  we  

hypothesis  that  the  semi-­‐automated  technique  would  remain  the  most  reproducible.    

Page 19: Analysis of left ventricular mass, volume indices and

19  

 

 

Conclusions  

 

Despite  advances  in  all  cardiac  imaging  modalities,  the  accuracy  and  reproducibility  of  CMR  

for  assessing  LV  mass,  volume  indices  and  EF  remains  unrivalled.  However  this  status  will  

only  be  upheld  if  image  analysis  is  performed  to  a  high  standard  and  in  a  consistent  manner.  

Methods  for  measuring  these  parameters  are  not  interchangeable  and  normal  reference  

ranges  appropriate  to  analysis  technique  must  be  used.  A  technique  that  includes  semi-­‐

automated  endocardial  contouring,  LV  base  identification  and  end-­‐systolic  frame  selection  

was  found  to  be  the  most  reproducible  and  these  features  should  be  part  of  all  analysis  

software.  Use  of  geometric  models  for  analysing  CMR  images  should  be  discouraged.    

 

 

Competing  interests  

 

The  authors  declare  that  they  have  no  competing  interests.  

 

 

Authors'  contributions  

 

MS  and  CAM  conceived  the  study.  CAM,  MS,  KP  and  DC  helped  plan  and  design  the  study.  

CAM,  PJ,  AB,  RA,  DC,  and  KP  collected  the  data.  CAM  analysed  the  data.  CAM  wrote  the  

preliminary  draft  of  the  manuscript  and  all  authors  supplied  comments  and  corrections.  All  

authors  read  and  approved  the  final  manuscript.  CAM  and  MS  are  the  guarantors.  

 

Page 20: Analysis of left ventricular mass, volume indices and

20  

 

Acknowledgements  

 

Dr  Miller  was  supported  by  a  Doctoral  Research  Fellowship  from  the  National  Institute  for  

Health  Research,  UK.  Dr  Schmitt  was  supported  by  Greater  Manchester  Comprehensive  

Local  Research  Network  funding.  

Page 21: Analysis of left ventricular mass, volume indices and

21  

References  

 

1.   Ghali  JK,  Liao  Y,  Simmons  B,  Castaner  A,  Cao  G,  Cooper  RS:  The  prognostic  role  of  

left  ventricular  hypertrophy  in  patients  with  or  without  coronary  artery  disease.  

Ann  Intern  Med  1992,  117:831-­‐836.  

2.   White  HD,  Norris  RM,  Brown  MA,  Brandt  PW,  Whitlock  RM,  Wild  CJ:  Left  ventricular  

end-­‐systolic  volume  as  the  major  determinant  of  survival  after  recovery  from  

myocardial  infarction.  Circulation  1987,  76:44-­‐51.  

3.   Pfeffer  MA,  Braunwald  E,  Moye  LA,  Basta  L,  Brown  EJ,  Jr.,  Cuddy  TE,  Davis  BR,  

Geltman  EM,  Goldman  S,  Flaker  GC,  et  al.:  Effect  of  captopril  on  mortality  and  

morbidity  in  patients  with  left  ventricular  dysfunction  after  myocardial  infarction.  

Results  of  the  survival  and  ventricular  enlargement  trial.  The  SAVE  Investigators.  N  

Engl  J  Med  1992,  327:669-­‐677.  

4.   Bardy  GH,  Lee  KL,  Mark  DB,  Poole  JE,  Packer  DL,  Boineau  R,  Domanski  M,  Troutman  

C,  Anderson  J,  Johnson  G,  et  al:  Amiodarone  or  an  implantable  cardioverter-­‐

defibrillator  for  congestive  heart  failure.  N  Engl  J  Med  2005,  352:225-­‐237.  

5.   Hwang  MH,  Hammermeister  KE,  Oprian  C,  Henderson  W,  Bousvaros  G,  Wong  M,  

Miller  DC,  Folland  E,  Sethi  G:  Preoperative  identification  of  patients  likely  to  have  

left  ventricular  dysfunction  after  aortic  valve  replacement.  Participants  in  the  

Veterans  Administration  Cooperative  Study  on  Valvular  Heart  Disease.  Circulation  

1989,  80:I65-­‐76.  

