45
01/04/2011 - 1 ATLCE - B2 - © 2011 DDC Politecnico di Torino - ICT School Analog and Telecommunication Electronics B2 - Amplifiers nonlinearity » Reference circuit » Nonlinear models » Effects of nonlinearity » Applications of nonlinearity

Analog and Telecommunication Electronics - polito.it · 2011. 4. 1. · MOS transistor • Circuit and bias point – Quadratic model (JFET) I D = I DSS (1 - V ... (sum&diff) intermod

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 01/04/2011 - 1 ATLCE - B2 - © 2011 DDC

    Politecnico di Torino - ICT School

    Analog and Telecommunication Electronics

    B2 - Amplifiers nonlinearity

    » Reference circuit» Nonlinear models » Effects of nonlinearity» Applications of nonlinearity

  • 01/04/2011 - 2 ATLCE - B2 - © 2011 DDC

    Lesson B2: Nonlinearity & distortion

    • Large signal amplifiers– Reference circuit– Nonlinear device model

    • Effects of nonlinearity – Distortion and Harmonics, – Gain changes

    • Output spectrum– Intermodulation– Intercept Point

    • Lab 2: Large signal behaviour (nonlinear)

    • Text reference: Tuned amplifiers: sect 1.2.3

  • 01/04/2011 - 3 ATLCE - B2 - © 2011 DDC

    Amplifiers in radio structure

    PA (power amplifier)

    TX output amplifiers

    - High efficiency, low distorsion

    IF channel

    LNA (low noise amplifier)

    RX input amplifiers

    - Low noise, wide dynamic

  • 01/04/2011 - 4 ATLCE - B2 - © 2011 DDC

    Reference circuit

    • Basic transistor amplifier in passband– Get rid of bias network and coupling capacitors

    Vcc

    Vi

    C1 Q1

    Vo

    C4

    Ie

    Z’e

    Zc

    Vcc

    Vi

    Q1

    VoIe

    Zc

    Ie(DC)

    Ie(DC)

    Ze

  • 01/04/2011 - 5 ATLCE - B2 - © 2011 DDC

    Other configurations

    • Same model can be used for other configurations– Differential– CB– CC

    • First step:– Zc Rc– Ze Ce CC (in passband)

  • 01/04/2011 - 6 ATLCE - B2 - © 2011 DDC

    • Linear model IC = gm VBE or hfe iB approximation• Actual IC(VBE) log curve

    – vi(t) = Vi cos t– x = Vi / VT– VBE = Vi + VE

    BJT: nonlinear model

  • 01/04/2011 - 7 ATLCE - B2 - © 2011 DDC

    Analysis with nonlinear BJT model

    • ex cos t can be expanded in Fourier series

    – In(x): modified Bessel functions, I kind, order n

    • Collector current IC with nonlinear model

  • 01/04/2011 - 8 ATLCE - B2 - © 2011 DDC

    Collector current

    • DC term (= I)

    • Amplitude-dependent gain

    • n = 1: fundamental

    • n = 2, 3, … harmonics

  • 01/04/2011 - 9 ATLCE - B2 - © 2011 DDC

    In/Io vs input signal amplitude

  • 01/04/2011 - 10 ATLCE - B2 - © 2011 DDC

    In(x)

  • 01/04/2011 - 11 ATLCE - B2 - © 2011 DDC

    DC component of Ic

    • The DC component of the collector current IC is I

    • Same current I of the emitter bias generator

    • The DC voltage at the emitter (VE) changes with signal amplitude

    – VE = VE(x) = VT lge I/(IS I0(x))

    – A 0-DC signal (Vi) causes a DC shift in the circuit » nonlinearity !

