59
Robert Tremblay Polytechnique Montreal, Canada An Inverted V-Braced Frame System Exhibiting Bilinear Response for Seismic Stability under Long Duration Subduction Earthquakes

An Inverted V-Braced Frame System Exhibiting Bilinear ... · • Canadian code provisions • Seismic stability of an 16-storey ... Design Seismic Load NBCC 2015 RdRo= 4.8 ... •

Embed Size (px)

Citation preview

Robert TremblayPolytechnique Montreal, Canada

An Inverted V-Braced Frame System Exhibiting Bilinear Response

for Seismic Stability underLong Duration Subduction Earthquakes

Overview

• Steel SFRSs

• Seismic stability

• Cascadia subduction earthquakes

• Canadian code provisions

• Seismic stability of an 16-storey braced frame

• Column continuity

• Proposed chevron braced frame

• Conclusions

Robert Tremblay, Polytechnique Montreal, Canada 3

Plastic Hinge (typ.)

Shearyielding

Plastic Hinge (typ.)

Tensionyielding

Plastic HingeTension

yielding

Tensionyielding

Compressionyielding e

Plastic Hinge (typ.)

Plastic Hinge

End-plateBending

Shearyielding

Current Steel SFRSs

CBF BRBF EBF

MRF PW

Main achievements

• Systems have reliable energy dissipation

through robust ductile response

• Comprehensive design provisions to achieve

this energy dissipation capacity and allow

reduced design seismic forces

• Structural damage confined to a limited

portion of the structure to minimize repair

Robert Tremblay, Polytechnique Montreal, Canada 4

Tensionyielding

Compressionyielding

Buckling Restrained Braced Frames

Robert Tremblay, Polytechnique Montreal, Canada 5

Graphite

Molybdenum disulphide

UHMW

PTFE

Robert Tremblay, Polytechnique Montreal, Canada 6

Eccentrically Braced Steel FramesShearyielding

e

Use of Modular Links

with N. Mansour& C. Christopoulos, University of Toronto

Robert Tremblay, Polytechnique Montreal, Canada 7

Robert Tremblay, Polytechnique Montreal, Canada 8

with L. Tirca, Concordia University& Pall Dynamics

Robert Tremblay, Polytechnique Montreal, Canada 9

Friction Braced Frames (FBFs)

Robert Tremblay, Polytechnique Montreal, Canada 10

BRBFs

FBFs

EBFs

Robert Tremblay, Polytechnique Montreal, Canada 11

Main Shortcomings

• Residual deformations

• Prone to soft-storey response

and dynamic instability

Robert Tremblay, Polytechnique Montreal, Canada 12

Braced Frame (typ.)

Braced FrameBuilding Plan View

F

F yk

1

V

PP

kk

Robert Tremblay, Polytechnique Montreal, Canada 13

Robert Tremblay, Polytechnique Montreal, Canada 14

M Vh P Fh 0

k, Fy

F

F yk

1

1

V

LossF y

V V

P P

P/h

P

F

h

Equilibrium:

Elastic response:

Inelastic response:

F V P / h

y yV F P / h

k, FW

y

F

Fy

k

1

P

h

Robert Tremblay, Polytechnique Montreal, Canada 15

Seismic Conditions in Southwest British Columbia

Rogers, G., Halchuck, S. Adams, J., and Allen, T. (2015). 5TH Generation (2015) Seismic Hazard Model for Southwest British Columbia, Proc. 11th Can. Conf. Earthquake Eng., Paper no. 94198.

Subduction deep-in-slab EQs

Subduction interface EQs

Shallow crustal EQs

Robert Tremblay, Polytechnique Montreal, Canada 16

Typical ground motions expected in Southwest BC

Subduction deep-in-slab EQ motions

Subduction interface EQ motions

Shallow crustal EQ motions

Robert Tremblay, Polytechnique Montreal, Canada 17

P- effects under subduction deep-in-slab EQ motions

Robert Tremblay, Polytechnique Montreal, Canada 18

P- effects under subduction interface EQ motions

Robert Tremblay, Polytechnique Montreal, Canada 19

Robert Tremblay, Polytechnique Montreal, Canada 20

P‐ effects reduce lateral strength

P‐ effects create an unsymmetrical SFRS=> Progressive drifting

F

-F

V+

+-V > V

y

y

V 1P/h

V =S(Ta) Mv IE W

Ro Rd

S

S(T )