6.   Hudsmith  LE,  Petersen  SE,  Francis  JM,  Robson  MD,  Neubauer  S:  Normal  human  left  

and  right  ventricular  and  left  atrial  dimensions  using  steady  state  free  precession  

magnetic  resonance  imaging.  J  Cardiovasc  Magn  Reson  2005,  7:775-­‐782.  

Page 22: Analysis of left ventricular mass, volume indices and

22  

7.   Karamitsos  TD,  Hudsmith  LE,  Selvanayagam  JB,  Neubauer  S,  Francis  JM:  Operator  

induced  variability  in  left  ventricular  measurements  with  cardiovascular  magnetic  

resonance  is  improved  after  training.  J  Cardiovasc  Magn  Reson  2007,  9:777-­‐783.  

8.   Bloomer  TN,  Plein  S,  Radjenovic  A,  Higgins  DM,  Jones  TR,  Ridgway  JP,  Sivananthan  

MU:  Cine  MRI  using  steady  state  free  precession  in  the  radial  long  axis  orientation  

is  a  fast  accurate  method  for  obtaining  volumetric  data  of  the  left  ventricle.  J  

Magn  Reson  Imaging  2001,  14:685-­‐692.  

9.   Alfakih  K,  Plein  S,  Thiele  H,  Jones  T,  Ridgway  JP,  Sivananthan  MU:  Normal  human  

left  and  right  ventricular  dimensions  for  MRI  as  assessed  by  turbo  gradient  echo  

and  steady-­‐state  free  precession  imaging  sequences.  J  Magn  Reson  Imaging  2003,  

17:323-­‐329.  

10.   Natori  S,  Lai  S,  Finn  JP,  Gomes  AS,  Hundley  WG,  Jerosch-­‐Herold  M,  Pearson  G,  Sinha  

S,  Arai  A,  Lima  JA,  Bluemke  DA:  Cardiovascular  function  in  multi-­‐ethnic  study  of  

atherosclerosis:  normal  values  by  age,  sex,  and  ethnicity.  AJR  Am  J  Roentgenol  

2006,  186:S357-­‐365.  

11.   Salton  CJ,  Chuang  ML,  O'Donnell  CJ,  Kupka  MJ,  Larson  MG,  Kissinger  KV,  Edelman  

RR,  Levy  D,  Manning  WJ:  Gender  differences  and  normal  left  ventricular  anatomy  

in  an  adult  population  free  of  hypertension.  A  cardiovascular  magnetic  resonance  

study  of  the  Framingham  Heart  Study  Offspring  cohort.  J  Am  Coll  Cardiol  2002,  

39:1055-­‐1060.  

12.   Thiele  H,  Paetsch  I,  Schnackenburg  B,  Bornstedt  A,  Grebe  O,  Wellnhofer  E,  Schuler  G,  

Fleck  E,  Nagel  E:  Improved  accuracy  of  quantitative  assessment  of  left  ventricular  

volume  and  ejection  fraction  by  geometric  models  with  steady-­‐state  free  

precession.  J  Cardiovasc  Magn  Reson  2002,  4:327-­‐339.  

Page 23: Analysis of left ventricular mass, volume indices and

23  

13.   Dulce  MC,  Mostbeck  GH,  Friese  KK,  Caputo  GR,  Higgins  CB:  Quantification  of  the  left  

ventricular  volumes  and  function  with  cine  MR  imaging:  comparison  of  geometric  

models  with  three-­‐dimensional  data.  Radiology  1993,  188:371-­‐376.  

14.   Hergan  K,  Schuster  A,  Fruhwald  J,  Mair  M,  Burger  R,  Topker  M:  Comparison  of  left  

and  right  ventricular  volume  measurement  using  the  Simpson's  method  and  the  

area  length  method.  Eur  J  Radiol  2008,  65:270-­‐278.  

15.   Sievers  B,  Brandts  B,  Franken  U,  Trappe  HJ:  Single  and  biplane  TrueFISP  

cardiovascular  magnetic  resonance  for  rapid  evaluation  of  left  ventricular  volumes  

and  ejection  fraction.  J  Cardiovasc  Magn  Reson  2004,  6:593-­‐600.  