    – IE constant (DC); VE(x) variable DC (compensates I0(x)

  • 01/04/2011 - 12 ATLCE - B2 - © 2011 DDC

    Collector current and output voltage

    • Output voltage VO = - iC ZC(ω):

    – Load impedance

    – Collector current: fundamental + harmonics

    • Combined effects of– nonlinearity (iC)– Load impedance vs frequency (ZC(ω))

    VO(ω)= -ZC(ω)I

  • 01/04/2011 - 13 ATLCE - B2 - © 2011 DDC

    Lesson A3: amplifiers nonlinearity

    • Large signal amplifiers– Reference circuit– Nonlinear device model

    • Effects of nonlinearity – Harmonics, – Gain changes

    • Output spectrum– Intermodulation– Intercept Point

    • Lab 2: Large signal behaviour (nonlinear)

  • 01/04/2011 - 14 ATLCE - B2 - © 2011 DDC

    Effects of nonlinearity

    • Signal distorsion– Sine Vi not-sine Vo– Harmonic content– Intermodulation

    • Gain compression– Gain depends on signal level – Compression:

    » Increasing the input signal the gain decreases

    • These effects can be visualized with the “distortion” simulator, available on the website (set for “exponential nonlinearity”)

  • 01/04/2011 - 15 ATLCE - B2 - © 2011 DDC

    Example of output spectrum

    • Output harmonics for Vi = 13 mVp and 52 mVp

  • 01/04/2011 - 16 ATLCE - B2 - © 2011 DDC

    Output distortion: x = 1

    • Mediul level signal– Vi = 26 mV, x = 1

    – Barely visible distorsion

  • 01/04/2011 - 17 ATLCE - B2 - © 2011 DDC

    Output harmonics: x = 5

    • High level signal– Vi = 130 mV, x = 5

    – high distorsion

    – Harmonics– Class B circuit

  • 01/04/2011 - 18 ATLCE - B2 - © 2011 DDC

    Output harmonics: x = 10

    • Very high level signal– Vi = 260 mV, x = 10

    – very high distorsion

    – High harmonics– Class C circuit

  • 01/04/2011 - 19 ATLCE - B2 - © 2011 DDC

    MOS transistor

    • Circuit and bias point– Quadratic model (JFET) ID = IDSS (1 - VGS/VP)2

    – Exp-quad-lin model (MOS)

    • Small signal (linear model)– Same model as BJT VO = - gm RD Vi

    • Large signal– Complex math model: lin + square + exp– Heuristic models– Same effects:

    » Harmonics» Variable gain

  • 01/04/2011 - 20 ATLCE - B2 - © 2011 DDC

    Large signal for MOS amplifier

    • Nonlinear model

    – ID(VGS) characteristic with various parts:

    – Quadratic, exponential, linear, …

    – Heuristic models

    • Effects similar to BJT:

    – Arising of harmonics at the output, distorsion

    – Gain compression

  • 01/04/2011 - 21 ATLCE - B2 - © 2011 DDC

    Nonlinearity: fight or exploit ?

    • We get: – Distortion & Harmonics, – Variable gain

    • Remove distortion & harmonics: tuned circuits– No effect on gain compression

    • Keep harmonics: frequency multipliers

    • Stabilize the gain: negative feedback– Reduces signal on nonlinear element

    • Use gain variation: compressor, mixers, VGA

  • 01/04/2011 - 22 ATLCE - B2 - © 2011 DDC

    Limit the effects of nonlinearity

    • Negative feedback– OpAmp or OpAmp-like with feedback– Add feedback to transistor amplifiers

    (Emitter resistance)

    • Suitable for wideband amplifiers

  • 01/04/2011 - 23 ATLCE - B2 - © 2011 DDC

    Reduce harmonics and distorsion

    • Tuned circuit at the output (ZC)– Gain: |AV| ZC/ZE

    • Suitable for narrowband amplifiers– Can attenuate the harmonics

    – TX output stage (PA)» Remove unwanted components

    – RX front end amplifiers (LNA)» Remove unwanted signals» Remove noise

  • 01/04/2011 - 24 ATLCE - B2 - © 2011 DDC

    Lesson A3: amplifiers nonlinearity

    • Large signal amplifiers– Reference circuit– Nonlinear device model

    • Effects of nonlinearity – Harmonics, – Gain changes

    • Output spectrum– Intermodulation– Intercept Point

    • Lab 2: Large signal behaviour (nonlinear)

