67
Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/rodrigez/ens/cycle_master/ November 2016

Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

Analog Electronics 2ICS905

G. Rodriguez-GuisantesDépt. COMELEC

http://perso.telecom-paristech.fr/∼rodrigez/ens/cycle_master/

November 2016

Page 2: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Schedule

• Radio channel characteristics ;• Analysis and conception of the couple Tx-Rx ;• M-QAM Modulation - theoretical analysis ;• Distortions in M-QAM ;

2/ 67

Page 3: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Schedule

• Radio channel characteristics ;• Analysis and conception of the couple Tx-Rx ;• M-QAM Modulation - theoretical analysis ;• Distortions in M-QAM ;

3/ 67

Page 4: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Schedule

• Radio channel characteristics ;• Analysis and conception of the couple Tx-Rx ;• M-QAM Modulation - theoretical analysis ;• Distortions in M-QAM ;

4/ 67

Page 5: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Schedule

• Radio channel characteristics ;• Analysis and conception of the couple Tx-Rx ;• M-QAM Modulation - theoretical analysis ;• Distortions in M-QAM ;

5/ 67

Page 6: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Radio-channel characteristicsMicroscopic effects

Transmitted signal :s(t) = Re{u(t).ej2πfct} = I(t) cos(2πfct)−Q(t) sin(2πfct)

fc carrier frequency - u(t) BB with Bs Hz.

Received Signal :

r(t) = Re

N(t)∑n=0

αnu(t− τn(t)).ej{2πfc(t−τn(t))+φDn }

φn(t) = 2πfcτn(t)− φDn ,

r(t) = Re

ej2πfct.

N(t)∑n=0

αnu(t− τn(t)).e−jφn(t)

6/ 67

Page 7: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Radio-channel characteristicsMicroscopic effects

Transmitted signal :s(t) = Re{u(t).ej2πfct} = I(t) cos(2πfct)−Q(t) sin(2πfct)

fc carrier frequency - u(t) BB with Bs Hz.

Received Signal :

r(t) = Re

N(t)∑n=0

αnu(t− τn(t)).ej{2πfc(t−τn(t))+φDn }

φn(t) = 2πfcτn(t)− φDn ,

r(t) = Re

ej2πfct.

N(t)∑n=0

αnu(t− τn(t)).e−jφn(t)

7/ 67

Page 8: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Components of fading

n corresponds to a path of length

Ln → τn = Ln/c

αn(t) = attenuation.φDn =

∫2πfDn (t) dt = Doppler fc,

fDn (t) = v cos θn(t)λ ,

θn(t) angle relative to the mouvementdirection.

Paths are solvable if |τj − τi| � B−1s

8/ 67

Page 9: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Impact of fading

If the delay dispersion is small compared to B−1s ∼ Ts

⇒ narrowband fading ;If the delay dispersion is big compared to B−1

s ∼ Ts⇒ wideband fading ;

Delay spreadThe delay dispersion is called Delay spread of the channel → Tm.

9/ 67

Page 10: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Impact of fading

If the delay dispersion is small compared to B−1s ∼ Ts

⇒ narrowband fading ;If the delay dispersion is big compared to B−1

s ∼ Ts⇒ wideband fading ;

Delay spreadThe delay dispersion is called Delay spread of the channel → Tm.

10/ 67

Page 11: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Impact of fading

If the delay dispersion is small compared to B−1s ∼ Ts

⇒ narrowband fading ;If the delay dispersion is big compared to B−1

s ∼ Ts⇒ wideband fading ;

Delay spreadThe delay dispersion is called Delay spread of the channel → Tm.

11/ 67

Page 12: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Model narrowband

If Tm � Ts.

If τi represents the ith delay, so τi ≤ Tm :

u(t− τi) ' u(t).

r(t) = Re

{u(t) ej2πfct

(∑n

αn(t) e−jφn(t))

︸ ︷︷ ︸A(t)

}.

12/ 67

Page 13: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Model narrowband

If Tm � Ts.

