19
Analysis of Apollo Samples with the Multispectral Microscopic Imager (MMI) Jorge I. Nuñez, Arizona State University Jack D. Farmer, Arizona State University R. Glenn Sellar, NASA Jet Propulsion Laboratory Carlton C. Allen, NASA Johnson Space Center LEAG November 18, 2009

Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Analysis of Apollo Samples with the Multispectral Microscopic Imager (MMI)

Jorge I. Nuñez, Arizona State University Jack D. Farmer, Arizona State University R. Glenn Sellar, NASA Jet Propulsion Laboratory Carlton C. Allen, NASA Johnson Space Center

LEAG November 18, 2009

Page 2: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Microscopic Imaging is an Essential Tool for In-Situ Planetary Science

•  Microspatial relationship between mineral grains and cements provides essential information for inferring primary (depositional) and secondary (diagenetic) processes

•  Essential for assessing petrogenesis in the field and supports real-time, hypothesis-driven exploration

•  Microscopic Imagers (MI) on the Mars Exploration Rovers •  Robotic Arm Camera (RAC) and MECA on Phoenix •  Mars Hand-Lens Imager (MAHLI) on Mars Science Laboratory

•  Helps address goals of NRC’s Scientific Context for the Exploration of the Moon and LEAG’s Lunar Exploration Roadmap:

–  Rock/soil microtextures –  Rock/soil mineralogy

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 3: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Multispectral Microscopic Imager

•  InGaAs camera –  extends spectral range to

0.45 to 1.75 µm –  FOV: 40 x 32 mm –  Resolution: 62.5 µm/pixel

•  Multiwavelength LED Illuminator –  21 wavelengths –  minimizes spectral artifacts –  No moving parts

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 4: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Multispectral Microscopic Imager

•  Field-portable –  battery powered –  complete system 18 kg including

backpack

•  Each pixel composed of VNIR spectrum

•  Mineralogy within a microtextural framework: –  Support in-situ rover-based analysis

of rocks and soils –  Guide sub-sampling of materials for

return to Earth –  Support astronaut EVA investigation

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 5: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

MMI at JSC

•  Initial test at JSC in May 2009

•  Imaged: –  18 rocks and 4 soils –  Every Apollo mission –  Span full compositional range

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 6: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 15 Sample 15459 Glass-matrix Regolith Breccia

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Source: Lunar Sample Compendium

Page 7: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 15 Sample 15459,53

2009 11 18 Multispectral Microscopic Imager

Natural-color (463, 522, 641 nm) False-color (522, 908,1430 nm) Ratio (463/741,741/970,741/463)

Nuñez et al LEAG 2009

Ratio (1660/1050,1290/908,970/1290)

Spectral end-member map

Page 8: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 15 Sample 15555 Olivine-normative Basalt

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Source: Lunar Sample Compendium

Page 9: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 15 Sample 15555,62

2009 11 18 Multispectral Microscopic Imager

Natural-color (463, 522, 641 nm) False-color (522, 908,1430 nm) Ratio (463/741,741/970,741/463)

Nuñez et al LEAG 2009

Ratio (1660/1050,1290/908,970/1290)

Spectral end-member map

Page 10: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 16 Sample 60025 Ferroan Anorthosite

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Source: Lunar Sample Compendium

Page 11: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 16 Sample 60025,174

2009 11 18 Multispectral Microscopic Imager

Natural-color (463, 522, 641 nm) False-color (522, 908,1430 nm) Ratio (463/741,741/970,741/463)

Nuñez et al LEAG 2009

Ratio (1660/1050,1290/908,970/1290)

Spectral end-member map

Page 12: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 14 Sample 14321 Clast-rich, Crystalline Matrix Breccia

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Source: Lunar Sample Compendium

Page 13: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Apollo 14 Sample 14321,88

2009 11 18 Multispectral Microscopic Imager

Natural-color (463, 522, 641 nm) False-color (522, 908,1430 nm) Ratio (463/741,741/970,741/463)

Nuñez et al LEAG 2009

Ratio (1660/1050,1290/908,970/1290)

Spectral end-member map

Page 14: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Intermediate Capabilities

2009 11 18 Multispectral Microscopic Imager

Current in-situ capabilities

MMI

• Multispectral 0.4 – 1.7 µm • Some mineralogy

• Low mass • Low power • No moving parts • Sample unprepared or ground in place (e.g. MER RAT)

Not currently feasible in-situ

Hand lens •  E.g. MI, RAC, MAHLI

•  Very limited mineralogy

Petrographic microscope •  Definitive mineralogy

•  Requires extensive sample preparation

Mast-mounted cameras •  E.g. MER Pancam, SSI •  Multispectral 0.4- 1.0 µm

•  Very limited mineralogy

Imaging spectrometers on orbiters • Hyperspectral 0.4 – 4.0 µm • E.g. OMEGA, CRISM, M3

• Substantial mineralogy

• Too massive for arm-mounted applications

Nuñez et al LEAG 2009

Page 15: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Optimization Within the Trade Space

2009 11 18 Multispectral Microscopic Imager

MER MI Phoenix RAC MSL MAHLI MMI M3 on Chandrayaan-1

Spectral range 0.45 – 0.7 µm 0.4 – 0.7 µm 0.4 – 0.7 µm (+ fluorescence)

0.47 – 1.75 µm 0.43 – 3.0 µm

Spectral bands 2 (closely spaced)

3 4 21 258

Mineralogical capability

none; no mineral classes identified

visible color only; few mineral classes

identified

visible color only; few mineral classes

identified

identify selected mineral classes, especially Fe-

bearing phases

identify broad range of mineral classes

Reliability no moving parts no moving parts no moving parts no moving parts scan mechanism would be required for lander/rover

Cooling not required not required not required not required detector cooled to 165 K

Mass 0.3 kg 0.4 kg 0.6 kg ~ 0.6 kg (flight version)

> 8.0 kg

Cost few $ M few $ M few $ M few $ M > $ 20 M

The MMI approach is optimal, providing substantial advances in microimaging capabilities relative to current technologies, while retaining the same low-mass (< 1 kg), low-cost (few $M), and high-reliability (no moving parts) of microimagers previously proposed for flight. Advances achieved with the MMI are accomplished within size, resource, and cost limitations for accommodation on a broad range of planetary surface missions.