16.   Kwong  RY:  Cardiovascular  Magnetic  Resonance  Imaging  (Contemporary  Cardiology).  

1  edn:  Humana  Press;  2008.  

17.   Bland  JM,  Altman  DG:  Statistical  methods  for  assessing  agreement  between  two  

methods  of  clinical  measurement.  Lancet  1986,  1:307-­‐310.  

18.   Moon  JC,  Lorenz  CH,  Francis  JM,  Smith  GC,  Pennell  DJ:  Breath-­‐hold  FLASH  and  FISP  

cardiovascular  MR  imaging:  left  ventricular  volume  differences  and  reproducibility.  

Radiology  2002,  223:789-­‐797.  

19.   Papavassiliu  T,  Kuhl  HP,  Schroder  M,  Suselbeck  T,  Bondarenko  O,  Bohm  CK,  Beek  A,  

Hofman  MM,  van  Rossum  AC:  Effect  of  endocardial  trabeculae  on  left  ventricular  

measurements  and  measurement  reproducibility  at  cardiovascular  MR  imaging.  

Radiology  2005,  236:57-­‐64.  

20.   Weinsaft  JW,  Cham  MD,  Janik  M,  Min  JK,  Henschke  CI,  Yankelevitz  DF,  Devereux  RB:  

Left  ventricular  papillary  muscles  and  trabeculae  are  significant  determinants  of  

cardiac  MRI  volumetric  measurements:  effects  on  clinical  standards  in  patients  

with  advanced  systolic  dysfunction.  Int  J  Cardiol  2008,  126:359-­‐365.  

Page 24: Analysis of left ventricular mass, volume indices and

24  

21.   Maceira  AM,  Prasad  SK,  Khan  M,  Pennell  DJ:  Normalized  left  ventricular  systolic  and  

diastolic  function  by  steady  state  free  precession  cardiovascular  magnetic  

resonance.  J  Cardiovasc  Magn  Reson  2006,  8:417-­‐426.  

22.   Fieno  DS,  Jaffe  WC,  Simonetti  OP,  Judd  RM,  Finn  JP:  TrueFISP:  assessment  of  

accuracy  for  measurement  of  left  ventricular  mass  in  an  animal  model.  J  Magn  

Reson  Imaging  2002,  15:526-­‐531.  

23.   Francois  CJ,  Fieno  DS,  Shors  SM,  Finn  JP:  Left  ventricular  mass:  manual  and  

automatic  segmentation  of  true  FISP  and  FLASH  cine  MR  images  in  dogs  and  pigs.  

Radiology  2004,  230:389-­‐395.  

24.   Grothues  F,  Smith  GC,  Moon  JC,  Bellenger  NG,  Collins  P,  Klein  HU,  Pennell  DJ:  

Comparison  of  interstudy  reproducibility  of  cardiovascular  magnetic  resonance  

with  two-­‐dimensional  echocardiography  in  normal  subjects  and  in  patients  with  

heart  failure  or  left  ventricular  hypertrophy.  Am  J  Cardiol  2002,  90:29-­‐34.  

 

 

 

 

 

 

 

 

Page 25: Analysis of left ventricular mass, volume indices and

25  

Figure  legends  

 

Figure  1.  Basal  short-­‐axis  slice  selection.  A  and  B.  The  basal  LV  slice,  and  how  much  of  it  to  

include,  can  be  difficult  to  determine  from  short  axis  images  alone.  At  the  base  of  the  heart,  

slices  were  considered  to  be  within  the  LV  at  end-­‐diastole  (A)  and  end-­‐systole  (B)  if  the  

cavity  was  surrounded  by  50%  or  more  of  ventricular  myocardium.  If  the  basal  slice  

contained  both  ventricular  and  atrial  myocardium,  contours  were  drawn  up  to  the  junction  

and  joined  by  a  curved  line  through  the  blood  pool.  C  and  D.  With  the  semi-­‐automated  

analysis,  mitral  (and  aortic)  valve  positions  were  identified  at  end-­‐diastole  (C)  and  systole  (D)  

in  all  3  long-­‐axis  images  allowing  valve  planes  to  be  tracked  through  the  cardiac  cycle  (only  

horizontal  long-­‐axis  image  shown  for  illustration).  This  was  integrated  into  a  LV  mesh  

created  from  the  short-­‐axis  image  analysis  allowing  automated  three-­‐dimensional  

identification  of  the  LV  base  (and  outflow  tract)  at  end-­‐diastole  (E)  and  end-­‐systole  (F).  