If τi represents the ith delay, so τi ≤ Tm :

u(t− τi) ' u(t).

r(t) = Re

{u(t) ej2πfct

(∑n

αn(t) e−jφn(t))

︸ ︷︷ ︸A(t)

}.

13/ 67

Page 14: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Model widebandIn this case Tm � Ts.

Conclusion : if Tm � Ts → ISI

14/ 67

Page 15: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Doppler effect

This phenomenon represents the variability of the channel in time :

The mean dispersion of the frequency beside the carrier is calledDoppler spread BD of the channel.

We call Coherence time of the channel, the duration of a completecycle of dynamics induced by the Doppler efect.

Tc ≈ 1/BD

15/ 67

Page 16: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Doppler effect

This phenomenon represents the variability of the channel in time :

The mean dispersion of the frequency beside the carrier is calledDoppler spread BD of the channel.

We call Coherence time of the channel, the duration of a completecycle of dynamics induced by the Doppler efect.

Tc ≈ 1/BD

16/ 67

Page 17: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

A "Resumé"Delay Spread - TmDelay spread give us a good idea of the dispersive characteristics ofthe channel in time.Doppler Spread - BD

Doppler dispersion give us a good idea of the variability of thechannel.ParametersMean delay spread ↔ Coherence bandwidth

Tm ↔ Bc

Coherence time ↔ Doppler dispersion

Tc ↔ BD

17/ 67

Page 18: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

A "Resumé"Delay Spread - TmDelay spread give us a good idea of the dispersive characteristics ofthe channel in time.Doppler Spread - BD

Doppler dispersion give us a good idea of the variability of thechannel.ParametersMean delay spread ↔ Coherence bandwidth

Tm ↔ Bc

Coherence time ↔ Doppler dispersion

Tc ↔ BD

18/ 67

Page 19: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

A "Resumé"Delay Spread - TmDelay spread give us a good idea of the dispersive characteristics ofthe channel in time.Doppler Spread - BD

Doppler dispersion give us a good idea of the variability of thechannel.ParametersMean delay spread ↔ Coherence bandwidth

Tm ↔ Bc

Coherence time ↔ Doppler dispersion

Tc ↔ BD

19/ 67

Page 20: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Channel models

20/ 67

Page 21: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

"Etat de l’art"

21/ 67

Page 22: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Scheme of Tx-Rx

22/ 67

Page 23: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Scheme of Tx-Rx

23/ 67

Page 24: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Scheme of Tx-Rx

24/ 67

Page 25: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Scheme of Tx-Rx

25/ 67

Page 26: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband Modulation

Transmitted Signal :

s(t) = Re{u(t).ej2πfct} = I(t) cos(2πfct) + j.Q(t) sin(2πfct)

fc carrier frequency - u(t) baseband signal.

u(t) = I(t) + j.Q(t)

Complex representation

I(t)− In− phase component

Q(t)−Quadrature phase component

26/ 67

Page 27: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband modulation

Digital modulation : build u(t) as a functions of source(discrete)states changes.Heuristic approach :{αn} state sequence of source → u(t) impulse superposition !Example :S maxentropic binary source, {αn} = . . . 0 1 1 0 0 1 . . .

{an} = · · · −A +A +A −A −A +A . . .

u(t) =∑n

an.h(t− nT )

27/ 67

Page 28: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband modulation

Digital modulation : build u(t) as a functions of source(discrete)states changes.Heuristic approach :{αn} state sequence of source → u(t) impulse superposition !Example :S maxentropic binary source, {αn} = . . . 0 1 1 0 0 1 . . .

{an} = · · · −A +A +A −A −A +A . . .

u(t) =∑n

an.h(t− nT )

28/ 67

Page 29: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband modulation

Digital modulation : build u(t) as a functions of source(discrete)states changes.Heuristic approach :{αn} state sequence of source → u(t) impulse superposition !Example :S maxentropic binary source, {αn} = . . . 0 1 1 0 0 1 . . .