Period, TTa

a

Site SpecificDesign Spectrum

Robert Tremblay, Polytechnique Montreal, Canada 21

Robert Tremblay, Polytechnique Montreal, Canada 22

RdRo = 4.8

RdRo = 7.5

V =S(Ta) Mv IE W

Ro Rd

k, FW

y

P

aT = 1.8 s

Victoria, BCFirm Ground

Robert Tremblay, Polytechnique Montreal, Canada 23

Robert Tremblay, Polytechnique Montreal, Canada 24

Robert Tremblay, Polytechnique Montreal, Canada 25

V =S(Ta) Mv IE W

Ro Rd

S

Period, T

Minimum

2 s Ta

Robert Tremblay, Polytechnique Montreal, Canada 26

F

Fy

k

1

1

V Target Drift

F U F

y

t

2 y

P/h

U F 2 y

Robert Tremblay, Polytechnique Montreal, Canada 27

RdRo = 4.8

Robert Tremblay, Polytechnique Montreal, Canada 28

RdRo = 7.5

Robert Tremblay, Polytechnique Montreal, Canada 29

Robert Tremblay, Polytechnique Montreal, Canada 30

BRBF or FBF : RdRo = 4.8Firm Ground, Vancouver, BC

5 @ 9.0 = 45.0 m

Frame Studied

Frame ElevationPlan View

4.5 m

5 @

9.0

= 4

5.0

m

15 @

4.0

= 6

0 m

N

Gravity loads: Roof: Dead = 3.0 kPa Snow = 1.64 kPa Floor: Dead = 3.6 kPa Partitions = 1.0 kPa Live = 2.4 kPa Exterior walls = 1.2 kPa

0.25 m(typ.)

BRBF

FBF

Robert Tremblay, Polytechnique Montreal, Canada 31

Robert Tremblay, Polytechnique Montreal, Canada 32

Design BWith Stab. Provisions

102 tons3.52 s

Design ANo Stab.

Provisions

81 tons3.99 s

TonnageT1 (s)

0 1 2 3 4 5T (s)

0.00

0.04

0.08

0.12

0.16

0.20

Design Seismic LoadNBCC 2015RdRo = 4.8

Vancouver, BC (Site C)

Design B

Design A

0 0.02 0.04 0.06V / W

0

4

8

12

16

Leve

l

Design ADesign B

1.0 1.1 1.2 1.3 1.4U2

0

4

8

12

16

0.0 0.5 1.0 1.5 2.0d (%hs)

0

4

8

12

16

Robert Tremblay, Polytechnique Montreal, Canada 33

5 @ 9.0 = 45.0 m

Frame Studied

Plan View

5 @

9.0

= 4

5.0

m

N

1x 2y 3y

4x 4y 2x

1y

1xx1

1xx1

2xx2

1yx1

4xx4

3yx2

2yx2

1yx1

4yx4

Analysis using 2D model and SAP2000Braces: elastic‐plastic hysteresis using NL link elementsBeams and columns: elastic beam elements with P–M plastic hingesColumns pinned at their basesGravity columns with pinned splices at every second level 

Robert Tremblay, Polytechnique Montreal, Canada 34

a g a g

a gn

(%h n

)

n (%

h n)

n (%

h n)

Robert Tremblay, Polytechnique Montreal, Canada 35

Robert Tremblay, Polytechnique Montreal, Canada 36

-2 -1 0 1 2s (%hs)

1

3

5

7

9

11

13

15

Leve

l

-2 -1 0 1 2s (%hs)

1

3

5

7

9

11

13

15

-4 -3 -2 -1 0 1 2 3 4s (%hs)

1

3

5

7

9

11

13

15

Individuals RecordsMean Values

CR Ground Motions IS Ground Motions SI Ground Motions

T1 T1T1

Shear Storey Drift Demands / Design A - No P- in Analysis

Robert Tremblay, Polytechnique Montreal, Canada 37

5 10 15 20 25Time (s)

-0.5

0

0.5 (%

h s)

-1.0

-0.5

0.0

0.5

1.0

1.5

(%h s

)

Shear Storey Drift, s

Bending Storey Drift, b

Total Storey Drift, s + b

SI1 - 2011 M9.0 Tohoku EQ, AOM0281103111446_NS

CR1 - 1989 M6.9 Loma Prieta EQ, Bran 0oLevel 16

Level 9

40 60 80 100 120Time (s)

-1.0

0.0

1.0

2.0

3.0

(%h s

)

Level 9

-2.0

-1.0

0.0

1.0

2.0

(%h s

)

Level 16

Design A

No P-in Analysis

Robert Tremblay, Polytechnique Montreal, Canada 38

SI1 SI2 SI3

SI4 SI5

Collapse Patterns under Subduction Interface (SI) Motions

Robert Tremblay, Polytechnique Montreal, Canada 39

-1.0 0.0 1.0 2.0 3.0 4.0Storey Shear Drift, s (%hs)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Stor

ey S

hear

(kN

)

