13
- 597 - J. Korean Wood Sci. Technol. 2018, 46(5): 597~609 pISSN: 1017-0715 eISSN: 2233-7180 https://doi.org/10.5658/WOOD.2018.46.5.597 Original Article Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service 1 KOR APP Sea Byul Kang 2 โ‹…Kyu Sung Choi 2 โ‹…Hyun Hee Lee 2 โ‹…Gyu-Seong Han 3,โ€  ABSTRACT Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides (NOx) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and NOx emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas O2 concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of NOx emitted from industrial wood pellet boilers was 67 ppm and the emission factor of NOx was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and NOx measurements met the limits of the Ministry of Environment. These NOx emission factors were compared with the NOx emission factors produced by certified low NOx burners. The NOx emission factor of industrial wood pellet boilers was about 1.9 times that of certified low NOx LNG combustors and about 0.92 times that of coal combustion. Keywords: emission, carbon monoxide, nitrogen oxide, industrial wood pellet boiler 1. INTRODUCTION Korea Forest Service (KFS) have subsided the distribution and installation of industrial wood pellet boilers from 2011 to 2015 by expanding wood pellet consumption. This has helped step up the domestic industrial wood pellet boiler technology as it resulted in installing 76 industrial wood pellet combustors during the same period. For the effective distribution and management of the industrial wood pellet boilers, KFS established the Industrial Wood Pellet Boiler Subsidy Standards (KFS, 2015) and the Construction Inspection 1 Date Received August 14, 2018, Date Accepted September 11, 2018 2 Energy Network Laboratory, Korea Institute of Energy Research, 152 Gajung-ro, Yuseong-Gu, Daejeon 34129, Republic of Korea 3 Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea โ€  Corresponding author: Gyu-Seong Han (e-mail: [email protected], ORCID: 0000-0003-3835-2063)

Analysis of Emission Characteristics and Emission Factors

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of Emission Characteristics and Emission Factors

- 597 -

J. Korean Wood Sci. Technol. 2018, 46(5): 597~609 pISSN: 1017-0715 eISSN: 2233-7180https://doi.org/10.5658/WOOD.2018.46.5.597

Original Article

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According

to the Subsidy Program of Korea Forest Service1 KORAPP

Sea Byul Kang2โ‹…Kyu Sung Choi2โ‹…Hyun Hee Lee2โ‹…Gyu-Seong Han 3,โ€ 

ABSTRACT1)

Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs.

Since carbon monoxide (CO) and nitrogen oxides (NOx) generated during boiler combustion are substances that lead

to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and NOx emission

values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission

factor was also calculated from the measured exhaust gas concentration (based on exhaust gas O2 concentration of

12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that

the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average

value of NOx emitted from industrial wood pellet boilers was 67 ppm and the emission factor of NOx was 1.63 g/kg.

Unlike CO, there was no tendency to decrease according to the installation year. Both CO and NOx measurements

met the limits of the Ministry of Environment. These NOx emission factors were compared with the NOx emission

factors produced by certified low NOx burners. The NOx emission factor of industrial wood pellet boilers was about

1.9 times that of certified low NOx LNG combustors and about 0.92 times that of coal combustion.

Keywords: emission, carbon monoxide, nitrogen oxide, industrial wood pellet boiler

1. INTRODUCTION

Korea Forest Service (KFS) have subsided the

distribution and installation of industrial wood pellet

boilers from 2011 to 2015 by expanding wood pellet

consumption. This has helped step up the domestic

industrial wood pellet boiler technology as it resulted

in installing 76 industrial wood pellet combustors during

the same period. For the effective distribution and

management of the industrial wood pellet boilers, KFS

established the Industrial Wood Pellet Boiler Subsidy

Standards (KFS, 2015) and the Construction Inspection

1 Date Received August 14, 2018, Date Accepted September 11, 20182 Energy Network Laboratory, Korea Institute of Energy Research, 152 Gajung-ro, Yuseong-Gu, Daejeon 34129, Republic of

Korea3 Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University,

Cheongju 28644, Republic of Koreaโ€  Corresponding author: Gyu-Seong Han (e-mail: [email protected], ORCID: 0000-0003-3835-2063)

Page 2: Analysis of Emission Characteristics and Emission Factors

Sea Byul Kangโ‹…Kyu Sung Choiโ‹…Hyun Hee Leeโ‹…Gyu-Seong Han

- 598 -

Standards for Industrial Wood Pellet Boilers (KFS,

2013). The target industrial wood pellet boilers were

steam boilers in 0-5 to 7.0 ton/h or hot water boilers

and heaters in 230kW or over. 63 of them were steam

boilers, 7 of them were hot water boilers, and 6 of

them were hot wind heaters. To receive subsidies for

wood pellet boilers, the following conditions need to

be met: 1) The boiler heat efficiency at over 85% based

on the lower heating value; 2) the preparation of safety

device like a backfire prevention device; and 3) the

CO emissions, one of the air pollution substances, being

below 200 ppm.

In Korea, air pollutants related to the combustion

of wood pellets are regulated by the Clean Air

Conservation Act (ME, 2017). The target missions

generated by combustion facilities at or over a certain

size according to the Clean Air Conservation Act are

1) among wood pellet manufacturing facilities

(screening, drying and heating facilities, crushing and

grinding facilities, compression and molding facilities),

facilities in which fuel consumption is over 30kg per

hour, the capacity is over 3m2 or more, or power capacity

is 2.25 kW (15 kW for crushing and grinding facilities)

or more and 2) among the facilities that use wood pellets,

those in which the usage of fuel products is over 200kg

per hour (excluding those that use other fuels together

with wood pellets) (ME, 2017).

The allowable criteria of the air pollutants applied

since 2015 shows that the CO concentration in a facility

that uses wood pellets should be at or below 200 ppm

(12% of the actually measured oxygen concentration).

Nitrogen oxide (NOx, NO2) should be at or below 100

ppm for drying and heating facilities of wood pellet

manufacturing facilities, or at or below 150 ppm for

facilities that use wood pellets (12% of the actually

measured oxygen concentration). Fine dust should be

at or below 50 ใŽŽ/SใŽฅ for both wood pellet

manufacturing facilities or those which use wood pellets

(12% of the actually measured oxygen concentration)

(ME, 2017). With very low sulfur oxide and heavy

metal content in wood pellets due to the fuel

characteristics, there is no allowable criteria for those

substances.

At the Parliamentary Inspection of the Administration

in 2017, it was argued that the wood pellet combustion

test showed that it produced 20 times as much nitrogen

oxide, which generates ultrafine dust, as coal briquette,

and there was a social controversy as the contents were

quoted and reported without verification. (Kim, 2017).

This is because while there has been research on the

manufacturing characteristics of wood pellets in Korea

(Kim et al., 2015; Yang et al., 2017), there has been

little on air pollutants during wood pellet combustion.

The study aimed to measure air pollutants generated

during the combustion of wood pellet boilers subsided

by KFS, through which it verified whether industrial

wood pellet boilers conformed the allowable criteria

of air pollutants by the Ministry of Environment.

Furthermore, based on the emissions of air pollutants,

it determined the emission factors of industrial wood

pellets boilers, which was compared to the NOx emitted

from low-NOx certified burner.

2. MATERIALS and METHODS

2.1. Survey target

There were 9 KFS subsidized industrial wood pellet

boilers (steam boilers, hot water boilers, hot wind heaters)

in 2011, 27 in 2012, 21 in 2013, 10 in 2014, and 9

in 2015. 63 boilers excluding hot wind heaters and

some distributed earlier were the target for this study.

Shown in Fig. 1 is the current installation conditions

by region. Over 50% of the subsidized industrial wood

pellet boilers were installed in Gyeonggi-do and

Gyeongsangnam-do. It is believed that this is because

there are many companies in industrial regions where

there is high demand on industrial boilers. It also shows

Page 3: Analysis of Emission Characteristics and Emission Factors

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service

- 599 -

0

2

4

6

8

10

12

14

16

Gyeonggi Gyeongbuk Gyeongnam Chungbuk jeju Gangwon Jeonnam Gwangju Sejong Jeonbuk Chungnam Daegu

Inst

alla

tio

n nu

mbe

r o

f ind

ustr

ial w

oo

d pe

llet

boile

r

Province

Fig. 1. Number of industrial wood pellet boiler with subsidy with respect to installed province.

average : 3.0MW (2,600,000kcal/h)

0

1

2

3

4

5

6

7

8

9

10

2011 2012 2013 2014 2015 2016

Boile

r cap

acity

(MW

)

Year

Fig. 2. Industrial wood pellet boiler thermal capacity with subsidy by ForestService in Korea.

that Gwangju and Daegu among the metropolitan cities

have many such boilers.

Fig. 2 shows the capacity of the installed industrial

wood pellet boilers. The average capacity of these

boilers is 3.0 MW (2,600,000 kcal/h), which is about

4.2 ton/h (wood pellet consumption is about 740 kg/h

based on the low-level heat generation of wood pellets

at 4,100 kcal/h and the boiler efficiency at 85%) if

converted into the amount of steam generated. With

low capacity boilers, 1.5 to 2 MW wood pellet boilers

have been widely installed, as well as 5.0 MW boilers

have also been installed in many places. Converted into

steam generation, these capacities are about 2.5 ton/h

as well as 7.0 ton/h.