 

Figure  2.  Endocardial  contouring.  A.  Simplified  manual  contouring;  the  ‘compacted’  

endocardial  border  is  traced  resulting  in  papillary  muscles  and  trabeculae  being  included  in  

volumetric  and  excluded  from  mass  measurements.  B.  Detailed  manual  contouring;  detailed  

tracing  of  the  endocardium  is  performed  manually  such  that  papillary  muscles  and  

trabeculae  are  included  in  mass  and  excluded  from  volumetric  measurements.  C.  Semi-­‐

automated  contouring;  a  signal  intensity  ‘thresholding’  tool  allows  detailed,  semi-­‐automated  

tracing  of  the  endocardial  border  based  on  the  signal  intensity  of  myocardium.  Papillary  

muscles  and  trabeculae  are  included  in  mass  and  excluded  from  volumetric  measurements.    

 

Figure  3.  End-­‐systolic  frame  selection.  Manual  end-­‐systolic  frame  selection  is  performed  

manually  by  visually  identifying  the  frame  with  the  smallest  cavity.  However  often  this  is  not  

uniform  across  short-­‐axis  slices,  as  in  this  example  where  basally  the  cavity  appears  smallest  

Page 26: Analysis of left ventricular mass, volume indices and

26  

in  frame  14  but  apically  it  appears  smallest  in  frame  10.  The  semi-­‐automated  analysis  

technique  automatically  determines  end-­‐systole  as  the  frame  with  the  smallest  cavity  

volume,  by  calculating  cavity  volume  at  each  frame,  which  in  this  example  is  frame  11.      

 

Figure  4.  Geometric  models  and  formulae  for  the  determination  of  LV  volume  (LVV).  All  

measurements  are  made  at  end-­‐diastole  and  end-­‐systole  to  give  EDV  and  ESV.  AM  =  short  

axis  area  at  the  level  of  the  base,  AP  =  short  axis  area  at  the  level  of  the  papillary  muscles,  AH  

=  long  axis  area  in  the  horizontal  plane,  AV=  long  axis  area  in  the  vertical  plane,  L  =  length  of  

the  LV,  D  =  short  axis  diameter  of  LV  measured  in  the  long  axis  plane  

 

Figure  5.  Biplane  model.  Example  of  one  of  the  geometric  models.  For  the  biplane  model  

the  endocardial  border  is  traced  in  the  horizontal  long  axis  (top  left  image)  and  vertical  long  

axis  images  at  end-­‐diastole  (pictured)  and  end-­‐systole.  These  areas  are  used  to  calculate  

end-­‐diastolic  and  end-­‐systolic  volumes  using  the  formula  given  in  Figure  4.  

 

Figure  6.  Bland  Altman  comparisons  of  each  analysis  technique  for  measurement  of  

volume  indices,  EF  and  mass.  Abbreviations  as  in  Table  2.  

 

Figure  7.  Interobserver  and  intraobserver  variability  of  each  analysis  technique  for  

measurement  of  volume  indices,  EF  and  mass.  Interobserver  and  intraobserver  variability  

(calculated  using  the  repeatability  co-­‐efficient)  is  highest  for  measurement  of  mass.  

Intraobserver  variability  is  less  marked  than  interobserver  variability,  as  would  be  expected.  

Abbreviations  as  in  Table  2.  

 

Page 27: Analysis of left ventricular mass, volume indices and

27  

Figure  8.  Interobserver  and  intraobserver  variability  of  each  geometric  model  for  

measurement  of  volume  indices  and  EF.  Interobserver  and  intraobserver  variability,  

calculated  using  the  repeatability  co-­‐efficient.  Abbreviations  as  in  Table  4.  