  • 01/04/2011 - 25 ATLCE - B2 - © 2011 DDC

    Nonlinearity parameters

    • How to characterize nonlinearity for an amplifier– 1 dB compression level

    • Intercept Point (IP)– (IP2)– IP3

    • How to compensate the effects of nonlinearity– Predistorsion

    » Analog» Digital

  • 01/04/2011 - 26 ATLCE - B2 - © 2011 DDC

    1 dB compression level

    • Signal amplitude with gain (linear) - 1 dB

  • 01/04/2011 - 27 ATLCE - B2 - © 2011 DDC

    Effects of compression

    • Quadrature Amplitude Modulations (QAM)– Shift of high energy constellation points– Narrow noise margin

  • 01/04/2011 - 28 ATLCE - B2 - © 2011 DDC

    Compensation of nonlinearity

    • Compression modifies signal constellation– Need for knowing/ limiting/ correct– Predistorsion to compensate nonlinearity

    • Analog predistortion– Gain expander– Known nonlinearity type

    • Signal synthesized from numeric samples by DAC– Predistorsion of numeric values– Parameters from amplifier characterization

    » Measurement of output power for test signals » Build look-up table, algorithm ..

    – Generic, can correct any nonlinearity and drifts

  • 01/04/2011 - 29 ATLCE - B2 - © 2011 DDC

    Compensation of nonlinearity

    • Dynamic expander– Introduces a distortion which compensates compression– Reduces harmonic content

  • 01/04/2011 - 30 ATLCE - B2 - © 2011 DDC

    Compensating predistorter

  • 01/04/2011 - 31 ATLCE - B2 - © 2011 DDC

    Harmonics with two-tone input signals

    • Nonlinear output expressed as power series• Vo = A Vi + B Vi2 + C Vi3 + …

    – Single-tone input Fa: harmonics 2Fa, 3Fa, 4Fa, ….– Dual-tone input: Vi = Va + Vb; Fa and Fb

    • Vi2 = (Va + Vb)2 = Va2 + 2 Va Vb + Vb2

    – Order 2 products: 2Fa, Fa-Fb, Fa+Fb, 2Fb (+DC)– outband, can be filtered out

    • Vi3 = (Va + Vb)3 = Va3 + 3 Va2Vb + 3 Va Vb2 + Vb3

    – Order 3 terms: 3Fa, 2Fa-Fb, 2Fa, 2Fb-Fa, 2Fb, 3Fb (+DC)– inband; cannot be filtered

  • 01/04/2011 - 32 ATLCE - B2 - © 2011 DDC

    Output spectrum with nonlinearity

    • Input signals: – two sinewave

    f1 and f2

    • Output signal:– Inputs: f1, f2– harmonics

    2f1, 2f2, 3f1, ...– Beats

    f2-f1, f1+f2– Harmonic

    beats2f1-f2, 2f2-f1, ..

    intermodorder 2(sum&diff)

    intermodorder 3

    harmonics

    Order 2 Order 3

    useful signal band

  • 01/04/2011 - 33 ATLCE - B2 - © 2011 DDC

    Intermodulation

    • Input signal: sine waves f1 and f2

    • Output spectrum:

    Intermodulation terms (order 3):2f2-f1, 2f1-f2

    Fundamental (input signals)f1, f2

    Difference and sum:f2-f1, f2+f1

    II harmonic: 2f1, 2f2

  • 01/04/2011 - 34 ATLCE - B2 - © 2011 DDC

    Intermodulation Simulator

    • Java applet in the course website– Learning material simulators intermodulation– Input signal with two sine components F1 e F2– Output spectrum for various cases:

    • Linear transfer function– The output includes only F1 and F2

    • Nonlinear transfer function; the output includes:– Harmonics:

    2f1, 2f2, 3f1, ...– Beats between input signals:

    f2-f1, f1+f1– Beats among harmonics on input signals:

    2f1-f2, 2f2-f1, ..

  • 01/04/2011 - 35 ATLCE - B2 - © 2011 DDC

    Intermodulation Simulator: example

    Linear transfer function

    Exponentialtransfer function

  • 01/04/2011 - 36 ATLCE - B2 - © 2011 DDC

    Numerical example

    • Amplifier band: 900 MHz – 1,1 GHz– Vi = Va + Vb: Fa = 1 GHz , Fb = 1,01 GHz

    • Order 2: 2Fa, 2Fb, Fa-Fb, Fa+Fb– 2 GHz, 2,02 GHz, 2,01 GHz, 10 MHz– All components outband, can be filtered

    • Order 3: 3Fa, 3Fb, 2Fa-Fb, 2Fb-Fa– 3 GHz, 3,03 GHz, 1,02 GHz, 0,99 GHz– Some components inband, cannot be filtered

    • Order 3 terms more dangerous (inband!)