{an} = · · · −A +A +A −A −A +A . . .

u(t) =∑n

an.h(t− nT )

29/ 67

Page 30: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband modulationu(t) is built in two operations :• bits → amplitudes ;• amplitudes → waveforms (thanks h(t) !).

In this example : I(t) =∑n an.h(t− nT ), Q(t) = 0.

30/ 67

Page 31: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband modulation

How to choose {an} ?• Modulator architecture simplicity ;• Spectral efficiency (η = D/BW ) ;• Demodulator architecture simplicity ;• Synchronization simplicity ;• Probability of error (Pb) ;• Robustness to RF imperfections.

31/ 67

Page 32: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Baseband modulation

How to choose {h(t)} ?• simplicity of the BB filter ;• Spectral efficiency (η = D/BW ) ;• ISI (Nyquist) ;• Power amplifier performance ;• PAPR.

32/ 67

Page 33: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Vectorial description of {an}Amplitudes {an} are represented by real or complex numbers

In the previous case : 0 → −A 1 → +AViewed in the complex plane I −Q, this modulation can berepresented by :

33/ 67

Page 34: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Vectorial description of {an}Each « vector » carries 1 information bitOnly one complex dimension is required !

34/ 67

Page 35: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Vectorial description of {u(t)}h(t) do the “temporal link” between the discrete “vectors”.

Two ways to realize h(t) :• h(t) limited in time → h(t) 6= 0 t ∈ [0, T ) ;• h(t) Nyquist.

h(nT ) ={

1 pour n = 0 ;0 ∀n 6= 0.

35/ 67

Page 36: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Vectorial description of {u(t)}

36/ 67

Page 37: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Vectorial description of {u(t)}

37/ 67

Page 38: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

u(t) ∈ C

u(t) =∑n

an.h(t− nT )

an = {A+ jA;−A+ jA;−A− jA;A− jA}

38/ 67

Page 39: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

u(t) ∈ C

39/ 67

Page 40: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Generalization to the M th order

40/ 67

Page 41: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Advantages of order M

Each complex symbol represents :

N = log2M bits

Ts = N.Tb

R = D

N

this means a great economy in bandwidth Bw !

Unfortunately, a significant increase in Eb/N0to have the same performances !

41/ 67

Page 42: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Spectral efficiency

42/ 67

Page 43: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

M-QAM Modulation - theoretical analysisEmitted signal

s(t) =∑n

anht(t− nT )

Received signal

r(t) =∑n

anhRx(t− nT ) + b(t)

hRx(t) = ht(t) ∗ hc(t) ∗ hr(t)

Sampled received signal

r(kT + τ) =∑n

anhRx(kT + τ − nT ) + b(kT + τ)

43/ 67

Page 44: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

M-QAM Modulation - theoretical analysis (2)

r(k) =∑n

anhRx(k − n) + b(k)

r(k) = hRx(0).ak︸ ︷︷ ︸symbole k

+∑n6=k

anhRx(k − n)

︸ ︷︷ ︸IES

+ b(k)︸︷︷︸bruit

∑k

HRx(f + k

T) = T.hRx(0)

HRx(f) ={T |f | ≤ 1

2T0 |f | > 1

2T .

44/ 67

Page 45: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

M-QAM Modulation - theoretical analysis (3)

HRx(f) =

T 0 ≤ |f | ≤ 1−α2T

T2

(1− sin[πTα (f − 1

2T )])

1−α2T < |f | < 1+α

2T .

Raised cosine filter

hRx(t) = cos(απt/T )1− 4α2t2/T 2 sinc(t/T ).

45/ 67

Page 46: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

M-QAM Modulation - Performance in AWGN

46/ 67

Page 47: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

M-QAM Modulation - Structure of Tx/Rx

47/ 67

Page 48: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Distortions

Distortion sources :

• channel linear distortion ;• Tx distortions ;• Rx distortions.

48/ 67

Page 49: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Channel distortions - M-QAM

Possible sources :• bandwidth limitation ;• frequency selectivity (fading ) ;

If Bc ≪ 1T ISI !

ISI impact on Tx signal

At sampling times, signal is not at “RV” !

