30
MO S AK Analysis and modelling of wafer level process variability in advanced FD-SOI devices, using split C-V and gate current data Krishna Pradeep 1, 2 , Theano A. Karatsori 2 , Thierry Poiroux 3 , André Juge 1 , Patrick Scheer 1 , Gilles Gouget 1 , and Gérard Ghibaudo 2 [email protected] 1 STMicroelectronics, Crolles Site, 850 rue Jean Monnet, 38926 Crolles, France 2 IMEP-LAHC, MINATEC Campus, 3 Parvis Louis Néel, 38016 Grenoble, Cedex 1, France 3 CEA-Leti, MINATEC Campus, 38054 Grenoble Cedex 9, France

Analysis and modelling of wafer level process variability ... · MO S AK Analysis and modelling of wafer level process variability in advanced FD-SOI devices, using split C-V and

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

MOS AK

Analysis and modelling of wafer level process variability in advanced FD-SOI devices, using split C-V

and gate current data

Krishna Pradeep1, 2, Theano A. Karatsori2, Thierry Poiroux3, André Juge1, Patrick Scheer1, Gilles Gouget1, and Gérard Ghibaudo2

[email protected], Crolles Site, 850 rue Jean Monnet, 38926 Crolles, France

2IMEP-LAHC, MINATEC Campus, 3 Parvis Louis Néel, 38016 Grenoble, Cedex 1, France3CEA-Leti, MINATEC Campus, 38054 Grenoble Cedex 9, France

MOS AK

Dresden Sept.3, 2017

2/27

Outline

• Introduction.

• Split C-V based process parameter extraction.

• Gate current.

• Statistical modelling.

• Conclusion.

MOS AK

Dresden Sept.3, 2017

3/27

Outline

• Introduction.

• Split C-V based process parameter extraction.

• Gate current.

• Statistical modelling.

• Conclusion.

MOS AK

Dresden Sept.3, 2017

4/27

The concern

• Variability: growing concern with scaling.

– How to effectively account for it in design?

MOS AK

Dresden Sept.3, 2017

5/27

The concern

• Variability: growing concern with scaling.

– How to effectively account for it in design?

• Global• Lot to lot variation.• Wafer to wafer variation.• Die to die variation.

• Local• Intra die variation.

MOS AK

Dresden Sept.3, 2017

6/27

The concern

• Variability: growing concern with scaling.

– How to effectively account for it in design?

• Global• Lot to lot variation.• Wafer to wafer variation.• Die to die variation.

• Local• Intra die variation.

MOS AK

Dresden Sept.3, 2017

7/27

FD-SOI

• Key contender for sub-32 nm nodes.

– Low power, IOT applications, …

L W

Tox (EOT)

TSiTBOX

Planes, N., Weber, O., Barral, V., Haendler, S., Noblet, D., Croain, D., … Haond, M. (2012). 28nm FDSOI technology platform for high-speed low-voltage digital applications. In Digest of Technical Papers - Symposium on VLSI Technology (Vol. 33, pp. 133–134).

Nwell

MOS AK

Dresden Sept.3, 2017

8/27

Outline

• Introduction.

• Split C-V based process parameter extraction.

• Gate current.

• Statistical modelling.

• Conclusion.

MOS AK

Dresden Sept.3, 2017

9/27

Vertical thicknessesAutomated extraction from slope of Qi/C vs Qi plot

0.00 0.01 0.020

1

2

Slope = 1/Cox

Slope = 1/Cb

Qi/C

gc (

V)

Qi (C/m

2)

Vb = 0 V

linear fit

FBB

linear fit

0.000 0.003 0.006 0.009

0

2

4

6

Qi/C

bc (

V)

Qi (C/m

2)

Slope = 1/CBOX

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.4

0.8

1.3

1.7

2.1

Cg

c (

F/m

2)

Vg (V)

Vb = 0 V

Vb = 10 Vx 10

-2

High

Vb

Low

-6 -4 -2 0 2 4 6 8 10 12

0.0

0.3

0.7

1.0

1.4

Cb

c (

F/m

2)

Vb (V)

x 10-3

0.4V

High

Low

Pradeep, K., Gouget, G., Poiroux, T., Scheer, P., Juge, A., & Ghibaudo, G. (2017). Systematic evaluation of the split C-V based parameter extraction methodologies for 28 nm FD-SOI. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1–5). IEEE.

Cb = series(Cox, CSi)

MOS AK

Dresden Sept.3, 2017

10/27

Vertical thicknessesOn-wafer trends

0 40 80 120 160 200

-3

-2

-1

0

1

2

3

TB

OX (

no

rma

lize

d)

Die No.

