34
Analysis of 10 Li and 11 Li through intermediate-energy (p, pn) and low-energy transfer reactions M.G´omez-Ramos 1 , J. Casal 2 , A. M. Moro 3 1 Institut f¨ ur Kernphysik, Technische Universit¨at Darmstadt,S2—14,Schlossgartenstrasse 9, 64289, Darmstadt 2 Dipartimento di Fisica e Astronomia “G. Galilei” and INFN-Sezione di Padova, Via Marzolo, 8, I-35131 Padova, Italy 3 Departamento de FAMN, Facultad de F´ ısica, Universidad de Sevilla,Apdo. 1065, E-41080 Sevilla, Spain March 26, 2020 M.G.-R.,J.C.,A.M.M. 11 Li and 10 Li March 26, 2020 1 / 34

Analysis of 10Li and 11 low-energy transfer reactions · n9Li J ˇ= 1=2+;1=2 (w/o 9Li ... P3 (b) (c) d s /dE10 Li (mb/MeV) (a)P1I M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Analysis of 10Li and 11Li through intermediate-energy (p, pn) andlow-energy transfer reactions

    M. Gómez-Ramos1, J. Casal2, A. M. Moro3

    1 Institut für Kernphysik, Technische Universität Darmstadt,S2—14,Schlossgartenstrasse 9, 64289,Darmstadt

    2 Dipartimento di Fisica e Astronomia “G. Galilei” and INFN-Sezione di Padova, Via Marzolo, 8,I-35131 Padova, Italy

    3 Departamento de FAMN, Facultad de F́ısica, Universidad de Sevilla,Apdo. 1065, E-41080 Sevilla,Spain

    March 26, 2020

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 1 / 34

  • Contents

    1 Borromean nuclei. 11Li

    2 p(11Li, d)10LiOverlap functionResults

    3 p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    49Li(d, p)10Li

    Experimental dataResults

    5 Conclusions

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 2 / 34

  • Borromean nuclei. 11Li

    Contents

    1 Borromean nuclei. 11Li

    2 p(11Li, d)10LiOverlap functionResults

    3 p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    49Li(d, p)10Li

    Experimental dataResults

    5 Conclusions

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 3 / 34

  • Borromean nuclei. 11Li

    Borromean nuclei

    n

    1H 2H 3H 4H 5H 6H 7H

    3He 4He 5He 6He 7He 8He 9He 10He

    3Li 4Li 5Li 6Li 7Li 8Li 9Li 10Li 11Li 12Li 13Li

    5Be 6Be 7Be 8Be 9Be 10Be 11Be 12Be 13Be 14Be 15Be 16Be

    6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B 17B 18B 19B 20B

    8C 9C 10C 11C 12C 13C 14C 15C 16C 17C 18C 19C 20C 21C 22C

    10N 11N 12N 13N 14N 15N 16N 17N 18N 19N 20N 21N 22N 23N

    12O 13O 14O 15O 16O 17O 18O 19O 20O 21O 22O 23O 24O

    14F 15F 16F 17F 18F 19F 20F 21F 22F 23F 24F 25F

    16Ne 17Ne 18Ne 19Ne 20Ne 21Ne 22Ne 23Ne 24Ne 25Ne 26Ne

    0 2 4 6 8 10 12 14 16

    0

    2

    4

    6

    8

    10

    N

    Z

    p-rich

    1p halo

    2p halo

    n-rich

    1n halo

    2n halo

    stable

    unbound

    3-body system bound, but 2-body subsystems unbound

    Close to neutron (proton) driplines

    Halo structure

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 4 / 34

  • Borromean nuclei. 11Li

    11Li,10Li

    Halo structure

    I. Tanihata et al, PRL 55, 2676 (1985)

    Parity inversion

    Unclear Structure

    H.T. Fortune PLB 760, 577 (2016) E. Garrido et al NPA 700, 117 (2002)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 5 / 34