49/ 67

Page 50: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Channel distortions - M-QAM

Possible sources :• bandwidth limitation ;• frequency selectivity (fading ) ;

If Bc ≪ 1T ISI !

ISI impact on Tx signal

At sampling times, signal is not at “RV” !

50/ 67

Page 51: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Channel distortions - M-QAM

Possible sources :• bandwidth limitation ;• frequency selectivity (fading ) ;

If Bc ≪ 1T ISI !

ISI impact on Tx signal

At sampling times, signal is not at “RV” !

51/ 67

Page 52: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Example - BPSK

52/ 67

Page 53: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Example - QPSK

53/ 67

Page 54: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Impact of ISI - Dispersion diagrams

54/ 67

Page 55: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Impact of ISI - Dispersion diagrams

55/ 67

Page 56: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Dispersion diagrams - 16-QAM

56/ 67

Page 57: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Psymb - M-QAM in Rayleigh chanel

57/ 67

Page 58: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Equalisation

The idea consists to suppress the distortion induced by channel.

two ways to solve this problem :– frequency domain filtering ;– deconvolution in time (with the good IR !).

Three techniques are possible :• linear equalization ;• decision feedback equalization ;• sequence estimation equalization.

58/ 67

Page 59: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Equalisation

The idea consists to suppress the distortion induced by channel.

two ways to solve this problem :– frequency domain filtering ;– deconvolution in time (with the good IR !).

Three techniques are possible :• linear equalization ;• decision feedback equalization ;• sequence estimation equalization.

59/ 67

Page 60: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Equalisation

The idea consists to suppress the distortion induced by channel.

two ways to solve this problem :– frequency domain filtering ;– deconvolution in time (with the good IR !).

Three techniques are possible :• linear equalization ;• decision feedback equalization ;• sequence estimation equalization.

60/ 67

Page 61: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Linear equalizationModel

It’s a linear filter with IR : c(kT ) =∑+Nk=−N c(k).z−kT

61/ 67

Page 62: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Zero forcing and MSE criteria

Model

The filtre coefficients can be calculateur as :• suppress the ISI in and sample interval (−N ; +N) → Zero

Forcing ;• minimise the mean error distortion → EQM .

62/ 67

Page 63: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Zero forcing and MSE criteria

If h(n) = y(n) ∗ c(n), we call Mean square error ;

MSE = 1h2(0)

+∞∑k=−∞;k 6=0

h2(n)

To minimize the ISI, minimise the MSE

MSE = ε =

+∞∑k=−∞;k 6=0

h2(n)

− h2(0)

This is a quadratic fonction of the coefficients → classic problemin spectral estimation (Levinson-Durbin).

63/ 67

Page 64: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Zero forcing and MSE criteria

If h(n) = y(n) ∗ c(n), we call Mean square error ;

MSE = 1h2(0)

+∞∑k=−∞;k 6=0

h2(n)

To minimize the ISI, minimise the MSE

MSE = ε =

+∞∑k=−∞;k 6=0

h2(n)

− h2(0)

This is a quadratic fonction of the coefficients → classic problemin spectral estimation (Levinson-Durbin).

64/ 67

Page 65: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Zero forcing and MSE criteria

If h(n) = y(n) ∗ c(n), we call Mean square error ;

MSE = 1h2(0)

+∞∑k=−∞;k 6=0

h2(n)

To minimize the ISI, minimise the MSE

MSE = ε =

+∞∑k=−∞;k 6=0

h2(n)

− h2(0)

This is a quadratic fonction of the coefficients → classic problemin spectral estimation (Levinson-Durbin).

65/ 67

Page 66: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

Example MSE-16-QAM, 3 coeffs channel

66/ 67

Page 67: Analog Electronics 2 - ICS905 - Télécom ParisTech · The radio channel Tx-Rx Distortions and M-QAM Radio-channelcharacteristics Microscopiceffects Transmittedsignal: s(t) = Re{u(t).ej2πfct}=

The radio channel Tx-Rx Distortions and M-QAM

The End

67/ 67