Page 4: Analysis of Emission Characteristics and Emission Factors

Sea Byul Kangโ‹…Kyu Sung Choiโ‹…Hyun Hee Leeโ‹…Gyu-Seong Han

- 600 -

average : 56 ppm (@O2 12%)

0

50

100

150

200

250

2011 2012 2013 2014 2015 2016

CO c

once

ntra

tion

(ppm

)

Year

Fig. 3. CO emission of industrial wood pellet boiler according to the installation year.

2.2. Measurement method

The study conducted the performance test of the KFS

subsidized industrial wood pellet boiler by installing

it based on the โ€œConstruction Inspection Standards for

Industrial Wood Pellet Boilersโ€ (KFS, 2013). When

the boiler operation stabilized, the O2, CO, and NOx

concentration were measured for one hour using a

portable multifunctional combustible gas meter (Testo

350), the results of which were averaged. Testo 350

can analyze various combustible gases (O2, CO, NOx

and SO2, etc.) and allows for large amount of data

records linked to a PC. The null adjustment was

performed using the standard gas before the test to

acquire the data reliability. The measurement scope of

O2 is 0-25% at which the accuracy level is ยฑ0.01%,

and that of CO is 0-10000 ppm, and the accuracy level

between 200-2000 ppm is ยฑ5%. The measurement scope

of NO is 0-4000 ppm, and the accuracy level between

100-1999 ppm is ยฑ5%. Finally, the measurement scope

of NO2 is 0-500 ppm, and the accuracy level between

100-500 ppm is ยฑ5%. The measured carbon monoxide

and nitrogen oxide were converted into the value of

the state of 12% of emission gas O2.

3. RESULTS and DISCUSSION

3.1. Carbon monoxide (CO)

Fig. 3 shows the carbon monoxide (CO) emissions

from the installed industrial boilers by the year of

installation. As has been shown, the average CO

emission concentration from the installed industrial

wood pellet boiler is 56 ppm when the oxygen

concentration in the emissions was 12%. The maximum

CO emission among the measured boilers was 220 ppm.

High concentration of CO would lead to CO poisoning,

causing nausea and in serious cases, death. There may

be incomplete combustion or air is lacking in boilers.

As shown in the figure, the CO emissions change by

installation year. To clearly understand such a tendency,

Fig. 4 shows the average CO emissions by taking five

values based on the time of the CO emissions. Since

2012, the average CO emissions have decreased until

2015. While in 2012, it was within 50 - 100 ppm,

in 2015, it decreased to 20 - 30 ppm. This is considerably

below the allowable criteria of the air pollutants

stipulated by the Enforcement Regulations of the Clean

Air Conservation Act (at or below 200 ppm for facilities

Page 5: Analysis of Emission Characteristics and Emission Factors

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service

- 601 -

y = -13.3 x + 26,823.5

0

50

100

150

200

250

2011 2012 2013 2014 2015 2016

CO c

once

ntra

tion

(ppm

, 5 p

oint

s ave

rage

)

Year

Fig. 4. Average CO emission of industrial wood pellet boiler accordingto the installation year.

average : 0.73 g/kg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2011 2012 2013 2014 2015 2016

CO e

mis

sion

fact

or (g

/kg)

Year

Fig. 5. CO emission factor of industrial wood pellet boiler according to the installation year.

using wood pellets). Generally, CO emissions decrease

by reducing incomplete combustions through the

optimization of the combustion system. It is believed

that such CO emission reduction was due to the

improvement of boiler efficiency and CO emissions

reduction by boiler manufacturers since 2011 when

industrial wood pellet boilers were distributed by KFS.

The study calculated the emission factor using the

CO emission from the boiler. The emission factor for

CO or NOx (g/kg_fuel) is defined as the weight of

the pollutant (g) emitted by the combustion of 1kg

of fuel, which can be determined by the following

equation.

Emission factor (g/kg)

= pollutant concentration (g/m3) ร— flue gas volume

flow rate (m3/h) / fuel consumption (kg/h)

Page 6: Analysis of Emission Characteristics and Emission Factors

Sea Byul Kangโ‹…Kyu Sung Choiโ‹…Hyun Hee Leeโ‹…Gyu-Seong Han

- 602 -

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5

NO

x E

mis

sion

(ppm

@ 1

3% O

2)

Nitrogen content in the pellets (wt %)

โ— : This study (min and max value)โ—‹ : Sepnt coffee ground โ–ฒ : Pine โ–  : Peach stones โ—† : Industrial wood wasteโ–ก : Wood B โ—‡ : Wood C โ–ณ : Citrus pectin waste

Fig. 6. Influence of the nitrogen content of the pellets on the NOx emissions.

In the equation above, the pollutant concentration

is calculated by the emission concentration of each

pollutant (ppm) measured at the time of the actual

combustion of wood pellets, and the fuel consumption

is the amount of fuel injected during the actual boiler

operation. Finally, the gas emissions are based on the

oxygen concentration in the emissions gas measured

during the actual combustion of the boiler. Fig. 5 shows

the CO emission factor for the industrial wood pellet

boiler. The average CO emission factor of the distributed

industrial wood pellet boiler is 0.73 g/kg. The average

CO emissions of the industrial wood pellet boiler

installed in 2015 was 25.7 ppm, which is considerably

lower than 62.5 ppm, that of the wood pellet boiler

installed in 2012. Such a trend can be verified in Fig.

5 which showed the CO emission factors by the time

of installation where the CO emission factors decrease

by the time of installation. The average CO emission

factor of five industrial wood pellet boilers installed

latest was very low at 0.36 g/kg.

3.2. Nitrogen oxide (NOx)

Fig. 6 shows the NOx emissions based on the nitrogen

content contained in various types of wood chip fuel

including the wood pellets used in this study (referring

to the data by Kang et al., 2017). The figure shows

the maximum and minimum values of NOx emissions

measured when the nitrogen content of wood pellets

used in the industrial boiler installed by the KSF's

subsidy project was 0.3%. It shows the tendency that

the NOx value increases linearly based on the nitrogen

content included in the fuel. Even the same wood fuels

will have different NOx emissions based on the

contained nitrogen content. However, wood pellets

usually have nitrogen content below 0.5%, and thus,

the NOx content will become 100 ppm or below. The

study results on the NOx emissions characteristics based

on the types of coal (bituminous coal and subbituminous

coal) from a 500 MW coal-fired boiler showed that

the nitrogen content in coal is 0.76 - 1.7 %. As such,

it was also confirmed that the emissions from a coal-fired

plant were mainly thermal NOx emissions at high

temperature, but when coal with high nitrogen content

was used, the NOx generation increased.

Shown in Fig. 7 and Fig. 8 are the average of the

five values of NOx emissions from industrial wood pellet

boilers. The average NOx emissions measured from the

boilers is 76 ppm at 12% of the oxygen concentration.

The NOx emissions were between 44 - 128 ppm, which

Page 7: Analysis of Emission Characteristics and Emission Factors

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service

- 603 -

average : 76 ppm (@O2 12%)

0

20

40

60

80

100

120

140

160

2011 2012 2013 2014 2015 2016

NO

x co

ncen

trat

ion

(ppm

)

Year

Fig. 7. NOx concentration of industrial wood pellet boiler according to theinstallation year.

average : 1.63 g/kg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2011 2012 2013 2014 2015 2016

NO

x em

issi

on fa

ctor

(g/k

g)

Year

Fig. 8. NOx emission factor of industrial wood pellet boiler according to the installation year.

is considerably lower than the allowable standards of

the air pollutants stipulated in the Enforcement

Regulations of the Clean Air Conservation Act (at or

below 150 ppm of NOx for facilities that use wood

pellets). At this point, the emission factor of NOx is

1.63 g/kg. The two figures do not show the tendency

of the decrease in the emissions by the time of

installation, as opposed to the CO distribution. This

is because the CO emissions can be reduced by

providing the optimal combustion conditions by

improving the burner. However, for NOx, wood pellets

contain nitrogen by about 0.1 to 0.5%, as opposed to

LNG which does not contain nitrogen (N). Such nitrogen

is oxidized via the combustion at high temperature and

turned into NO and NO2 among others. Such generated

NOx is called fuel NOx, which is fundamentally difficult

Page 8: Analysis of Emission Characteristics and Emission Factors

Sea Byul Kangโ‹…Kyu Sung Choiโ‹…Hyun Hee Leeโ‹…Gyu-Seong Han

- 604 -

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

NO

x [p

pm]

index

Industry averge : 35 ppm

Fig. 9. NOx concentration of low NOx burners in Korea (Ministry of

Environment of Korea).

Fuel type NOx (ppm) O2 (%) NOx emission factor (g/kg) Based on LNG

LNG 35 3 0.96 1.00

Wood pellet 67 13 1.82 1.90

Coal or bunker-C with de-NOx facility

70 3 1.98 2.06

Note: NOx emission of LNG is average of those of low NOx burners and NOx emission of Coal or bunker-C with de-NOx facility is referred to the exhaust gas regulation standard of Clean Air Conservation Act.

