39
Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray California Institute of Technology Control and Dynamical Systems IEEE Conference on Decision and Control, Osaka, Japan December 17, 2015 1 / 18

Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Analysis of Control Systemson Symmetric Cones

Ivan Papusha Richard M. Murray

California Institute of Technology

Control and Dynamical Systems

IEEE Conference on Decision and Control, Osaka, Japan

December 17, 2015

1 / 18

Page 2: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Stability of a linear system

Is the system x = Ax asymptotically stable?

A =

− 10 1 5 12 − 9 2 71 0 − 41 04 1 3 − 9

• structurally dense

• no easy way to escape calculating eigenvalues, Lyapunov matrix. . .

2 / 18

Page 3: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Stability of a linear system

Is the system x = Ax asymptotically stable?

A =

− 10 1 5 12 − 9 2 71 0 − 41 04 1 3 − 9

• structurally dense

• no easy way to escape calculating eigenvalues, Lyapunov matrix. . .

(eigenvalues: −41.157,−4.7465,−11.548± 1.4405i)

2 / 18

Page 4: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Stability of a linear system

Is the system x = Ax asymptotically stable?

A =

− 10 1 5 12 − 9 2 71 0 − 41 04 1 3 − 9

• structurally dense

• no easy way to escape calculating eigenvalues, Lyapunov matrix. . .

(eigenvalues: −41.157,−4.7465,−11.548± 1.4405i)

can we do better?

2 / 18

Page 5: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Stability of a linear system

Is the system x = Ax asymptotically stable?

A =

− 10 1 5 12 − 9 2 71 0 − 41 04 1 3 − 9

• structurally dense

• no easy way to escape calculating eigenvalues, Lyapunov matrix. . .

(eigenvalues: −41.157,−4.7465,−11.548± 1.4405i)

can we do better?

yes if we exploit cone structure of A

2 / 18

Page 6: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Age-old problem

question: When is the linear dynamical system

x(t) = Ax(t), A ∈ Rn×n, x(t) ∈ Rn

globally asymptotically stable? (x(t) → 0 as t → ∞ for all initialconditions)

answer: solved!

3 / 18

Page 7: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

Re(λi (A)) < 0, i = 1, . . . , n.

4 / 18

Page 8: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

Re(λi (A)) < 0, i = 1, . . . , n.

2. given a positive definite matrix Q = QT ≻ 0, there exists a uniquematrix P ≻ 0 satisfying the Lyapunov equation

ATP + PA+ Q = 0.

4 / 18

Page 9: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

Re(λi (A)) < 0, i = 1, . . . , n.

2. given a positive definite matrix Q = QT ≻ 0, there exists a uniquematrix P ≻ 0 satisfying the Lyapunov equation

ATP + PA+ Q = 0.

3. the following linear matrix inequality holds,

P = PT ≻ 0, ATP + PA ≺ 0.

4 / 18

Page 10: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

Re(λi (A)) < 0, i = 1, . . . , n.

2. given a positive definite matrix Q = QT ≻ 0, there exists a uniquematrix P ≻ 0 satisfying the Lyapunov equation

ATP + PA+ Q = 0.

3. the following linear matrix inequality holds,

P = PT ≻ 0, ATP + PA ≺ 0.

4. there exists a quadratic Lyapunov function V : Rn → R,

V (x) = 〈x ,Px〉which is positive definite (V (x) > 0 for all x 6= 0) and decreasing(V < 0 along system trajectories).

4 / 18

Page 11: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Age-old problem

answer: The linear system is stable if and only if

3. the following linear matrix inequality holds,

P = PT ≻ 0, ATP + PA ≺ 0.

4 / 18

Page 12: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Quadratic Lyapunov function

∃P = PT ≻ 0, ATP + PA ≺ 0

Lyapunov’s theorem ⇓x = Ax is stable

V (x)

x1 x2

5 / 18

Page 13: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Quadratic Lyapunov function

∃P = PT ≻ 0, ATP + PA ≺ 0

Lyapunov’s theorem ⇓ ⇑ for all linear systems

x = Ax is stable

V (x)

x1 x2

5 / 18

Page 14: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Three cones

A proper cone is closed, convex, pointed, has nonempty interior, andclosed under nonnegative scalar multiplication.

• nonnegative orthant

Rn+ = {x ∈ Rn | xi ≥ 0, for all i = 1, . . . , n}

• second order (Lorentz) cone

Ln+ = {(x0, x1) ∈ R× Rn−1 | ‖x1‖2 ≤ x0}

• positive semidefinite cone

Sn+ = {X ∈ Rn×n | X = XT � 0}

these cones are self-dual and symmetric (cone of squares, Jordan algebra)

6 / 18

Page 15: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Cone invariance

DefinitionThe system x = Ax is invariant with respect to the cone K if eA(K ) ⊆ K .

