87
Analog and Mixed-Signal VLSI Design Center IOWA STATE UNIVERSITY 1 Role of Op-Amps widely used building blocks for analog circuits widely used in communication circuits Widely used in analog signal processing – critical block for data-converters Widely Used in High Volume ICs – memory read out – Disk-driver reading-writing

Analog and Mixed-Signal VLSI Design Center I OWA S TATE U NIVERSITY 1 Role of Op-Amps widely used building blocks for analog circuits widely used in communication

Embed Size (px)

Citation preview

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY1

Role of Op-AmpsRole of Op-Amps

• widely used building blocks for analog circuits

• widely used in communication circuits• Widely used in analog signal processing

– critical block for data-converters• Widely Used in High Volume ICs

– memory read out– Disk-driver reading-writing

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY2

New challenges in Analog DesignNew challenges in Analog Design

• Decreased Supply Voltage• Increased Digital/Analog Interference• Reduced Testability• Increased Parametric Variations

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY3

Critical Specifications for Op-AmpsCritical Specifications for Op-Amps

• High DC Gain

• High Speed/Large Gain-Bandwidth

• Sufficient Output Swing

• High power efficiency

Desirable: digital built-in-self-test and self-calibrationDesirable: digital built-in-self-test and self-calibration

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY4

Existing structures & LimitationsExisting structures & Limitations

Cascode Amplifier

DC Gain: Modest

Speed: Excellent

Output Swing: Small

Power Efficiency: Good

Vi2

M4

Mb

M1 M1

M3 M3

Vi1

M2 M2

M4

bias1

bias2

bias3

cmfb

Frequency Response: Good

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY5

Existing structures & LimitationsExisting structures & Limitations

Cascaded Amplifier

DC Gain: High

Output Swings: Large

Speed: Poor

CP1

CP2

in outA1 A2 A3

Frequency Response: Poor

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY6

Existing structures & LimitationsExisting structures & Limitations

Positive Feedback AmplifierDC Gain: Large

Output Swing: Good

Speed: High

Low Yield

Frequency Response: Good

Vi1 Vi2

Vbn

Vbp Vbp

Vo1 Vo2

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY7

Our ObjectiveOur Objective

• Low Voltage Compatible• High DC Gain• High Speed• Good Output Swing• High Yield• Standard Digital Process Compatible• Good Power Efficiency

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY8

Our ApproachOur Approach

• Find new amplifier architectures• Rely on digital logic to enhance

performance• Use simple digital circuit sensing amplifier

performance• Integrate controllability• Use adaptive feedback control

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY9

Positive Feedback Gain-BoostingPositive Feedback Gain-Boosting

• Can operate at very low voltages

• Can achieve very high DC gain

• No compromise in bandwidth

• No appreciable power increase

• Conventional wisdom has two concerns

– positive feedback leads to RHP poles

– gain boosting is limited if requiring robustness w.r.t. process variations

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY10

Our response to the concernsOur response to the concerns

• positive feedback causes RHP open-loop poles, but do not necessarily cause RHP closed-loop poles!

• RHP open-loop poles can actually improve performance of closed-loop amplifiers!

• F16/F18 fighter jets have open-loop RHP poles, they play critical role in achieving their superior closed-loop performance

• no need for robustness across process variations• use positive feedback pole control after fabrication

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY11

Positive Feedback Operational AmplifiersPositive Feedback Operational Amplifiers

A(s)

-

+Vin

-

+Vd VoutA(s)

-

+Vin

-

+Vd Vout

Open loop transfer function ps

GB

ps

pAA(s)

0

Closed-loop transfer function βGBps

GB

βA(s)

A(s)(s)Af

1

Open-loop pole: Closed-loop pole: βGBppf p

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY12

Positive Feedback Amplifier Architecture ExplorationPositive Feedback Amplifier Architecture Exploration

• Some positive feedback amplifier architectures have a dc gain that is much more sensitive to the feedback control variable than others

• Although architecture optimality may be difficult to determine, synthesis techniques may yield better structures than those already considered

• Comparative study of several structures with existing positive feedback structures

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY13

A)(1gggsC

g(s)A

dsnds2ds1L

m1v

Vdd

Vi

Vbias1 Vo

M1

M2

AVxx

CL

Mn

AVo

ADC = gm1

gds1+gds2- (A-1)gdsn

As (A-1)gdsn → gds1+gds2,

ADC → ∞ !