  • p(11Li, d)10Li

    Contents

    1 Borromean nuclei. 11Li

    2 p(11Li, d)10LiOverlap functionResults

    3 p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    49Li(d, p)10Li

    Experimental dataResults

    5 Conclusions

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 6 / 34

  • p(11Li, d)10Li

    p(11Li, d)10Li @ 5.7 MeV/A

    Exp. data(A. Sanetullaev et alPLB 755, 481 (2016))

    Participant-spectator model

    DWBA formalism

    Tif =〈χd10Liϕdφ10Li(E10Li)|Vpn|χp11Liφ11Li

    〉Spectator model (10Li not modified byreaction)

    Tif ∼〈χd10Liϕd|Vpn|χp11Liϕlj(E10Li)

    〉ϕlj =< φ10Li(E10Li)|φ11Li >

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 7 / 34

  • p(11Li, d)10Li Overlap function

    Overlap function < φ10Li(E10Li)|φ11Li >∣∣11Li〉Only ground state needed(B3b = 396keV)

    3-body calculation (9Li+n+n)

    Vn9Li, Vnn, Vnn9Li

    Expansion in a transformedharmonic oscillator (THO) basiswith hyperspherical harmonicfunctions

    Jπ = 0+ (w/o 9Li Spin)Jπ = 3/2− (w/ 9Li Spin)

    〈10Li

    ∣∣Unbound (all positive energiespossible)

    E10Li = 0− 3 MeV consideredScattering states for Vn9Li

    Jπ = 1/2+, 1/2− (w/o 9Li Spin)Jπ = 1−, 2−, 1+, 2+ (w/ 9Li Spin)

    Er (MeV) a (fm) %p1/2 %s1/2 rmat (fm) rch (fm)1+ 2+ 1− 2−

    P1I 0.37 0.61 – -37.9 31 67 3.2 2.41P2I 0.30 0.55 -1.1 -6.7 44 54 3.0 2.40

    P3 0.50 -29.8 30 64 3.6 2.48P4 0.23 -16.2 67 26 3.3 2.43

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 8 / 34

  • p(11Li, d)10Li Results

    10Li-energy distributions

    0

    100

    200

    300

    With 9Li Spin

    -1 0 1 2

    E10Li

    (MeV)

    0

    100

    200

    300

    1+ (p

    1/2)

    2+ (p

    1/2)

    1- (s

    1/2)

    2- (s

    1/2)

    Total

    Total folded

    0

    200

    400p

    1/2

    s1/2

    TotalTotal folded

    w/o 9Li Spin

    -1 0 1 2 3

    E10Li

    (MeV)

    0

    200

    400P4P2I (d)

    P3

    (b)

    (c)

    /dE

    10L

    i (m

    b/M

    eV)

    (a) P1I

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 9 / 34

  • p(11Li, d)10Li Results

    Deuteron angular distribution

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 10 / 34

  • p(11Li, d)10Li Results

    Deuteron angular distribution

    Shape of distribution independent ofthe model

    Data compatible with p-wavetransferred neutron

    Data sensitive to weight of p-wavecomponent

    Mostly insensitive to othercharacteristics of 11Li wf

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 11 / 34

  • p(11Li,pn)10Li

    Contents

    1 Borromean nuclei. 11Li

    2 p(11Li, d)10LiOverlap functionResults

    3 p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    49Li(d, p)10Li

    Experimental dataResults

    5 Conclusions

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 12 / 34

  • p(11Li,pn)10Li

    (p, pN) reactions

    A proton and a nucleus collide in such a way that a proton or neutron isremoved and the residual nucleus remains.

    High energies (∼ 200-400 MeV) to increase mean free path of nucleon in nucleus.It is sometimes referred to as “quasifree” because the main interaction happensbetween the incoming proton and the extracted nucleon as if it was a freecollision.