Table 1. NOx emission factors of wood pellet, LNG, coal and bunker-C fuel

to decrease, and due to such characteristics, NOx

emissions tend not to decrease.

Shown in Fig. 9 are the NOx emissions on domestic

low- NOx certified products. As shown in the figure,

the average NOx is 35 ppm. The low-NOx burner criterial

for industrial boilers is below 40 ppm at 4% of oxygen

concentration. Generally, the LNG burner that satisfies

the low-NOx burner criteria is around 35 ppm at 3%

of oxygen concentration.

Shown in Table 1 are the average NOx emission

factors under the normal combustion of boilers with

LNG, wood pellets, and coal (or bunker-C). In case

of wood pellets, the average NOx value emitted from

the industrial wood pellet boiler, measured previously

used. Coal-fried or bunker-C-fired boilers run with NOx

at or below 70 ppm (facilities installed before December

2014, Clean Air Conservation Act). Assuming that such

a condition was the representative situation for each

fuel, the NOx emission factors could be calculated,

which are shown in Table 1. When the NOx emission

index of LNG is set to 1, that of wood pellets is 1.90,

and coal or bunker-C is 2.01. For coal or bunker-C,

it was assumed that there would be post-processing

facilities to reduce NOx such as SCR (selective catalytic

reduction) at the end of the boiler. Otherwise, the

emission index would have been higher.

Page 9: Analysis of Emission Characteristics and Emission Factors

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service

- 605 -

4. CONCLUSION

The CO and NOx measurement values of 63 KFS-

subsidized industrial wood pellet boilers between 2011

and 2015 all satisfied the allowable criteria by the

Ministry of Environment. Based on the CO and NOx

emissions values, the emission factors of industrial wood

pellet boilers were calculated and compared with NOx

emitted from the low-NOx certified burner. The analyzed

results are summarized as follows.

1. The average capacity of the KFS-subsidized

industrial wood pellet boilers was 3.0 MW, and

the wood pellet consumption was about 740 kg/h.

2. The average CO emission from the industrial wood

pellet boilers distributed for the five years was

56 ppm (@O2 12%), which can be converted into

the emission factor at 0.73 g/kg.

3. The average CO emission from the industrial wood

pellet boilers installed in 2012 during the early

period of the subsidy program was 70.3 ppm (@O2

12%), but that from the boilers installed at the

ending year of the subsidy program was 28.9 ppm.

Such a result is determined to be due to the

optimization of the burner and boiler system

through technical development.

4. The average NOx emission from the industrial wood

pellet boilers installed for the five years was 76

ppm (@O2 12%), which can be converted into

the emission factor at 1/63 g/kg.

5. NOx did not show the tendency of reduction by

time. It is determined that this is because fuel

NOx generation did not decrease along with the

nitrogen content included in the fuel.

6. The NOx emission factor from the industrial wood

pellet boilers was compared to that from low-NOx

certified LNG burner and coal (bunker- C)-fired

burners. The former was about 1.90 times higher

than that of the latter and was about 0.92 times

lower than the coal- or bunker-C-fired boilers with

denitrification facilities.

REFERENCES

Kang, K., Song, J., Yoon, M., Lee, B., Kim, S., Chang,

Y., Jeon, C. 2009. A Numerical Study on the Effects

of SOFA on NOx Emission Reduction in 500MW

Class Sub-bituminous Coal-Fired Boiler. of the

Korean Society of Mechanical Engineers โ€“ B

33(11): 858-868.

Kang, S.B., Oh, H.Y., Kim, J.J., Choi, K.S. 2017.

Characteristics of spent coffee ground as a fuel and

combustion test in a small boiler (6.5kW).

Renewable Energy 113: 1208-1214.

Kim, K.H. 2017. Wood Pellet โ€“ Renewable energy?

Ultra fine dust 20 times, http://news.kbs.co.kr/news/

view.do?ncd=3559653, Seoul, Korea.

Kim, S.H., Yang, I., Han, G.-S. 2015. Effect of sawdust

moisture content and particle size on the fuel

characteristics of wood pellet fabricated with

Quercus mongolica, Pinus densiflora and Larix

kaempferi Sawdust. Journal of the Korean Wood

Science and Technology 43(6): 757-767.

Korea Forest Service. 2013. Construction Inspection

Standards for Industrial Wood Pellet Boilers.

Daejeon, Korea.

Korea Forest Service. 2015. Industrial Wood Pellet

Boiler Subsidy Standards, Daejeon, Korea.

Korea Standards and Certifications, 2014, Land Boilers

- Heat Balancing (KS B 6205).

Ministry of Environment. 2017. Clean Air Conservation

Act, ME, Sejong, Korea.

Yang, I., Chae, H.-G., Han, G.-S. 2017. Effect of bark

and drying waste liquor of Larix kaempferi used

as an additive on the fuel characteristics of wood

pellet fabricated with Rigida pine and Quercus

mongolica sawdust, Journal of the Korean Wood

Science and Technology 45(3): 258-267.

Page 10: Analysis of Emission Characteristics and Emission Factors

Sea Byul Kangโ‹…Kyu Sung Choiโ‹…Hyun Hee Leeโ‹…Gyu-Seong Han

- 606 -

APPENDIX(Korean Version)

์‚ฐ๋ฆผ์ฒญ ์ง€์›์‚ฌ์—…์— ๋”ฐ๋ผ ๋ณด๊ธ‰๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์—์„œ ๋ชฉ์žฌํŽ ๋ฆฟ ์—ฐ์†Œ ์‹œ

๋ฐฐ์ถœ๋˜๋Š” ์ผ์‚ฐํ™”ํƒ„์†Œ์™€ ์งˆ์†Œ์‚ฐํ™”๋ฌผ์˜ ๋ฐฐ์ถœ ํŠน์„ฑ ๋ฐ ๋ฐฐ์ถœ๊ณ„์ˆ˜ ๋ถ„์„

์š”์•ฝ : ์‚ฐ๋ฆผ์ฒญ์€ ๋ณด์กฐ๊ธˆ ์ง€์›์‚ฌ์—…์„ ํ†ตํ•ด 2011๋…„๋ถ€ํ„ฐ 2015๋…„๊นŒ์ง€ 76๋Œ€์˜ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ๋ฅผ ๋ณด๊ธ‰ํ•˜์˜€๋‹ค. ๋ณด์ผ๋Ÿฌ์˜

์—ฐ์†Œ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ์ผ์‚ฐํ™”ํƒ„์†Œ(CO) ๋ฐ ์งˆ์†Œ์‚ฐํ™”๋ฌผ(NOx)๋Š” ๊ฐ๊ฐ ๊ธ‰์„ฑ ์ค‘๋… ์‹œ ์‚ฌ๋ง์—๊นŒ์ง€ ์ด๋ฅด๊ฒŒ ํ•˜๋Š” ๋ฌผ์งˆ์ด๊ธฐ ๋•Œ๋ฌธ์—

๋ฐฐ์ถœ๋Ÿ‰์„ ์ค„์ด๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋“ค ๋ณด์ผ๋Ÿฌ ์ค‘ ์—ดํ’๊ธฐ์™€ ์ดˆ๊ธฐ์— ๋ณด๊ธ‰๋œ ์ผ๋ถ€ ๋ณด์ผ๋Ÿฌ๋ฅผ ์ œ์™ธํ•œ 63๋Œ€์˜ ๋ณด์ผ๋Ÿฌ์—

์„œ ๋ฐฐ์ถœ๋œ CO ๋ฐ NOx ๊ณ„์ธก๊ฐ’์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ธก์ •๋œ ๋ฐฐ์ถœ๊ฐ€์Šค ๋†๋„(๋ฐฐ๊ธฐ๊ฐ€์Šค O2 ๋†๋„ 12% ๊ธฐ์ค€)๋กœ๋ถ€ํ„ฐ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ

์‚ฐ์ถœํ•˜์˜€๋‹ค. ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์—์„œ ๋ฐฐ์ถœ๋œ CO์˜ ํ‰๊ท ๊ฐ’์€ 49 ppm์ด์—ˆ์œผ๋ฉฐ, ํ•ด๋ฅผ ๊ฑฐ๋“ญํ•จ์— ๋”ฐ๋ผ CO์˜ ๋†๋„๊ฐ€ ์ค„์–ด๋“ค

๊ณ  ์žˆ์Œ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋•Œ CO์˜ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋Š” 0.73 g/kg์˜€๋‹ค. ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์—์„œ ๋ฐฐ์ถœ๋œ NOx์˜ ํ‰๊ท ๊ฐ’์€ 67 ppm์˜€

์œผ๋ฉฐ, NOx์˜ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋Š” 1.63 g/kg์ด์—ˆ๋‹ค. CO์™€๋Š” ๋‹ฌ๋ฆฌ ์„ค์น˜๋…„๋„์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. CO ๋ฐ NOx

๊ณ„์ธก๊ฐ’์€ ๋ชจ๋‘ ํ™˜๊ฒฝ๋ถ€์˜ ํ—ˆ์šฉ๊ธฐ์ค€์„ ๋งŒ์กฑํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ NOx ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ์ €NOx ์ธ์ฆ๋œ ์—ฐ์†Œ๊ธฐ์—์„œ ์ƒ์„ฑ๋˜๋Š” NOx ๋ฐฐ์ถœ๊ณ„์ˆ˜

์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ NOx ๋ฐฐ์ถœ๊ณ„์ˆ˜๋Š” ์ €NOx ์ธ์ฆ๋œ LNG ์—ฐ์†Œ๊ธฐ์˜ NOx ๋ฐฐ์ถœ๊ณ„์ˆ˜์— ๋น„ํ•ด ์•ฝ 1.9๋ฐฐ,

์„ํƒ„ ์—ฐ์†Œ์— ๋น„ํ•ด ์•ฝ 0.92๋ฐฐ์˜€๋‹ค.