• once the state enters K , it never leaves

x(0) ∈ K ⇒ x(t) ∈ K for all t ≥ 0

• equivalently, A is cross-positive

x ∈ K , y ∈ K∗, and 〈x , y〉 = 0

⇒ 〈Ax , y〉 ≥ 0

x(t)

KK∗

7 / 18

Page 16: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Linear Lyapunov function

∃p ∈ Rn, pi > 0, (Ap)i < 0, i = 1, . . . , n

Lyapunov’s theorem ⇓x = Ax is stable

V (x)

x1 x2

8 / 18

Page 17: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Linear Lyapunov function

∃p ∈ Rn, pi > 0, (Ap)i < 0, i = 1, . . . , n

Lyapunov’s theorem ⇓ ⇑ for Rn+-invariant linear systems

x = Ax is stable

V (x)

x1 x2

8 / 18

Page 18: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Lorentz Lyapunov function

∃p ∈ intLn+, Ap ∈ − intLn

+

Lyapunov’s theorem ⇓x = Ax is stable

V (x)

x1 x2

9 / 18

Page 19: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Lorentz Lyapunov function

∃p ∈ intLn+, Ap ∈ − intLn

+

Lyapunov’s theorem ⇓ ⇑ for Ln+-invariant linear systems

x = Ax is stable

V (x)

x1 x2

9 / 18

Page 20: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

General theorem

Let L : V → V be a linear operator on a Jordan algebra V withcorresponding symmetric cone of squares K , and assume thateL(K ) ⊆ K . The following statements are equivalent:

(a) There exists p ≻K 0 such that −L(p) ≻K 0

(b) There exists z ≻K 0 such that LPz + PzLT is negative definite on V .

(c) The system x(t) = L(x) with initial condition x0 ∈ K isasymptotically stable.

10 / 18

Page 21: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

General theorem

Let L : V → V be a linear operator on a Jordan algebra V withcorresponding symmetric cone of squares K , and assume thateL(K ) ⊆ K . The following statements are equivalent:

(a) There exists p ≻K 0 such that −L(p) ≻K 0

(b) There exists z ≻K 0 such that LPz + PzLT is negative definite on V .

(c) The system x(t) = L(x) with initial condition x0 ∈ K isasymptotically stable.

x = Ax is K -invariant

⇓Lyapunov function obtained by conic programming over K

10 / 18

Page 22: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant K = Rn+

A =

−10 1 5 12 −9 2 71 0 −41 04 1 3 −9

11 / 18

Page 23: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant K = Rn+

A =

−10 1 5 12 −9 2 71 0 −41 04 1 3 −9

• linear Lyapunov function V = 〈p, x〉 suffices:

p =

1.43922.77880.220791.9704

≻Rn+0 Ap =

−8.5383−7.8967−7.6133−8.536

≺Rn+0

11 / 18

Page 24: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant K = Rn+

A =

−10 1 5 12 −9 2 71 0 −41 04 1 3 −9

• linear Lyapunov function V = 〈p, x〉 suffices:

p =

1.43922.77880.220791.9704

≻Rn+0 Ap =

−8.5383−7.8967−7.6133−8.536

≺Rn+0

• quadratic representation: there exists z ∈ Rn+ such that p = z ◦ z

V (x) = 〈x ,Pzx〉, Pz = diag(z2), z =

√1.4392√2.7788√0.22079√1.9704

11 / 18

Page 25: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Transportation network example

x0

x1

x2

x3

x4

• Directed transportation networkx1, . . . , x4 (Rantzer, 2012), augmentedwith a catch-all buffer x0.

x0x1x2x3x4

=

ℓ00 ℓ01 ℓ02 ℓ03 ℓ040 −1− ℓ31 ℓ12 0 00 0 −ℓ12 − ℓ32 ℓ23 00 ℓ31 ℓ32 −ℓ23 − ℓ43 ℓ340 0 0 ℓ43 −4− ℓ34

x0x1x2x3x4

12 / 18

Page 26: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Transportation network example

x0

x1

x2

x3

x4

• Directed transportation networkx1, . . . , x4 (Rantzer, 2012), augmentedwith a catch-all buffer x0.

• Metzler substructure

x0x1x2x3x4

=

ℓ00 ℓ01 ℓ02 ℓ03 ℓ040 −1− ℓ31 ℓ12 0 00 0 −ℓ12 − ℓ32 ℓ23 00 ℓ31 ℓ32 −ℓ23 − ℓ43 ℓ340 0 0 ℓ43 −4− ℓ34

x0x1x2x3x4

12 / 18

Page 27: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Transportation network example

x0

x1

x2

x3

x4

• Directed transportation networkx1, . . . , x4 (Rantzer, 2012), augmentedwith a catch-all buffer x0.