Negative Output Conductance Op Amp

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY14

Implementation Block DiagramImplementation Block Diagram

Bias Generator

CMFB

Vip

Vin Von

VopBasic Amp

2nd stage

Negative Conductance GeneratorVi-

Vi+

2nd stage

First Stage

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY15

Basic Amplifier and the Second StageBasic Amplifier and the Second Stage

Basic amplifier Second stage

VBP

Vin

VCMVBN

Vip

Von Vop

M1

M5

M4M3

M2

M6Vin

M8M9

M7

Vout

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY16

Negative Conductance GeneratorNegative Conductance Generator

Vdd

M1

VopVon

Vctrl

A

M5

Mg1Mn1

M4

M3 M2

Mn2

M8

M7M6

Mg2

Vi+ Vi-

Vctrl

VXX VXX

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY17

Low Gain Stage ALow Gain Stage A

Vin

VBN

Vip

VopMa1

Ma3

Ma2Von

Ma4

Ma8

Ma5

Ma6

Ma7

Ma9

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY18

Positive Feedback Amplifier Architecture Exploration

Positive Feedback Amplifier Architecture Exploration

VOUT

VIN

M1

M2

M3

M4

VA

VB

f1(-θ1VA-θ2VB-θ3VOUT)

f2(-θ4VA-θ5VB-θ6VOUT)

f3(-θ7VA-θ8VB-θ9VOUT)

Overhead for realizing this structure can be very small

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY19

43212122

433343

2221 )(

omoooombm

oombmoo

ombmm

gkggggggg

gggggg

ggggA

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4 M4

bias1

bias2

Example positive feedback amp1:Example positive feedback amp1:

43

212122

433343

om

oooombm

oombmoo

gg

gggggg

gggggg

k

Gain = infinity

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY20

2122

12

2122

21

4333

43

2122

2221

oombm

om

oombm

oo

oombm

oo

oombm

ombmm

i

o

gggg

gkg

gggg

gg

gggg

gggggg

gggg

v

v

Example positive feedback amp2:Example positive feedback amp2:

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4 M4

bias1

bias2

Vo1 Vo2

2122

12

2122

21

4333

43

oombm

om

oombm

oo

oombm

oo

gggg

gggggg

gg

gggg

gg

k

Gain = infinity

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY21

M4

Mb

M1 M1

M3 M3

k

Vi1 Vi2

M2 M2

M4

bias1

bias2

422122

321

2122

433343

2221 )(

oooombm

moo

oombm

oombmoo

ombmm

gggggg

gkgg

gggg

gggggg

ggggA

Example positive feedback amp3:Example positive feedback amp3:

2122

423

212122

433343

oombm

oom

oooombm

oombmoo

gggg

ggg

gggggg

gggggg

k

Gain = infinity

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY22

M2

M1

M4

Mb

M1

M3 M3

k

Vi1 Vi2

M2

M4

bias1

bias2

314333

243

4333

212221

2221 )(

oooombm

moo

oombm

oombmoo

ombmm

gggggg

gkgg

gggg

gggggg

ggggA

Example positive feedback amp4:Example positive feedback amp4:

314333

2

434333

212221

oooombm

m

oooombm

oombmoo

gggggg

g

gggggg

gggggg

k

Gain = infinity

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY23

DC Sweep of amp1 in 0.1um processDC Sweep of amp1 in 0.1um process

-6 -4 -2 0 2 4 6

x 10-3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

differential input(V)