1. ์„œ ๋ก 

์‚ฐ๋ฆผ์ฒญ์€ 2011๋…„๋ถ€ํ„ฐ 2015๋…„๊นŒ์ง€ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€์ธ ๋ชฉ์žฌํŽ ๋ฆฟ ์†Œ๋น„๋Ÿ‰์„ ํ™•๋Œ€ํ•˜์—ฌ ์ €ํƒ„์†Œ ๋…น์ƒ‰ ์„ฑ์žฅ์— ๊ธฐ์—ฌํ•˜๊ณ ์ž ์‚ฐ์—…์šฉ

๋ชฉ์žฌํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ ๋ณด๊ธ‰ ๋ฐ ์„ค์น˜๋ฅผ ์ง€์›ํ•ด์™”๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ตญ๋‚ด์˜ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ ๊ธฐ์ˆ  ์ˆ˜์ค€์„ ํ•œ ๋‹จ๊ณ„ ๋†’์ด๋Š”๋ฐ ๊ธฐ์—ฌํ–ˆ์œผ

๋ฉฐ, ๋™ ๊ธฐ๊ฐ„ ์ค‘ 76๋Œ€์˜ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ ์—ฐ์†Œ๊ธฐ๊ฐ€ ์„ค์น˜๋˜์—ˆ๋‹ค. ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ํšจ์œจ์ ์ธ ๋ณด๊ธ‰ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•˜์—ฌ, ์‚ฐ๋ฆผ์ฒญ์€

์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ ์ง€์› ๊ธฐ์ค€(KFS, 2015), ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ ์ค€๊ณต๊ฒ€์‚ฌ๋ฅผ ์œ„ํ•œ ์‹œํ—˜๊ธฐ์ค€(KFS, 2013)์„ ์ฑ…์ •ํ•˜์˜€๋‹ค.

์ด์— ๋”ฐ๋ฅธ ์ง€์› ๋Œ€์ƒ์˜ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ ์—ฐ์†Œ๊ธฐ๋Š” 0.5 โ€“ 7.0 ton/h๊ธ‰ ์ŠคํŒ€ ๋ณด์ผ๋Ÿฌ ๋˜๋Š” 230 kW ์ด์ƒ ์˜จ์ˆ˜ ๋ณด์ผ๋Ÿฌ ๋ฐ ์—ดํ’๊ธฐ์ด๋‹ค.

์ด์ค‘์—์„œ 63๋Œ€๋Š” ์ŠคํŒ€ ๋ณด์ผ๋Ÿฌ์˜€์œผ๋ฉฐ, 7๋Œ€๋Š” ์˜จ์ˆ˜๋ณด์ผ๋Ÿฌ, 6๋Œ€๋Š” ์—ดํ’๊ธฐ์˜€๋‹ค. ๋ชฉ์žฌ ํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•œ ๋ณด์กฐ๊ธˆ์„ ์ง€์›๋ฐ›๊ธฐ ์œ„ํ•ด์„œ

๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜์—ฌ์•ผ ํ•œ๋‹ค. 1) ๋ณด์ผ๋Ÿฌ ์—ดํšจ์œจ์€ ์ €์œ„๋ฐœ์—ด๋Ÿ‰ ๊ธฐ์ค€ 85% ์ด์ƒ, 2) ์—ญํ™”๋ฐฉ์ง€์žฅ์น˜ ๋“ฑ ์•ˆ์ „์žฅ์น˜์—

๋Œ€ํ•œ ๊ตฌ๋น„ 3) ๋Œ€๊ธฐ ์˜ค์—ผ๋ฌผ์งˆ ์ค‘ ํ•˜๋‚˜์ธ ์ผ์‚ฐํ™”ํƒ„์†Œ(CO) ๋ฐฐ์ถœ๋Ÿ‰์ด 200 ppm ๋ฏธ๋งŒ ๋“ฑ์ด ์žˆ๋‹ค.

๋ชฉ์žฌํŽ ๋ฆฟ์˜ ์—ฐ์†Œ์— ๋”ฐ๋ฅธ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ๊ณผ ๊ด€๋ จ๋œ ๊ตญ๋‚ด ๊ทœ์ •์œผ๋กœ๋Š” ๋Œ€๊ธฐํ™˜๊ฒฝ๋ณด์ „๋ฒ•์ด ์žˆ๋‹ค(ME, 2017). ์ผ์ • ๊ทœ๋ชจ ์ด์ƒ์˜

ํฐ ์—ฐ์†Œ์„ค๋น„์—์„œ ๋ฐœ์ƒ๋˜๋Š” ๋ฐฐ์ถœ๋ฌผ์— ๋Œ€ํ•˜์—ฌ ํ˜„์žฌ ๋Œ€๊ธฐํ™˜๊ฒฝ๋ณด์ „๋ฒ•์— ๋ช…์‹œ๋˜์–ด ์žˆ๋Š” ์ ์šฉ ๋Œ€์ƒ์€ 1) ๋ชฉ์žฌํŽ ๋ฆฟ ์ œ์กฐ์‹œ์„ค(์„ ๋ณ„์‹œ์„ค,

๊ฑด์กฐใ†๊ฐ€์—ด์‹œ์„ค, ํŒŒ์‡„ใ†๋ถ„์‡„์‹œ์„ค, ์••์ถ•ใ†์„ฑํ˜•์‹œ์„ค) ์ค‘ ์—ฐ๋ฃŒ์‚ฌ์šฉ๋Ÿ‰์ด ์‹œ๊ฐ„๋‹น 30 kg ์ด์ƒ์ด๊ฑฐ๋‚˜, ์šฉ์ ์ด 3 ใŽฅ ์ด์ƒ์ด๊ฑฐ๋‚˜, ๋™๋ ฅ์ด

2.25kW(ํŒŒ์‡„ใ†๋ถ„์‡„์‹œ์„ค์€ 15 kW) ์ด์ƒ์ธ ์‹œ์„ค๊ณผ, 2) ๋ชฉ์žฌํŽ ๋ฆฟ ์‚ฌ์šฉ์‹œ์„ค ์ค‘ ์—ฐ๋ฃŒ์ œํ’ˆ ์‚ฌ์šฉ๋Ÿ‰์ด ์‹œ๊ฐ„๋‹น 200 kg ์ด์ƒ์ธ ์‹œ์„ค(๋‹ค๋ฅธ

์—ฐ๋ฃŒ์™€ ๋ชฉ์žฌํŽ ๋ฆฟ์„ ํ•จ๊ป˜ ์—ฐ์†Œํ•˜๋Š” ์‹œ์„ค์€ ์ œ์™ธ)์ด๋‹ค(ME, 2017).

2015๋…„๋ถ€ํ„ฐ ์ ์šฉ๋œ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ํ—ˆ์šฉ๊ธฐ์ค€์„ ์‚ดํŽด๋ณด๋ฉด, ๋ชฉ์žฌํŽ ๋ฆฟ ์‚ฌ์šฉ์‹œ์„ค์—์„œ์˜ CO ๋†๋„๋Š” 200 ppm ์ดํ•˜(์‹ค์ธก์‚ฐ์†Œ๋†๋„

12%) ์ด์–ด์•ผ ํ•œ๋‹ค. ์งˆ์†Œ์‚ฐํ™”๋ฌผ(NOx, NO2๋กœ์„œ)์€ ๋ชฉ์žฌํŽ ๋ฆฟ ์ œ์กฐ์‹œ์„ค ์ค‘ ๊ฑด์กฐยท๊ฐ€์—ด์‹œ์„ค์˜ ๊ฒฝ์šฐ 100 ppm ์ดํ•˜, ๋ชฉ์žฌํŽ ๋ฆฟ ์‚ฌ์šฉ์‹œ

์„ค์—์„œ 150 ppm ์ดํ•˜(์‹ค์ธก์‚ฐ์†Œ๋†๋„ 12%) ์ด์–ด์•ผ ํ•œ๋‹ค. ๋ฏธ์„ธ๋จผ์ง€๋Š” ๋ชฉ์žฌํŽ ๋ฆฟ ์ œ์กฐ์‹œ์„ค ์ค‘ ๊ฑด์กฐยท๊ฐ€์—ด์‹œ์„ค์˜ ๊ฒฝ์šฐ 50 ใŽŽ/SใŽฅ ์ดํ•˜, ๋ชฉ์žฌํŽ ๋ฆฟ ์‚ฌ์šฉ์‹œ์„ค์—์„œ 50 ใŽŽ/SใŽฅ ์ดํ•˜(์‹ค์ธก์‚ฐ์†Œ๋†๋„ 12%) ์ด์–ด์•ผ ํ•œ๋‹ค(ME, 2017). ๋ชฉ์žฌํŽ ๋ฆฟ์˜ ๊ฒฝ์šฐ ์—ฐ๋ฃŒ ํŠน์„ฑ ์ƒ

ํ™ฉ์‚ฐํ™”๋ฌผ ๋ฐ ์ค‘๊ธˆ์† ๋“ฑ์˜ ํ•จ์œ ์œจ์ด ๋งค์šฐ ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— ์ด์— ๋Œ€ํ•œ ํ•˜์šฉ๊ธฐ์ค€์ด ์„ค์ •๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค.