 

Page 28: Analysis of left ventricular mass, volume indices and

28  

Table  1.  Patient  characteristics,  scan  indications  and  main  findings.    

 

  Number  (%)  

n  =  50  

Age   61+13  (range  19-­‐84)  

Male   34  (76%)  

Arrhythmia  

Frequent  univentricular  ectopics  

Atrial  fibrillation  

Atrial  flutter  

5  (10%)  

2  

2  

1  

Scan  indication  

Myocardial  perfusion  assessment  

Viability  assessment*  

Valvular  assessment  

Aortic  assessment  

 

36  (72%)  

10  (20%)  

2  (4%)  

2  (4%)  

Main  scan  diagnosis  

Ischaemic  heart  disease  

Cardiomyopathy  

Normal  

Valvular  heart  disease  

Pericardial  disease  

Ascending  aortic  aneurysm  

Intra-­‐cardiac  mass  

 

20  (40%)  

11  (22%)  

10  (20%)  

4  (8%)  

2  (4%)  

2  (4%)  

1  (2%)  

 

*  includes  assessment  for  cardiomyopathy,  pericardial  disease,  intra-­‐cardiac  masses  and  

myocardial  viability.  

Page 29: Analysis of left ventricular mass, volume indices and

29  

Table  2.  Mean  +  SD  (range)  volumetric,  EF  and  mass  measurements  using  each  analysis  technique.    

 

  Auto   ManDet   ManSimp  

EDV  (mls)   170+54  (61-­‐328)   169+52  (69-­‐315)   177+53  (77-­‐324)  

ESV  (mls)   76+47  (23-­‐240)   78+50  (19-­‐245)   92+52  (24-­‐258)  

SV  (mls)   94+28  (13-­‐150)   92+30  (19-­‐154)   85+26  (21-­‐142)  

EF  (%)   57+16  (21-­‐81)   57+17  (20-­‐78)   50+15  (19-­‐72)  

Mass  (g)   140+39  (74-­‐233)   105+33  (52-­‐176)   96+29  (47-­‐158)  

 

Auto  –  semi-­‐automated  analysis,  ManDet  –  detailed  manual  analysis,  ManSimp  –  simplified  

manual  analysis.  EDV  –  end-­‐diastolic  volume,  ESV  –  end-­‐systolic  volume,  SV  –  stroke  volume,  

EF  –  ejection  fraction.  

 

 

 

Page 30: Analysis of left ventricular mass, volume indices and

30  

Table  3.  Comparison  of  volumetric,  EF  and  mass  measurements  using  each  analysis  technique.    

Mean  difference  (SD),  significance  of  the  difference,  Bland-­‐Altman  95%  limits  of  agreement  and  correlation  coefficient  

for  the  comparison  of  semi-­‐automated,  detailed  manual  and  simplified  manual  analyses.  Abbreviations  as  in  Table  2.  

  Mean  difference  

+SD  

p-­‐value   95%  limits  of  

agreement  

Correlation  

coefficient  (rs)  

EDV  (mls)          

Auto  –  ManDet   -­‐1+13   0.84   -­‐26  to  24   0.94  

Auto  –  ManSimp   -­‐9+13   <0.0005   -­‐35  to  17   0.93  

ManDet  –  ManSimp   -­‐8+5   <0.0005   1  to  17   0.99  

ESV  (mls)          

Auto  –  ManDet   -­‐2+9   0.17   -­‐20  to  15   0.96  

Auto  –  ManSimp   -­‐17+13   <0.0005   -­‐42  to  8   0.94  

ManDet  –  ManSimp   -­‐15+7   <0.0005   -­‐1  to  29   0.98  

SV  (mls)          

Auto  –  ManDet   2+11   0.26   -­‐21  to  24   0.88  

Auto  –  ManSimp   8+10   <0.0005   -­‐11  to  28   0.89  

ManDet  –  ManSimp   7+6   <0.0005   -­‐6  to  19   0.98  

EF  (%)          