dif

fere

nti

al

ou

tpu

t(V

)A High Gain Positive Feedback Amplifier in 0.1um Process

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY24

Preliminary Results: DBISTSC PFAmpPreliminary Results: DBISTSC PFAmp

A Digital Programmable Amplifier

Bifurcation in Positive Feedback Amplifier

Simulation and Measurement Results

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY25

A digital controllable AmplifierA digital controllable Amplifier

•Low-Voltage Compatible3 transistors from VDD to VSS

•High GainAttenuator provides positive feedback

negative-conductance

compensation

•High SpeedSingle Stage

M2 M2

Vi1

Vi2

Vbn

Vo1 Vo2 CL CL

VDD

VSS

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY26

Small Signal Linear EquivalenceSmall Signal Linear Equivalence

21 ii VVx

21 oo VVy gopgongmnx

y

xsCL-gmpy

0A=0

opon

mp

gg

g

0

mpoponL

mn

gggsC

gA

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY27

Nonlinear DynamicNonlinear Dynamic

04})](1[)(4{ 232 xgyxVVgggy mnSOCMnnnmponoppp

xC

gy

C

xVVy

Cy

C

gggy

L

mn

L

SOCMnnn

L

pp

L

mponop

4

)](1[

4

23

2

Dynamic equation

Equilibrium manifold (DC Transfer)

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY28

Amplifier’s DC CharacteristicsAmplifier’s DC Characteristics

x

y

0

0.02

0.021

0.03

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY29

y

-0.1 -0.05 0 0.05 0.1-1.5

-1

-0.5

0

0.5

1

1.5

x

y

0=0.02=0

=0.021

=0.03

L

Amplifier’s DC CharacteristicsAmplifier’s DC Characteristics

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY30

0

>0 Hysteresis

No Hysteresis

Decrease L Gain

Hysteresis

ObservationsObservations

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY31

Phase Diagram in Y- PlanePhase Diagram in Y- Plane

0.017 0.018 0.019 0.02 0.021 0.022 0.023-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

unstable

stable

stable

stable

y

x=0

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY32

Phase Diagram in Y- PlanePhase Diagram in Y- Plane

0.018 0.019 0.02 0.021 0.022 0.023 0.024-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

yy

*x=-0.001*x=-0.001

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY33

Phase Diagram in Y- PlanePhase Diagram in Y- Plane

0.018 0.019 0.02 0.021 0.022 0.023 0.024-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

yyy

*x=0.001*x=0.001

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY34

ObservationsObservations

>0 Bifurcation

For some given x, 3 solutions for y2 stable and 1 unstableFor some given x, one unique solution for y

0 No Bifurcation

For a given x, one unique solution for y

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY35

Pull up/Pull down CircuitPull up/Pull down Circuit

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

pullup pulldown

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY36

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

x

Pull down, stay low

OHOL=10

y

Pull up/Pull DownPull up/Pull Down

Pull up, stay high

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY37

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

x

Pull down, return high

OHOL=11

y

Pull up/Pull DownPull up/Pull Down

Pull up, stay high

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY38

-0.5 0 0.5-1.5

-1

-0.5

0

0.5

1

1.5

x

yDiscontinouity

Stable

Unstable

Stable

x

Pull down, stay low

OHOL=00OHOL=00

y

Pull up/Pull DownPull up/Pull Down

Pull up, return low

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY39

Sensing ProcessSensing Process

pull up

release

record OH

pull down

release

record OL

OHOL=?

no bifurcation bifurcation detected

11/00 10

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY40

Linear MOS AttenuatorLinear MOS Attenuator

111 k1.

3. controlled by Aspect Ratio Vo

M2

M1

Vi

W2/L2

W1/L1

2211

221 //

/

LWLW

LW

2.

4. k controlled by Aspect Ratio

5. Infinite input impedance at DC

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY41

Adaptively Controllable AttenuatorAdaptively Controllable Attenuator

M2

M1

M4

M3

M6

M5

d6 d0

1.Quiescent-voltage shifting

)11( 132 kk2.

3.Decreased Sensitivity

to transistor size change

m4.

: input code <d6…d0>

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY42

Programmable AttenuationProgrammable Attenuation

0 20 40 60 80 100 120 1400.016

0.017

0.018

0.019

0.02

0.021

0.022

input

atte

nu

atio

n

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY43

Gain Enhancement RequirementGain Enhancement Requirement

mpm

mn

g

gA

)]([ 0

||

1

||

1

mp

mn

g

gA

Gain is related to controllable AttenuatorGain is related to controllable Attenuator