2017๋…„ ๊ตญ์ •๊ฐ์‚ฌ์žฅ์—์„œ๋Š” ๋ชฉ์žฌํŽ ๋ฆฟ์˜ ์—ฐ์†Œ ์‹คํ—˜ ๊ฒฐ๊ณผ ์ดˆ๋ฏธ์„ธ๋จผ์ง€๋ฅผ ์œ ๋ฐœํ•˜๋Š” ์งˆ์†Œ์‚ฐํ™”๋ฌผ์ด ์—ฐํƒ„์˜ 20๋ฐฐ๋‚˜ ๋ฐœ์ƒํ•œ๋‹ค๋Š”

๋‚ด์šฉ์˜ ์ฃผ์žฅ์ด ์ œ๊ธฐ๋˜์—ˆ๊ณ , ๊ฒ€์ฆ์ด ๋˜์ง€ ์•Š์€ ์ฑ„ ์ด ๋‚ด์šฉ์ด ์ธ์šฉ๋˜์–ด ๋ณด๋„๋จ์œผ๋กœ์จ ์‚ฌํšŒ์ ์ธ ๋…ผ๋ž€์ด ์ผ์—ˆ๋‹ค(kim, 2017). ์ด๋Š”

๊ตญ๋‚ด์—์„œ ๋ชฉ์žฌํŽ ๋ฆฟ ์ œ์กฐ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ์ด๋ฃจ์–ด์ ธ ์™”์œผ๋‚˜(Kim et al., 2015, Yang et. al., 2017), ๋ชฉ์žฌํŽ ๋ฆฟ ์—ฐ์†Œ ์‹œ ๋ฐœ์ƒํ•˜๋Š”

๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๊ทธ๋™์•ˆ ๊ฑฐ์˜ ์—†์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

Page 11: Analysis of Emission Characteristics and Emission Factors

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service

- 607 -

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฐ๋ฆผ์ฒญ์—์„œ ์ง€์›ํ•œ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•˜์—ฌ ์—ฐ์†Œ ์‹œ ๋ฐฐ์ถœ๋˜๋Š” ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์„ ์ธก์ •ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ

ํ†ตํ•ด ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ๊ฐ€ ํ™˜๊ฒฝ๋ถ€์˜ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ ํ—ˆ์šฉ๊ธฐ์ค€์— ๋ถ€ํ•ฉํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋ฐฐ์ถœ๊ฐ’์„

๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ์‚ฐ์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ์ €NOx ์ธ์ฆ๋ฒ„๋„ˆ์—์„œ ๋ฐฐ์ถœ๋˜๋Š” NOx์™€ ๋น„๊ตํ•˜์˜€๋‹ค.

2. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ•

2.1 ์กฐ์‚ฌ ๋Œ€์ƒ

์‚ฐ๋ฆผ์ฒญ์—์„œ ์ง€์›ํ•œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ(์ŠคํŒ€๋ณด์ผ๋Ÿฌ, ์˜จ์ˆ˜๋ณด์ผ๋Ÿฌ, ์—ดํ’๊ธฐ)๋Š” 2011๋…„์— 9๋Œ€, 2012๋…„์— 27๋Œ€, 2013๋…„์—

21๋Œ€, 2014๋…„์— 10๋Œ€, 2015๋…„์— 9๋Œ€์˜€๋‹ค. ์ด๋“ค ๋ณด์ผ๋Ÿฌ ์ค‘ ์—ดํ’๊ธฐ์™€ ์ดˆ๊ธฐ์— ๋ณด๊ธ‰๋œ ์ผ๋ถ€ ๋ณด์ผ๋Ÿฌ๋ฅผ ์ œ์™ธํ•œ 63๋Œ€์˜ ๋ณด์ผ๋Ÿฌ๋ฅผ

์ธก์ • ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๋‹ค. Fig. 1์€ ์ด๋“ค ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ์˜ ์ง€์—ญ๋ณ„ ์„ค์น˜ํ˜„ํ™ฉ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ง€์›๋ฐ›์€ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ

์˜ 50% ์ด์ƒ์ด ๊ฒฝ๊ธฐ๋„์™€ ๊ฒฝ์ƒ๋‚จ๋ถ๋„์— ์„ค์น˜๋˜์—ˆ๋‹ค. ์ด๋Š” ์‚ฐ์—…์šฉ ๋ณด์ผ๋Ÿฌ์˜ ์ˆ˜์š”๊ฐ€ ๋งŽ์€ ๊ณต์žฅ ๋“ฑ ์‚ฐ์—…๋‹จ์ง€๊ฐ€ ๋งŽ์ด ์žˆ๋Š” ์ง€์—ญ์—

์ง€์›๋ฐ›๊ณ ์ž ํ•˜๋Š” ์—…์ฒด๊ฐ€ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ด‘์—ญ์‹œ ์ค‘์—์„œ๋Š” ๊ด‘์ฃผ์™€ ๋Œ€๊ตฌ์— ์„ค์น˜๊ฐ€ ๋งŽ์ด ๋œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

์„ค์น˜๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ์šฉ๋Ÿ‰์„ Fig. 2์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  ์šฉ๋Ÿ‰์€ 3.0 MW(2,600,000

kcal/h)์ด๋ฉฐ ์ด๋Š” ์ฆ๊ธฐ ๋ฐœ์ƒ๋Ÿ‰์œผ๋กœ ํ™˜์‚ฐํ•˜๋ฉด ์•ฝ 4.2 ton/h(๋ชฉ์žฌ ํŽ ๋ฆฟ ์†Œ๋น„๋Ÿ‰์€ ์•ฝ 740 kg/h์ž„. ๋ชฉ์žฌํŽ ๋ฆฟ ์ €์œ„๋ฐœ์—ด๋Ÿ‰ 4,100

kcal/h ๋ฐ ๋ณด์ผ๋Ÿฌ ํšจ์œจ 85% ๊ฐ€์ •)์ด๋‹ค. ์šฉ๋Ÿ‰์ด ์ž‘์€ ๊ฒฝ์šฐ๋Š” ๋Œ€๋ถ€๋ถ„ 1.5 โ€“ 2 MW ์šฉ๋Ÿ‰์˜ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ๊ฐ€ ๋งŽ์ด ์„ค์น˜๋˜์—ˆ์œผ๋ฉฐ,

5.0 MW๊ธ‰๋„ ๋งŽ์ด ์„ค์น˜๋œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ฆ๊ธฐ ์ƒ์‚ฐ๋Ÿ‰์œผ๋กœ ํ™˜์‚ฐํ•˜๋ฉด ์•ฝ 2.5 ton/h๊ธ‰์ด ๋งŽ์ด ์„ค์น˜๋˜์—ˆ๊ณ  ๋Œ€ํ˜•์œผ๋กœ๋Š” 7.0

ton/h๊ธ‰์ด ๋งŽ์ด ์„ค์น˜๋œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

2.2 ์ธก์ • ๋ฐฉ๋ฒ•

์‚ฐ๋ฆผ์ฒญ์—์„œ ์ง€์›ํ•œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•ด โ€œ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ ์ค€๊ณต๊ฒ€์‚ฌ๋ฅผ ์œ„ํ•œ ์‹œํ—˜๊ธฐ์ค€(KFS, 2013)โ€์— ์˜๊ฑฐ

ํ•˜์—ฌ ์„ค์น˜ ์™„๋ฃŒ ํ›„ ๋ณด์ผ๋Ÿฌ ์„ฑ๋Šฅ ์‹œํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณด์ผ๋Ÿฌ์˜ ์šด์ „ ์ƒํƒœ๊ฐ€ ์•ˆ์ •ํ™” ๋˜์—ˆ์„ ๋•Œ ํœด๋Œ€ํ˜• ๋‹ค๊ธฐ๋Šฅ ์—ฐ์†Œ๊ฐ€์Šค์ธก์ •๊ธฐ(Testo

350)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฐ์†Œ(O2), CO, NOx์˜ ๋†๋„๋ฅผ 1์‹œ๊ฐ„ ์ด์ƒ ์ธก์ •ํ•˜์—ฌ ์ธก์ •๊ฐ’์„ ํ‰๊ท ํ•˜์˜€๋‹ค. Testo 350์€ ๋‹ค์ˆ˜์˜ ์—ฐ์†Œ๊ฐ€์Šค(O2,

CO, NOx, SO2 ๋“ฑ)๋ฅผ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ธฐ๋กœ์„œ, PC์—ฐ๊ฒฐ์„ ํ†ตํ•œ ๋Œ€๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ก์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ธก์ • ์ „ ํ‘œ์ค€๊ฐ€์Šค๋ฅผ ํ†ตํ•ด

์˜์  ์กฐ์ •์„ ์ง„ํ–‰ํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค. O2์˜ ์ธก์ •๋ฒ”์œ„๋Š” 0-25%์ด๋ฉฐ, 0-25% ๋ฒ”์œ„์—์„œ์˜ ์ •ํ™•๋„๋Š” ยฑ0.01%์ด๋‹ค.