• Metzler substructure

• ℓ00, . . . , ℓ04 have no definite sign

x0x1x2x3x4

=

ℓ00 ℓ01 ℓ02 ℓ03 ℓ040 −1− ℓ31 ℓ12 0 00 0 −ℓ12 − ℓ32 ℓ23 00 ℓ31 ℓ32 −ℓ23 − ℓ43 ℓ340 0 0 ℓ43 −4− ℓ34

x0x1x2x3x4

12 / 18

Page 28: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Lorentz cone-invariant dynamics

x0

x1 x2

x0

x1 x2

Figure 1: Embedded focus along x0-axis

A dynamics matrix A is Ln+-invariant if and only if there exists

ξ ∈ R, AT Jn + JnA− ξJn � 0. (∗)

Provided this condition holds, A is (Hurwitz) stable if and only if thereexists p ≻Ln

+0 with Ap ≺Ln

+0.

13 / 18

Page 29: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Technical summary

Algebra: Real Lorentz SymmetricV Rn Rn Sn

K Rn+ Ln

+ Sn+

〈x , y〉 xT y xT y Tr(XY T )

x ◦ y xiyi (xT y , x0y1 + y0x1)12(XY + YX )

Pz , z ∈ intK diag(z)2 zzT − zT Jnz2

Jn X 7→ ZXZ

V (x) = 〈x ,Pz (x)〉 xT diag(z)2x xT(

zzT − zT Jnz2

Jn

)

x ‖XZ‖2F

Free variables in V (x) n n n(n + 1)/2dynamics L x 7→ Ax x 7→ Ax X 7→ AX + XAT

L is cross-positive A is Metzler A satisfies (∗) by construction−L(p) ≻K 0 (Ap)i < 0 ‖(Ap)1‖2 < (−Ap)0 AP + PAT ≺ 0

Stability verification LP SOCP SDP

Table 1: Summary of dynamics preserving a cone

14 / 18

Page 30: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP?

15 / 18

Page 31: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn+-invariant systems, Rantzer 2012)

• SDP?

15 / 18

Page 32: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn+-invariant systems, Rantzer 2012)

• SDP? (yes, in general, Yakubovich 1960s. . . )

• SOCP?

15 / 18

Page 33: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn+-invariant systems, Rantzer 2012)

• SDP? (yes, in general, Yakubovich 1960s. . . )

• SOCP? (conjecture: yes)

15 / 18

Page 34: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn+-invariant systems, Rantzer 2012)

• SDP? (yes, in general, Yakubovich 1960s. . . )

• SOCP? (conjecture: yes)

Are these three cones the end of the story?

15 / 18

Page 35: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn+-invariant systems, Rantzer 2012)

• SDP? (yes, in general, Yakubovich 1960s. . . )

• SOCP? (conjecture: yes)

Are these three cones the end of the story?

• yes

15 / 18

Page 36: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Questions

Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn+-invariant systems, Rantzer 2012)

• SDP? (yes, in general, Yakubovich 1960s. . . )

• SOCP? (conjecture: yes)

Are these three cones the end of the story?

• yes (kind of)

15 / 18

Page 37: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Symmetric cone categorization

If K is a (finite dimensional) symmetric cone, then it is a cartesianproduct

K = K1 × K2 × · · · × KN ,

where each Ki is one of (e.g., Faraut 1994)

• n × n self-adjoint positive semidefinite matrices with real, complex,or quaternion entries

• 3× 3 self-adjoint positive semidefinite matrices with octonion entries(Albert algebra), and

• Lorentz cone

16 / 18

Page 38: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Contributions

• analysis idea comes from the cone inclusion

nonnegative orthant ⊆ second-order cone ⊆ semidefinite cone

LP ⊆ SOCP ⊆ SDP

easy → harder → hardest

• characterized new class of linear systems that admit SOCP-basedanalysis without any loss

• unified existing analysis frameworks

• algebraic connections with a mature theory (Jordan algebras)

17 / 18

Page 39: Analysis of Control Systems on Symmetric Conesivanpapusha.com/pdf/jordan_cdc2015_slides.pdf · Analysis of Control Systems on Symmetric Cones Ivan Papusha Richard M. Murray CaliforniaInstituteofTechnology

Thanks!

more information: Ivan Papusha, Richard M. Murray. Analysis ofControl Systems on Symmetric Cones, IEEE CDC, 2015.

www.cds.caltech.edu/~ipapusha

funding: NDSEG, Powell Foundation, STARnet/TerraSwarm, Boeing

18 / 18