Required Attenuator Control CodeRequired Attenuator Control Code

Achievable Gain Lower BoundAchievable Gain Lower Bound

mm or 0

20

1 ,

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY44

Design Specification for Attenuator DAC

Design Specification for Attenuator DAC

1. Sufficient Coverage1. Sufficient Coverage

)2()0( 1max0min0

N

2. Fine Resolution2. Fine Resolution

specAN

1)}()1({max

120 1

3. DAC Size3. DAC Size

min0max012N

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY45

Effect of Offset on SensingEffect of Offset on Sensing

-0.1 -0.05 0 0.05 0.1-1.5

-1

-0.5

0

0.5

1

1.5

x

y

offset

O

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY46

Offset Compensated Sensing Circuit Offset Compensated Sensing Circuit

pull up pull down

VICM

DACcomparator O

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY47

Design Specifications for input DACDesign Specifications for input DAC

1. Sufficient Coverage1. Sufficient Coverage

)2()0( 2maxmin

NOffsetOffset

2. Fine Resolution2. Fine Resolution

specLN

)}()1({max120 2

3. DAC Size3. DAC Size

spec

N

L

OffsetOffset minmax22

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY48

Design SpecificationsDesign Specifications

y

-0.1 -0.05 0 0.05 0.1-1.5

-1

-0.5

0

0.5

1

1.5

xx

yy

=0.021=0.021

LspecLspec

Aspec:80dBAspec:80dB

Lspec:20VLspec:20V

N2 12N2 12

:0.0001:0.0001

offset variation:

50mV

offset variation:

50mV

0variation:0.0060variation:0.006N16N16

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY49

Combined Sensing and Control LogicCombined Sensing and Control Logic

• Implement with inexpensive digital logic• Time-efficient processing• Accomplish offset compensation• Realize optimal control code searching• Adaptive feedback control

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY50

Functional Block DiagramFunctional Block Diagram

pull up pull down

VICM

ComparatorO

branching parameter controland offset cancellation

DAC

cal/un

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY51

Nested attenuation/bifurcation controlNested attenuation/bifurcation control

initializeinitialize

=(L+H)/2=(L+H)/2

bifurcation detectionbifurcation detection

Bifurcation?Bifurcation?

L=L=H=H=

nono

: Attenuator DAC input: Attenuator DAC input

yesyes nono

step=N1?step=N1?yesyes

finish searching

finish searching

inner loopinner loop

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY52

Bifurcation Detection AlgorithmBifurcation Detection Algorithm

initializeinitialize

=(L+H)/2=(L+H)/2

Pull-up/DownPull-up/Down

OHOL=?OHOL=? bifurcationdetected

bifurcationdetected

H= H=

: Input of offset compensation DAC: Input of offset compensation DAC

0000 1010

breakbreak L= L=

1111

nono2N2+1

input codes

2N2+1

input codes

step=N2?step=N2?yesyes

break withoutbifurcation

break withoutbifurcation

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY53

Convergence ProofConvergence Proof

Conditions on offset-DAC range guarantee initial conditions:

H

()

x

offset

L

at step 01.When =L=0, OHOL=11

2.When =H=2N2, OHOL=00

3. (L)< offset (H)

4. H-L=2N2

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY54

Convergence Proof (Continue)Convergence Proof (Continue)

• at step k+1, =(L+ H)/2, pull up/down

– if OHOL=10, bifurcation is detected, break

– if OHOL=11, ()<offset, let L=

– if OHOL=00, ()offset, let H=

– if bifurcation is not detected, continue.

• then (L)< offset (H)

H - L=2N2-(k+1)

– At L, OHOL=11; at H ,OHOL=00

• This iteration ends either with ‘bifurcation detected’ or ‘step=N2’ without bifurcation.

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY55

Convergence Proof (Continue)Convergence Proof (Continue)

• If step=N2, H-L=1

(L)< offset (H)

• when =L, OHOL=11, (L)< lower bound of hysteresis

• when =H, OHOL=00, (H)> up bound of hysteresis

• Lhys>(H)- (L)offsetoffset

(L)(L) (H)(H)

potential

hysteresis width

potential

hysteresis width

xx

lower boundlower bound up boundup boundLhysLhys

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY56

Convergence Proof (Attenuator)Convergence Proof (Attenuator)

L

H

0 128

control code

Converge tobifurcation

nobifurcation

0

L L+1

Conditions on -DAC range guarantee initial conditions:Conditions on -DAC range guarantee initial conditions:at step 0

1.When = L=0, no bifurcation

2.When = H=2N1, bifurcation

3. (L)0< (H)