CO์˜ ์ธก์ •๋ฒ”์œ„๋Š” 0-10000 ppm ์ด๋ฉฐ, 200-2000 ppm ๋ฒ”์œ„์—์„œ์˜ ์ •ํ™•๋„๋Š” ยฑ5%์ด๋‹ค. NO์˜ ์ธก์ •๋ฒ”์œ„๋Š” 0-4000 ppm ์ด๋ฉฐ,

100-1999 ppm ๋ฒ”์œ„์—์„œ์˜ ์ •ํ™•๋„๋Š” ยฑ5%์ด๋‹ค. ๋˜ํ•œ NO2์˜ ์ธก์ •๋ฒ”์œ„๋Š” 0-500 ppm ์ด๋ฉฐ, 100-500 ppm ๋ฒ”์œ„์—์„œ์˜ ์ •ํ™•๋„๋Š”

ยฑ5%์ด๋‹ค. ๊ณ„์ธก๋œ ์ผ์‚ฐํ™”ํƒ„์†Œ์™€ ์งˆ์†Œ์‚ฐํ™”๋ฌผ์€ ๋ฐฐ๊ธฐ๊ฐ€์Šค O2 12%๋กœ ํ™˜์‚ฐํ•˜์—ฌ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ

3.1 ์ผ์‚ฐํ™”ํƒ„์†Œ(CO)

์„ค์น˜๋œ ์‚ฐ์—…์šฉ ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•ด ์ผ์‚ฐํ™”ํƒ„์†Œ ๋ฐฐ์ถœ๋Ÿ‰์„ ์ธก์ •๊ฒฐ๊ณผ๋ฅผ ์„ค์น˜๋œ ์—ฐ๋„์ˆœ์œผ๋กœ Fig. 3์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ทธ๋ฆผ์—์„œ ํ™•์ธํ• 

์ˆ˜ ์žˆ๋“ฏ์ด ์„ค์น˜๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ CO ํ‰๊ท  ๋ฐฐ์ถœ ๋†๋„๋Š” ๋ฐฐ๊ธฐ๊ฐ€์Šค ์ค‘ ์‚ฐ์†Œ์˜ ๋†๋„๋ฅผ 12%๋กœ ํ™˜์‚ฐํ•˜์˜€์„ ๋•Œ 56 ppm์ด๋‹ค.

์ธก์ •๋œ ๋ณด์ผ๋Ÿฌ๋“ค ์ค‘ ์ตœ๋Œ€ CO ๋ฐฐ์ถœ๋Ÿ‰์€ 220 ppm์ด๋‹ค. CO์˜ ๊ฒฝ์šฐ ๋†๋„๊ฐ€ ๋†’๊ฒŒ ๋˜๋ฉด CO ์ค‘๋…์„ ์œ ๋ฐœ์‹œ์ผœ ์–ด์ง€๋Ÿผ์ฆ ๋ฐ ์‹ฌ๊ฐํ• 

๊ฒฝ์šฐ์—๋Š” ์‚ฌ๋ง๊นŒ์ง€ ์œ ๋ฐœํ•˜๋Š” ๋ฌผ์งˆ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณด์ผ๋Ÿฌ์—์„œ CO๋Š” ์—ฐ์†Œ๊ฐ€ ์›ํ™œ์ด ์ผ์–ด๋‚˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋‚˜ ์—ฐ์†Œ์šฉ ๊ณต๊ธฐ๊ฐ€ ๋ถ€์กฑํ•œ

๊ฒฝ์šฐ ๋‹ค๋Ÿ‰ ๋ฐœ์ƒํ•œ๋‹ค. ๊ทธ๋ฆผ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋“ฏ์ด CO ๋ฐฐ์ถœ๋Ÿ‰์€ ์„ค์น˜๋…„๋„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์„

๋ณด๋‹ค ๋ช…ํ™•ํžˆ ๋ณด๊ธฐ์œ„ํ•ด ์ผ์‚ฐํ™”ํƒ„์†Œ ๋ฐฐ์ถœ ์‹œ๊ฐ„์— ๋”ฐ๋ผ 5๊ฐœ์”ฉ ํ‰๊ท ์„ ๊ตฌํ•˜์—ฌ CO ํ‰๊ท  ๋ฐฐ์ถœ๋Ÿ‰์„ ๊ตฌํ•˜์—ฌ Fig. 4์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. 2012๋…„

์ดํ›„ CO ํ‰๊ท  ๋ฐฐ์ถœ๋Ÿ‰์ด 2015๋…„๊นŒ์ง€ ๊ณ„์† ์ค„์–ด๋“ค๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. 2012๋…„์—๋Š” 50 โ€“ 100 ppm์˜ ๋ฒ”์œ„๋กœ ๋ฐฐ์ถœ๋˜๊ณ 

์žˆ์œผ๋‚˜, 2015๋…„์—๋Š” ๋ฐฐ์ถœ๋Ÿ‰์ด 20 โ€“ 30 ppm์œผ๋กœ ๋‚ฎ์•„์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๋Œ€๊ธฐํ™˜๊ฒฝ๋ณด์ „๋ฒ• ์‹œํ–‰๊ทœ์น™์— ๊ทœ์ •๋œ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ํ—ˆ์šฉ๊ธฐ

์ค€(๋ชฉ์žฌํŽ ๋ฆฟ ์‚ฌ์šฉ์‹œ์„ค CO 200 ppm ์ดํ•˜)์„ ํ›จ์”ฌ ๋ฐ‘๋„๋Š” ๊ฐ’์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ CO ๋ฐฐ์ถœ์€ ์—ฐ์†Œ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด

๋ถˆ์™„์ „์—ฐ์†Œ๋ฅผ ์ค„์ด๊ฒŒ ๋˜๋ฉด ์ €๊ฐ๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ CO ๋ฐฐ์ถœ๋Ÿ‰ ๊ฐ์†Œ๋Š” ์‚ฐ๋ฆผ์ฒญ์—์„œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ๊ฐ€ ๋ณด๊ธ‰๋˜๊ธฐ ์‹œ์ž‘ํ•œ

2011๋…„ ์ดํ›„ ๋ณด์ผ๋Ÿฌ ์ œ์ž‘์—…์ฒด๋งˆ๋‹ค ๋ณด์ผ๋Ÿฌ ํšจ์œจ ํ–ฅ์ƒ, CO ์ €๊ฐ ๋“ฑ ๊ธฐ์ˆ ๊ฐœ๋ฐœ์— ์ง‘์ค‘ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

๋ณด์ผ๋Ÿฌ์—์„œ ๋ฐฐ์ถœ๋œ CO ๊ฐ’์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ด ๋ณด์•˜๋‹ค. CO๋‚˜ NOx ๋“ฑ์— ๋Œ€ํ•œ ๋ฐฐ์ถœ๊ณ„์ˆ˜(g/kg_fuel)๋Š” ์—ฐ๋ฃŒ 1kg์„

์—ฐ์†Œ์‹œ์ผฐ์„ ๋•Œ ๋ฐฐ์ถœ๋˜๋Š” ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋ฌด๊ฒŒ(g)๋กœ ์ •์˜๋˜๋ฉฐ, ์•„๋ž˜์™€ ๊ฐ™์€ ์‹์œผ๋กœ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค.

Page 12: Analysis of Emission Characteristics and Emission Factors

Sea Byul Kangโ‹…Kyu Sung Choiโ‹…Hyun Hee Leeโ‹…Gyu-Seong Han

- 608 -

Emission factor (g/kg) = pollutant concentration (g/m3) * flue gas volume flow rate (m3/h) / fuel consumption (kg/h)

์œ„ ์‹์—์„œ ์˜ค์—ผ๋ฌผ์งˆ ๋ฐฐ์ถœ๋Ÿ‰(pollutant concentration)์€ ์‹ค์ œ ๋ชฉ์žฌํŽ ๋ฆฟ ์—ฐ์†Œ ์‹œ ๊ณ„์ธก๋œ ๊ฐ ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋ฐฐ์ถœ ๋†๋„(ppm)๋กœ๋ถ€ํ„ฐ

๊ณ„์‚ฐ๋˜๋ฉฐ, ์—ฐ๋ฃŒ ์†Œ๋น„๋Ÿ‰์€ ์‹ค์ œ ๋ณด์ผ๋Ÿฌ ๊ฐ€๋™ ์‹œ ํˆฌ์ž…๋˜๋Š” ์—ฐ๋ฃŒ๋Ÿ‰์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ฐฐ๊ธฐ๊ฐ€์Šค ๋ฐฐ์ถœ๋Ÿ‰์€ ์‹ค์ œ ๋ณด์ผ๋Ÿฌ

์—ฐ์†Œ ์‹œ ๊ณ„์ธก๋œ ๋ฐฐ๊ธฐ๊ฐ€์Šค ์‚ฐ์†Œ๋†๋„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. Fig. 5์—๋Š” ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•œ CO ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ

๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ณด๊ธ‰๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  CO ๋ฐฐ์ถœ๊ณ„์ˆ˜๋Š” 0.73 g/kg์ด๋‹ค. 2015๋…„์— ์„ค์น˜๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜

CO ํ‰๊ท  ๋ฐฐ์ถœ๋Ÿ‰์€ 25.7 ppm์œผ๋กœ ์ดˆ๊ธฐ(2012)์— ์„ค์น˜๋œ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ CO ํ‰๊ท  ๋ฐฐ์ถœ๋Ÿ‰์ธ 62.5 ppm์— ๋น„ํ•ด ๋งค์šฐ ๋‚ฎ๋‹ค.