    • Higher order components have lower amplitude

  • 01/04/2011 - 37 ATLCE - B2 - © 2011 DDC

    Intermodulation in amplifiers

    • Ideal amplifier:– no harmonics, – no distortion, – no intermodulation

    • Effects of intermodulation in LNA (RX chain)– Spurious signals in the IF chain

    » feedthrough from other channels

    • Effects in PA (TX chain)– Emission of unwanted signals

    » Wasted power» Interference towards other channels

    • Quantitative parameter: Intercept Point (IP)

  • 01/04/2011 - 38 ATLCE - B2 - © 2011 DDC

    Amplitude of high order terms

    • Output signal– Vu = K1 Vi + K2 Vi2 + K3 Vi3 + ….– Vu = K1(AVa+BVb) + K2(AVa+BVb)2 + K3 (AVa+BVb)3

    • Critical term: K3– (…)3 = A3Va3+3A2BVa2Vb+3AB2VaVb2+B3Vb3

    – Difference beats inband

    • Doubling the input levels: – A 2A, B 2B– K1(AVa+BVb) x 2– K3(3A2BVa2Vb) x 23 = x 8

    • Harmonic raises faster than fundamental

  • 01/04/2011 - 39 ATLCE - B2 - © 2011 DDC

    Intermodulation vs input levels

    • Raising the input level, intermodulation terms go up faster than fundamental

    – Reduced distance fundamental III-order terms

  • 01/04/2011 - 40 ATLCE - B2 - © 2011 DDC

    Intercept Point

    • Order 3 signals – For increasing

    input level, order-3 terms raise faster than fundamental

    • Order 3 Intercept Point (IP3)

    – Same (extrapolated) amplitude for Fiand 3Fi terms

    IP3

    Pout

    Pin

    Fi

    3 Fi

    IP3

  • 01/04/2011 - 41 ATLCE - B2 - © 2011 DDC

    Other IPs

    • IP can be defined for any order

    • Low order– Slow raise

    • High order– Fast raise– Low K

    • Most dangerous:– Order 3

  • 01/04/2011 - 42 ATLCE - B2 - © 2011 DDC

    Usable dynamic range

    • The usable dynamic range of an amplifier is limited

    IP3oPout

    PinNoisefloor

    Usable input range

    Compressionintercept point

  • 01/04/2011 - 43 ATLCE - B2 - © 2011 DDC

    Lab 2: BJT nonlinear amplifier

    • Specs: same basic circuit as Lab 1

    • Large signal behavior– Gain (versus input level)– Output harmonics contents– Output voltage range

    • References in the text– Design procedure: sect 1, 1.P1– Lab measurements: sect 1, 1.L1 (part 2)

    • Experiment guide in the website– Learning material Instructions for lab experiments A2

  • 01/04/2011 - 44 ATLCE - B2 - © 2011 DDC

    Lesson B2: final questions

    • Which different types of amplifiers can be found in a radio system?

    • Why RF amplifiers do not use Op Amps?

    • Draw the frequency spectrum at the output of an amplifier with sine input, with linear and nonlinear behavior.

    • Describe some effects of nonlinearity in the amplifiers of the reference radio system.

    • Describe some techniques to avoid or counteract the effects of nonlinearity in amplifiers.

    • Where does intermodulation come from?

    • Which parameter(s) describe the nonlinear behavior of an amplifier?

  • 01/04/2011 - 45 ATLCE - B2 - © 2011 DDC

    Lesson B2: tests

    • Harmonics content for various input signal levels (dBc, referred to carrier).

    – Draw output spectrum for: » Vi = 52 mV» Vi = 130 mV

    • In the circuit designed for the lab experiment– Evaluate small signal gain with linear model (gm o hie)– Evaluate gain for large input signal with nonlinear model