Design A

-4.0 -3.0 -2.0 -1.0 0.0 1.0Storey Shear Drift, s (%hs)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Stor

ey S

hear

(kN

)

Storeys Shears fromBraces OnlyBraces + Columns

Design B

Storey shear-Shear storey drift response at level 9 - SI1 motion:

0.0 1.0 2.0Roof / hn (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V / (

V D

esig

n A)

Design ADesign B

Robert Tremblay, Polytechnique Montreal, Canada 40

Robert Tremblay, Polytechnique Montreal, Canada 41

k, Fy

F

F yk

1

1

V

LossFy

V

P

P/h

P

h

P (3 )

P (3 )

3 h

3 h

3

s

s

s

s

s

n = 3

ss

3 h 2 h

P

P (2 )

P (2 )

P PP-Delta shear = P-Delta stiffness =

2 h

2 h

h h

2

n = 2

s

s

s

s

s

s s

s

P

P P

F

-F

V+

+-V > V

y

y

VF

-F

V > V+ -

+-V V<

y

y

V V

P

k

k’

h

+ =

11

k’

k’ > P/hP/h

Robert Tremblay, Polytechnique Montreal, Canada 42

Known solution: provide k’ > P/h

Robert Tremblay, Polytechnique Montreal, Canada 43

0 1 2 3 4T (s)

0.00.20.40.60.81.01.2

k' = P/hk' = 2 P/h

0 1 2 3 4T (s)

0 1 2 3 4T (s)

CR Ground Motions IS Ground Motions SI Ground Motions

0 20 40 60 80 100 120 140 160 180 200Time (s)

-0.2

0

0.2-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

h = 2/3 hn; P = 1.2 W; T = 3.05 s; Rd = 4.0No P- in AnalysisP- in Analysis - k' = 0P- in Analysis - k' = P/hP- in Analysis - k' = 2 P/h

SI5 - 2011 M9.0 Tohoku EQ, YMTH121103111446_NS2

FW s

Vy

k

k’

1

1

P

h

s scsc s

s s

P n n k 'if : k ' n 1nh P h

Robert Tremblay, Polytechnique Montreal, Canada 44

0.75

csc 3

s

EIk '

h

Note: Valid if P, EIc, and hs same at all levels

Stiffness k’s supplied by column continuity:

Robert Tremblay, Polytechnique Montreal, Canada 45

n k’sc / (P/hs)

Level 9

scs

n k ' 1P h

?

Robert Tremblay, Polytechnique Montreal, Canada 46

Stiffness k’s supplied by a back-up moment frame:

FBF

MRF

V

V

V

S y,F

+

FBF MRF

S

11 K

K

F

By,F

y,f may be limited $$$ :

• Rigid beam-column connections• MRF provided with minimum ductile detailing

Robert Tremblay, Polytechnique Montreal, Canada 47

Stiffness k’s from a modified chevron BF configuration:

Robert Tremblay, Polytechnique Montreal, Canada 48

Stiffness k’s from a modified chevron BF configuration:

VV’

V

V

y

m

k

s

s

k’

1

1

1

B

A

s

sm s

sy

L

s

P/hs

sk’ P/h>

P

h

P

BeamA , I

Elastic Brace, Ad

bbs

V

V

s sy s s3g sd

L L V0 : V ; k4EA 4EA cos θ

3 2sy s sm s s3g g sd

L L L tan θ V ': ' V ' ; k '2EA 48EI '2EA cos θ

Robert Tremblay, Polytechnique Montreal, Canada 49

m ysm sy

s

V Vk '

Point B - Beam Yielding

VV’

V

V

y

m

k

s

s

k’

1

1

1

B

A

s

sm s

sy

PP

V - 0.5 V

wgrav

0.5 V ym y

y,de,d

L

s

P/hs

sk’ P/h>

P

h

P

BeamA , I

Elastic Brace, Ad

bbs

V

V

b y b b,grav

At Point B :

P 0.5 V V '; M V ' tanθ L 4 M

y,b y b,grav y,b p,bp,b b,grav

m yy,b p,b

P 0.5 V 0.85M P MM MV V min ;

tanθ L 4 1 0.85 tanθ L 4 P M

b b by,b p,b p,b

P M MBeam yielding : 0.85 1.0 ; 1.0P M M

Robert Tremblay, Polytechnique Montreal, Canada 50

Point B - Beam Yielding

VV’

V

V

y

m

k

s

s

k’

1

1

1

B

A

s

sm s

sy

PP

V - 0.5 V

wgrav

0.5 V ym y

y,de,d

L

s

P/hs

sk’ P/h>

P

h

P

BeamA , I

Elastic Brace, Ad

bbs

V

V

m ye,d

m yc

At Point B :