    This “quasifree” characteristic allows for the use of the participant-spectatormodel

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 13 / 34

  • p(11Li,pn)10Li Transfer to Continuum

    Reaction formalism: Transfer to Continuum

    Prior representation of the T-matrixfor the processp+A(B+N+N)→ p+N+C(B+N)(participant-spectator model)

    T 3bif =〈

    Ψ3b(−)f |VpN + UpC − UpA|ϕCAχ

    (+)pA

    〉p-N continuum states discretized inenergy binsDeuteron included for (p, pn)

    φj,πn (kn, ~r′) =

    √2

    πN

    ∫ knkn−1

    φj,πn (k, ~r′)dk

    3-body final state wavefunctionexpanded in proton-nucleon states

    Ψ3b(−)f ≈

    ∑n,j,π

    φj,πn (kn, ~r′)χ

    (−)n,j,π(

    ~Kpn′, ~R′)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 14 / 34

  • p(11Li,pn)10Li Transfer to Continuum

    p(11Li,pn)10Li @ 280 MeV/A

    Y. Aksyutina et al, PLB 666, 430(2008)

    Obtained through fitting

    No prediction of absolute crosssection

    Relative weight of s and p weightcannot be known

    Distorsion of distribution due toreaction mechanism?

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 15 / 34

  • p(11Li,pn)10Li Results

    Transfer to the Continuum calculations

    No 9Li Spin model: P3

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 16 / 34

  • p(11Li,pn)10Li Results

    Transfer to the Continuum calculations

    9Li Spin model: P1I

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 17 / 34

  • p(11Li,pn)10Li Results

    Results of calculation

    The two potentials bestagreeing with p(11Li,d)10Liare presented

    p(11Li,pn)10Li gives a betteragreement with P1I

    Main difference is thesplitting of the virtual state

    Experimental resolutionsmoothes out distribution,hiding features

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 18 / 34

  • p(11Li,pn)10Li d-wave

    Low-energy d-wave?

    11Li(p, pn)10Li

    Y. Aksyutina et al, PLB 666, 430 (2008)

    11Li(C,X)10Li

    H. Simon et al, NPA 791, 267 (2007)

    Is there a d-wave resonance at ∼1.5 MeV?

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 19 / 34

  • p(11Li,pn)10Li d-wave

    11Li(p, pn)10Li∗: I9Li = 0 + d wave

    Ep (MeV) a (fm) Ed (MeV) %p1/2 %s1/2 %d5/2 rmat (fm) rch (fm)P5 0.50 -29.8 1.5 35 39 23 3.2 2.42

    0 0,5 1 1,5E

    n9Li

    (MeV)

    0

    25

    50

    75d

    σ/d

    En

    9L

    i (m

    b/M

    eV)

    P5d wavep waves wave

    0 0,5 1 1,5 2E

    n9Li

    (MeV)

    0

    25

    50

    75

    /dE

    n9L

    i (m

    b/M

    eV)

    Exp data

    Before Exp. Res.

    After Exp. Res.

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 20 / 34

  • p(11Li,pn)10Li d-wave

    11Li(p, pn)10Li∗: d-wave?

    0

    25

    50

    75

    P1Is wavep wave

    Exp. data

    Before Exp. Res.

    After Exp. Res.

    0 0.5 1 1.5E

    n9Li

    (MeV)

    0

    25

    50

    75

    P5d wavep waves wave

    0 0.5 1 1.5 2E

    n9Li

    (MeV)

    1+

    2+1

    -

    2-

    /dE

    n9L

    i (m

    b/M

    eV)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 21 / 34

  • p(11Li,pn)10Li d-wave

    11Li(p, d)10Li∗: d-wave?

    0 30 60 90 120θ

    c.m. (deg)

    0.1

    1

    10

    100

    1000

    /dΩ

    (m

    b/s

    r)Exp. data (Sanetullaev et al)

    p1/2

    P1I

    p1/2

    P2I

    p1/2

    P3

    p1/2

    P4

    p1/2

    P5

    Are there other reactions to discern between these two models?