์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์€ CO ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ์„ค์น˜๋œ ์‹œ๊ฐ„ ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ Fig. 5์—์„œ๋„ ์„ค์น˜๋…„๋„์— ๋”ฐ๋ผ CO ๋ฐฐ์ถœ๊ณ„์ˆ˜๊ฐ€ ์ค„์–ด๋“ค๊ณ  ์žˆ๋Š” ๊ฒƒ์„

ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋งˆ์ง€๋ง‰์— ์„ค์น˜๋œ 5๊ฐœ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ CO ๋ฐฐ์ถœ๊ณ„์ˆ˜์˜ ํ‰๊ท ์€ 0.36 g/kg๋กœ ๋งค์šฐ ๋‚ฎ๋‹ค.

3.2 ์งˆ์†Œ์‚ฐํ™”๋ฌผ(NOx)

๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ ๋ชฉ์žฌํŽ ๋ฆฟ์„ ํฌํ•จํ•œ ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ๋ชฉ์งˆ๊ณ„ ๊ณ ํ˜• ์—ฐ๋ฃŒ์— ํฌํ•จ๋œ ์งˆ์†Œ ํ•จ๋Ÿ‰์— ๋”ฐ๋ฅธ NOx ๋ฐฐ์ถœ๋Ÿ‰์„ Fig. 6์—

๋‚˜ํƒ€๋ƒˆ๋‹ค(Kang et al., 2017์˜ ์ž๋ฃŒ ์ธ์šฉ). ๊ทธ๋ฆผ์—์„œ ์‚ฐ๋ฆผ์ฒญ ๋ณด๊ธ‰์‚ฌ์—…์— ์˜ํ•ด ์„ค์น˜๋œ ์‚ฐ์—…์šฉ ๋ณด์ผ๋Ÿฌ์—์„œ ์‚ฌ์šฉ๋œ ๋ชฉ์žฌํŽ ๋ฆฟ์˜

์งˆ์†Œํ•จ๋Ÿ‰์ด 0.3%์ผ ๋•Œ ์ธก์ •๋œ NOx ๋ฐฐ์ถœ๋Ÿ‰์˜ ์ตœ๋Œ“๊ฐ’๊ณผ ์ตœ์†Ÿ๊ฐ’์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์—ฐ๋ฃŒ์— ํฌํ•จ๋œ ์งˆ์†Œ ํ•จ๋Ÿ‰์— ๋”ฐ๋ผ NOx๊ฐ’์ด ์„ ํ˜•์ ์œผ

๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ™์€ ๋ชฉ์žฌ ์—ฐ๋ฃŒ๋ผ๊ณ  ํ•˜๋”๋ผ๋„ ๊ทธ ์—ฐ๋ฃŒ์— ํฌํ•จ๋œ ์งˆ์†Œ ํ•จ๋Ÿ‰์— ๋”ฐ๋ผ NOx ์ƒ์„ฑ๋Ÿ‰์ด ๋‹ฌ๋ผ์งˆ

๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ๋ชฉ์žฌ ํŽ ๋ฆฟ์˜ ๊ฒฝ์šฐ ๋Œ€๋ถ€๋ถ„ ์งˆ์†Œ ํ•จ๋Ÿ‰์ด 0.5 % ๋ฏธ๋งŒ์ด๊ธฐ ๋•Œ๋ฌธ์— NOx ์ƒ์„ฑ์€ 100 ppm ์ดํ•˜๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค. 500MW๊ธ‰

์„ํƒ„ํ™”๋ ฅ๋ณด์ผ๋Ÿฌ์—์„œ ์„ํƒ„ ์ข…๋ฅ˜(์—ญ์ฒญํƒ„, ์•„์—ญ์ฒญํƒ„)์— ๋”ฐ๋ฅธ NOx ๋ฐฐ์ถœํŠน์„ฑ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋ฉด(Kang et al., 2009), ์„ํƒ„์—

ํฌํ•จ๋œ ์งˆ์†Œ ํ•จ๋Ÿ‰์€ 0.76 โ€“ 1.7 % ์ˆ˜์ค€์ด๋‹ค. ์ด๋กœ ์ธํ•ด ์„ํƒ„ํ™”๋ ฅ ๋ฐœ์ „์†Œ์—์„œ๋Š” ๊ณ ์˜จ์—์„œ ๋ฐœ์ƒํ•˜๋Š” thermal NOx ์ƒ์„ฑ์ด ํฐ

๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜์ง€๋งŒ, ์งˆ์†Œ์„ฑ๋ถ„์ด ๋†’์€ ์„ํƒ„์„ ์—ฐ์†Œ์‹œ์ผฐ์„ ๋•Œ NOx ์ƒ์„ฑ์ด ๋†’์•„์ง„๋‹ค๋Š” ์‚ฌ์‹ค๋„ ํ™•์ธ๋˜์—ˆ๋‹ค.

์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•œ NOx ๋ฐฐ์ถœ๋Ÿ‰ ๋ฐ 5๊ฐœ ํ‰๊ท ํ•œ ๊ฐ’์„ Fig. 7๊ณผ 8์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ณ„์ธก๋œ ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  NOx ๋ฐฐ์ถœ๋Ÿ‰์€

๋ฐฐ๊ธฐ๊ฐ€์Šค ์‚ฐ์†Œ๋†๋„ 12%์—์„œ 76 ppm์ด๋‹ค. NOx์˜ ๊ฒฝ์šฐ 44 โ€“ 128 ppm๊นŒ์ง€ ๋ถ„ํฌ๋˜์–ด ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๋Œ€๊ธฐํ™˜๊ฒฝ๋ณด์ „๋ฒ•

์‹œํ–‰๊ทœ์น™์— ๊ทœ์ •๋œ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ํ—ˆ์šฉ๊ธฐ์ค€(๋ชฉ์žฌํŽ ๋ฆฟ ์‚ฌ์šฉ์‹œ์„ค NOx 150 ppm ์ดํ•˜)์„ ํ›จ์”ฌ ๋ฐ‘๋„๋Š” ๊ฐ’์ด๋‹ค. ์ด ๋•Œ NOx์—

๋Œ€ํ•œ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ด๋ณด๋ฉด 1.63 g/kg์ด๋‹ค. ๋‘ ๊ทธ๋ฆผ์„ ๋ณด๋ฉด ์„ค์น˜ ๊ธฐ๊ฐ„์— ๋”ฐ๋ฅธ CO ๋ถ„ํฌ์™€๋Š” ๋‹ฌ๋ฆฌ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋ฐฐ์ถœ๋Ÿ‰์ด

์ค„์–ด๋“œ๋Š” ๊ฒฝํ–ฅ์€ ์—†๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋ฅผ ์‚ดํŽด๋ณด๋ฉด CO ๋ฐฐ์ถœ์€ ์—ฐ์†Œ๊ธฐ๋ฅผ ๊ฐœ์„ ํ•˜์—ฌ ์ตœ์ ์—ฐ์†Œ ์กฐ๊ฑด์„ ๋งŒ๋“ค์–ด์ฃผ์–ด ์ €๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค.

ํ•˜์ง€๋งŒ NOx์˜ ๊ฒฝ์šฐ ์—ฐ๋ฃŒ์— ์งˆ์†Œ(N)์„ฑ๋ถ„์ด ์—†๋Š” ์ฒœ์—ฐ๊ฐ€์Šค(LNG)์™€๋Š” ๋‹ฌ๋ฆฌ ๋ชฉ์žฌํŽ ๋ฆฟ์— 0.1 โ€“ 0.5%์ •๋„ ์งˆ์†Œ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ์งˆ์†Œ๊ฐ€ ๊ณ ์˜จ์˜ ์—ฐ์†Œ๋ถ„์œ„๊ธฐ์—์„œ ์‚ฐํ™”๋˜์–ด NO์™€ NO2๋“ฑ์œผ๋กœ ๋ณ€ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ƒ์„ฑ๋œ NOx๋ฅผ Fuel NOx๋ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ

NOx๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ์ค„์ด๊ธฐ ํž˜๋“ค๊ฒŒ ๋˜๋ฉฐ ์ด๋Ÿฌํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด NOx ๋ฐฐ์ถœ๋Ÿ‰์€ ์ค„์–ด๋“ค์ง€ ์•Š๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด๊ฒŒ ๋œ๋‹ค.