Auto  –  ManDet   1+4   0.12   -­‐8  to  10   0.96  

Auto  –  ManSimp   7+5   <0.0005   -­‐3  to  17   0.91  

ManDet  –  ManSimp   6+4   <0.0005   -­‐1  to  13   0.95  

Mass  (g)          

Auto  –  ManDet   34+19   <0.0005   -­‐3  to  72   0.87  

Auto  –  ManSimp   43+20   <0.0005   4  to  83   0.87  

ManDet  –  ManSimp   9+5   <0.0005   -­‐1  to  19   0.99  

Page 31: Analysis of left ventricular mass, volume indices and

31  

Table  4.  Mean  +  SD  volumetric  measurements  using  each  geometric  model.    

 

  Teich   ModSimp   Hemi   Mono   Biplane   Triplane  

EDV  (mls)   134+44   165+53   196+63   162+53   173+56   219+68  

ESV  (mls)   63+44   87+43   103+64   70+47   76+49   105+66  

EF  (%)   56+20   48+16   50+19   59+17   58+18   55+18  

 

Teich  –  Teicholz,  ModSimp  –  modified  Simpson’s,  Hemi  –  hemi-­‐ellipse,  Mono  –  monoplane.    

Page 32: Analysis of left ventricular mass, volume indices and

32  

Table  5.  Comparison  of  volumetric  and  EF  measurements  using  each  geometric  model  with  semi-­‐automated  analysis.    

  Mean  difference  

+SD  

p-­‐value   95%  limits  of  

agreement  

Correlation  

coefficient  (rs)  

EDV  (mls)          

Auto  –  Teich   36+42   <0.0005   -­‐47  to  119   0.64  

Auto  –  ModSimp   4+22   0.06   -­‐39  to  47   0.91  

Auto  –  Hemi   -­‐27+18   <0.0005   -­‐62  to  8   0.95  

Auto  –  Mono   7+22   0.03   -­‐36  to  51   0.92  

Auto  –  Biplane   -­‐4+22   0.39   -­‐47  to  39   0.93  

Auto  –  Triplane   -­‐49+22   <0.0005   -­‐7  to  91   0.96  

ESV  (mls)          

Auto  –  Teich   13+24   <0.0005   -­‐35  to  60   0.83  

Auto  –  ModSimp   -­‐11+14   <0.0005   -­‐38  to  17   0.95  

Auto  –  Hemi   -­‐27+21   <0.0005   -­‐69  to  15   0.96  

Auto  –  Mono   6+18   0.01   -­‐30  to  41   0.93  

Auto  –  Biplane   0+13   0.64   -­‐27  to  26   0.94  

Auto  –  Triplane   -­‐29+23   <0.0005   -­‐74  to  15   0.96  

EF  (%)          

Auto  –  Teich   2+11   0.36   -­‐19  to  23   0.82  

Auto  –  ModSimp   9+9   <0.0005   -­‐8  to  26   0.85  

Auto  –  Hemi   7+7   <0.0005   -­‐6  to  21   0.89  

Auto  –  Mono   -­‐1+6   0.06   -­‐14  to  11   0.90  

Auto  –  Biplane   0+6   0.87   -­‐12  to  11   0.91  

Auto  –  Triplane   3+6   <0.0005   -­‐8  to  13   0.92  

Mean  difference  (SD),  significance  of  the  difference,  Bland-­‐Altman  95%  limits  of  agreement  and  correlation  

coefficient  for  the  comparison  of  each  geometric  model  with  semi-­‐automated  analysis.  Abbreviations  as  in  Table  4.  

Page 33: Analysis of left ventricular mass, volume indices and

33  

Page 34: Analysis of left ventricular mass, volume indices and

34  

 

Page 35: Analysis of left ventricular mass, volume indices and

35  

 

Page 36: Analysis of left ventricular mass, volume indices and

36  

 

Page 37: Analysis of left ventricular mass, volume indices and

37  

Page 38: Analysis of left ventricular mass, volume indices and

38  

 

 

Page 39: Analysis of left ventricular mass, volume indices and

39  

 

 

Page 40: Analysis of left ventricular mass, volume indices and

40