NFET

PFET

0 40 80 120 160 200-2

-1

0

1

2

Tox (

no

rmalized

)

Die No.

NFET

PFET

0 40 80 120 160 200

-4

-2

0

2

TS

i (n

orm

alized

)

Die No.

NFET

PFET

Pradeep, K., Gouget, G., Poiroux, T., Scheer, P., Juge, A., & Ghibaudo, G. (2017). Systematic evaluation of the split C-V based parameter extraction methodologies for 28 nm FD-SOI. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1–5). IEEE.

Similar trends forPFET and NFET.

MOS AK

Dresden Sept.3, 2017

11/27

0 1

0.8

1.0

1.1x10

-3

Slope=2/(qεNa)

1/C

bg

2 (

m4F

-2)

Vgb

(V)

Ground plane vertical doping profile

•�

����= �

����� + �����

��� − ����[Ghibaudo et. al., T-SM 2000].

• Cbg (Vbg) gives the depletion depth, xdep(Vbg).

• The vertical doping profile obtained by combining these.

Pradeep, K., Gouget, G., Poiroux, T., Scheer, P., Juge, A., & Ghibaudo, G. (2017). Systematic evaluation of the split C-V based parameter extraction methodologies for 28 nm FD-SOI. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1–5). IEEE.

MOS AK

Dresden Sept.3, 2017

12/27

Ground plane vertical doping profile

Highly perturbed by measurementnoise, close to accumulation.

0 3 6 9 12

0.4

4

40

We

ll d

op

ing

co

nc

en

trati

on

(n

orm

ali

zed

)

Depth from the BOX interface (nm)

NFET

PFET

Pradeep, K., Gouget, G., Poiroux, T., Scheer, P., Juge, A., & Ghibaudo, G. (2017). Systematic evaluation of the split C-V based parameter extraction methodologies for 28 nm FD-SOI. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1–5). IEEE.

MOS AK

Dresden Sept.3, 2017

13/27

Lateral dimensions

• ∆��� = ��� �� = �� + ����� −��� �� = �� − ����� .

– �� is the threshold voltage.

• ∆��� = �"#�"#

(% − ∆%)(' − ∆').• Linear regression with W (for

constant L) and L (for constant W).

• Lov from overlap component of parasitic capacitance.

Leff

Polyepi Lov

Lpoly

L=Ldesign*shrinkSource Drain

Gate

∆L/2∆L/2

Conta

ct

Conta

ct

%(�� = %)(*+�, × �./012 − ∆%'(�� = ')(*+�, × �./012 − ∆'

%3456 = %(�� + 2%48

Pradeep, K., Gouget, G., Poiroux, T., Scheer, P., Juge, A., & Ghibaudo, G. (2017). Systematic evaluation of the split C-V based parameter extraction methodologies for 28 nm FD-SOI. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1–5). IEEE.

MOS AK

Dresden Sept.3, 2017

14/27

Lateral dimensionsOn-wafer trends

0 40 80 120 160 200

-3

-2

-1

0

1

2

3

Lo

ve

rla

p (

no

rma

lize

d)

Die No.

NFET

PFET

0 40 80 120 160 200

-4

-2

0

2

4

Lp

oly (

no

rma

lize

d)

Die No.

NFET

PFET

0 40 80 120 160 200

-2

0

2

4

∆L (

no

rma

lize

d)

Die No.

NFET

PFET

0 40 80 120 160 200

-2

-1

0

1

2

3

4

∆W (

no

rma

lize

d)

Die No.

NFET

PFET

Similar trends and values observed for PFET and NFET (except for Loverlap).

Pradeep, K., Gouget, G., Poiroux, T., Scheer, P., Juge, A., & Ghibaudo, G. (2017). Systematic evaluation of the split C-V based parameter extraction methodologies for 28 nm FD-SOI. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1–5). IEEE.

MOS AK

Dresden Sept.3, 2017

15/27

Outline

• Introduction.

• Split C-V based process parameter extraction.

• Gate current.

• Statistical modelling.

• Conclusion.

MOS AK

Dresden Sept.3, 2017

16/27

Equivalent single trapezoidal barrier model

• 9� = � × :+; × <= × ' × %.• Gate transparency modelled

using an equivalent single trapezoidal barrier.

– Thickness: 4? × @A.

– Barrier height: A × C4?.

– <= = �DE − F"#GH IJ"#

+ K�LF"#� GH�MN��J"#O"# I .