4. H- L=2N1

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY57

Convergence Proof (Attenuator)Convergence Proof (Attenuator)

•step k+1: (L)0< (H), H- L=2N2-k

•let =(L+ H)/2, do ‘bifurcation detection’

•if bifurcation is detected, ()> 0 ,let H=

•else let L=

•at both situations, (L)0< (H), H- L=2N1-k-1

•step k+1: (L)0< (H), H- L=2N2-k

•let =(L+ H)/2, do ‘bifurcation detection’

•if bifurcation is detected, ()> 0 ,let H=

•else let L=

•at both situations, (L)0< (H), H- L=2N1-k-1

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY58

Convergence Proof (Attenuator)Convergence Proof (Attenuator)

• This iteration ends with no bifurcation and finds an optimal control code L

spec

Lachieved

AN

1)}()1({max

)(

120

0

1

• Aachieved Aspec• Aachieved Aspec

(L)(L) (H)(H)

00

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY59

Simulation EnvironmentSimulation Environment

• Ami 0.5um CMOS (most)• Cadence

– Spectre (simulator)– Hspice (simulator)– SpectreVerilog (simulator)– Analog Artist– Schematic– Virtuoso (layout tool)– SEDSM (Floor-plan /Route )

• Synopsys

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY60

Simulation ResultsSimulation Results

0 50 100 150 200 2500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

DAC input (MSB)

Vo

ltag

e

Offset Compensation DAC Characteristics

16-b R-1.8R DAC=5V<Lspe

c

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY61

M2

M1

M4

M3

M6

M5

d6 d0

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY62

Digitally controlled PF AmplifierDigitally controlled PF Amplifier

+ -

cmfb

- +

VDD

VSS

+

-

-

+

A1

+ -

cmfb

- +

VDD

VSS

Vbp

+

-

-

+A2

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY63

Two Stage AmplifierTwo Stage Amplifier

PU PDA1 A2

vi1

vi2

vop

von

vo1

vo2

vi1

vi2

PU

PD

vo1

vo2

vop

von

Amp

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY64

R-2R DACR-2R DAC

DACDAC

R-2RR-2R

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

Matched 2R-R

For K LSB

Designed 2R-xR

For N-K MSB

X<1LSB MSB

0 1 N-2 N-1

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

Matched 2R-R

For K LSB

Designed 2R-xR

For N-K MSB

X<1

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

ground

reference

2R 2R 2R 2R 2R 1.9R

R R 0.94R

Matched 2R-R

For K LSB

Designed 2R-xR

For N-K MSB

X<1

output

LSBLSB MSBMSB

0 1 N-2 N-1

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY65

Two way switchTwo way switch

00

VHVHVLVL

VoVo

VoVo

VHVH

VLVL

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY66

ComparatorComparator

Vin+ Vin-

latch

M1 M2Vin+ Vin-

latch

Vin+ Vin-

latch

M1 M2

Vout Comparator

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY67

Self-Calibrated High Gain AmplifierSelf-Calibrated High Gain Amplifier

vi1

vi2

PU

PD

vo1

vo2

vop

von

DACcode

calibr

PU

PD

vcm

DS

CLK

RN

controller Amp Comparator

16-bit R-2R

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY68

Algorithm for ControllerAlgorithm for Controller

• Step 1: Initialize • Step 2: Sweep input

• Step 3: Use pull-up/down method to detect hysteresis

• Step 4: if hysteresis exists, decrease ; else increase • Step 5: if is very close to 0, finish; else goto step 2

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY69

Offset Compensation DAC

Attenuator Control DAC

32768 16384 24576 16384 28672 25578 24577

No Bifurcation

64 32 48 52 50 49 48

yesbifurcation: no no yes yes yes

Max searching time: 7x16 cycles

Searching ProcessSearching Process

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY70

Bifurcation SimulationBifurcation Simulation

pull uppull up

OH=1OH=1

pull downpull down

OL=0OL=0

x=0x=0

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY71

Pull-up/Pull DownPull-up/Pull Down

pull uppull up

OH=1OH=1

pull downpull down

OL=1OL=1

x=-0.1mV

x=-0.1mV

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY72

AC Response, single stage onlyAC Response, single stage only

50dB gain enhancement50dB gain enhancement

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY73

1.8 2 2.2 2.4 2.6 2.8

x 10-7

-0.1

-0.05

0

0.05

0.1

time

ou

tpu

t(V

)