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 22 / 34

  • 9Li(d, p)10Li

    Contents

    1 Borromean nuclei. 11Li

    2 p(11Li, d)10LiOverlap functionResults

    3 p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    49Li(d, p)10Li

    Experimental dataResults

    5 Conclusions

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 23 / 34

  • 9Li(d, p)10Li Experimental data

    9Li(d, p)10Li

    The explored spectrum is no longer limited by , instead

    d(9Li, p)10Li at 2.4 MeV/A

    H.B. Jeppesen et al, PLB 642, 449 (2006)

    d(9Li, p)10Li at 11 MeV/A

    M. Cavallaro et al, PRL 118, 012701(2017)

    Is there a virtual state in 10Li?

    Why do the spectra look so different?

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 24 / 34

  • 9Li(d, p)10Li Experimental data

    Transfer to Continuum, slightly different

    Prior representation of the T-matrixfor the process d+B → p+A(N +B)(participant-spectator model)

    T 3bif =〈

    Ψ3b(−)f |VNB + UpB − UdB |ϕABχ

    (+)dB

    〉N-B continuum states discretized inenergy bins and allowed to couple

    φj,πn (kn, ~r′) =

    √2

    πN

    ∫ knkn−1

    φj,πn (k, ~r′)dk

    3-body final state wavefunctionexpanded in neutron-9Li states

    Ψ3b(−)f ≈

    ∑n,j,π

    φj,πn (kn, ~r′)χ

    (−)n,j,π(

    ~KNB′, ~R′)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 25 / 34

  • 9Li(d, p)10Li Results

    P3: warmup

    0 0.5 1 1.5E

    x (MeV)

    0

    10

    20

    30

    dN

    /dE

    x (

    cou

    nts

    per

    10

    0 k

    eV)

    0 1 2 3 4E

    x (MeV)

    0

    1

    2

    3

    4

    5

    /dE

    x (

    mb

    /MeV

    )

    Datas

    1/2

    p1/2

    Total

    a) E=2.4 MeV/u (θc.m.

    =98o-134

    o)

    b) E=11.1 MeV/u (θc.m.

    =5.5o-16.5

    o)

    At 2.4 MeV/A, the maximum energy is too low to explore the spectrum over ∼1MeV, we will not get the d-wave resonance from there

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 26 / 34

  • 9Li(d, p)10Li Results

    P1I

    0 0.5 1 1.5E

    x (MeV)

    0

    10

    20

    30

    dN

    /dE

    x (

    cou

    nts

    per

    10

    0 k

    eV)

    0 1 2 3 4E

    x (MeV)

    0

    1

    2

    3

    4

    5

    /dE

    x (

    mb

    /MeV

    )

    Data

    s1/2

    1-

    s1/2

    2-

    p1/2

    1+

    p1/2

    2+

    Total

    a) E=2.4 MeV/u (θc.m.

    =98o-134

    o) b) E=11.1 MeV/u (θ

    c.m.=5.5

    o-16.5

    o)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 27 / 34

  • 9Li(d, p)10Li Results

    Different spectra: Angular ranges

    0 30 60 90 120 150

    θc.m.

    (deg)

    0.1

    1

    10

    100

    /dΩ

    (m

    b/s

    r)

    0 30 60 90 120 150

    θc.m.

    (deg)

    0.001

    0.01

    0.1

    1

    10

    100

    /dΩ

    (m

    b/s

    r)

    0 10 2010

    -2

    10-1

    100

    101

    102s

    1/2 1

    -

    s1/2

    2-

    p1/2

    1+

    p1/2

    2+

    Total

    (Ex

  • 9Li(d, p)10Li Results

    P3 vs P5: Low-energy d-wave resonance?