๊ตญ๋‚ด ์ €NOx ์ธ์ฆ์ œํ’ˆ์— ๋Œ€ํ•œ NOx ๋ฐฐ์ถœ๊ฐ’์„ Fig. 9์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ทธ๋ฆผ์—์„œ ๋ณด๋Š” ๊ฒƒ๊ณผ ๊ฐ™์ด NOx ํ‰๊ท ๊ฐ’์€ 35 ppm์ธ ๊ฒƒ์„

์•Œ ์ˆ˜ ์žˆ๋‹ค. ์‚ฐ์—…์šฉ ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•œ ์ €NOx ๋ฒ„๋„ˆ ๊ธฐ์ค€์€ ๋ฐฐ๊ธฐ๊ฐ€์Šค ์‚ฐ์†Œ๋†๋„ 4 %์—์„œ 40 ppm ๋ฏธ๋งŒ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ €NOx

๋ฒ„๋„ˆ๊ธฐ์ค€์„ ๋งŒ์กฑํ•˜๋Š” LNG ๋ฒ„๋„ˆ๋Š” ์‚ฐ์†Œ๋†๋„ 3 %์—์„œ 35 ppm ์ •๋„ ๋ฐฐ์ถœ๋˜๊ณ  ์žˆ๋‹ค.

LNG, ๋ชฉ์žฌํŽ ๋ฆฟ ๋ฐ ์„ํƒ„(๋˜๋Š” ์ค‘์œ )์— ๋Œ€ํ•œ ๋ณด์ผ๋Ÿฌ ์ •์ƒ ์—ฐ์†Œ ์‹œ์˜ ํ‰๊ท ์ ์ธ NOx ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ Table 1์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ชฉ์žฌํŽ ๋ฆฟ์˜

๊ฒฝ์šฐ ์•ž์—์„œ ์ธก์ •ํ•œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ์—์„œ ๋ฐฐ์ถœ๋˜๋Š” NOx ํ‰๊ท ๊ฐ’์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์„ํƒ„ ๋˜๋Š” ์ค‘์œ (bunker-C)๋ฅผ ์‚ฌ์šฉํ•˜๋Š”

๋ฐœ์ „์šฉ ๋ณด์ผ๋Ÿฌ์˜ ๊ฒฝ์šฐ ์ผ๋ฐ˜์ ์œผ๋กœ NOx๋ฅผ 70 ppm ์ดํ•˜๋กœ ์šด์ „๋˜๊ณ  ์žˆ๋‹ค(๋Œ€๊ธฐํ™˜๊ฒฝ๋ณด์กด๋ฒ• 2014.12 ์ด์ „ ์„ค์น˜์„ค๋น„). ์ด๋Ÿฌํ•œ

์ƒํ™ฉ์„ ๊ฐ ์—ฐ๋ฃŒ์˜ ๋Œ€ํ‘œ์ ์ธ ์ƒํ™ฉ์œผ๋กœ ๊ฐ€์ •ํ•˜์˜€์„ ๋•Œ NOx ๋ฐฐ์ถœ ๊ณ„์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ Table 1์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. LNG์˜ NOx ๋ฐฐ์ถœ์ง€์ˆ˜๋ฅผ

1๋กœ ํ•˜์˜€์„ ๋•Œ ๋ชฉ์žฌํŽ ๋ฆฟ์€ 1.90๋ฐฐ, ์„ํƒ„ ๋˜๋Š” bunker-C์˜ ๊ฒฝ์šฐ 2.01๋ฐฐ ๋ฐฐ์ถœ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. ์„ํƒ„ ๋˜๋Š” bunker-C์˜

๊ฒฝ์šฐ ๋ณด์ผ๋Ÿฌ ํ›„๋‹จ์— SCR(selective catalytic reduction) ๋“ฑ NOx๋ฅผ ์ €๊ฐ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ›„์ฒ˜๋ฆฌ ์„ค๋น„๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ๋กœ ๊ฐ€์ •ํ•˜์˜€๋‹ค.

๋งŒ์ผ SCR ๋“ฑ ํ›„์ฒ˜๋ฆฌ ์„ค๋น„๊ฐ€ ์—†์„ ๊ฒฝ์šฐ์—๋Š” ๋ฐฐ์ถœ๊ณ„์ˆ˜๊ฐ€ ๋” ๋†’์„ ๊ฒƒ์ด๋‹ค.

4. ๊ฒฐ ๋ก 

2011๋…„๋ถ€ํ„ฐ 2015๋…„๊นŒ์ง€ ์‚ฐ๋ฆผ์ฒญ์—์„œ ์ง€์›ํ•œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ 63๋Œ€์˜ CO ๋ฐ NOx ๊ณ„์ธก๊ฐ’์€ ๋ชจ๋‘ ํ™˜๊ฒฝ๋ถ€์˜ ํ—ˆ์šฉ๊ธฐ์ค€์„

๋งŒ์กฑํ•˜์˜€๋‹ค. CO ๋ฐ NOx ๋ฐฐ์ถœ๊ฐ’์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ด๋ณด์•˜๋‹ค. ์ด๋ ‡๊ฒŒ ๊ณ„์‚ฐ๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ

์ €NOx ์ธ์ฆ๋ฒ„๋„ˆ์—์„œ ๋ฐฐ์ถœ๋˜๋Š” NOx์™€ ๋น„๊ตํ•ด๋ณด์•˜๋‹ค. ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

Page 13: Analysis of Emission Characteristics and Emission Factors

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service

- 609 -

1. ์‚ฐ๋ฆผ์ฒญ์—์„œ ์ง€์›ํ•œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌ ํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  ์šฉ๋Ÿ‰์€ 3.0MW๋กœ ๋ชฉ์žฌ ํŽ ๋ฆฟ ์†Œ๋น„๋Ÿ‰์€ ์•ฝ 740 kg/h์ด๋‹ค.

2. 5๋…„๊ฐ„ ๋ณด๊ธ‰๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  CO ๋ฐฐ์ถœ๋Ÿ‰์€ 56 ppm(@O2 12%)์ด๋ฉฐ, ์ด๋ฅผ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋กœ ํ™˜์‚ฐํ•˜๋ฉด 0.73

g/kg์ด๋‹ค.

3. ๋ณด๊ธ‰์ดˆ๊ธฐ์ธ 2012๋…„ ๋ณด๊ธ‰๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์— ๋Œ€ํ•œ ํ‰๊ท  CO ๋ฐฐ์ถœ๋Ÿ‰์€ 70.3 ppm(@O2 12%)์ด์—ˆ์œผ๋‚˜, ๋ณด๊ธ‰์‚ฌ์—…

๋งˆ์ง€๋ง‰ ์—ฐ๋„์— ์„ค์น˜๋œ ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  CO ๋ฐฐ์ถœ๋Ÿ‰์€ 28.9 ppm์ด๋‹ค. ์ด๋Š” ๊ธฐ์ˆ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ์—ฐ์†Œ๊ธฐ ๋ฐ ๋ณด์ผ๋Ÿฌ ์‹œ์Šคํ…œ์„ ์ตœ์ ํ™”ํ•œ

๊ฒฐ๊ณผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

4. 5๋…„๊ฐ„ ๋ณด๊ธ‰๋œ ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์˜ ํ‰๊ท  NOx ๋ฐฐ์ถœ๋Ÿ‰์€ 76 ppm(@O2 12%)์ด๋ฉฐ, ์ด๋ฅผ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋กœ ํ™˜์‚ฐํ•˜๋ฉด 1.63

g/kg์ด๋‹ค.

5. NOx๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” NOx ์ƒ์„ฑ์ด ์—ฐ๋ฃŒ์— ํฌํ•จ๋œ ์งˆ์†Œํ•จ๋Ÿ‰์— ๋”ฐ๋ผ ์ƒ์„ฑ๋˜๋Š” fuel

NOx๊ฐ€ ์ค„์–ด๋“ค์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

6. ์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ๋ณด์ผ๋Ÿฌ์—์„œ ์ƒ์„ฑ๋˜๋Š” NOx์˜ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋ฅผ ์ €NOx ์ธ์ฆ LNG ๋ฒ„๋„ˆ ๋ฐ ์„ํƒ„(์ค‘์œ )์™€ ๋น„๊ตํ•ด ๋ณด์•˜๋‹ค. ๋ณด๊ธ‰๋œ

์‚ฐ์—…์šฉ ๋ชฉ์žฌํŽ ๋ฆฟ ๋ณด์ผ๋Ÿฌ์˜ ๋ฐฐ์ถœ๊ณ„์ˆ˜๋Š” ์ €NOx ์ธ์ฆ LNG ์—ฐ์†Œ๋ณด๋‹ค ์•ฝ 1.90๋ฐฐ์ด์—ˆ์œผ๋ฉฐ, ํƒˆ์งˆ์„ค๋น„๊ฐ€ ๋ถ€์ฐฉ๋œ ์„ํƒ„ ๋ฐ ์ค‘์œ  ๋ณด์ผ๋Ÿฌ

์— ๋น„ํ•ด ์•ฝ 0.92๋ฐฐ์ด๋‹ค.