Nuñez et al LEAG 2009

Page 16: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Summary

•  The MMI produces multispectral images of rock and soil surfaces where each pixel is composed of a VNIR spectrum

•  Enables the identification of lunar-relevant minerals within a microtextural framework, enabling field-based interpretations of petrogenesis

•  Improves upon the capabilities of current and planned microimagers such as Phoenix’ RAC and MSL’s MAHLI by increasing the number of spectral bands and extending into the infrared

•  MMI design has low mass (< 1kg), low cost, and high reliability (no moving parts) essential for arm-mounted instrument on a robotic rover or hand-held instrument for astronaut EVAs

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 17: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Acknowledgements

The research described in this paper was carried out at Arizona State University, the Jet Propulsion Laboratory, California Institute of Technology and NASA’s Johnson Space Center, under a contract with the National Aeronautics and Space Administration.

Charles Meyer, Andrea Mosie, Carol Schwarz, and Terry Parker at JSC for assistance with handling of the lunar samples, and Daniel Winterhalter at JPL for enabling the JPL/JSC initiative.

NASA Earth and Space Science Fellowship (NESSF) Program Clive Neal and LEAG for travel grant

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 18: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

Questions?

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009

Page 19: Analysis of Apollo Samples with the Multispectral ... PM... · 2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009 . Multispectral Microscopic Imager ... M. S. Robinson,

References

Hecht, M. H. et al. (2008), Microscopy capabilities of the Microscopy, Electrochemistry, and Conductivity Analyzer, J. Geophys. Res., 113, E00A22, doi:10.1029/2008JE003077.

Herkenhoff, K. E. and 22 others (2003). Athena Microscopic Imager Investigation. J. Geophys. Res. 108, 8065, doi:10.1029/2003JE002076. Herkenhoff, K. E. and 32 others (2004). Evidence from Opportunity’s Microscopic Imager for Water on Meridiani Planum. Science 306, 1727. Herkenhoff et al. (2006), Overview of the Microscopic Imager Investigation during Spirit’s first 450 Sols in Gusev Crater, J. Geophys. Res. 111,

E02S04, doi:10.1029/2005JE002574. Herkenhoff, K. E., et al. (2008), Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations d

uring Opportunity's first three extended missions, J. Geophys. Res. 113, E12S32, doi:10.1029/2008JE003100. Keller, H. U., et al. (2008), Phoenix Robotic Arm Camera, J. Geophys. Res., 113, E00A17, doi:10.1029/2007JE003044. MEPAG ND-SAG (2008). “Science Priorities for Mars Sample Return,” Unpublished white paper, 70 p, posted March 2008 by the Mars Explo

ration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/index.html. MEPAG MRR-SAG (2009). “Report to MEPAG by the Mid-Range Rover Science Analysis Group (MRR-SAG) ” posted July 2009 by the Mar

s Exploration Program Analysis Group (MEPAG) at http://mepag/meeting/jul-09/MRR_SAG_MEPAG_July29_v22.ppt Mottola, S., G. (2007). Arnold, H.G. Grothues, R.Jaumann, H. Michaelis, G. Neukum, and J.P. Bibring, “The ROLIS Experiment on the Rosett

a Lander,” Space Science Reviews, 128: 241–255. Mouroulis, P. , B. Van Gorp, D. Blaney, and R. O. Green (2008). “Reflectance Microspectroscopy of Natural Rock Samples in the Visible and

Near Infrared,” Applied Spectroscopy, 62, 12, pp. 1370-1377. Nuñez J. I., J. D. Farmer, R. G. Sellar, and C. Allen (2009), “A Multispectral Micro-Imager for Lunar Field Geology,” NLSI Lunar Science For

um, Ames Research Center. Nuñez, J. I., J. D. Farmer1, R. G. Sellar2, and P. B. Gardner (2009), “The Multispectral Microscopic Imager (MMI) with Improved Spectral Ran

ge and Resolution,” 40th Lunar and Planetary Science Conference, Houston, TX. Sellar R. G., J. D. Farmer, A. Kieta, and J. Huang (2006). Multispectral Microimager for Astrobiology. Proc. SPIE 6309, 63090E. Sellar R. G., J. D. Farmer, P. Gardner, P. Staten A. Kieta, and J. Huang (2007). Improved spectrometric capabilities for in-situ microscopic imag

ers,” Seventh International Conference on Mars, 3017. Sellar, R. G., J. D. Farmer, M. S. Robinson, and J. I. Nuñez (2008). “Multispectral Hand Lens and Field Microscope,” Joint Annual Meeting of

LEAG-ICEUM-SRR, Cape Canaveral, FL.

2009 11 18 Multispectral Microscopic Imager Nuñez et al LEAG 2009