V V 2P

cosθ

V VP

2 tanθ

Robert Tremblay, Polytechnique Montreal, Canada 51

0 10 20 30 40 50P/hs, k's (kN/mm)

0

4

8

12

16

Leve

l

P/hsDesign CDesign DDesign E

0.0 0.5 1.0 1.5 2.0sm (%hs)

0

4

8

12

16

Robert Tremblay, Polytechnique Montreal, Canada 52

0 0.005 0.01 0.015 0.02 0.025s/hs

0.0

0.4

0.8

1.2

1.6

2.0

V/V y

W760x147 (Design E) W360x421 (Design D)

W310x289

W610x113 (Design C)

P/hs

2 P/hsLevel 9:

Robert Tremblay, Polytechnique Montreal, Canada 53

0.0 1.0 2.0Roof / hn (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V / (

V D

esig

n A)

Design ADesign BDesign CDesign DDesign E

0 10 20 30 40 50P/hs, k's (kN/mm)

0

4

8

12

16

Leve

l

P/hsDesign CDesign DDesign E

0.0 0.5 1.0 1.5 2.0sm (%hs)

0

4

8

12

16

-1.0 0.0 1.0 2.0 3.0Storey Shear Drift, s (%hs)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Stor

ey S

hear

(kN

)

Design C

-2.0 -1.0 0.0 1.0 2.0Storey Shear Drift, s (%hs)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Stor

ey S

hear

(kN

)

Design D

-2.0 -1.0 0.0 1.0 2.0Storey Shear Drift, s (%hs)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

Stor

ey S

hear

(kN

)

Design E

Robert Tremblay, Polytechnique Montreal, Canada 54

1

3

5

7

9

11

13

15

-3 -2 -1 0 1 2 3s (%hs)

-5 -4 -3 -2 -1 0 1 2 3 4 5s (%hs)

1

3

5

7

9

11

13

15

Leve

l

Design Ck's = P/hs - sm = 1% hs

-2 -1 0 1 2s (%hs)

1

3

5

7

9

11

13

15

Design Ek's = 2 P/hs - sm = 1% hs

Design Dk's = 2 P/hs - sm = 2% hs

Storey shear-shear-storey drift response at level 9 - SI1 motion:

Peak shear storey drift demands:

Robert Tremblay, Polytechnique Montreal, Canada 55

Design

V/W (%)T1 (s)

Tonnage (t)

A

4.443.9981

B

5.463.52102

C

4.443.8587

D

4.443.35153

E

4.443.5199

a gn

(%h n

)

Robert Tremblay, Polytechnique Montreal, Canada 56

0.0 1.0 2.0Roof / hn (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V / (

V D

esig

n A)

Design ADesign DDesign EDesign F

1

3

5

7

9

11

13

15

-3 -2 -1 0 1 2 3

s (%hs)

Design D

-2 -1 0 1 2

s (%hs)

1

3

5

7

9

11

13

15

Design E

1

3

5

7

9

11

13

15

-3 -2 -1 0 1 2 3

s (%hs)

Design F

Design F

Same as Design Eexcept that no minimum V/W

0 1 2 3 4 5T (s)

0.00

0.04

0.08

0.12

0.16

0.20

V / W

Design Seismic LoadNBCC 2015RdRo = 4.8

Vancouver, BC (Site C)

Minimum V/W

Designs D E F A

Robert Tremblay, Polytechnique Montreal, Canada 57

Design

V/W (%)T1 (s)

Tonnage (t)

A

4.443.9981

B

5.463.52102

C

4.443.8587

D

4.443.35153

E

4.443.5199

F

3.333.8693

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300Time (s)

-0.2

0

0.2

a g

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

n (%

h n)

Design ADesign BDesign DDesign EDesign F

SI2 - 2011 M9.0 Tohoku EQ, FKS0211103111446_EW

• Collapse of tall braced frames with limited post-yielding stiffness expected under subduction interface EQs

• Current design provisions (strength amplification, column continuity) and/or systems (limited post-yield stiffness) need to be modified

• Positive post-yielding stiffness appears as a possible solution; proposed modified chevron BF configuration appears as a promising application:

– System exhibits stable response and offers re-centring capacity with reduced peak and residual storey drifts

– Number of yielding braces reduced by 50% and limited additional steel required for the beams

– Possibility of relaxing current code limits (heigth, V/W)

Conclusions

Robert Tremblay, Polytechnique Montreal, Canada 58

• Further studies needed to:

– Positive post-yielding stiffness concept to be further validated for other multi-storey applications

– Design guidance needed for key parameterssuch as Rd, k’s, sm, etc.

Conclusions

Robert Tremblay, Polytechnique Montreal, Canada 59