before calibrationafter calibration

AC Response, single stage onlyAC Response, single stage only

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY74

Step Response, single stage onlyStep Response, single stage only

2.28 2.3 2.32 2.34 2.36 2.38

x 10-7

0.0988

0.099

0.0992

0.0994

0.0996

0.0998

0.1

time

ou

tpu

t(V

)

before calibrationafter calibration

Significant Settling

accuracy Improvement

Significant Settling

accuracy Improvement

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY75

Robustness Over Temperature, single stageRobustness Over Temperature, single stage

-40 -20 0 20 40 60 80 10050

60

70

80

90

100

110

temperature(C)

DC

Gai

ns

(dB

)

No temperature compesation

With Temperature Compensation

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY76

One Fabricated Amplifier’s Performance

One Fabricated Amplifier’s Performance

Tab. 1 Simulated DC gain over wide temperature range Tab. 1 Simulated DC gain over wide temperature range

Gain (dB)

SS SF FS FF NN

0°C 84 85 72 92 103

27°C 82.2

89 84 85 110

80°C 70.4

84.5

83.7

89 88

AMI 0.5um CMOSAMI 0.5um CMOS

Tab. 2 Measured DC gain of fabricated chipsTab. 2 Measured DC gain of fabricated chips

Chip #1

#2 #3 #4 #5

Gain (dB)

90 87.6

89.3

84.5

86.5

manual tuning manual tuning

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY77

Two Stages greatly improve linearityTwo Stages greatly improve linearity

PU PDA1 A2

vi1

vi2

vop

von

vo1

vo2

vi1

vi2

PU

PD

vo1

vo2

vop

von

Amp

Vo1 and vo2 stay nearly constant, 0 stay constant

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY78

Simulated Performance in 90nm CMOSSimulated Performance in 90nm CMOS

Easy Migration

Easy Migration

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY79

Two stage amp DC SweepTwo stage amp DC Sweep

-2 -1 0 1 2

x 10-4

-1

-0.5

0

0.5

1

differential inputs(V)

dif

fere

nti

al o

utp

uts

(V)

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY80

Two stage Gain vs VoutTwo stage Gain vs Vout

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1110

120

130

140

150

160

170

180

differential outputs(V)

Gai

n(dB

)

Equivalent Gain Plot

>130dBover +- 0.75V

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY81

Amplifier performance summaryAmplifier performance summary

• Berkeley projected 90nm process• power supply voltage Vdd=1.1 • two stage total current Itot=18ma• Total power consumption Ptot=20mw• Capacitive load CL=4p • Unity gain frequency UGF = 1.35GHz• Phase margin at UGF = 39 deg• Frequency at gain 2: G2F = 804MHz • Phase margin at G2F = 65 deg

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY82

Switched-Capacitor AmplifierSwitched-Capacitor Amplifier

Vout

S1C1

C2

S2

S3

S4

S1

C1

S2

S5Vin

S4

S3

pos

neg

Vicm

Vicm

C3

Precision Multiply-by-Two Circuit

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY83

100 MS/s

60% swing:0.3Vdiff

Settlingaccuracy:8.9e-4=10.1 bits

Transient Simulation ResultsTransient Simulation Results

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY84

100 MS/s

full swing0.5Vdiff

Settlingaccuracy:0.0013=9.6 bits

Transient Simulation ResultsTransient Simulation Results

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY85

80 MS/s

60% swing0.3Vdiff

Settlingaccuracy:2.1e-4=12.24 bits

Transient Simulation ResultsTransient Simulation Results

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY86

Transient Simulation ResultsTransient Simulation Results

input=0.25V

output=0.499969V

40 MS/s

Settling accuracy:3.1e-5/0.5=6.2e-5=14.0 bits

Analog and Mixed-Signal VLSI Design Center

IOWA STATE UNIVERSITY87

Transient Simulation ResultsTransient Simulation Results

input=0.25V

output=0.499994V

10 MS/s

Settling accuracy:6e-6/0.5=1.2e-5=16.3 bits