    0 1 2 3 4E

    x (MeV)

    0

    2

    4

    6

    8

    10d

    σ/d

    Ex (

    mb/M

    eV)

    TRIUMF datas

    1/2

    p1/2

    d5/2

    Sum

    0 1 2 3 4E

    x (MeV)

    0

    2

    4

    6

    8

    10

    /dE

    x (

    mb/M

    eV)

    P3 P5

    Strong coupling to d-wave states, this rules out a defined low-energy resonance(it could be fragmented)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 29 / 34

  • 9Li(d, p)10Li Results

    P1I: Ambiguities in the l = 2 contribution

    0 1 2 3 4E

    x (MeV)

    0

    1

    2

    3

    4

    5

    6

    /dE

    x (

    mb

    /MeV

    )

    E4

    -= 6 MeV

    0 1 2 3 4E

    x (MeV)

    0

    1

    2

    3

    4

    5

    6

    /dE

    x (

    mb

    /MeV

    )

    TRIUMF data

    s1/2

    1-

    s1/2

    2-

    p1/2

    1+

    p1/2

    2+

    d5/2

    (1-,2

    -,3

    -,4

    -)

    Sum

    E4

    -=3.9 MeV

    (1−, 2−, 3−, 4−) multiplet, too many free parameters to adjustphenomenologically, and too few data.

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 30 / 34

  • 9Li(d, p)10Li Results

    NFT calculations

    d(9Li, p)10Li at 2.4 MeV/A d(9Li, p)10Li at 11 MeV/A

    F. Barranco et al, PRC 101, 031305(R) (2020)

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 31 / 34

  • Conclusions

    Contents

    1 Borromean nuclei. 11Li

    2 p(11Li, d)10LiOverlap functionResults

    3 p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    49Li(d, p)10Li

    Experimental dataResults

    5 Conclusions

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 32 / 34

  • Conclusions

    Conclusions

    A method to obtain < C +N |C +N +N > overlaps for Borromean nuclei from3-body structure calculations has been developed and applied to 11Li.

    These overlaps can be used for various reactions, as long as they verify theparticipant-spectator model for the components of the Borromean nucleus

    The method has been applied for the reactions p(11Li, d)10Li at 5.7 MeV/A,p(11Li,pn)10Li at 280 MeV/A, and 9Li(d, p)10Li at 2.4 and 11.1 MeV/Aobtaining remarkable agreement for all reactions, using the same n-9Liinteraction.

    The (p, d) transfer reaction is found to be sensitive to the angular momentumand spectroscopic factor of the transferred nucleon mostly.

    The (p, pn) nucleon removal reaction seems to favour a description including thespin of 9Li and splitting of the virtual state and resonance or the inclusion oflow-energy d-wave resonance

    The 9Li(d, p)10Li transfer rejects low-energy d-wave resonance, but the d-wavespectrum is still not well understood (10Li always laughs last).

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 33 / 34

  • Conclusions

    14Be(p, pn)13Be∗, A. Corsi et al, PLB 797, 134843 (2019)

    0 1 2 3 4ε

    n-12

    Be (MeV)

    0

    5

    10

    15

    20

    25

    30

    35

    /dε

    n-1

    2B

    e (m

    b/M

    eV)

    present data

    1/2+ [s1/2 ⊗ 0

    +]

    1/2- [p1/2 ⊗ 0

    +]

    5/2+ [d5/2 ⊗ 0

    +]

    5/2+ [s1/2 ⊗ 2

    +]

    total TC

    Fig. from Y. Aksyutina et al, PRC 87,064316 (2013)

    -300 -200 -100 0 100 2000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    dN

    /dp

    x (

    arb. unit

    s)

    s wavep wave

    d wave

    0 - 0.2 MeV

    -300 -200 -100 0 100 200 300p

    x (MeV/c)

    0.4 - 0.6 MeV

    -200 -100 0 100 200 300

    1.8 - 2.2 MeV

    χ2/N = 3.6 χ

    2/N = 4.5 χ

    2/N = 7.47

    M.G.-R.,J.C.,A.M.M. 11Li and 10Li March 26, 2020 34 / 34

    Borromean nuclei. 11Lip(11Li,d)10LiOverlap functionResults

    p(11Li,pn)10LiTransfer to ContinuumResultsd-wave

    9Li(d,p)10LiExperimental dataResults

    Conclusions