• P4? = ��.Q×H"# O"#

.

0.0 0.3 0.6 0.9 1.210

-14

10-11

10-8

I g (

A)

Vg (V)

2/10_Expt.

2/10_Model

2/0.3_Expt.

2/0.3_Model

28 nm FD-SOIHK = 1.9A = 0.39

0.0 0.3 0.6 0.910

-17

10-13

10-9

I g (

A)

Vg (V)

0.3/0.35_Expt.

0.3/0.35_Model

0.06/0.02_Expt.

0.06/0.02_Model

14 nm FD-SOIHK = 1.52A = 0.5

Pradeep, K., Karatsori, T. A, Poiroux, T., Juge. A, Scheer, P., Gouget, G., Josse E. , & Ghibaudo, G. Analysis of Gate Current Wafer Level Variability in Advanced FD-SOI MOSFETs. 2018 ESSDERC

MOS AK

Dresden Sept.3, 2017

17/27

tIL, tHK variance segregation using C-V & Ig

• Using ln T�K�

= ln� + ln<=:

– Intercept of linear fit of ln <= with :+: − FUV

JUV− FWX

JWX.

• PTY ZT,F(=�(3F = ZFUV + JUV

JWX

ZFWX .

• From split C-V:

– ZF"# = ZFUV

+ NUVNWX

ZFWX .

• Can extract ZFUV & ZFWX from these.

0.0 0.5 1.0 1.5 2.0 2.5

104

105

106

Linear fit

Expt.

I g/Q

i (A

/C)

Qi x 10

-13 (C)

• 28 nm FD-SOI:• W/L = 2 µm/10 µm.• ZFUV = 0.0041].

• ZFWX = 0.0141].

• 14 nm FD-SOI:• W/L = 5 µm/5 µm.• ZFUV = 0.0051].• ZFWX = 0.0921].

Pradeep, K., Karatsori, T. A, Poiroux, T., Juge. A, Scheer, P., Gouget, G., Josse E. , & Ghibaudo, G. Analysis of Gate Current Wafer Level Variability in Advanced FD-SOI MOSFETs. 2018 ESSDERC

MOS AK

Dresden Sept.3, 2017

18/27

Outline

• Introduction.

• Split C-V based process parameter extraction.

• Gate current.

• Statistical modelling.

• Conclusion.

MOS AK

Dresden Sept.3, 2017

19/27

Statistical modelling of global variability

• For any property X of the device whose variability is being studied.– ∆X/X ≡ ln (X/X0) where X0 is the property of the device at the center of the wafer.

– Standard deviation, σ(∆X/X).

– Z ∆aa

= ∑ c5,acde

Z(fg) de .

• Sensitivity to each parameter: hi� c jk acd�

.

• Percentage contributions:

– %f+ = c 5, a cd�⁄ �n� d�∑ c 5, a cde⁄ �n� dee

× 100.

• This can be applied to capacitance.– Using Leti-UTSOI compact model.

• This can be applied to gate current.– Using equivalent single trapezoidal barrier model.

Pradeep, K., Poiroux, T., Scheer, P., Gouget, G., Juge, A., & Ghibaudo, G. (2017). Sensitivity analysis of C-V global variability for 28 nm FD-SOI. In 2017 Joint

International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS) (pp. 132–135). IEEE.

MOS AK

Dresden Sept.3, 2017

20/27

0.4 0.6 0.8 1.0 1.2 1.410-5

10-4

10-3

σ2 (∆C

/C)

Vg (V)

measure

model

0.0 0.3 0.6 0.9 1.2

10-5

10-4

10-3

10-2

10-1

σ2 (∆C

/C)

Vg (V)

measure

model

-0.8 -0.4 0.0 0.4 0.8 1.2

10-5

10-4

10-3

10-2

10-1

σ2 (∆C

/C)

Vg (V)

measure

model

Capacitance statistical modelLong-wide NFET

Vb = 0 V Vb = 5 V

Vb = 10 V

Z ∆��

= o pq1�

pfg Z(fg)

de

• Good fit obtained with the model.

• Fitted values close to initial guesses.

Pradeep, K., Poiroux, T., Scheer, P., Gouget, G., Juge, A., & Ghibaudo, G. (2017). Sensitivity analysis of C-V global variability for 28 nm FD-SOI. In 2017 Joint

International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS) (pp. 132–135). IEEE.

Parameters used:Vfb, Vfbb, TSi, TBOX, Tox, ln Nwell

MOS AK

Dresden Sept.3, 2017

21/27

0.0 0.4 0.8 1.20

20

40

60

80

100

% c

on

trib

uti

on

Vg (V)

Tox

TSi

TBOX

Vfb

0.6 0.8 1.0 1.20

20

40

60

80

100

% c

on

trib

uti

on

Vg (V)

Tox

TSi

TBOX

Vfb

0.2 0.4 0.6 0.8 1.0 1.20

20

40

60

80

100

% c

on

trib

uti

on

Vg (V)

Tox

TSi

TBOX

Vfb

Capacitance percentage contributions

• Tox dominant in strong

inversion.

• RBB, moderate inversion:

Vfb dominant.

– Even stronger at Vb = 0 V.

• Very strong FBB, moderate

inversion: TSi dominant.

Long-wide NFET

Vb = 0 VVb = -5 V

Vb = 5 V

%f+ = p q1 � pf+⁄ Z f+∑ p q1 � pfg⁄ Z fgg

× 100

Pradeep, K., Poiroux, T., Scheer, P., Gouget, G., Juge, A., & Ghibaudo, G. (2017). Sensitivity analysis of C-V global variability for 28 nm FD-SOI. In 2017 Joint

International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS) (pp. 132–135). IEEE.

MOS AK

Dresden Sept.3, 2017

22/27

Ig statistical model

• The proposed model can reproduce the measured variance quite well.

• Parameters used:

– VT.

– tox.

14 nm FD-SOI

0.2 0.4 0.6 0.8 1.010

-1

100

σ2 (∆I g

/Ig)

Vg (V)

Expt.

Model

σtox

= 0.04 nm

σVT

= 0.029 V

Pradeep, K., Karatsori, T. A, Poiroux, T., Juge. A, Scheer, P., Gouget, G., Josse E. , & Ghibaudo, G. Analysis of Gate Current Wafer Level Variability in Advanced FD-SOI MOSFETs. 2018 ESSDERC

MOS AK

Dresden Sept.3, 2017

23/27

Ig percentage contributions

• Above threshold, the Ig variation is controlled almost completely by the barrier thickness.

• Below threshold, both VT and barrier thickness have similar contributions.

– VT slightly dominating barrier

thickness.

14 nm FD-SOI

0.0 0.3 0.6 0.90

25

50

75

100

% c

on

trib

uti

on

Vg (V)

tox

VT

Pradeep, K., Karatsori, T. A, Poiroux, T., Juge. A, Scheer, P., Gouget, G., Josse E. , & Ghibaudo, G. Analysis of Gate Current Wafer Level Variability in Advanced FD-SOI MOSFETs. 2018 ESSDERC

MOS AK

Dresden Sept.3, 2017

24/27

Outline

• Introduction.

• Split C-V based process parameter extraction.

• Gate current.

• Statistical modelling.

• Conclusion.

MOS AK

Dresden Sept.3, 2017

25/27

Conclusions

• Robust, efficient split C-V parameter extraction methods.– Automated extraction on large amount of measurement

data.

• Gate leakage current model proposed.– Shown to work in different technology nodes and different

geometries.

– Can extract variance of IL and HK layers.

• Statistical model.– Works for both capacitance and Ig wafer level global

variability.

– Can analyse the dominant source of variability at each bias condition.

– Can be further extended to Id or any other property, using Leti-UTSOI compact model.

MOS AK

MOS AK

MOS AK

Appendix

MOS AK

Dresden Sept.3, 2017

29/27

Calibrated Leti-UTSOILong-wide NFET

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.4

0.8

1.2

1.6

2.1

2.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5V

g (V)

UTSOI Measure

Vb = -5 V

Vb = 0 V

Vb = 2 V

Vb = 5 V

Vb = 10 V

x 10-2

Cg

c (

F/m

2) • Good fit of the

measurements obtainedwith Leti-UTSOI at differentVb values.

• Used to calculate thesensitivities.

Pradeep, K., Poiroux, T., Scheer, P., Juge, A., Gouget, G., & Ghibaudo, G. (2018). Analysis and modeling of wafer-level process variability in 28 nm FD-SOI using split C-V measurements. Solid-State Electronics, 145(March), 19–28.

MOS AK

Dresden Sept.3, 2017

30/27

Percentage contribution of TSi

• The change in the sign

of sensitivity around

the threshold voltage.

– Responsible to make the contribution go to zero at this bias.

Leti-UTSOI results

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5-0.3

0.0

0.3

0.6

0.9

1.2

1.5

1.9

2.2

2.5

Cc

g (

F/m

2)

Vg (V)

TSi = 6 nm

TSi = 6.6 nm

x 10-2